1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 2008-2009, International Business Machines
5 * Corporation, Google and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 */
9 // Author : eldawy@google.com (Mohamed Eldawy)
10 // ucnvsel.cpp
11 //
12 // Purpose: To generate a list of encodings capable of handling
13 // a given Unicode text
14 //
15 // Started 09-April-2008
16
17 /**
18 * \file
19 *
20 * This is an implementation of an encoding selector.
21 * The goal is, given a unicode string, find the encodings
22 * this string can be mapped to. To make processing faster
23 * a trie is built when you call ucnvsel_open() that
24 * stores all encodings a codepoint can map to
25 */
26
27 #include "unicode/ucnvsel.h"
28
29 #include <string.h>
30
31 #include "unicode/uchar.h"
32 #include "unicode/uniset.h"
33 #include "unicode/ucnv.h"
34 #include "unicode/ustring.h"
35 #include "unicode/uchriter.h"
36 #include "utrie2.h"
37 #include "propsvec.h"
38 #include "uassert.h"
39 #include "ucmndata.h"
40 #include "uenumimp.h"
41 #include "cmemory.h"
42 #include "cstring.h"
43
44 U_NAMESPACE_USE
45
46 struct UConverterSelector {
47 UTrie2 *trie; // 16 bit trie containing offsets into pv
48 uint32_t* pv; // table of bits!
49 int32_t pvCount;
50 char** encodings; // which encodings did user ask to use?
51 int32_t encodingsCount;
52 int32_t encodingStrLength;
53 uint8_t* swapped;
54 UBool ownPv, ownEncodingStrings;
55 };
56
generateSelectorData(UConverterSelector * result,UPropsVectors * upvec,const USet * excludedCodePoints,const UConverterUnicodeSet whichSet,UErrorCode * status)57 static void generateSelectorData(UConverterSelector* result,
58 UPropsVectors *upvec,
59 const USet* excludedCodePoints,
60 const UConverterUnicodeSet whichSet,
61 UErrorCode* status) {
62 if (U_FAILURE(*status)) {
63 return;
64 }
65
66 int32_t columns = (result->encodingsCount+31)/32;
67
68 // set errorValue to all-ones
69 for (int32_t col = 0; col < columns; col++) {
70 upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
71 col, ~0, ~0, status);
72 }
73
74 for (int32_t i = 0; i < result->encodingsCount; ++i) {
75 uint32_t mask;
76 uint32_t column;
77 int32_t item_count;
78 int32_t j;
79 UConverter* test_converter = ucnv_open(result->encodings[i], status);
80 if (U_FAILURE(*status)) {
81 return;
82 }
83 USet* unicode_point_set;
84 unicode_point_set = uset_open(1, 0); // empty set
85
86 ucnv_getUnicodeSet(test_converter, unicode_point_set,
87 whichSet, status);
88 if (U_FAILURE(*status)) {
89 ucnv_close(test_converter);
90 return;
91 }
92
93 column = i / 32;
94 mask = 1 << (i%32);
95 // now iterate over intervals on set i!
96 item_count = uset_getItemCount(unicode_point_set);
97
98 for (j = 0; j < item_count; ++j) {
99 UChar32 start_char;
100 UChar32 end_char;
101 UErrorCode smallStatus = U_ZERO_ERROR;
102 uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
103 &smallStatus);
104 if (U_FAILURE(smallStatus)) {
105 // this will be reached for the converters that fill the set with
106 // strings. Those should be ignored by our system
107 } else {
108 upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
109 status);
110 }
111 }
112 ucnv_close(test_converter);
113 uset_close(unicode_point_set);
114 if (U_FAILURE(*status)) {
115 return;
116 }
117 }
118
119 // handle excluded encodings! Simply set their values to all 1's in the upvec
120 if (excludedCodePoints) {
121 int32_t item_count = uset_getItemCount(excludedCodePoints);
122 for (int32_t j = 0; j < item_count; ++j) {
123 UChar32 start_char;
124 UChar32 end_char;
125
126 uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
127 status);
128 for (int32_t col = 0; col < columns; col++) {
129 upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
130 status);
131 }
132 }
133 }
134
135 // alright. Now, let's put things in the same exact form you'd get when you
136 // unserialize things.
137 result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
138 result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
139 result->pvCount *= columns; // number of uint32_t = rows * columns
140 result->ownPv = TRUE;
141 }
142
143 /* open a selector. If converterListSize is 0, build for all converters.
144 If excludedCodePoints is NULL, don't exclude any codepoints */
145 U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_open(const char * const * converterList,int32_t converterListSize,const USet * excludedCodePoints,const UConverterUnicodeSet whichSet,UErrorCode * status)146 ucnvsel_open(const char* const* converterList, int32_t converterListSize,
147 const USet* excludedCodePoints,
148 const UConverterUnicodeSet whichSet, UErrorCode* status) {
149 // check if already failed
150 if (U_FAILURE(*status)) {
151 return NULL;
152 }
153 // ensure args make sense!
154 if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
155 *status = U_ILLEGAL_ARGUMENT_ERROR;
156 return NULL;
157 }
158
159 // allocate a new converter
160 LocalUConverterSelectorPointer newSelector(
161 (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
162 if (newSelector.isNull()) {
163 *status = U_MEMORY_ALLOCATION_ERROR;
164 return NULL;
165 }
166 uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
167
168 if (converterListSize == 0) {
169 converterList = NULL;
170 converterListSize = ucnv_countAvailable();
171 }
172 newSelector->encodings =
173 (char**)uprv_malloc(converterListSize * sizeof(char*));
174 if (!newSelector->encodings) {
175 *status = U_MEMORY_ALLOCATION_ERROR;
176 return NULL;
177 }
178 newSelector->encodings[0] = NULL; // now we can call ucnvsel_close()
179
180 // make a backup copy of the list of converters
181 int32_t totalSize = 0;
182 int32_t i;
183 for (i = 0; i < converterListSize; i++) {
184 totalSize +=
185 (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
186 }
187 // 4-align the totalSize to 4-align the size of the serialized form
188 int32_t encodingStrPadding = totalSize & 3;
189 if (encodingStrPadding != 0) {
190 encodingStrPadding = 4 - encodingStrPadding;
191 }
192 newSelector->encodingStrLength = totalSize += encodingStrPadding;
193 char* allStrings = (char*) uprv_malloc(totalSize);
194 if (!allStrings) {
195 *status = U_MEMORY_ALLOCATION_ERROR;
196 return NULL;
197 }
198
199 for (i = 0; i < converterListSize; i++) {
200 newSelector->encodings[i] = allStrings;
201 uprv_strcpy(newSelector->encodings[i],
202 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
203 allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
204 }
205 while (encodingStrPadding > 0) {
206 *allStrings++ = 0;
207 --encodingStrPadding;
208 }
209
210 newSelector->ownEncodingStrings = TRUE;
211 newSelector->encodingsCount = converterListSize;
212 UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
213 generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
214 upvec_close(upvec);
215
216 if (U_FAILURE(*status)) {
217 return NULL;
218 }
219
220 return newSelector.orphan();
221 }
222
223 /* close opened selector */
224 U_CAPI void U_EXPORT2
ucnvsel_close(UConverterSelector * sel)225 ucnvsel_close(UConverterSelector *sel) {
226 if (!sel) {
227 return;
228 }
229 if (sel->ownEncodingStrings) {
230 uprv_free(sel->encodings[0]);
231 }
232 uprv_free(sel->encodings);
233 if (sel->ownPv) {
234 uprv_free(sel->pv);
235 }
236 utrie2_close(sel->trie);
237 uprv_free(sel->swapped);
238 uprv_free(sel);
239 }
240
241 static const UDataInfo dataInfo = {
242 sizeof(UDataInfo),
243 0,
244
245 U_IS_BIG_ENDIAN,
246 U_CHARSET_FAMILY,
247 U_SIZEOF_UCHAR,
248 0,
249
250 { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */
251 { 1, 0, 0, 0 }, /* formatVersion */
252 { 0, 0, 0, 0 } /* dataVersion */
253 };
254
255 enum {
256 UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes
257 UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors
258 UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names
259 UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding
260 UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader
261 UCNVSEL_INDEX_COUNT = 16
262 };
263
264 /*
265 * Serialized form of a UConverterSelector, formatVersion 1:
266 *
267 * The serialized form begins with a standard ICU DataHeader with a UDataInfo
268 * as the template above.
269 * This is followed by:
270 * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above
271 * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
272 * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors
273 * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding
274 */
275
276 /* serialize a selector */
277 U_CAPI int32_t U_EXPORT2
ucnvsel_serialize(const UConverterSelector * sel,void * buffer,int32_t bufferCapacity,UErrorCode * status)278 ucnvsel_serialize(const UConverterSelector* sel,
279 void* buffer, int32_t bufferCapacity, UErrorCode* status) {
280 // check if already failed
281 if (U_FAILURE(*status)) {
282 return 0;
283 }
284 // ensure args make sense!
285 uint8_t *p = (uint8_t *)buffer;
286 if (bufferCapacity < 0 ||
287 (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
288 ) {
289 *status = U_ILLEGAL_ARGUMENT_ERROR;
290 return 0;
291 }
292 // add up the size of the serialized form
293 int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
294 if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
295 return 0;
296 }
297 *status = U_ZERO_ERROR;
298
299 DataHeader header;
300 uprv_memset(&header, 0, sizeof(header));
301 header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
302 header.dataHeader.magic1 = 0xda;
303 header.dataHeader.magic2 = 0x27;
304 uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
305
306 int32_t indexes[UCNVSEL_INDEX_COUNT] = {
307 serializedTrieSize,
308 sel->pvCount,
309 sel->encodingsCount,
310 sel->encodingStrLength
311 };
312
313 int32_t totalSize =
314 header.dataHeader.headerSize +
315 (int32_t)sizeof(indexes) +
316 serializedTrieSize +
317 sel->pvCount * 4 +
318 sel->encodingStrLength;
319 indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
320 if (totalSize > bufferCapacity) {
321 *status = U_BUFFER_OVERFLOW_ERROR;
322 return totalSize;
323 }
324 // ok, save!
325 int32_t length = header.dataHeader.headerSize;
326 uprv_memcpy(p, &header, sizeof(header));
327 uprv_memset(p + sizeof(header), 0, length - sizeof(header));
328 p += length;
329
330 length = (int32_t)sizeof(indexes);
331 uprv_memcpy(p, indexes, length);
332 p += length;
333
334 utrie2_serialize(sel->trie, p, serializedTrieSize, status);
335 p += serializedTrieSize;
336
337 length = sel->pvCount * 4;
338 uprv_memcpy(p, sel->pv, length);
339 p += length;
340
341 uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
342 p += sel->encodingStrLength;
343
344 return totalSize;
345 }
346
347 /**
348 * swap a selector into the desired Endianness and Asciiness of
349 * the system. Just as FYI, selectors are always saved in the format
350 * of the system that created them. They are only converted if used
351 * on another system. In other words, selectors created on different
352 * system can be different even if the params are identical (endianness
353 * and Asciiness differences only)
354 *
355 * @param ds pointer to data swapper containing swapping info
356 * @param inData pointer to incoming data
357 * @param length length of inData in bytes
358 * @param outData pointer to output data. Capacity should
359 * be at least equal to capacity of inData
360 * @param status an in/out ICU UErrorCode
361 * @return 0 on failure, number of bytes swapped on success
362 * number of bytes swapped can be smaller than length
363 */
364 static int32_t
ucnvsel_swap(const UDataSwapper * ds,const void * inData,int32_t length,void * outData,UErrorCode * status)365 ucnvsel_swap(const UDataSwapper *ds,
366 const void *inData, int32_t length,
367 void *outData, UErrorCode *status) {
368 /* udata_swapDataHeader checks the arguments */
369 int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
370 if(U_FAILURE(*status)) {
371 return 0;
372 }
373
374 /* check data format and format version */
375 const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
376 if(!(
377 pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */
378 pInfo->dataFormat[1] == 0x53 &&
379 pInfo->dataFormat[2] == 0x65 &&
380 pInfo->dataFormat[3] == 0x6c
381 )) {
382 udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
383 pInfo->dataFormat[0], pInfo->dataFormat[1],
384 pInfo->dataFormat[2], pInfo->dataFormat[3]);
385 *status = U_INVALID_FORMAT_ERROR;
386 return 0;
387 }
388 if(pInfo->formatVersion[0] != 1) {
389 udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
390 pInfo->formatVersion[0]);
391 *status = U_UNSUPPORTED_ERROR;
392 return 0;
393 }
394
395 if(length >= 0) {
396 length -= headerSize;
397 if(length < 16*4) {
398 udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
399 length);
400 *status = U_INDEX_OUTOFBOUNDS_ERROR;
401 return 0;
402 }
403 }
404
405 const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
406 uint8_t *outBytes = (uint8_t *)outData + headerSize;
407
408 /* read the indexes */
409 const int32_t *inIndexes = (const int32_t *)inBytes;
410 int32_t indexes[16];
411 int32_t i;
412 for(i = 0; i < 16; ++i) {
413 indexes[i] = udata_readInt32(ds, inIndexes[i]);
414 }
415
416 /* get the total length of the data */
417 int32_t size = indexes[UCNVSEL_INDEX_SIZE];
418 if(length >= 0) {
419 if(length < size) {
420 udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
421 length);
422 *status = U_INDEX_OUTOFBOUNDS_ERROR;
423 return 0;
424 }
425
426 /* copy the data for inaccessible bytes */
427 if(inBytes != outBytes) {
428 uprv_memcpy(outBytes, inBytes, size);
429 }
430
431 int32_t offset = 0, count;
432
433 /* swap the int32_t indexes[] */
434 count = UCNVSEL_INDEX_COUNT*4;
435 ds->swapArray32(ds, inBytes, count, outBytes, status);
436 offset += count;
437
438 /* swap the UTrie2 */
439 count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
440 utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
441 offset += count;
442
443 /* swap the uint32_t pv[] */
444 count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
445 ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
446 offset += count;
447
448 /* swap the encoding names */
449 count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
450 ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
451 offset += count;
452
453 U_ASSERT(offset == size);
454 }
455
456 return headerSize + size;
457 }
458
459 /* unserialize a selector */
460 U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_openFromSerialized(const void * buffer,int32_t length,UErrorCode * status)461 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
462 // check if already failed
463 if (U_FAILURE(*status)) {
464 return NULL;
465 }
466 // ensure args make sense!
467 const uint8_t *p = (const uint8_t *)buffer;
468 if (length <= 0 ||
469 (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
470 ) {
471 *status = U_ILLEGAL_ARGUMENT_ERROR;
472 return NULL;
473 }
474 // header
475 if (length < 32) {
476 // not even enough space for a minimal header
477 *status = U_INDEX_OUTOFBOUNDS_ERROR;
478 return NULL;
479 }
480 const DataHeader *pHeader = (const DataHeader *)p;
481 if (!(
482 pHeader->dataHeader.magic1==0xda &&
483 pHeader->dataHeader.magic2==0x27 &&
484 pHeader->info.dataFormat[0] == 0x43 &&
485 pHeader->info.dataFormat[1] == 0x53 &&
486 pHeader->info.dataFormat[2] == 0x65 &&
487 pHeader->info.dataFormat[3] == 0x6c
488 )) {
489 /* header not valid or dataFormat not recognized */
490 *status = U_INVALID_FORMAT_ERROR;
491 return NULL;
492 }
493 if (pHeader->info.formatVersion[0] != 1) {
494 *status = U_UNSUPPORTED_ERROR;
495 return NULL;
496 }
497 uint8_t* swapped = NULL;
498 if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
499 pHeader->info.charsetFamily != U_CHARSET_FAMILY
500 ) {
501 // swap the data
502 UDataSwapper *ds =
503 udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
504 int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
505 if (U_FAILURE(*status)) {
506 udata_closeSwapper(ds);
507 return NULL;
508 }
509 if (length < totalSize) {
510 udata_closeSwapper(ds);
511 *status = U_INDEX_OUTOFBOUNDS_ERROR;
512 return NULL;
513 }
514 swapped = (uint8_t*)uprv_malloc(totalSize);
515 if (swapped == NULL) {
516 udata_closeSwapper(ds);
517 *status = U_MEMORY_ALLOCATION_ERROR;
518 return NULL;
519 }
520 ucnvsel_swap(ds, p, length, swapped, status);
521 udata_closeSwapper(ds);
522 if (U_FAILURE(*status)) {
523 uprv_free(swapped);
524 return NULL;
525 }
526 p = swapped;
527 pHeader = (const DataHeader *)p;
528 }
529 if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
530 // not even enough space for the header and the indexes
531 uprv_free(swapped);
532 *status = U_INDEX_OUTOFBOUNDS_ERROR;
533 return NULL;
534 }
535 p += pHeader->dataHeader.headerSize;
536 length -= pHeader->dataHeader.headerSize;
537 // indexes
538 const int32_t *indexes = (const int32_t *)p;
539 if (length < indexes[UCNVSEL_INDEX_SIZE]) {
540 uprv_free(swapped);
541 *status = U_INDEX_OUTOFBOUNDS_ERROR;
542 return NULL;
543 }
544 p += UCNVSEL_INDEX_COUNT * 4;
545 // create and populate the selector object
546 UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
547 char **encodings =
548 (char **)uprv_malloc(
549 indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
550 if (sel == NULL || encodings == NULL) {
551 uprv_free(swapped);
552 uprv_free(sel);
553 uprv_free(encodings);
554 *status = U_MEMORY_ALLOCATION_ERROR;
555 return NULL;
556 }
557 uprv_memset(sel, 0, sizeof(UConverterSelector));
558 sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
559 sel->encodings = encodings;
560 sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
561 sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
562 sel->swapped = swapped;
563 // trie
564 sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
565 p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
566 status);
567 p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
568 if (U_FAILURE(*status)) {
569 ucnvsel_close(sel);
570 return NULL;
571 }
572 // bit vectors
573 sel->pv = (uint32_t *)p;
574 p += sel->pvCount * 4;
575 // encoding names
576 char* s = (char*)p;
577 for (int32_t i = 0; i < sel->encodingsCount; ++i) {
578 sel->encodings[i] = s;
579 s += uprv_strlen(s) + 1;
580 }
581 p += sel->encodingStrLength;
582
583 return sel;
584 }
585
586 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
587 // iterate over the selected encodings
588 struct Enumerator {
589 int16_t* index;
590 int16_t length;
591 int16_t cur;
592 const UConverterSelector* sel;
593 };
594
595 U_CDECL_BEGIN
596
597 static void U_CALLCONV
ucnvsel_close_selector_iterator(UEnumeration * enumerator)598 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
599 uprv_free(((Enumerator*)(enumerator->context))->index);
600 uprv_free(enumerator->context);
601 uprv_free(enumerator);
602 }
603
604
605 static int32_t U_CALLCONV
ucnvsel_count_encodings(UEnumeration * enumerator,UErrorCode * status)606 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
607 // check if already failed
608 if (U_FAILURE(*status)) {
609 return 0;
610 }
611 return ((Enumerator*)(enumerator->context))->length;
612 }
613
614
ucnvsel_next_encoding(UEnumeration * enumerator,int32_t * resultLength,UErrorCode * status)615 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
616 int32_t* resultLength,
617 UErrorCode* status) {
618 // check if already failed
619 if (U_FAILURE(*status)) {
620 return NULL;
621 }
622
623 int16_t cur = ((Enumerator*)(enumerator->context))->cur;
624 const UConverterSelector* sel;
625 const char* result;
626 if (cur >= ((Enumerator*)(enumerator->context))->length) {
627 return NULL;
628 }
629 sel = ((Enumerator*)(enumerator->context))->sel;
630 result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
631 ((Enumerator*)(enumerator->context))->cur++;
632 if (resultLength) {
633 *resultLength = (int32_t)uprv_strlen(result);
634 }
635 return result;
636 }
637
ucnvsel_reset_iterator(UEnumeration * enumerator,UErrorCode * status)638 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
639 UErrorCode* status) {
640 // check if already failed
641 if (U_FAILURE(*status)) {
642 return ;
643 }
644 ((Enumerator*)(enumerator->context))->cur = 0;
645 }
646
647 U_CDECL_END
648
649
650 static const UEnumeration defaultEncodings = {
651 NULL,
652 NULL,
653 ucnvsel_close_selector_iterator,
654 ucnvsel_count_encodings,
655 uenum_unextDefault,
656 ucnvsel_next_encoding,
657 ucnvsel_reset_iterator
658 };
659
660
661 // internal fn to intersect two sets of masks
662 // returns whether the mask has reduced to all zeros
intersectMasks(uint32_t * dest,const uint32_t * source1,int32_t len)663 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
664 int32_t i;
665 uint32_t oredDest = 0;
666 for (i = 0 ; i < len ; ++i) {
667 oredDest |= (dest[i] &= source1[i]);
668 }
669 return oredDest == 0;
670 }
671
672 // internal fn to count how many 1's are there in a mask
673 // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html
countOnes(uint32_t * mask,int32_t len)674 static int16_t countOnes(uint32_t* mask, int32_t len) {
675 int32_t i, totalOnes = 0;
676 for (i = 0 ; i < len ; ++i) {
677 uint32_t ent = mask[i];
678 for (; ent; totalOnes++)
679 {
680 ent &= ent - 1; // clear the least significant bit set
681 }
682 }
683 return totalOnes;
684 }
685
686
687 /* internal function! */
selectForMask(const UConverterSelector * sel,uint32_t * mask,UErrorCode * status)688 static UEnumeration *selectForMask(const UConverterSelector* sel,
689 uint32_t *mask, UErrorCode *status) {
690 // this is the context we will use. Store a table of indices to which
691 // encodings are legit.
692 struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
693 if (result == NULL) {
694 uprv_free(mask);
695 *status = U_MEMORY_ALLOCATION_ERROR;
696 return NULL;
697 }
698 result->index = NULL; // this will be allocated later!
699 result->length = result->cur = 0;
700 result->sel = sel;
701
702 UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
703 if (en == NULL) {
704 // TODO(markus): Combine Enumerator and UEnumeration into one struct.
705 uprv_free(mask);
706 uprv_free(result);
707 *status = U_MEMORY_ALLOCATION_ERROR;
708 return NULL;
709 }
710 memcpy(en, &defaultEncodings, sizeof(UEnumeration));
711 en->context = result;
712
713 int32_t columns = (sel->encodingsCount+31)/32;
714 int16_t numOnes = countOnes(mask, columns);
715 // now, we know the exact space we need for index
716 if (numOnes > 0) {
717 result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
718
719 int32_t i, j;
720 int16_t k = 0;
721 for (j = 0 ; j < columns; j++) {
722 uint32_t v = mask[j];
723 for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
724 if ((v & 1) != 0) {
725 result->index[result->length++] = k;
726 }
727 v >>= 1;
728 }
729 }
730 } //otherwise, index will remain NULL (and will never be touched by
731 //the enumerator code anyway)
732 uprv_free(mask);
733 return en;
734 }
735
736 /* check a string against the selector - UTF16 version */
737 U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForString(const UConverterSelector * sel,const UChar * s,int32_t length,UErrorCode * status)738 ucnvsel_selectForString(const UConverterSelector* sel,
739 const UChar *s, int32_t length, UErrorCode *status) {
740 // check if already failed
741 if (U_FAILURE(*status)) {
742 return NULL;
743 }
744 // ensure args make sense!
745 if (sel == NULL || (s == NULL && length != 0)) {
746 *status = U_ILLEGAL_ARGUMENT_ERROR;
747 return NULL;
748 }
749
750 int32_t columns = (sel->encodingsCount+31)/32;
751 uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
752 if (mask == NULL) {
753 *status = U_MEMORY_ALLOCATION_ERROR;
754 return NULL;
755 }
756 uprv_memset(mask, ~0, columns *4);
757
758 const UChar *limit;
759 if (length >= 0) {
760 limit = s + length;
761 } else {
762 limit = NULL;
763 }
764
765 while (limit == NULL ? *s != 0 : s != limit) {
766 UChar32 c;
767 uint16_t pvIndex;
768 UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
769 if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
770 break;
771 }
772 }
773 return selectForMask(sel, mask, status);
774 }
775
776 /* check a string against the selector - UTF8 version */
777 U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForUTF8(const UConverterSelector * sel,const char * s,int32_t length,UErrorCode * status)778 ucnvsel_selectForUTF8(const UConverterSelector* sel,
779 const char *s, int32_t length, UErrorCode *status) {
780 // check if already failed
781 if (U_FAILURE(*status)) {
782 return NULL;
783 }
784 // ensure args make sense!
785 if (sel == NULL || (s == NULL && length != 0)) {
786 *status = U_ILLEGAL_ARGUMENT_ERROR;
787 return NULL;
788 }
789
790 int32_t columns = (sel->encodingsCount+31)/32;
791 uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
792 if (mask == NULL) {
793 *status = U_MEMORY_ALLOCATION_ERROR;
794 return NULL;
795 }
796 uprv_memset(mask, ~0, columns *4);
797
798 if (length < 0) {
799 length = (int32_t)uprv_strlen(s);
800 }
801 const char *limit = s + length;
802
803 while (s != limit) {
804 uint16_t pvIndex;
805 UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
806 if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
807 break;
808 }
809 }
810 return selectForMask(sel, mask, status);
811 }
812