• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "config.h"
29 
30 #include <stdarg.h>
31 #include <limits.h>
32 
33 #include "strtod.h"
34 #include "bignum.h"
35 #include "cached-powers.h"
36 #include "double.h"
37 
38 namespace WTF {
39 
40 namespace double_conversion {
41 
42     // 2^53 = 9007199254740992.
43     // Any integer with at most 15 decimal digits will hence fit into a double
44     // (which has a 53bit significand) without loss of precision.
45     static const int kMaxExactDoubleIntegerDecimalDigits = 15;
46     // 2^64 = 18446744073709551616 > 10^19
47     static const int kMaxUint64DecimalDigits = 19;
48 
49     // Max double: 1.7976931348623157 x 10^308
50     // Min non-zero double: 4.9406564584124654 x 10^-324
51     // Any x >= 10^309 is interpreted as +infinity.
52     // Any x <= 10^-324 is interpreted as 0.
53     // Note that 2.5e-324 (despite being smaller than the min double) will be read
54     // as non-zero (equal to the min non-zero double).
55     static const int kMaxDecimalPower = 309;
56     static const int kMinDecimalPower = -324;
57 
58     // 2^64 = 18446744073709551616
59     static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
60 
61 
62     static const double exact_powers_of_ten[] = {
63         1.0,  // 10^0
64         10.0,
65         100.0,
66         1000.0,
67         10000.0,
68         100000.0,
69         1000000.0,
70         10000000.0,
71         100000000.0,
72         1000000000.0,
73         10000000000.0,  // 10^10
74         100000000000.0,
75         1000000000000.0,
76         10000000000000.0,
77         100000000000000.0,
78         1000000000000000.0,
79         10000000000000000.0,
80         100000000000000000.0,
81         1000000000000000000.0,
82         10000000000000000000.0,
83         100000000000000000000.0,  // 10^20
84         1000000000000000000000.0,
85         // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
86         10000000000000000000000.0
87     };
88     static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
89 
90     // Maximum number of significant digits in the decimal representation.
91     // In fact the value is 772 (see conversions.cc), but to give us some margin
92     // we round up to 780.
93     static const int kMaxSignificantDecimalDigits = 780;
94 
TrimLeadingZeros(Vector<const char> buffer)95     static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
96         for (int i = 0; i < buffer.length(); i++) {
97             if (buffer[i] != '0') {
98                 return buffer.SubVector(i, buffer.length());
99             }
100         }
101         return Vector<const char>(buffer.start(), 0);
102     }
103 
104 
TrimTrailingZeros(Vector<const char> buffer)105     static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
106         for (int i = buffer.length() - 1; i >= 0; --i) {
107             if (buffer[i] != '0') {
108                 return buffer.SubVector(0, i + 1);
109             }
110         }
111         return Vector<const char>(buffer.start(), 0);
112     }
113 
114 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)115     static void TrimToMaxSignificantDigits(Vector<const char> buffer,
116                                            int exponent,
117                                            char* significant_buffer,
118                                            int* significant_exponent) {
119         for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
120             significant_buffer[i] = buffer[i];
121         }
122         // The input buffer has been trimmed. Therefore the last digit must be
123         // different from '0'.
124         ASSERT(buffer[buffer.length() - 1] != '0');
125         // Set the last digit to be non-zero. This is sufficient to guarantee
126         // correct rounding.
127         significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
128         *significant_exponent =
129         exponent + (buffer.length() - kMaxSignificantDecimalDigits);
130     }
131 
132     // Reads digits from the buffer and converts them to a uint64.
133     // Reads in as many digits as fit into a uint64.
134     // When the string starts with "1844674407370955161" no further digit is read.
135     // Since 2^64 = 18446744073709551616 it would still be possible read another
136     // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)137     static uint64_t ReadUint64(Vector<const char> buffer,
138                                int* number_of_read_digits) {
139         uint64_t result = 0;
140         int i = 0;
141         while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
142             int digit = buffer[i++] - '0';
143             ASSERT(0 <= digit && digit <= 9);
144             result = 10 * result + digit;
145         }
146         *number_of_read_digits = i;
147         return result;
148     }
149 
150 
151     // Reads a DiyFp from the buffer.
152     // The returned DiyFp is not necessarily normalized.
153     // If remaining_decimals is zero then the returned DiyFp is accurate.
154     // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)155     static void ReadDiyFp(Vector<const char> buffer,
156                           DiyFp* result,
157                           int* remaining_decimals) {
158         int read_digits;
159         uint64_t significand = ReadUint64(buffer, &read_digits);
160         if (buffer.length() == read_digits) {
161             *result = DiyFp(significand, 0);
162             *remaining_decimals = 0;
163         } else {
164             // Round the significand.
165             if (buffer[read_digits] >= '5') {
166                 significand++;
167             }
168             // Compute the binary exponent.
169             int exponent = 0;
170             *result = DiyFp(significand, exponent);
171             *remaining_decimals = buffer.length() - read_digits;
172         }
173     }
174 
175 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)176     static bool DoubleStrtod(Vector<const char> trimmed,
177                              int exponent,
178                              double* result) {
179 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
180         // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
181         // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
182         // result is not accurate.
183         // We know that Windows32 uses 64 bits and is therefore accurate.
184         // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
185         // the same problem.
186         return false;
187 #endif
188         if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
189             int read_digits;
190             // The trimmed input fits into a double.
191             // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
192             // can compute the result-double simply by multiplying (resp. dividing) the
193             // two numbers.
194             // This is possible because IEEE guarantees that floating-point operations
195             // return the best possible approximation.
196             if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
197                 // 10^-exponent fits into a double.
198                 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
199                 ASSERT(read_digits == trimmed.length());
200                 *result /= exact_powers_of_ten[-exponent];
201                 return true;
202             }
203             if (0 <= exponent && exponent < kExactPowersOfTenSize) {
204                 // 10^exponent fits into a double.
205                 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
206                 ASSERT(read_digits == trimmed.length());
207                 *result *= exact_powers_of_ten[exponent];
208                 return true;
209             }
210             int remaining_digits =
211             kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
212             if ((0 <= exponent) &&
213                 (exponent - remaining_digits < kExactPowersOfTenSize)) {
214                 // The trimmed string was short and we can multiply it with
215                 // 10^remaining_digits. As a result the remaining exponent now fits
216                 // into a double too.
217                 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
218                 ASSERT(read_digits == trimmed.length());
219                 *result *= exact_powers_of_ten[remaining_digits];
220                 *result *= exact_powers_of_ten[exponent - remaining_digits];
221                 return true;
222             }
223         }
224         return false;
225     }
226 
227 
228     // Returns 10^exponent as an exact DiyFp.
229     // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)230     static DiyFp AdjustmentPowerOfTen(int exponent) {
231         ASSERT(0 < exponent);
232         ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
233         // Simply hardcode the remaining powers for the given decimal exponent
234         // distance.
235         ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
236         switch (exponent) {
237             case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
238             case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
239             case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
240             case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
241             case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
242             case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
243             case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
244             default:
245                 UNREACHABLE();
246                 return DiyFp(0, 0);
247         }
248     }
249 
250 
251     // If the function returns true then the result is the correct double.
252     // Otherwise it is either the correct double or the double that is just below
253     // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)254     static bool DiyFpStrtod(Vector<const char> buffer,
255                             int exponent,
256                             double* result) {
257         DiyFp input;
258         int remaining_decimals;
259         ReadDiyFp(buffer, &input, &remaining_decimals);
260         // Since we may have dropped some digits the input is not accurate.
261         // If remaining_decimals is different than 0 than the error is at most
262         // .5 ulp (unit in the last place).
263         // We don't want to deal with fractions and therefore keep a common
264         // denominator.
265         const int kDenominatorLog = 3;
266         const int kDenominator = 1 << kDenominatorLog;
267         // Move the remaining decimals into the exponent.
268         exponent += remaining_decimals;
269         int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
270 
271         int old_e = input.e();
272         input.Normalize();
273         error <<= old_e - input.e();
274 
275         ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
276         if (exponent < PowersOfTenCache::kMinDecimalExponent) {
277             *result = 0.0;
278             return true;
279         }
280         DiyFp cached_power;
281         int cached_decimal_exponent;
282         PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
283                                                            &cached_power,
284                                                            &cached_decimal_exponent);
285 
286         if (cached_decimal_exponent != exponent) {
287             int adjustment_exponent = exponent - cached_decimal_exponent;
288             DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
289             input.Multiply(adjustment_power);
290             if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
291                 // The product of input with the adjustment power fits into a 64 bit
292                 // integer.
293                 ASSERT(DiyFp::kSignificandSize == 64);
294             } else {
295                 // The adjustment power is exact. There is hence only an error of 0.5.
296                 error += kDenominator / 2;
297             }
298         }
299 
300         input.Multiply(cached_power);
301         // The error introduced by a multiplication of a*b equals
302         //   error_a + error_b + error_a*error_b/2^64 + 0.5
303         // Substituting a with 'input' and b with 'cached_power' we have
304         //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
305         //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
306         int error_b = kDenominator / 2;
307         int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
308         int fixed_error = kDenominator / 2;
309         error += error_b + error_ab + fixed_error;
310 
311         old_e = input.e();
312         input.Normalize();
313         error <<= old_e - input.e();
314 
315         // See if the double's significand changes if we add/subtract the error.
316         int order_of_magnitude = DiyFp::kSignificandSize + input.e();
317         int effective_significand_size =
318         Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
319         int precision_digits_count =
320         DiyFp::kSignificandSize - effective_significand_size;
321         if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
322             // This can only happen for very small denormals. In this case the
323             // half-way multiplied by the denominator exceeds the range of an uint64.
324             // Simply shift everything to the right.
325             int shift_amount = (precision_digits_count + kDenominatorLog) -
326             DiyFp::kSignificandSize + 1;
327             input.set_f(input.f() >> shift_amount);
328             input.set_e(input.e() + shift_amount);
329             // We add 1 for the lost precision of error, and kDenominator for
330             // the lost precision of input.f().
331             error = (error >> shift_amount) + 1 + kDenominator;
332             precision_digits_count -= shift_amount;
333         }
334         // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
335         ASSERT(DiyFp::kSignificandSize == 64);
336         ASSERT(precision_digits_count < 64);
337         uint64_t one64 = 1;
338         uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
339         uint64_t precision_bits = input.f() & precision_bits_mask;
340         uint64_t half_way = one64 << (precision_digits_count - 1);
341         precision_bits *= kDenominator;
342         half_way *= kDenominator;
343         DiyFp rounded_input(input.f() >> precision_digits_count,
344                             input.e() + precision_digits_count);
345         if (precision_bits >= half_way + error) {
346             rounded_input.set_f(rounded_input.f() + 1);
347         }
348         // If the last_bits are too close to the half-way case than we are too
349         // inaccurate and round down. In this case we return false so that we can
350         // fall back to a more precise algorithm.
351 
352         *result = Double(rounded_input).value();
353         if (half_way - error < precision_bits && precision_bits < half_way + error) {
354             // Too imprecise. The caller will have to fall back to a slower version.
355             // However the returned number is guaranteed to be either the correct
356             // double, or the next-lower double.
357             return false;
358         } else {
359             return true;
360         }
361     }
362 
363 
364     // Returns the correct double for the buffer*10^exponent.
365     // The variable guess should be a close guess that is either the correct double
366     // or its lower neighbor (the nearest double less than the correct one).
367     // Preconditions:
368     //   buffer.length() + exponent <= kMaxDecimalPower + 1
369     //   buffer.length() + exponent > kMinDecimalPower
370     //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)371     static double BignumStrtod(Vector<const char> buffer,
372                                int exponent,
373                                double guess) {
374         if (guess == Double::Infinity()) {
375             return guess;
376         }
377 
378         DiyFp upper_boundary = Double(guess).UpperBoundary();
379 
380         ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
381         ASSERT(buffer.length() + exponent > kMinDecimalPower);
382         ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
383         // Make sure that the Bignum will be able to hold all our numbers.
384         // Our Bignum implementation has a separate field for exponents. Shifts will
385         // consume at most one bigit (< 64 bits).
386         // ln(10) == 3.3219...
387         ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
388         Bignum input;
389         Bignum boundary;
390         input.AssignDecimalString(buffer);
391         boundary.AssignUInt64(upper_boundary.f());
392         if (exponent >= 0) {
393             input.MultiplyByPowerOfTen(exponent);
394         } else {
395             boundary.MultiplyByPowerOfTen(-exponent);
396         }
397         if (upper_boundary.e() > 0) {
398             boundary.ShiftLeft(upper_boundary.e());
399         } else {
400             input.ShiftLeft(-upper_boundary.e());
401         }
402         int comparison = Bignum::Compare(input, boundary);
403         if (comparison < 0) {
404             return guess;
405         } else if (comparison > 0) {
406             return Double(guess).NextDouble();
407         } else if ((Double(guess).Significand() & 1) == 0) {
408             // Round towards even.
409             return guess;
410         } else {
411             return Double(guess).NextDouble();
412         }
413     }
414 
415 
Strtod(Vector<const char> buffer,int exponent)416     double Strtod(Vector<const char> buffer, int exponent) {
417         Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
418         Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
419         exponent += left_trimmed.length() - trimmed.length();
420         if (trimmed.length() == 0) return 0.0;
421         if (trimmed.length() > kMaxSignificantDecimalDigits) {
422             char significant_buffer[kMaxSignificantDecimalDigits];
423             int significant_exponent;
424             TrimToMaxSignificantDigits(trimmed, exponent,
425                                        significant_buffer, &significant_exponent);
426             return Strtod(Vector<const char>(significant_buffer,
427                                              kMaxSignificantDecimalDigits),
428                           significant_exponent);
429         }
430         if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
431             return Double::Infinity();
432         }
433         if (exponent + trimmed.length() <= kMinDecimalPower) {
434             return 0.0;
435         }
436 
437         double guess;
438         if (DoubleStrtod(trimmed, exponent, &guess) ||
439             DiyFpStrtod(trimmed, exponent, &guess)) {
440             return guess;
441         }
442         return BignumStrtod(trimmed, exponent, guess);
443     }
444 
445 }  // namespace double_conversion
446 
447 } // namespace WTF
448