1
2 /*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9 #include "SkSweepGradient.h"
10
SkSweepGradient(SkScalar cx,SkScalar cy,const Descriptor & desc)11 SkSweepGradient::SkSweepGradient(SkScalar cx, SkScalar cy,
12 const Descriptor& desc)
13 : SkGradientShaderBase(desc)
14 , fCenter(SkPoint::Make(cx, cy))
15 {
16 fPtsToUnit.setTranslate(-cx, -cy);
17
18 // overwrite the tilemode to a canonical value (since sweep ignores it)
19 fTileMode = SkShader::kClamp_TileMode;
20 }
21
asABitmap(SkBitmap * bitmap,SkMatrix * matrix,SkShader::TileMode * xy) const22 SkShader::BitmapType SkSweepGradient::asABitmap(SkBitmap* bitmap,
23 SkMatrix* matrix, SkShader::TileMode* xy) const {
24 if (bitmap) {
25 this->getGradientTableBitmap(bitmap);
26 }
27 if (matrix) {
28 *matrix = fPtsToUnit;
29 }
30 if (xy) {
31 xy[0] = fTileMode;
32 xy[1] = kClamp_TileMode;
33 }
34 return kSweep_BitmapType;
35 }
36
asAGradient(GradientInfo * info) const37 SkShader::GradientType SkSweepGradient::asAGradient(GradientInfo* info) const {
38 if (info) {
39 commonAsAGradient(info);
40 info->fPoint[0] = fCenter;
41 }
42 return kSweep_GradientType;
43 }
44
SkSweepGradient(SkFlattenableReadBuffer & buffer)45 SkSweepGradient::SkSweepGradient(SkFlattenableReadBuffer& buffer)
46 : INHERITED(buffer),
47 fCenter(buffer.readPoint()) {
48 }
49
flatten(SkFlattenableWriteBuffer & buffer) const50 void SkSweepGradient::flatten(SkFlattenableWriteBuffer& buffer) const {
51 this->INHERITED::flatten(buffer);
52 buffer.writePoint(fCenter);
53 }
54
55 #ifndef SK_SCALAR_IS_FLOAT
56 #ifdef COMPUTE_SWEEP_TABLE
57 #define PI 3.14159265
58 static bool gSweepTableReady;
59 static uint8_t gSweepTable[65];
60
61 /* Our table stores precomputed values for atan: [0...1] -> [0..PI/4]
62 We scale the results to [0..32]
63 */
build_sweep_table()64 static const uint8_t* build_sweep_table() {
65 if (!gSweepTableReady) {
66 const int N = 65;
67 const double DENOM = N - 1;
68
69 for (int i = 0; i < N; i++)
70 {
71 double arg = i / DENOM;
72 double v = atan(arg);
73 int iv = (int)round(v * DENOM * 2 / PI);
74 // printf("[%d] atan(%g) = %g %d\n", i, arg, v, iv);
75 printf("%d, ", iv);
76 gSweepTable[i] = iv;
77 }
78 gSweepTableReady = true;
79 }
80 return gSweepTable;
81 }
82 #else
83 static const uint8_t gSweepTable[] = {
84 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9,
85 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18,
86 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26,
87 26, 27, 27, 27, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32,
88 32
89 };
build_sweep_table()90 static const uint8_t* build_sweep_table() { return gSweepTable; }
91 #endif
92 #endif
93
94 // divide numer/denom, with a bias of 6bits. Assumes numer <= denom
95 // and denom != 0. Since our table is 6bits big (+1), this is a nice fit.
96 // Same as (but faster than) SkFixedDiv(numer, denom) >> 10
97
98 //unsigned div_64(int numer, int denom);
99 #ifndef SK_SCALAR_IS_FLOAT
div_64(int numer,int denom)100 static unsigned div_64(int numer, int denom) {
101 SkASSERT(numer <= denom);
102 SkASSERT(numer > 0);
103 SkASSERT(denom > 0);
104
105 int nbits = SkCLZ(numer);
106 int dbits = SkCLZ(denom);
107 int bits = 6 - nbits + dbits;
108 SkASSERT(bits <= 6);
109
110 if (bits < 0) { // detect underflow
111 return 0;
112 }
113
114 denom <<= dbits - 1;
115 numer <<= nbits - 1;
116
117 unsigned result = 0;
118
119 // do the first one
120 if ((numer -= denom) >= 0) {
121 result = 1;
122 } else {
123 numer += denom;
124 }
125
126 // Now fall into our switch statement if there are more bits to compute
127 if (bits > 0) {
128 // make room for the rest of the answer bits
129 result <<= bits;
130 switch (bits) {
131 case 6:
132 if ((numer = (numer << 1) - denom) >= 0)
133 result |= 32;
134 else
135 numer += denom;
136 case 5:
137 if ((numer = (numer << 1) - denom) >= 0)
138 result |= 16;
139 else
140 numer += denom;
141 case 4:
142 if ((numer = (numer << 1) - denom) >= 0)
143 result |= 8;
144 else
145 numer += denom;
146 case 3:
147 if ((numer = (numer << 1) - denom) >= 0)
148 result |= 4;
149 else
150 numer += denom;
151 case 2:
152 if ((numer = (numer << 1) - denom) >= 0)
153 result |= 2;
154 else
155 numer += denom;
156 case 1:
157 default: // not strictly need, but makes GCC make better ARM code
158 if ((numer = (numer << 1) - denom) >= 0)
159 result |= 1;
160 else
161 numer += denom;
162 }
163 }
164 return result;
165 }
166 #endif
167
168 // Given x,y in the first quadrant, return 0..63 for the angle [0..90]
169 #ifndef SK_SCALAR_IS_FLOAT
atan_0_90(SkFixed y,SkFixed x)170 static unsigned atan_0_90(SkFixed y, SkFixed x) {
171 #ifdef SK_DEBUG
172 {
173 static bool gOnce;
174 if (!gOnce) {
175 gOnce = true;
176 SkASSERT(div_64(55, 55) == 64);
177 SkASSERT(div_64(128, 256) == 32);
178 SkASSERT(div_64(2326528, 4685824) == 31);
179 SkASSERT(div_64(753664, 5210112) == 9);
180 SkASSERT(div_64(229376, 4882432) == 3);
181 SkASSERT(div_64(2, 64) == 2);
182 SkASSERT(div_64(1, 64) == 1);
183 // test that we handle underflow correctly
184 SkASSERT(div_64(12345, 0x54321234) == 0);
185 }
186 }
187 #endif
188
189 SkASSERT(y > 0 && x > 0);
190 const uint8_t* table = build_sweep_table();
191
192 unsigned result;
193 bool swap = (x < y);
194 if (swap) {
195 // first part of the atan(v) = PI/2 - atan(1/v) identity
196 // since our div_64 and table want v <= 1, where v = y/x
197 SkTSwap<SkFixed>(x, y);
198 }
199
200 result = div_64(y, x);
201
202 #ifdef SK_DEBUG
203 {
204 unsigned result2 = SkDivBits(y, x, 6);
205 SkASSERT(result2 == result ||
206 (result == 1 && result2 == 0));
207 }
208 #endif
209
210 SkASSERT(result < SK_ARRAY_COUNT(gSweepTable));
211 result = table[result];
212
213 if (swap) {
214 // complete the atan(v) = PI/2 - atan(1/v) identity
215 result = 64 - result;
216 // pin to 63
217 result -= result >> 6;
218 }
219
220 SkASSERT(result <= 63);
221 return result;
222 }
223 #endif
224
225 // returns angle in a circle [0..2PI) -> [0..255]
226 #ifdef SK_SCALAR_IS_FLOAT
SkATan2_255(float y,float x)227 static unsigned SkATan2_255(float y, float x) {
228 // static const float g255Over2PI = 255 / (2 * SK_ScalarPI);
229 static const float g255Over2PI = 40.584510488433314f;
230
231 float result = sk_float_atan2(y, x);
232 if (result < 0) {
233 result += 2 * SK_ScalarPI;
234 }
235 SkASSERT(result >= 0);
236 // since our value is always >= 0, we can cast to int, which is faster than
237 // calling floorf()
238 int ir = (int)(result * g255Over2PI);
239 SkASSERT(ir >= 0 && ir <= 255);
240 return ir;
241 }
242 #else
SkATan2_255(SkFixed y,SkFixed x)243 static unsigned SkATan2_255(SkFixed y, SkFixed x) {
244 if (x == 0) {
245 if (y == 0) {
246 return 0;
247 }
248 return y < 0 ? 192 : 64;
249 }
250 if (y == 0) {
251 return x < 0 ? 128 : 0;
252 }
253
254 /* Find the right quadrant for x,y
255 Since atan_0_90 only handles the first quadrant, we rotate x,y
256 appropriately before calling it, and then add the right amount
257 to account for the real quadrant.
258 quadrant 0 : add 0 | x > 0 && y > 0
259 quadrant 1 : add 64 (90 degrees) | x < 0 && y > 0
260 quadrant 2 : add 128 (180 degrees) | x < 0 && y < 0
261 quadrant 3 : add 192 (270 degrees) | x > 0 && y < 0
262
263 map x<0 to (1 << 6)
264 map y<0 to (3 << 6)
265 add = map_x ^ map_y
266 */
267 int xsign = x >> 31;
268 int ysign = y >> 31;
269 int add = ((-xsign) ^ (ysign & 3)) << 6;
270
271 #ifdef SK_DEBUG
272 if (0 == add)
273 SkASSERT(x > 0 && y > 0);
274 else if (64 == add)
275 SkASSERT(x < 0 && y > 0);
276 else if (128 == add)
277 SkASSERT(x < 0 && y < 0);
278 else if (192 == add)
279 SkASSERT(x > 0 && y < 0);
280 else
281 SkDEBUGFAIL("bad value for add");
282 #endif
283
284 /* This ^ trick makes x, y positive, and the swap<> handles quadrants
285 where we need to rotate x,y by 90 or -90
286 */
287 x = (x ^ xsign) - xsign;
288 y = (y ^ ysign) - ysign;
289 if (add & 64) { // quads 1 or 3 need to swap x,y
290 SkTSwap<SkFixed>(x, y);
291 }
292
293 unsigned result = add + atan_0_90(y, x);
294 SkASSERT(result < 256);
295 return result;
296 }
297 #endif
298
shadeSpan(int x,int y,SkPMColor * SK_RESTRICT dstC,int count)299 void SkSweepGradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
300 int count) {
301 SkMatrix::MapXYProc proc = fDstToIndexProc;
302 const SkMatrix& matrix = fDstToIndex;
303 const SkPMColor* SK_RESTRICT cache = this->getCache32();
304 int toggle = init_dither_toggle(x, y);
305 SkPoint srcPt;
306
307 if (fDstToIndexClass != kPerspective_MatrixClass) {
308 proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
309 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
310 SkScalar dx, fx = srcPt.fX;
311 SkScalar dy, fy = srcPt.fY;
312
313 if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
314 SkFixed storage[2];
315 (void)matrix.fixedStepInX(SkIntToScalar(y) + SK_ScalarHalf,
316 &storage[0], &storage[1]);
317 dx = SkFixedToScalar(storage[0]);
318 dy = SkFixedToScalar(storage[1]);
319 } else {
320 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
321 dx = matrix.getScaleX();
322 dy = matrix.getSkewY();
323 }
324
325 for (; count > 0; --count) {
326 *dstC++ = cache[toggle + SkATan2_255(fy, fx)];
327 fx += dx;
328 fy += dy;
329 toggle = next_dither_toggle(toggle);
330 }
331 } else { // perspective case
332 for (int stop = x + count; x < stop; x++) {
333 proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
334 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
335 *dstC++ = cache[toggle + SkATan2_255(srcPt.fY, srcPt.fX)];
336 toggle = next_dither_toggle(toggle);
337 }
338 }
339 }
340
shadeSpan16(int x,int y,uint16_t * SK_RESTRICT dstC,int count)341 void SkSweepGradient::shadeSpan16(int x, int y, uint16_t* SK_RESTRICT dstC,
342 int count) {
343 SkMatrix::MapXYProc proc = fDstToIndexProc;
344 const SkMatrix& matrix = fDstToIndex;
345 const uint16_t* SK_RESTRICT cache = this->getCache16();
346 int toggle = init_dither_toggle16(x, y);
347 SkPoint srcPt;
348
349 if (fDstToIndexClass != kPerspective_MatrixClass) {
350 proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
351 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
352 SkScalar dx, fx = srcPt.fX;
353 SkScalar dy, fy = srcPt.fY;
354
355 if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
356 SkFixed storage[2];
357 (void)matrix.fixedStepInX(SkIntToScalar(y) + SK_ScalarHalf,
358 &storage[0], &storage[1]);
359 dx = SkFixedToScalar(storage[0]);
360 dy = SkFixedToScalar(storage[1]);
361 } else {
362 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
363 dx = matrix.getScaleX();
364 dy = matrix.getSkewY();
365 }
366
367 for (; count > 0; --count) {
368 int index = SkATan2_255(fy, fx) >> (8 - kCache16Bits);
369 *dstC++ = cache[toggle + index];
370 toggle = next_dither_toggle16(toggle);
371 fx += dx;
372 fy += dy;
373 }
374 } else { // perspective case
375 for (int stop = x + count; x < stop; x++) {
376 proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
377 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
378
379 int index = SkATan2_255(srcPt.fY, srcPt.fX);
380 index >>= (8 - kCache16Bits);
381 *dstC++ = cache[toggle + index];
382 toggle = next_dither_toggle16(toggle);
383 }
384 }
385 }
386
387 /////////////////////////////////////////////////////////////////////
388
389 #if SK_SUPPORT_GPU
390
391 #include "GrTBackendEffectFactory.h"
392
393 class GrGLSweepGradient : public GrGLGradientEffect {
394 public:
395
GrGLSweepGradient(const GrBackendEffectFactory & factory,const GrDrawEffect &)396 GrGLSweepGradient(const GrBackendEffectFactory& factory,
397 const GrDrawEffect&) : INHERITED (factory) { }
~GrGLSweepGradient()398 virtual ~GrGLSweepGradient() { }
399
400 virtual void emitCode(GrGLShaderBuilder*,
401 const GrDrawEffect&,
402 EffectKey,
403 const char* outputColor,
404 const char* inputColor,
405 const TransformedCoordsArray&,
406 const TextureSamplerArray&) SK_OVERRIDE;
407
GenKey(const GrDrawEffect & drawEffect,const GrGLCaps &)408 static EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
409 return GenBaseGradientKey(drawEffect);
410 }
411
412 private:
413
414 typedef GrGLGradientEffect INHERITED;
415
416 };
417
418 /////////////////////////////////////////////////////////////////////
419
420 class GrSweepGradient : public GrGradientEffect {
421 public:
Create(GrContext * ctx,const SkSweepGradient & shader,const SkMatrix & matrix)422 static GrEffectRef* Create(GrContext* ctx,
423 const SkSweepGradient& shader,
424 const SkMatrix& matrix) {
425 AutoEffectUnref effect(SkNEW_ARGS(GrSweepGradient, (ctx, shader, matrix)));
426 return CreateEffectRef(effect);
427 }
~GrSweepGradient()428 virtual ~GrSweepGradient() { }
429
Name()430 static const char* Name() { return "Sweep Gradient"; }
getFactory() const431 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
432 return GrTBackendEffectFactory<GrSweepGradient>::getInstance();
433 }
434
435 typedef GrGLSweepGradient GLEffect;
436
437 private:
GrSweepGradient(GrContext * ctx,const SkSweepGradient & shader,const SkMatrix & matrix)438 GrSweepGradient(GrContext* ctx,
439 const SkSweepGradient& shader,
440 const SkMatrix& matrix)
441 : INHERITED(ctx, shader, matrix, SkShader::kClamp_TileMode) { }
442 GR_DECLARE_EFFECT_TEST;
443
444 typedef GrGradientEffect INHERITED;
445 };
446
447 /////////////////////////////////////////////////////////////////////
448
449 GR_DEFINE_EFFECT_TEST(GrSweepGradient);
450
TestCreate(SkRandom * random,GrContext * context,const GrDrawTargetCaps &,GrTexture **)451 GrEffectRef* GrSweepGradient::TestCreate(SkRandom* random,
452 GrContext* context,
453 const GrDrawTargetCaps&,
454 GrTexture**) {
455 SkPoint center = {random->nextUScalar1(), random->nextUScalar1()};
456
457 SkColor colors[kMaxRandomGradientColors];
458 SkScalar stopsArray[kMaxRandomGradientColors];
459 SkScalar* stops = stopsArray;
460 SkShader::TileMode tmIgnored;
461 int colorCount = RandomGradientParams(random, colors, &stops, &tmIgnored);
462 SkAutoTUnref<SkShader> shader(SkGradientShader::CreateSweep(center.fX, center.fY,
463 colors, stops, colorCount));
464 SkPaint paint;
465 return shader->asNewEffect(context, paint);
466 }
467
468 /////////////////////////////////////////////////////////////////////
469
emitCode(GrGLShaderBuilder * builder,const GrDrawEffect &,EffectKey key,const char * outputColor,const char * inputColor,const TransformedCoordsArray & coords,const TextureSamplerArray & samplers)470 void GrGLSweepGradient::emitCode(GrGLShaderBuilder* builder,
471 const GrDrawEffect&,
472 EffectKey key,
473 const char* outputColor,
474 const char* inputColor,
475 const TransformedCoordsArray& coords,
476 const TextureSamplerArray& samplers) {
477 this->emitUniforms(builder, key);
478 SkString coords2D = builder->ensureFSCoords2D(coords, 0);
479 SkString t;
480 t.printf("atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5", coords2D.c_str(), coords2D.c_str());
481 this->emitColor(builder, t.c_str(), key,
482 outputColor, inputColor, samplers);
483 }
484
485 /////////////////////////////////////////////////////////////////////
486
asNewEffect(GrContext * context,const SkPaint &) const487 GrEffectRef* SkSweepGradient::asNewEffect(GrContext* context, const SkPaint&) const {
488 SkMatrix matrix;
489 if (!this->getLocalMatrix().invert(&matrix)) {
490 return NULL;
491 }
492 matrix.postConcat(fPtsToUnit);
493 return GrSweepGradient::Create(context, *this, matrix);
494 }
495
496 #else
497
asNewEffect(GrContext *,const SkPaint &) const498 GrEffectRef* SkSweepGradient::asNewEffect(GrContext*, const SkPaint&) const {
499 SkDEBUGFAIL("Should not call in GPU-less build");
500 return NULL;
501 }
502
503 #endif
504
505 #ifdef SK_DEVELOPER
toString(SkString * str) const506 void SkSweepGradient::toString(SkString* str) const {
507 str->append("SkSweepGradient: (");
508
509 str->append("center: (");
510 str->appendScalar(fCenter.fX);
511 str->append(", ");
512 str->appendScalar(fCenter.fY);
513 str->append(") ");
514
515 this->INHERITED::toString(str);
516
517 str->append(")");
518 }
519 #endif
520