• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // Various Google-specific macros.
6 //
7 // This code is compiled directly on many platforms, including client
8 // platforms like Windows, Mac, and embedded systems.  Before making
9 // any changes here, make sure that you're not breaking any platforms.
10 //
11 
12 #ifndef BASE_MACROS_H_
13 #define BASE_MACROS_H_
14 
15 #include <stddef.h>         // For size_t
16 
17 #include "base/type_traits.h"
18 
19 
20 // The COMPILE_ASSERT macro can be used to verify that a compile time
21 // expression is true. For example, you could use it to verify the
22 // size of a static array:
23 //
24 //   COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
25 //                  content_type_names_incorrect_size);
26 //
27 // or to make sure a struct is smaller than a certain size:
28 //
29 //   COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
30 //
31 // The second argument to the macro is the name of the variable. If
32 // the expression is false, most compilers will issue a warning/error
33 // containing the name of the variable.
34 
35 #define COMPILE_ASSERT(expr, msg) \
36   typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
37 
38 // Implementation details of COMPILE_ASSERT:
39 //
40 // - COMPILE_ASSERT works by defining an array type that has -1
41 //   elements (and thus is invalid) when the expression is false.
42 //
43 // - The simpler definition
44 //
45 //     #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
46 //
47 //   does not work, as gcc supports variable-length arrays whose sizes
48 //   are determined at run-time (this is gcc's extension and not part
49 //   of the C++ standard).  As a result, gcc fails to reject the
50 //   following code with the simple definition:
51 //
52 //     int foo;
53 //     COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
54 //                               // not a compile-time constant.
55 //
56 // - By using the type CompileAssert<(bool(expr))>, we ensures that
57 //   expr is a compile-time constant.  (Template arguments must be
58 //   determined at compile-time.)
59 //
60 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
61 //   to work around a bug in gcc 3.4.4 and 4.0.1.  If we had written
62 //
63 //     CompileAssert<bool(expr)>
64 //
65 //   instead, these compilers will refuse to compile
66 //
67 //     COMPILE_ASSERT(5 > 0, some_message);
68 //
69 //   (They seem to think the ">" in "5 > 0" marks the end of the
70 //   template argument list.)
71 //
72 // - The array size is (bool(expr) ? 1 : -1), instead of simply
73 //
74 //     ((expr) ? 1 : -1).
75 //
76 //   This is to avoid running into a bug in MS VC 7.1, which
77 //   causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
78 
79 
80 // A macro to disallow the copy constructor and operator= functions
81 // This should be used in the private: declarations for a class
82 //
83 // For disallowing only assign or copy, write the code directly, but declare
84 // the intend in a comment, for example:
85 // void operator=(const TypeName&);  // DISALLOW_ASSIGN
86 // Note, that most uses of DISALLOW_ASSIGN and DISALLOW_COPY are broken
87 // semantically, one should either use disallow both or neither. Try to
88 // avoid these in new code.
89 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
90   TypeName(const TypeName&);               \
91   void operator=(const TypeName&)
92 
93 // An older, politically incorrect name for the above.
94 // Prefer DISALLOW_COPY_AND_ASSIGN for new code.
95 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
96 
97 // A macro to disallow all the implicit constructors, namely the
98 // default constructor, copy constructor and operator= functions.
99 //
100 // This should be used in the private: declarations for a class
101 // that wants to prevent anyone from instantiating it. This is
102 // especially useful for classes containing only static methods.
103 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
104   TypeName();                                    \
105   DISALLOW_COPY_AND_ASSIGN(TypeName)
106 
107 // The arraysize(arr) macro returns the # of elements in an array arr.
108 // The expression is a compile-time constant, and therefore can be
109 // used in defining new arrays, for example.  If you use arraysize on
110 // a pointer by mistake, you will get a compile-time error.
111 //
112 // One caveat is that arraysize() doesn't accept any array of an
113 // anonymous type or a type defined inside a function.  In these rare
114 // cases, you have to use the unsafe ARRAYSIZE() macro below.  This is
115 // due to a limitation in C++'s template system.  The limitation might
116 // eventually be removed, but it hasn't happened yet.
117 
118 // This template function declaration is used in defining arraysize.
119 // Note that the function doesn't need an implementation, as we only
120 // use its type.
121 template <typename T, size_t N>
122 char (&ArraySizeHelper(T (&array)[N]))[N];
123 
124 // That gcc wants both of these prototypes seems mysterious. VC, for
125 // its part, can't decide which to use (another mystery). Matching of
126 // template overloads: the final frontier.
127 #ifndef COMPILER_MSVC
128 template <typename T, size_t N>
129 char (&ArraySizeHelper(const T (&array)[N]))[N];
130 #endif
131 
132 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
133 
134 // ARRAYSIZE performs essentially the same calculation as arraysize,
135 // but can be used on anonymous types or types defined inside
136 // functions.  It's less safe than arraysize as it accepts some
137 // (although not all) pointers.  Therefore, you should use arraysize
138 // whenever possible.
139 //
140 // The expression ARRAYSIZE(a) is a compile-time constant of type
141 // size_t.
142 //
143 // ARRAYSIZE catches a few type errors.  If you see a compiler error
144 //
145 //   "warning: division by zero in ..."
146 //
147 // when using ARRAYSIZE, you are (wrongfully) giving it a pointer.
148 // You should only use ARRAYSIZE on statically allocated arrays.
149 //
150 // The following comments are on the implementation details, and can
151 // be ignored by the users.
152 //
153 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
154 // the array) and sizeof(*(arr)) (the # of bytes in one array
155 // element).  If the former is divisible by the latter, perhaps arr is
156 // indeed an array, in which case the division result is the # of
157 // elements in the array.  Otherwise, arr cannot possibly be an array,
158 // and we generate a compiler error to prevent the code from
159 // compiling.
160 //
161 // Since the size of bool is implementation-defined, we need to cast
162 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
163 // result has type size_t.
164 //
165 // This macro is not perfect as it wrongfully accepts certain
166 // pointers, namely where the pointer size is divisible by the pointee
167 // size.  Since all our code has to go through a 32-bit compiler,
168 // where a pointer is 4 bytes, this means all pointers to a type whose
169 // size is 3 or greater than 4 will be (righteously) rejected.
170 //
171 // Kudos to Jorg Brown for this simple and elegant implementation.
172 //
173 // - wan 2005-11-16
174 //
175 // Starting with Visual C++ 2005, WinNT.h includes ARRAYSIZE.
176 #if !defined(COMPILER_MSVC) || (defined(_MSC_VER) && _MSC_VER < 1400)
177 #define ARRAYSIZE(a) \
178   ((sizeof(a) / sizeof(*(a))) / \
179    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
180 #endif
181 
182 // A macro to turn a symbol into a string
183 #define AS_STRING(x)   AS_STRING_INTERNAL(x)
184 #define AS_STRING_INTERNAL(x)   #x
185 
186 
187 // One of the type traits, is_pod, makes it possible to query whether
188 // a type is a POD type. It is impossible for type_traits.h to get
189 // this right without compiler support, so it fails conservatively. It
190 // knows that fundamental types and pointers are PODs, but it can't
191 // tell whether user classes are PODs. The DECLARE_POD macro is used
192 // to inform the type traits library that a user class is a POD.
193 //
194 // Implementation note: the typedef at the end is just to make it legal
195 // to put a semicolon after DECLARE_POD(foo).
196 //
197 //
198 // So what's a POD?  The C++ standard (clause 9 paragraph 4) gives a
199 // full definition, but a good rule of thumb is that a struct is a POD
200 // ("plain old data") if it doesn't use any of the features that make
201 // C++ different from C.  A POD struct can't have constructors,
202 // destructors, assignment operators, base classes, private or
203 // protected members, or virtual functions, and all of its member
204 // variables must themselves be PODs.
205 
206 #define DECLARE_POD(TypeName)                       \
207 namespace base {                                    \
208 template<> struct is_pod<TypeName> : true_type { }; \
209 }                                                   \
210 typedef int Dummy_Type_For_DECLARE_POD              \
211 
212 // We once needed a different technique to assert that a nested class
213 // is a POD. This is no longer necessary, and DECLARE_NESTED_POD is
214 // just a synonym for DECLARE_POD. We continue to provide
215 // DECLARE_NESTED_POD only so we don't have to change client
216 // code. Regardless of whether you use DECLARE_POD or
217 // DECLARE_NESTED_POD: use it after the outer class. Using it within a
218 // class definition will give a compiler error.
219 #define DECLARE_NESTED_POD(TypeName) DECLARE_POD(TypeName)
220 
221 // Declare that TemplateName<T> is a POD whenever T is
222 #define PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT(TemplateName)             \
223 namespace base {                                                       \
224 template <typename T> struct is_pod<TemplateName<T> > : is_pod<T> { }; \
225 }                                                                      \
226 typedef int Dummy_Type_For_PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT
227 
228 // Macro that does nothing if TypeName is a POD, and gives a compiler
229 // error if TypeName is a non-POD.  You should put a descriptive
230 // comment right next to the macro call so that people can tell what
231 // the compiler error is about.
232 //
233 // Implementation note: this works by taking the size of a type that's
234 // complete when TypeName is a POD and incomplete otherwise.
235 
236 template <typename Boolean> struct ERROR_TYPE_MUST_BE_POD;
237 template <> struct ERROR_TYPE_MUST_BE_POD<base::true_type> { };
238 #define ENFORCE_POD(TypeName)                                             \
239   enum { dummy_##TypeName                                                 \
240            = sizeof(ERROR_TYPE_MUST_BE_POD<                               \
241                       typename base::is_pod<TypeName>::type>) }
242 
243 #endif  // BASE_MACROS_H_
244