• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != NULL);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 //     const FieldDescriptor* numbers_field = descriptor->
91 //                                            FindFieldByName("numbers");
92 //     assert(numbers_field != NULL);
93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 //     // Parse the message.
97 //     foo->ParseFromString(data);
98 //
99 //     // Use the reflection interface to examine the contents.
100 //     const Reflection* reflection = foo->GetReflection();
101 //     assert(reflection->GetString(foo, text_field) == "Hello World!");
102 //     assert(reflection->FieldSize(foo, numbers_field) == 3);
103 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
104 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
105 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
106 //
107 //     delete foo;
108 //   }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <vector>
114 #include <string>
115 
116 #ifdef __DECCXX
117 // HP C++'s iosfwd doesn't work.
118 #include <iostream>
119 #else
120 #include <iosfwd>
121 #endif
122 
123 #include <google/protobuf/message_lite.h>
124 
125 #include <google/protobuf/stubs/common.h>
126 #include <google/protobuf/descriptor.h>
127 
128 
129 namespace google {
130 namespace protobuf {
131 
132 // Defined in this file.
133 class Message;
134 class Reflection;
135 class MessageFactory;
136 
137 // Defined in other files.
138 class UnknownFieldSet;         // unknown_field_set.h
139 namespace io {
140   class ZeroCopyInputStream;   // zero_copy_stream.h
141   class ZeroCopyOutputStream;  // zero_copy_stream.h
142   class CodedInputStream;      // coded_stream.h
143   class CodedOutputStream;     // coded_stream.h
144 }
145 
146 
147 template<typename T>
148 class RepeatedField;     // repeated_field.h
149 
150 template<typename T>
151 class RepeatedPtrField;  // repeated_field.h
152 
153 // A container to hold message metadata.
154 struct Metadata {
155   const Descriptor* descriptor;
156   const Reflection* reflection;
157 };
158 
159 // Abstract interface for protocol messages.
160 //
161 // See also MessageLite, which contains most every-day operations.  Message
162 // adds descriptors and reflection on top of that.
163 //
164 // The methods of this class that are virtual but not pure-virtual have
165 // default implementations based on reflection.  Message classes which are
166 // optimized for speed will want to override these with faster implementations,
167 // but classes optimized for code size may be happy with keeping them.  See
168 // the optimize_for option in descriptor.proto.
169 class LIBPROTOBUF_EXPORT Message : public MessageLite {
170  public:
Message()171   inline Message() {}
172   virtual ~Message();
173 
174   // Basic Operations ------------------------------------------------
175 
176   // Construct a new instance of the same type.  Ownership is passed to the
177   // caller.  (This is also defined in MessageLite, but is defined again here
178   // for return-type covariance.)
179   virtual Message* New() const = 0;
180 
181   // Make this message into a copy of the given message.  The given message
182   // must have the same descriptor, but need not necessarily be the same class.
183   // By default this is just implemented as "Clear(); MergeFrom(from);".
184   virtual void CopyFrom(const Message& from);
185 
186   // Merge the fields from the given message into this message.  Singular
187   // fields will be overwritten, except for embedded messages which will
188   // be merged.  Repeated fields will be concatenated.  The given message
189   // must be of the same type as this message (i.e. the exact same class).
190   virtual void MergeFrom(const Message& from);
191 
192   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
193   // a nice error message.
194   void CheckInitialized() const;
195 
196   // Slowly build a list of all required fields that are not set.
197   // This is much, much slower than IsInitialized() as it is implemented
198   // purely via reflection.  Generally, you should not call this unless you
199   // have already determined that an error exists by calling IsInitialized().
200   void FindInitializationErrors(vector<string>* errors) const;
201 
202   // Like FindInitializationErrors, but joins all the strings, delimited by
203   // commas, and returns them.
204   string InitializationErrorString() const;
205 
206   // Clears all unknown fields from this message and all embedded messages.
207   // Normally, if unknown tag numbers are encountered when parsing a message,
208   // the tag and value are stored in the message's UnknownFieldSet and
209   // then written back out when the message is serialized.  This allows servers
210   // which simply route messages to other servers to pass through messages
211   // that have new field definitions which they don't yet know about.  However,
212   // this behavior can have security implications.  To avoid it, call this
213   // method after parsing.
214   //
215   // See Reflection::GetUnknownFields() for more on unknown fields.
216   virtual void DiscardUnknownFields();
217 
218   // Computes (an estimate of) the total number of bytes currently used for
219   // storing the message in memory.  The default implementation calls the
220   // Reflection object's SpaceUsed() method.
221   virtual int SpaceUsed() const;
222 
223   // Debugging & Testing----------------------------------------------
224 
225   // Generates a human readable form of this message, useful for debugging
226   // and other purposes.
227   string DebugString() const;
228   // Like DebugString(), but with less whitespace.
229   string ShortDebugString() const;
230   // Like DebugString(), but do not escape UTF-8 byte sequences.
231   string Utf8DebugString() const;
232   // Convenience function useful in GDB.  Prints DebugString() to stdout.
233   void PrintDebugString() const;
234 
235   // Heavy I/O -------------------------------------------------------
236   // Additional parsing and serialization methods not implemented by
237   // MessageLite because they are not supported by the lite library.
238 
239   // Parse a protocol buffer from a file descriptor.  If successful, the entire
240   // input will be consumed.
241   bool ParseFromFileDescriptor(int file_descriptor);
242   // Like ParseFromFileDescriptor(), but accepts messages that are missing
243   // required fields.
244   bool ParsePartialFromFileDescriptor(int file_descriptor);
245   // Parse a protocol buffer from a C++ istream.  If successful, the entire
246   // input will be consumed.
247   bool ParseFromIstream(istream* input);
248   // Like ParseFromIstream(), but accepts messages that are missing
249   // required fields.
250   bool ParsePartialFromIstream(istream* input);
251 
252   // Serialize the message and write it to the given file descriptor.  All
253   // required fields must be set.
254   bool SerializeToFileDescriptor(int file_descriptor) const;
255   // Like SerializeToFileDescriptor(), but allows missing required fields.
256   bool SerializePartialToFileDescriptor(int file_descriptor) const;
257   // Serialize the message and write it to the given C++ ostream.  All
258   // required fields must be set.
259   bool SerializeToOstream(ostream* output) const;
260   // Like SerializeToOstream(), but allows missing required fields.
261   bool SerializePartialToOstream(ostream* output) const;
262 
263 
264   // Reflection-based methods ----------------------------------------
265   // These methods are pure-virtual in MessageLite, but Message provides
266   // reflection-based default implementations.
267 
268   virtual string GetTypeName() const;
269   virtual void Clear();
270   virtual bool IsInitialized() const;
271   virtual void CheckTypeAndMergeFrom(const MessageLite& other);
272   virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
273   virtual int ByteSize() const;
274   virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
275 
276  private:
277   // This is called only by the default implementation of ByteSize(), to
278   // update the cached size.  If you override ByteSize(), you do not need
279   // to override this.  If you do not override ByteSize(), you MUST override
280   // this; the default implementation will crash.
281   //
282   // The method is private because subclasses should never call it; only
283   // override it.  Yes, C++ lets you do that.  Crazy, huh?
284   virtual void SetCachedSize(int size) const;
285 
286  public:
287 
288   // Introspection ---------------------------------------------------
289 
290   // Typedef for backwards-compatibility.
291   typedef google::protobuf::Reflection Reflection;
292 
293   // Get a Descriptor for this message's type.  This describes what
294   // fields the message contains, the types of those fields, etc.
GetDescriptor()295   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
296 
297   // Get the Reflection interface for this Message, which can be used to
298   // read and modify the fields of the Message dynamically (in other words,
299   // without knowing the message type at compile time).  This object remains
300   // property of the Message.
301   //
302   // This method remains virtual in case a subclass does not implement
303   // reflection and wants to override the default behavior.
GetReflection()304   virtual const Reflection* GetReflection() const {
305     return GetMetadata().reflection;
306   }
307 
308  protected:
309   // Get a struct containing the metadata for the Message. Most subclasses only
310   // need to implement this method, rather than the GetDescriptor() and
311   // GetReflection() wrappers.
312   virtual Metadata GetMetadata() const  = 0;
313 
314 
315  private:
316   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
317 };
318 
319 // This interface contains methods that can be used to dynamically access
320 // and modify the fields of a protocol message.  Their semantics are
321 // similar to the accessors the protocol compiler generates.
322 //
323 // To get the Reflection for a given Message, call Message::GetReflection().
324 //
325 // This interface is separate from Message only for efficiency reasons;
326 // the vast majority of implementations of Message will share the same
327 // implementation of Reflection (GeneratedMessageReflection,
328 // defined in generated_message.h), and all Messages of a particular class
329 // should share the same Reflection object (though you should not rely on
330 // the latter fact).
331 //
332 // There are several ways that these methods can be used incorrectly.  For
333 // example, any of the following conditions will lead to undefined
334 // results (probably assertion failures):
335 // - The FieldDescriptor is not a field of this message type.
336 // - The method called is not appropriate for the field's type.  For
337 //   each field type in FieldDescriptor::TYPE_*, there is only one
338 //   Get*() method, one Set*() method, and one Add*() method that is
339 //   valid for that type.  It should be obvious which (except maybe
340 //   for TYPE_BYTES, which are represented using strings in C++).
341 // - A Get*() or Set*() method for singular fields is called on a repeated
342 //   field.
343 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
344 //   field.
345 // - The Message object passed to any method is not of the right type for
346 //   this Reflection object (i.e. message.GetReflection() != reflection).
347 //
348 // You might wonder why there is not any abstract representation for a field
349 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
350 // returns "const Field&", where "Field" is some class with accessors like
351 // "GetInt32Value()".  The problem is that someone would have to deal with
352 // allocating these Field objects.  For generated message classes, having to
353 // allocate space for an additional object to wrap every field would at least
354 // double the message's memory footprint, probably worse.  Allocating the
355 // objects on-demand, on the other hand, would be expensive and prone to
356 // memory leaks.  So, instead we ended up with this flat interface.
357 //
358 // TODO(kenton):  Create a utility class which callers can use to read and
359 //   write fields from a Reflection without paying attention to the type.
360 class LIBPROTOBUF_EXPORT Reflection {
361  public:
Reflection()362   inline Reflection() {}
363   virtual ~Reflection();
364 
365   // Get the UnknownFieldSet for the message.  This contains fields which
366   // were seen when the Message was parsed but were not recognized according
367   // to the Message's definition.
368   virtual const UnknownFieldSet& GetUnknownFields(
369       const Message& message) const = 0;
370   // Get a mutable pointer to the UnknownFieldSet for the message.  This
371   // contains fields which were seen when the Message was parsed but were not
372   // recognized according to the Message's definition.
373   virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
374 
375   // Estimate the amount of memory used by the message object.
376   virtual int SpaceUsed(const Message& message) const = 0;
377 
378   // Check if the given non-repeated field is set.
379   virtual bool HasField(const Message& message,
380                         const FieldDescriptor* field) const = 0;
381 
382   // Get the number of elements of a repeated field.
383   virtual int FieldSize(const Message& message,
384                         const FieldDescriptor* field) const = 0;
385 
386   // Clear the value of a field, so that HasField() returns false or
387   // FieldSize() returns zero.
388   virtual void ClearField(Message* message,
389                           const FieldDescriptor* field) const = 0;
390 
391   // Removes the last element of a repeated field.
392   // We don't provide a way to remove any element other than the last
393   // because it invites inefficient use, such as O(n^2) filtering loops
394   // that should have been O(n).  If you want to remove an element other
395   // than the last, the best way to do it is to re-arrange the elements
396   // (using Swap()) so that the one you want removed is at the end, then
397   // call RemoveLast().
398   virtual void RemoveLast(Message* message,
399                           const FieldDescriptor* field) const = 0;
400   // Removes the last element of a repeated message field, and returns the
401   // pointer to the caller.  Caller takes ownership of the returned pointer.
402   virtual Message* ReleaseLast(Message* message,
403                                const FieldDescriptor* field) const = 0;
404 
405   // Swap the complete contents of two messages.
406   virtual void Swap(Message* message1, Message* message2) const = 0;
407 
408   // Swap two elements of a repeated field.
409   virtual void SwapElements(Message* message,
410                     const FieldDescriptor* field,
411                     int index1,
412                     int index2) const = 0;
413 
414   // List all fields of the message which are currently set.  This includes
415   // extensions.  Singular fields will only be listed if HasField(field) would
416   // return true and repeated fields will only be listed if FieldSize(field)
417   // would return non-zero.  Fields (both normal fields and extension fields)
418   // will be listed ordered by field number.
419   virtual void ListFields(const Message& message,
420                           vector<const FieldDescriptor*>* output) const = 0;
421 
422   // Singular field getters ------------------------------------------
423   // These get the value of a non-repeated field.  They return the default
424   // value for fields that aren't set.
425 
426   virtual int32  GetInt32 (const Message& message,
427                            const FieldDescriptor* field) const = 0;
428   virtual int64  GetInt64 (const Message& message,
429                            const FieldDescriptor* field) const = 0;
430   virtual uint32 GetUInt32(const Message& message,
431                            const FieldDescriptor* field) const = 0;
432   virtual uint64 GetUInt64(const Message& message,
433                            const FieldDescriptor* field) const = 0;
434   virtual float  GetFloat (const Message& message,
435                            const FieldDescriptor* field) const = 0;
436   virtual double GetDouble(const Message& message,
437                            const FieldDescriptor* field) const = 0;
438   virtual bool   GetBool  (const Message& message,
439                            const FieldDescriptor* field) const = 0;
440   virtual string GetString(const Message& message,
441                            const FieldDescriptor* field) const = 0;
442   virtual const EnumValueDescriptor* GetEnum(
443       const Message& message, const FieldDescriptor* field) const = 0;
444   // See MutableMessage() for the meaning of the "factory" parameter.
445   virtual const Message& GetMessage(const Message& message,
446                                     const FieldDescriptor* field,
447                                     MessageFactory* factory = NULL) const = 0;
448 
449   // Get a string value without copying, if possible.
450   //
451   // GetString() necessarily returns a copy of the string.  This can be
452   // inefficient when the string is already stored in a string object in the
453   // underlying message.  GetStringReference() will return a reference to the
454   // underlying string in this case.  Otherwise, it will copy the string into
455   // *scratch and return that.
456   //
457   // Note:  It is perfectly reasonable and useful to write code like:
458   //     str = reflection->GetStringReference(field, &str);
459   //   This line would ensure that only one copy of the string is made
460   //   regardless of the field's underlying representation.  When initializing
461   //   a newly-constructed string, though, it's just as fast and more readable
462   //   to use code like:
463   //     string str = reflection->GetString(field);
464   virtual const string& GetStringReference(const Message& message,
465                                            const FieldDescriptor* field,
466                                            string* scratch) const = 0;
467 
468 
469   // Singular field mutators -----------------------------------------
470   // These mutate the value of a non-repeated field.
471 
472   virtual void SetInt32 (Message* message,
473                          const FieldDescriptor* field, int32  value) const = 0;
474   virtual void SetInt64 (Message* message,
475                          const FieldDescriptor* field, int64  value) const = 0;
476   virtual void SetUInt32(Message* message,
477                          const FieldDescriptor* field, uint32 value) const = 0;
478   virtual void SetUInt64(Message* message,
479                          const FieldDescriptor* field, uint64 value) const = 0;
480   virtual void SetFloat (Message* message,
481                          const FieldDescriptor* field, float  value) const = 0;
482   virtual void SetDouble(Message* message,
483                          const FieldDescriptor* field, double value) const = 0;
484   virtual void SetBool  (Message* message,
485                          const FieldDescriptor* field, bool   value) const = 0;
486   virtual void SetString(Message* message,
487                          const FieldDescriptor* field,
488                          const string& value) const = 0;
489   virtual void SetEnum  (Message* message,
490                          const FieldDescriptor* field,
491                          const EnumValueDescriptor* value) const = 0;
492   // Get a mutable pointer to a field with a message type.  If a MessageFactory
493   // is provided, it will be used to construct instances of the sub-message;
494   // otherwise, the default factory is used.  If the field is an extension that
495   // does not live in the same pool as the containing message's descriptor (e.g.
496   // it lives in an overlay pool), then a MessageFactory must be provided.
497   // If you have no idea what that meant, then you probably don't need to worry
498   // about it (don't provide a MessageFactory).  WARNING:  If the
499   // FieldDescriptor is for a compiled-in extension, then
500   // factory->GetPrototype(field->message_type() MUST return an instance of the
501   // compiled-in class for this type, NOT DynamicMessage.
502   virtual Message* MutableMessage(Message* message,
503                                   const FieldDescriptor* field,
504                                   MessageFactory* factory = NULL) const = 0;
505   // Releases the message specified by 'field' and returns the pointer,
506   // ReleaseMessage() will return the message the message object if it exists.
507   // Otherwise, it may or may not return NULL.  In any case, if the return value
508   // is non-NULL, the caller takes ownership of the pointer.
509   // If the field existed (HasField() is true), then the returned pointer will
510   // be the same as the pointer returned by MutableMessage().
511   // This function has the same effect as ClearField().
512   virtual Message* ReleaseMessage(Message* message,
513                                   const FieldDescriptor* field,
514                                   MessageFactory* factory = NULL) const = 0;
515 
516 
517   // Repeated field getters ------------------------------------------
518   // These get the value of one element of a repeated field.
519 
520   virtual int32  GetRepeatedInt32 (const Message& message,
521                                    const FieldDescriptor* field,
522                                    int index) const = 0;
523   virtual int64  GetRepeatedInt64 (const Message& message,
524                                    const FieldDescriptor* field,
525                                    int index) const = 0;
526   virtual uint32 GetRepeatedUInt32(const Message& message,
527                                    const FieldDescriptor* field,
528                                    int index) const = 0;
529   virtual uint64 GetRepeatedUInt64(const Message& message,
530                                    const FieldDescriptor* field,
531                                    int index) const = 0;
532   virtual float  GetRepeatedFloat (const Message& message,
533                                    const FieldDescriptor* field,
534                                    int index) const = 0;
535   virtual double GetRepeatedDouble(const Message& message,
536                                    const FieldDescriptor* field,
537                                    int index) const = 0;
538   virtual bool   GetRepeatedBool  (const Message& message,
539                                    const FieldDescriptor* field,
540                                    int index) const = 0;
541   virtual string GetRepeatedString(const Message& message,
542                                    const FieldDescriptor* field,
543                                    int index) const = 0;
544   virtual const EnumValueDescriptor* GetRepeatedEnum(
545       const Message& message,
546       const FieldDescriptor* field, int index) const = 0;
547   virtual const Message& GetRepeatedMessage(
548       const Message& message,
549       const FieldDescriptor* field, int index) const = 0;
550 
551   // See GetStringReference(), above.
552   virtual const string& GetRepeatedStringReference(
553       const Message& message, const FieldDescriptor* field,
554       int index, string* scratch) const = 0;
555 
556 
557   // Repeated field mutators -----------------------------------------
558   // These mutate the value of one element of a repeated field.
559 
560   virtual void SetRepeatedInt32 (Message* message,
561                                  const FieldDescriptor* field,
562                                  int index, int32  value) const = 0;
563   virtual void SetRepeatedInt64 (Message* message,
564                                  const FieldDescriptor* field,
565                                  int index, int64  value) const = 0;
566   virtual void SetRepeatedUInt32(Message* message,
567                                  const FieldDescriptor* field,
568                                  int index, uint32 value) const = 0;
569   virtual void SetRepeatedUInt64(Message* message,
570                                  const FieldDescriptor* field,
571                                  int index, uint64 value) const = 0;
572   virtual void SetRepeatedFloat (Message* message,
573                                  const FieldDescriptor* field,
574                                  int index, float  value) const = 0;
575   virtual void SetRepeatedDouble(Message* message,
576                                  const FieldDescriptor* field,
577                                  int index, double value) const = 0;
578   virtual void SetRepeatedBool  (Message* message,
579                                  const FieldDescriptor* field,
580                                  int index, bool   value) const = 0;
581   virtual void SetRepeatedString(Message* message,
582                                  const FieldDescriptor* field,
583                                  int index, const string& value) const = 0;
584   virtual void SetRepeatedEnum(Message* message,
585                                const FieldDescriptor* field, int index,
586                                const EnumValueDescriptor* value) const = 0;
587   // Get a mutable pointer to an element of a repeated field with a message
588   // type.
589   virtual Message* MutableRepeatedMessage(
590       Message* message, const FieldDescriptor* field, int index) const = 0;
591 
592 
593   // Repeated field adders -------------------------------------------
594   // These add an element to a repeated field.
595 
596   virtual void AddInt32 (Message* message,
597                          const FieldDescriptor* field, int32  value) const = 0;
598   virtual void AddInt64 (Message* message,
599                          const FieldDescriptor* field, int64  value) const = 0;
600   virtual void AddUInt32(Message* message,
601                          const FieldDescriptor* field, uint32 value) const = 0;
602   virtual void AddUInt64(Message* message,
603                          const FieldDescriptor* field, uint64 value) const = 0;
604   virtual void AddFloat (Message* message,
605                          const FieldDescriptor* field, float  value) const = 0;
606   virtual void AddDouble(Message* message,
607                          const FieldDescriptor* field, double value) const = 0;
608   virtual void AddBool  (Message* message,
609                          const FieldDescriptor* field, bool   value) const = 0;
610   virtual void AddString(Message* message,
611                          const FieldDescriptor* field,
612                          const string& value) const = 0;
613   virtual void AddEnum  (Message* message,
614                          const FieldDescriptor* field,
615                          const EnumValueDescriptor* value) const = 0;
616   // See MutableMessage() for comments on the "factory" parameter.
617   virtual Message* AddMessage(Message* message,
618                               const FieldDescriptor* field,
619                               MessageFactory* factory = NULL) const = 0;
620 
621 
622   // Repeated field accessors  -------------------------------------------------
623   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
624   // access to the data in a RepeatedField.  The methods below provide aggregate
625   // access by exposing the RepeatedField object itself with the Message.
626   // Applying these templates to inappropriate types will lead to an undefined
627   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
628   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
629   //
630   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
631 
632   // for T = Cord and all protobuf scalar types except enums.
633   template<typename T>
634   const RepeatedField<T>& GetRepeatedField(
635       const Message&, const FieldDescriptor*) const;
636 
637   // for T = Cord and all protobuf scalar types except enums.
638   template<typename T>
639   RepeatedField<T>* MutableRepeatedField(
640       Message*, const FieldDescriptor*) const;
641 
642   // for T = string, google::protobuf::internal::StringPieceField
643   //         google::protobuf::Message & descendants.
644   template<typename T>
645   const RepeatedPtrField<T>& GetRepeatedPtrField(
646       const Message&, const FieldDescriptor*) const;
647 
648   // for T = string, google::protobuf::internal::StringPieceField
649   //         google::protobuf::Message & descendants.
650   template<typename T>
651   RepeatedPtrField<T>* MutableRepeatedPtrField(
652       Message*, const FieldDescriptor*) const;
653 
654   // Extensions ----------------------------------------------------------------
655 
656   // Try to find an extension of this message type by fully-qualified field
657   // name.  Returns NULL if no extension is known for this name or number.
658   virtual const FieldDescriptor* FindKnownExtensionByName(
659       const string& name) const = 0;
660 
661   // Try to find an extension of this message type by field number.
662   // Returns NULL if no extension is known for this name or number.
663   virtual const FieldDescriptor* FindKnownExtensionByNumber(
664       int number) const = 0;
665 
666   // ---------------------------------------------------------------------------
667 
668  protected:
669   // Obtain a pointer to a Repeated Field Structure and do some type checking:
670   //   on field->cpp_type(),
671   //   on field->field_option().ctype() (if ctype >= 0)
672   //   of field->message_type() (if message_type != NULL).
673   // We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
674   virtual void* MutableRawRepeatedField(
675       Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
676       int ctype, const Descriptor* message_type) const = 0;
677 
678  private:
679   // Special version for specialized implementations of string.  We can't call
680   // MutableRawRepeatedField directly here because we don't have access to
681   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
682   // file here is not possible because it would cause a circular include cycle.
683   void* MutableRawRepeatedString(
684       Message* message, const FieldDescriptor* field, bool is_string) const;
685 
686   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
687 };
688 
689 // Abstract interface for a factory for message objects.
690 class LIBPROTOBUF_EXPORT MessageFactory {
691  public:
MessageFactory()692   inline MessageFactory() {}
693   virtual ~MessageFactory();
694 
695   // Given a Descriptor, gets or constructs the default (prototype) Message
696   // of that type.  You can then call that message's New() method to construct
697   // a mutable message of that type.
698   //
699   // Calling this method twice with the same Descriptor returns the same
700   // object.  The returned object remains property of the factory.  Also, any
701   // objects created by calling the prototype's New() method share some data
702   // with the prototype, so these must be destoyed before the MessageFactory
703   // is destroyed.
704   //
705   // The given descriptor must outlive the returned message, and hence must
706   // outlive the MessageFactory.
707   //
708   // Some implementations do not support all types.  GetPrototype() will
709   // return NULL if the descriptor passed in is not supported.
710   //
711   // This method may or may not be thread-safe depending on the implementation.
712   // Each implementation should document its own degree thread-safety.
713   virtual const Message* GetPrototype(const Descriptor* type) = 0;
714 
715   // Gets a MessageFactory which supports all generated, compiled-in messages.
716   // In other words, for any compiled-in type FooMessage, the following is true:
717   //   MessageFactory::generated_factory()->GetPrototype(
718   //     FooMessage::descriptor()) == FooMessage::default_instance()
719   // This factory supports all types which are found in
720   // DescriptorPool::generated_pool().  If given a descriptor from any other
721   // pool, GetPrototype() will return NULL.  (You can also check if a
722   // descriptor is for a generated message by checking if
723   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
724   //
725   // This factory is 100% thread-safe; calling GetPrototype() does not modify
726   // any shared data.
727   //
728   // This factory is a singleton.  The caller must not delete the object.
729   static MessageFactory* generated_factory();
730 
731   // For internal use only:  Registers a .proto file at static initialization
732   // time, to be placed in generated_factory.  The first time GetPrototype()
733   // is called with a descriptor from this file, |register_messages| will be
734   // called, with the file name as the parameter.  It must call
735   // InternalRegisterGeneratedMessage() (below) to register each message type
736   // in the file.  This strange mechanism is necessary because descriptors are
737   // built lazily, so we can't register types by their descriptor until we
738   // know that the descriptor exists.  |filename| must be a permanent string.
739   static void InternalRegisterGeneratedFile(
740       const char* filename, void (*register_messages)(const string&));
741 
742   // For internal use only:  Registers a message type.  Called only by the
743   // functions which are registered with InternalRegisterGeneratedFile(),
744   // above.
745   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
746                                                const Message* prototype);
747 
748 
749  private:
750   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
751 };
752 
753 #define DECLARE_GET_REPEATED_FIELD(TYPE)                         \
754 template<>                                                       \
755 LIBPROTOBUF_EXPORT                                               \
756 const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>(   \
757     const Message& message, const FieldDescriptor* field) const; \
758                                                                  \
759 template<>                                                       \
760 LIBPROTOBUF_EXPORT                                               \
761 RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>(     \
762     Message* message, const FieldDescriptor* field) const;
763 
764 DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)765 DECLARE_GET_REPEATED_FIELD(int64)
766 DECLARE_GET_REPEATED_FIELD(uint32)
767 DECLARE_GET_REPEATED_FIELD(uint64)
768 DECLARE_GET_REPEATED_FIELD(float)
769 DECLARE_GET_REPEATED_FIELD(double)
770 DECLARE_GET_REPEATED_FIELD(bool)
771 
772 #undef DECLARE_GET_REPEATED_FIELD
773 
774 // =============================================================================
775 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
776 // specializations for <string>, <StringPieceField> and <Message> and handle
777 // everything else with the default template which will match any type having
778 // a method with signature "static const google::protobuf::Descriptor* descriptor()".
779 // Such a type presumably is a descendant of google::protobuf::Message.
780 
781 template<>
782 inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
783     const Message& message, const FieldDescriptor* field) const {
784   return *static_cast<RepeatedPtrField<string>* >(
785       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
786 }
787 
788 template<>
789 inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
790     Message* message, const FieldDescriptor* field) const {
791   return static_cast<RepeatedPtrField<string>* >(
792       MutableRawRepeatedString(message, field, true));
793 }
794 
795 
796 // -----
797 
798 template<>
GetRepeatedPtrField(const Message & message,const FieldDescriptor * field)799 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
800     const Message& message, const FieldDescriptor* field) const {
801   return *static_cast<RepeatedPtrField<Message>* >(
802       MutableRawRepeatedField(const_cast<Message*>(&message), field,
803           FieldDescriptor::CPPTYPE_MESSAGE, -1,
804           NULL));
805 }
806 
807 template<>
MutableRepeatedPtrField(Message * message,const FieldDescriptor * field)808 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
809     Message* message, const FieldDescriptor* field) const {
810   return static_cast<RepeatedPtrField<Message>* >(
811       MutableRawRepeatedField(message, field,
812           FieldDescriptor::CPPTYPE_MESSAGE, -1,
813           NULL));
814 }
815 
816 template<typename PB>
GetRepeatedPtrField(const Message & message,const FieldDescriptor * field)817 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
818     const Message& message, const FieldDescriptor* field) const {
819   return *static_cast<RepeatedPtrField<PB>* >(
820       MutableRawRepeatedField(const_cast<Message*>(&message), field,
821           FieldDescriptor::CPPTYPE_MESSAGE, -1,
822           PB::default_instance().GetDescriptor()));
823 }
824 
825 template<typename PB>
MutableRepeatedPtrField(Message * message,const FieldDescriptor * field)826 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
827     Message* message, const FieldDescriptor* field) const {
828   return static_cast<RepeatedPtrField<PB>* >(
829       MutableRawRepeatedField(message, field,
830           FieldDescriptor::CPPTYPE_MESSAGE, -1,
831           PB::default_instance().GetDescriptor()));
832 }
833 
834 }  // namespace protobuf
835 
836 }  // namespace google
837 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
838