• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "config.h"
29 
30 #include <math.h>
31 
32 #include "double.h"
33 #include "fixed-dtoa.h"
34 
35 namespace WTF {
36 
37 namespace double_conversion {
38 
39     // Represents a 128bit type. This class should be replaced by a native type on
40     // platforms that support 128bit integers.
41     class UInt128 {
42     public:
UInt128()43         UInt128() : high_bits_(0), low_bits_(0) { }
UInt128(uint64_t high,uint64_t low)44         UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
45 
Multiply(uint32_t multiplicand)46         void Multiply(uint32_t multiplicand) {
47             uint64_t accumulator;
48 
49             accumulator = (low_bits_ & kMask32) * multiplicand;
50             uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
51             accumulator >>= 32;
52             accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
53             low_bits_ = (accumulator << 32) + part;
54             accumulator >>= 32;
55             accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
56             part = static_cast<uint32_t>(accumulator & kMask32);
57             accumulator >>= 32;
58             accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
59             high_bits_ = (accumulator << 32) + part;
60             ASSERT((accumulator >> 32) == 0);
61         }
62 
Shift(int shift_amount)63         void Shift(int shift_amount) {
64             ASSERT(-64 <= shift_amount && shift_amount <= 64);
65             if (shift_amount == 0) {
66                 return;
67             } else if (shift_amount == -64) {
68                 high_bits_ = low_bits_;
69                 low_bits_ = 0;
70             } else if (shift_amount == 64) {
71                 low_bits_ = high_bits_;
72                 high_bits_ = 0;
73             } else if (shift_amount <= 0) {
74                 high_bits_ <<= -shift_amount;
75                 high_bits_ += low_bits_ >> (64 + shift_amount);
76                 low_bits_ <<= -shift_amount;
77             } else {
78                 low_bits_ >>= shift_amount;
79                 low_bits_ += high_bits_ << (64 - shift_amount);
80                 high_bits_ >>= shift_amount;
81             }
82         }
83 
84         // Modifies *this to *this MOD (2^power).
85         // Returns *this DIV (2^power).
DivModPowerOf2(int power)86         int DivModPowerOf2(int power) {
87             if (power >= 64) {
88                 int result = static_cast<int>(high_bits_ >> (power - 64));
89                 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
90                 return result;
91             } else {
92                 uint64_t part_low = low_bits_ >> power;
93                 uint64_t part_high = high_bits_ << (64 - power);
94                 int result = static_cast<int>(part_low + part_high);
95                 high_bits_ = 0;
96                 low_bits_ -= part_low << power;
97                 return result;
98             }
99         }
100 
IsZero() const101         bool IsZero() const {
102             return high_bits_ == 0 && low_bits_ == 0;
103         }
104 
BitAt(int position)105         int BitAt(int position) {
106             if (position >= 64) {
107                 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
108             } else {
109                 return static_cast<int>(low_bits_ >> position) & 1;
110             }
111         }
112 
113     private:
114         static const uint64_t kMask32 = 0xFFFFFFFF;
115         // Value == (high_bits_ << 64) + low_bits_
116         uint64_t high_bits_;
117         uint64_t low_bits_;
118     };
119 
120 
121     static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
122 
123 
FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)124     static void FillDigits32FixedLength(uint32_t number, int requested_length,
125                                         Vector<char> buffer, int* length) {
126         for (int i = requested_length - 1; i >= 0; --i) {
127             buffer[(*length) + i] = '0' + number % 10;
128             number /= 10;
129         }
130         *length += requested_length;
131     }
132 
133 
FillDigits32(uint32_t number,Vector<char> buffer,int * length)134     static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
135         int number_length = 0;
136         // We fill the digits in reverse order and exchange them afterwards.
137         while (number != 0) {
138             int digit = number % 10;
139             number /= 10;
140             buffer[(*length) + number_length] = '0' + digit;
141             number_length++;
142         }
143         // Exchange the digits.
144         int i = *length;
145         int j = *length + number_length - 1;
146         while (i < j) {
147             char tmp = buffer[i];
148             buffer[i] = buffer[j];
149             buffer[j] = tmp;
150             i++;
151             j--;
152         }
153         *length += number_length;
154     }
155 
156 
FillDigits64FixedLength(uint64_t number,int,Vector<char> buffer,int * length)157     static void FillDigits64FixedLength(uint64_t number, int,
158                                         Vector<char> buffer, int* length) {
159         const uint32_t kTen7 = 10000000;
160         // For efficiency cut the number into 3 uint32_t parts, and print those.
161         uint32_t part2 = static_cast<uint32_t>(number % kTen7);
162         number /= kTen7;
163         uint32_t part1 = static_cast<uint32_t>(number % kTen7);
164         uint32_t part0 = static_cast<uint32_t>(number / kTen7);
165 
166         FillDigits32FixedLength(part0, 3, buffer, length);
167         FillDigits32FixedLength(part1, 7, buffer, length);
168         FillDigits32FixedLength(part2, 7, buffer, length);
169     }
170 
171 
FillDigits64(uint64_t number,Vector<char> buffer,int * length)172     static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
173         const uint32_t kTen7 = 10000000;
174         // For efficiency cut the number into 3 uint32_t parts, and print those.
175         uint32_t part2 = static_cast<uint32_t>(number % kTen7);
176         number /= kTen7;
177         uint32_t part1 = static_cast<uint32_t>(number % kTen7);
178         uint32_t part0 = static_cast<uint32_t>(number / kTen7);
179 
180         if (part0 != 0) {
181             FillDigits32(part0, buffer, length);
182             FillDigits32FixedLength(part1, 7, buffer, length);
183             FillDigits32FixedLength(part2, 7, buffer, length);
184         } else if (part1 != 0) {
185             FillDigits32(part1, buffer, length);
186             FillDigits32FixedLength(part2, 7, buffer, length);
187         } else {
188             FillDigits32(part2, buffer, length);
189         }
190     }
191 
192 
RoundUp(Vector<char> buffer,int * length,int * decimal_point)193     static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
194         // An empty buffer represents 0.
195         if (*length == 0) {
196             buffer[0] = '1';
197             *decimal_point = 1;
198             *length = 1;
199             return;
200         }
201         // Round the last digit until we either have a digit that was not '9' or until
202         // we reached the first digit.
203         buffer[(*length) - 1]++;
204         for (int i = (*length) - 1; i > 0; --i) {
205             if (buffer[i] != '0' + 10) {
206                 return;
207             }
208             buffer[i] = '0';
209             buffer[i - 1]++;
210         }
211         // If the first digit is now '0' + 10, we would need to set it to '0' and add
212         // a '1' in front. However we reach the first digit only if all following
213         // digits had been '9' before rounding up. Now all trailing digits are '0' and
214         // we simply switch the first digit to '1' and update the decimal-point
215         // (indicating that the point is now one digit to the right).
216         if (buffer[0] == '0' + 10) {
217             buffer[0] = '1';
218             (*decimal_point)++;
219         }
220     }
221 
222 
223     // The given fractionals number represents a fixed-point number with binary
224     // point at bit (-exponent).
225     // Preconditions:
226     //   -128 <= exponent <= 0.
227     //   0 <= fractionals * 2^exponent < 1
228     //   The buffer holds the result.
229     // The function will round its result. During the rounding-process digits not
230     // generated by this function might be updated, and the decimal-point variable
231     // might be updated. If this function generates the digits 99 and the buffer
232     // already contained "199" (thus yielding a buffer of "19999") then a
233     // rounding-up will change the contents of the buffer to "20000".
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)234     static void FillFractionals(uint64_t fractionals, int exponent,
235                                 int fractional_count, Vector<char> buffer,
236                                 int* length, int* decimal_point) {
237         ASSERT(-128 <= exponent && exponent <= 0);
238         // 'fractionals' is a fixed-point number, with binary point at bit
239         // (-exponent). Inside the function the non-converted remainder of fractionals
240         // is a fixed-point number, with binary point at bit 'point'.
241         if (-exponent <= 64) {
242             // One 64 bit number is sufficient.
243             ASSERT(fractionals >> 56 == 0);
244             int point = -exponent;
245             for (int i = 0; i < fractional_count; ++i) {
246                 if (fractionals == 0) break;
247                 // Instead of multiplying by 10 we multiply by 5 and adjust the point
248                 // location. This way the fractionals variable will not overflow.
249                 // Invariant at the beginning of the loop: fractionals < 2^point.
250                 // Initially we have: point <= 64 and fractionals < 2^56
251                 // After each iteration the point is decremented by one.
252                 // Note that 5^3 = 125 < 128 = 2^7.
253                 // Therefore three iterations of this loop will not overflow fractionals
254                 // (even without the subtraction at the end of the loop body). At this
255                 // time point will satisfy point <= 61 and therefore fractionals < 2^point
256                 // and any further multiplication of fractionals by 5 will not overflow.
257                 fractionals *= 5;
258                 point--;
259                 int digit = static_cast<int>(fractionals >> point);
260                 buffer[*length] = '0' + digit;
261                 (*length)++;
262                 fractionals -= static_cast<uint64_t>(digit) << point;
263             }
264             // If the first bit after the point is set we have to round up.
265             if (((fractionals >> (point - 1)) & 1) == 1) {
266                 RoundUp(buffer, length, decimal_point);
267             }
268         } else {  // We need 128 bits.
269             ASSERT(64 < -exponent && -exponent <= 128);
270             UInt128 fractionals128 = UInt128(fractionals, 0);
271             fractionals128.Shift(-exponent - 64);
272             int point = 128;
273             for (int i = 0; i < fractional_count; ++i) {
274                 if (fractionals128.IsZero()) break;
275                 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
276                 // point location.
277                 // This multiplication will not overflow for the same reasons as before.
278                 fractionals128.Multiply(5);
279                 point--;
280                 int digit = fractionals128.DivModPowerOf2(point);
281                 buffer[*length] = '0' + digit;
282                 (*length)++;
283             }
284             if (fractionals128.BitAt(point - 1) == 1) {
285                 RoundUp(buffer, length, decimal_point);
286             }
287         }
288     }
289 
290 
291     // Removes leading and trailing zeros.
292     // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(Vector<char> buffer,int * length,int * decimal_point)293     static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
294         while (*length > 0 && buffer[(*length) - 1] == '0') {
295             (*length)--;
296         }
297         int first_non_zero = 0;
298         while (first_non_zero < *length && buffer[first_non_zero] == '0') {
299             first_non_zero++;
300         }
301         if (first_non_zero != 0) {
302             for (int i = first_non_zero; i < *length; ++i) {
303                 buffer[i - first_non_zero] = buffer[i];
304             }
305             *length -= first_non_zero;
306             *decimal_point -= first_non_zero;
307         }
308     }
309 
310 
FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)311     bool FastFixedDtoa(double v,
312                        int fractional_count,
313                        Vector<char> buffer,
314                        int* length,
315                        int* decimal_point) {
316         const uint32_t kMaxUInt32 = 0xFFFFFFFF;
317         uint64_t significand = Double(v).Significand();
318         int exponent = Double(v).Exponent();
319         // v = significand * 2^exponent (with significand a 53bit integer).
320         // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
321         // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
322         // If necessary this limit could probably be increased, but we don't need
323         // more.
324         if (exponent > 20) return false;
325         if (fractional_count > 20) return false;
326         *length = 0;
327         // At most kDoubleSignificandSize bits of the significand are non-zero.
328         // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
329         // bits:  0..11*..0xxx..53*..xx
330         if (exponent + kDoubleSignificandSize > 64) {
331             // The exponent must be > 11.
332             //
333             // We know that v = significand * 2^exponent.
334             // And the exponent > 11.
335             // We simplify the task by dividing v by 10^17.
336             // The quotient delivers the first digits, and the remainder fits into a 64
337             // bit number.
338             // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
339             const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
340             uint64_t divisor = kFive17;
341             int divisor_power = 17;
342             uint64_t dividend = significand;
343             uint32_t quotient;
344             uint64_t remainder;
345             // Let v = f * 2^e with f == significand and e == exponent.
346             // Then need q (quotient) and r (remainder) as follows:
347             //   v            = q * 10^17       + r
348             //   f * 2^e      = q * 10^17       + r
349             //   f * 2^e      = q * 5^17 * 2^17 + r
350             // If e > 17 then
351             //   f * 2^(e-17) = q * 5^17        + r/2^17
352             // else
353             //   f  = q * 5^17 * 2^(17-e) + r/2^e
354             if (exponent > divisor_power) {
355                 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
356                 dividend <<= exponent - divisor_power;
357                 quotient = static_cast<uint32_t>(dividend / divisor);
358                 remainder = (dividend % divisor) << divisor_power;
359             } else {
360                 divisor <<= divisor_power - exponent;
361                 quotient = static_cast<uint32_t>(dividend / divisor);
362                 remainder = (dividend % divisor) << exponent;
363             }
364             FillDigits32(quotient, buffer, length);
365             FillDigits64FixedLength(remainder, divisor_power, buffer, length);
366             *decimal_point = *length;
367         } else if (exponent >= 0) {
368             // 0 <= exponent <= 11
369             significand <<= exponent;
370             FillDigits64(significand, buffer, length);
371             *decimal_point = *length;
372         } else if (exponent > -kDoubleSignificandSize) {
373             // We have to cut the number.
374             uint64_t integrals = significand >> -exponent;
375             uint64_t fractionals = significand - (integrals << -exponent);
376             if (integrals > kMaxUInt32) {
377                 FillDigits64(integrals, buffer, length);
378             } else {
379                 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
380             }
381             *decimal_point = *length;
382             FillFractionals(fractionals, exponent, fractional_count,
383                             buffer, length, decimal_point);
384         } else if (exponent < -128) {
385             // This configuration (with at most 20 digits) means that all digits must be
386             // 0.
387             ASSERT(fractional_count <= 20);
388             buffer[0] = '\0';
389             *length = 0;
390             *decimal_point = -fractional_count;
391         } else {
392             *decimal_point = 0;
393             FillFractionals(significand, exponent, fractional_count,
394                             buffer, length, decimal_point);
395         }
396         TrimZeros(buffer, length, decimal_point);
397         buffer[*length] = '\0';
398         if ((*length) == 0) {
399             // The string is empty and the decimal_point thus has no importance. Mimick
400             // Gay's dtoa and and set it to -fractional_count.
401             *decimal_point = -fractional_count;
402         }
403         return true;
404     }
405 
406 }  // namespace double_conversion
407 
408 } // namespace WTF
409