1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "config.h" 29 30 #include <math.h> 31 32 #include "double.h" 33 #include "fixed-dtoa.h" 34 35 namespace WTF { 36 37 namespace double_conversion { 38 39 // Represents a 128bit type. This class should be replaced by a native type on 40 // platforms that support 128bit integers. 41 class UInt128 { 42 public: UInt128()43 UInt128() : high_bits_(0), low_bits_(0) { } UInt128(uint64_t high,uint64_t low)44 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } 45 Multiply(uint32_t multiplicand)46 void Multiply(uint32_t multiplicand) { 47 uint64_t accumulator; 48 49 accumulator = (low_bits_ & kMask32) * multiplicand; 50 uint32_t part = static_cast<uint32_t>(accumulator & kMask32); 51 accumulator >>= 32; 52 accumulator = accumulator + (low_bits_ >> 32) * multiplicand; 53 low_bits_ = (accumulator << 32) + part; 54 accumulator >>= 32; 55 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; 56 part = static_cast<uint32_t>(accumulator & kMask32); 57 accumulator >>= 32; 58 accumulator = accumulator + (high_bits_ >> 32) * multiplicand; 59 high_bits_ = (accumulator << 32) + part; 60 ASSERT((accumulator >> 32) == 0); 61 } 62 Shift(int shift_amount)63 void Shift(int shift_amount) { 64 ASSERT(-64 <= shift_amount && shift_amount <= 64); 65 if (shift_amount == 0) { 66 return; 67 } else if (shift_amount == -64) { 68 high_bits_ = low_bits_; 69 low_bits_ = 0; 70 } else if (shift_amount == 64) { 71 low_bits_ = high_bits_; 72 high_bits_ = 0; 73 } else if (shift_amount <= 0) { 74 high_bits_ <<= -shift_amount; 75 high_bits_ += low_bits_ >> (64 + shift_amount); 76 low_bits_ <<= -shift_amount; 77 } else { 78 low_bits_ >>= shift_amount; 79 low_bits_ += high_bits_ << (64 - shift_amount); 80 high_bits_ >>= shift_amount; 81 } 82 } 83 84 // Modifies *this to *this MOD (2^power). 85 // Returns *this DIV (2^power). DivModPowerOf2(int power)86 int DivModPowerOf2(int power) { 87 if (power >= 64) { 88 int result = static_cast<int>(high_bits_ >> (power - 64)); 89 high_bits_ -= static_cast<uint64_t>(result) << (power - 64); 90 return result; 91 } else { 92 uint64_t part_low = low_bits_ >> power; 93 uint64_t part_high = high_bits_ << (64 - power); 94 int result = static_cast<int>(part_low + part_high); 95 high_bits_ = 0; 96 low_bits_ -= part_low << power; 97 return result; 98 } 99 } 100 IsZero() const101 bool IsZero() const { 102 return high_bits_ == 0 && low_bits_ == 0; 103 } 104 BitAt(int position)105 int BitAt(int position) { 106 if (position >= 64) { 107 return static_cast<int>(high_bits_ >> (position - 64)) & 1; 108 } else { 109 return static_cast<int>(low_bits_ >> position) & 1; 110 } 111 } 112 113 private: 114 static const uint64_t kMask32 = 0xFFFFFFFF; 115 // Value == (high_bits_ << 64) + low_bits_ 116 uint64_t high_bits_; 117 uint64_t low_bits_; 118 }; 119 120 121 static const int kDoubleSignificandSize = 53; // Includes the hidden bit. 122 123 FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)124 static void FillDigits32FixedLength(uint32_t number, int requested_length, 125 Vector<char> buffer, int* length) { 126 for (int i = requested_length - 1; i >= 0; --i) { 127 buffer[(*length) + i] = '0' + number % 10; 128 number /= 10; 129 } 130 *length += requested_length; 131 } 132 133 FillDigits32(uint32_t number,Vector<char> buffer,int * length)134 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { 135 int number_length = 0; 136 // We fill the digits in reverse order and exchange them afterwards. 137 while (number != 0) { 138 int digit = number % 10; 139 number /= 10; 140 buffer[(*length) + number_length] = '0' + digit; 141 number_length++; 142 } 143 // Exchange the digits. 144 int i = *length; 145 int j = *length + number_length - 1; 146 while (i < j) { 147 char tmp = buffer[i]; 148 buffer[i] = buffer[j]; 149 buffer[j] = tmp; 150 i++; 151 j--; 152 } 153 *length += number_length; 154 } 155 156 FillDigits64FixedLength(uint64_t number,int,Vector<char> buffer,int * length)157 static void FillDigits64FixedLength(uint64_t number, int, 158 Vector<char> buffer, int* length) { 159 const uint32_t kTen7 = 10000000; 160 // For efficiency cut the number into 3 uint32_t parts, and print those. 161 uint32_t part2 = static_cast<uint32_t>(number % kTen7); 162 number /= kTen7; 163 uint32_t part1 = static_cast<uint32_t>(number % kTen7); 164 uint32_t part0 = static_cast<uint32_t>(number / kTen7); 165 166 FillDigits32FixedLength(part0, 3, buffer, length); 167 FillDigits32FixedLength(part1, 7, buffer, length); 168 FillDigits32FixedLength(part2, 7, buffer, length); 169 } 170 171 FillDigits64(uint64_t number,Vector<char> buffer,int * length)172 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { 173 const uint32_t kTen7 = 10000000; 174 // For efficiency cut the number into 3 uint32_t parts, and print those. 175 uint32_t part2 = static_cast<uint32_t>(number % kTen7); 176 number /= kTen7; 177 uint32_t part1 = static_cast<uint32_t>(number % kTen7); 178 uint32_t part0 = static_cast<uint32_t>(number / kTen7); 179 180 if (part0 != 0) { 181 FillDigits32(part0, buffer, length); 182 FillDigits32FixedLength(part1, 7, buffer, length); 183 FillDigits32FixedLength(part2, 7, buffer, length); 184 } else if (part1 != 0) { 185 FillDigits32(part1, buffer, length); 186 FillDigits32FixedLength(part2, 7, buffer, length); 187 } else { 188 FillDigits32(part2, buffer, length); 189 } 190 } 191 192 RoundUp(Vector<char> buffer,int * length,int * decimal_point)193 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { 194 // An empty buffer represents 0. 195 if (*length == 0) { 196 buffer[0] = '1'; 197 *decimal_point = 1; 198 *length = 1; 199 return; 200 } 201 // Round the last digit until we either have a digit that was not '9' or until 202 // we reached the first digit. 203 buffer[(*length) - 1]++; 204 for (int i = (*length) - 1; i > 0; --i) { 205 if (buffer[i] != '0' + 10) { 206 return; 207 } 208 buffer[i] = '0'; 209 buffer[i - 1]++; 210 } 211 // If the first digit is now '0' + 10, we would need to set it to '0' and add 212 // a '1' in front. However we reach the first digit only if all following 213 // digits had been '9' before rounding up. Now all trailing digits are '0' and 214 // we simply switch the first digit to '1' and update the decimal-point 215 // (indicating that the point is now one digit to the right). 216 if (buffer[0] == '0' + 10) { 217 buffer[0] = '1'; 218 (*decimal_point)++; 219 } 220 } 221 222 223 // The given fractionals number represents a fixed-point number with binary 224 // point at bit (-exponent). 225 // Preconditions: 226 // -128 <= exponent <= 0. 227 // 0 <= fractionals * 2^exponent < 1 228 // The buffer holds the result. 229 // The function will round its result. During the rounding-process digits not 230 // generated by this function might be updated, and the decimal-point variable 231 // might be updated. If this function generates the digits 99 and the buffer 232 // already contained "199" (thus yielding a buffer of "19999") then a 233 // rounding-up will change the contents of the buffer to "20000". FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)234 static void FillFractionals(uint64_t fractionals, int exponent, 235 int fractional_count, Vector<char> buffer, 236 int* length, int* decimal_point) { 237 ASSERT(-128 <= exponent && exponent <= 0); 238 // 'fractionals' is a fixed-point number, with binary point at bit 239 // (-exponent). Inside the function the non-converted remainder of fractionals 240 // is a fixed-point number, with binary point at bit 'point'. 241 if (-exponent <= 64) { 242 // One 64 bit number is sufficient. 243 ASSERT(fractionals >> 56 == 0); 244 int point = -exponent; 245 for (int i = 0; i < fractional_count; ++i) { 246 if (fractionals == 0) break; 247 // Instead of multiplying by 10 we multiply by 5 and adjust the point 248 // location. This way the fractionals variable will not overflow. 249 // Invariant at the beginning of the loop: fractionals < 2^point. 250 // Initially we have: point <= 64 and fractionals < 2^56 251 // After each iteration the point is decremented by one. 252 // Note that 5^3 = 125 < 128 = 2^7. 253 // Therefore three iterations of this loop will not overflow fractionals 254 // (even without the subtraction at the end of the loop body). At this 255 // time point will satisfy point <= 61 and therefore fractionals < 2^point 256 // and any further multiplication of fractionals by 5 will not overflow. 257 fractionals *= 5; 258 point--; 259 int digit = static_cast<int>(fractionals >> point); 260 buffer[*length] = '0' + digit; 261 (*length)++; 262 fractionals -= static_cast<uint64_t>(digit) << point; 263 } 264 // If the first bit after the point is set we have to round up. 265 if (((fractionals >> (point - 1)) & 1) == 1) { 266 RoundUp(buffer, length, decimal_point); 267 } 268 } else { // We need 128 bits. 269 ASSERT(64 < -exponent && -exponent <= 128); 270 UInt128 fractionals128 = UInt128(fractionals, 0); 271 fractionals128.Shift(-exponent - 64); 272 int point = 128; 273 for (int i = 0; i < fractional_count; ++i) { 274 if (fractionals128.IsZero()) break; 275 // As before: instead of multiplying by 10 we multiply by 5 and adjust the 276 // point location. 277 // This multiplication will not overflow for the same reasons as before. 278 fractionals128.Multiply(5); 279 point--; 280 int digit = fractionals128.DivModPowerOf2(point); 281 buffer[*length] = '0' + digit; 282 (*length)++; 283 } 284 if (fractionals128.BitAt(point - 1) == 1) { 285 RoundUp(buffer, length, decimal_point); 286 } 287 } 288 } 289 290 291 // Removes leading and trailing zeros. 292 // If leading zeros are removed then the decimal point position is adjusted. TrimZeros(Vector<char> buffer,int * length,int * decimal_point)293 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { 294 while (*length > 0 && buffer[(*length) - 1] == '0') { 295 (*length)--; 296 } 297 int first_non_zero = 0; 298 while (first_non_zero < *length && buffer[first_non_zero] == '0') { 299 first_non_zero++; 300 } 301 if (first_non_zero != 0) { 302 for (int i = first_non_zero; i < *length; ++i) { 303 buffer[i - first_non_zero] = buffer[i]; 304 } 305 *length -= first_non_zero; 306 *decimal_point -= first_non_zero; 307 } 308 } 309 310 FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)311 bool FastFixedDtoa(double v, 312 int fractional_count, 313 Vector<char> buffer, 314 int* length, 315 int* decimal_point) { 316 const uint32_t kMaxUInt32 = 0xFFFFFFFF; 317 uint64_t significand = Double(v).Significand(); 318 int exponent = Double(v).Exponent(); 319 // v = significand * 2^exponent (with significand a 53bit integer). 320 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we 321 // don't know how to compute the representation. 2^73 ~= 9.5*10^21. 322 // If necessary this limit could probably be increased, but we don't need 323 // more. 324 if (exponent > 20) return false; 325 if (fractional_count > 20) return false; 326 *length = 0; 327 // At most kDoubleSignificandSize bits of the significand are non-zero. 328 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero 329 // bits: 0..11*..0xxx..53*..xx 330 if (exponent + kDoubleSignificandSize > 64) { 331 // The exponent must be > 11. 332 // 333 // We know that v = significand * 2^exponent. 334 // And the exponent > 11. 335 // We simplify the task by dividing v by 10^17. 336 // The quotient delivers the first digits, and the remainder fits into a 64 337 // bit number. 338 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. 339 const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 340 uint64_t divisor = kFive17; 341 int divisor_power = 17; 342 uint64_t dividend = significand; 343 uint32_t quotient; 344 uint64_t remainder; 345 // Let v = f * 2^e with f == significand and e == exponent. 346 // Then need q (quotient) and r (remainder) as follows: 347 // v = q * 10^17 + r 348 // f * 2^e = q * 10^17 + r 349 // f * 2^e = q * 5^17 * 2^17 + r 350 // If e > 17 then 351 // f * 2^(e-17) = q * 5^17 + r/2^17 352 // else 353 // f = q * 5^17 * 2^(17-e) + r/2^e 354 if (exponent > divisor_power) { 355 // We only allow exponents of up to 20 and therefore (17 - e) <= 3 356 dividend <<= exponent - divisor_power; 357 quotient = static_cast<uint32_t>(dividend / divisor); 358 remainder = (dividend % divisor) << divisor_power; 359 } else { 360 divisor <<= divisor_power - exponent; 361 quotient = static_cast<uint32_t>(dividend / divisor); 362 remainder = (dividend % divisor) << exponent; 363 } 364 FillDigits32(quotient, buffer, length); 365 FillDigits64FixedLength(remainder, divisor_power, buffer, length); 366 *decimal_point = *length; 367 } else if (exponent >= 0) { 368 // 0 <= exponent <= 11 369 significand <<= exponent; 370 FillDigits64(significand, buffer, length); 371 *decimal_point = *length; 372 } else if (exponent > -kDoubleSignificandSize) { 373 // We have to cut the number. 374 uint64_t integrals = significand >> -exponent; 375 uint64_t fractionals = significand - (integrals << -exponent); 376 if (integrals > kMaxUInt32) { 377 FillDigits64(integrals, buffer, length); 378 } else { 379 FillDigits32(static_cast<uint32_t>(integrals), buffer, length); 380 } 381 *decimal_point = *length; 382 FillFractionals(fractionals, exponent, fractional_count, 383 buffer, length, decimal_point); 384 } else if (exponent < -128) { 385 // This configuration (with at most 20 digits) means that all digits must be 386 // 0. 387 ASSERT(fractional_count <= 20); 388 buffer[0] = '\0'; 389 *length = 0; 390 *decimal_point = -fractional_count; 391 } else { 392 *decimal_point = 0; 393 FillFractionals(significand, exponent, fractional_count, 394 buffer, length, decimal_point); 395 } 396 TrimZeros(buffer, length, decimal_point); 397 buffer[*length] = '\0'; 398 if ((*length) == 0) { 399 // The string is empty and the decimal_point thus has no importance. Mimick 400 // Gay's dtoa and and set it to -fractional_count. 401 *decimal_point = -fractional_count; 402 } 403 return true; 404 } 405 406 } // namespace double_conversion 407 408 } // namespace WTF 409