• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkTwoPointConicalGradient.h"
9 
valid_divide(float numer,float denom,float * ratio)10 static int valid_divide(float numer, float denom, float* ratio) {
11     SkASSERT(ratio);
12     if (0 == denom) {
13         return 0;
14     }
15     *ratio = numer / denom;
16     return 1;
17 }
18 
19 // Return the number of distinct real roots, and write them into roots[] in
20 // ascending order
find_quad_roots(float A,float B,float C,float roots[2])21 static int find_quad_roots(float A, float B, float C, float roots[2]) {
22     SkASSERT(roots);
23 
24     if (A == 0) {
25         return valid_divide(-C, B, roots);
26     }
27 
28     float R = B*B - 4*A*C;
29     if (R < 0) {
30         return 0;
31     }
32     R = sk_float_sqrt(R);
33 
34 #if 1
35     float Q = B;
36     if (Q < 0) {
37         Q -= R;
38     } else {
39         Q += R;
40     }
41 #else
42     // on 10.6 this was much slower than the above branch :(
43     float Q = B + copysignf(R, B);
44 #endif
45     Q *= -0.5f;
46     if (0 == Q) {
47         roots[0] = 0;
48         return 1;
49     }
50 
51     float r0 = Q / A;
52     float r1 = C / Q;
53     roots[0] = r0 < r1 ? r0 : r1;
54     roots[1] = r0 > r1 ? r0 : r1;
55     return 2;
56 }
57 
lerp(float x,float dx,float t)58 static float lerp(float x, float dx, float t) {
59     return x + t * dx;
60 }
61 
sqr(float x)62 static float sqr(float x) { return x * x; }
63 
init(const SkPoint & center0,SkScalar rad0,const SkPoint & center1,SkScalar rad1)64 void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0,
65                        const SkPoint& center1, SkScalar rad1) {
66     fCenterX = SkScalarToFloat(center0.fX);
67     fCenterY = SkScalarToFloat(center0.fY);
68     fDCenterX = SkScalarToFloat(center1.fX) - fCenterX;
69     fDCenterY = SkScalarToFloat(center1.fY) - fCenterY;
70     fRadius = SkScalarToFloat(rad0);
71     fDRadius = SkScalarToFloat(rad1) - fRadius;
72 
73     fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius);
74     fRadius2 = sqr(fRadius);
75     fRDR = fRadius * fDRadius;
76 }
77 
setup(SkScalar fx,SkScalar fy,SkScalar dfx,SkScalar dfy)78 void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) {
79     fRelX = SkScalarToFloat(fx) - fCenterX;
80     fRelY = SkScalarToFloat(fy) - fCenterY;
81     fIncX = SkScalarToFloat(dfx);
82     fIncY = SkScalarToFloat(dfy);
83     fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR);
84     fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY);
85 }
86 
nextT()87 SkFixed TwoPtRadial::nextT() {
88     float roots[2];
89 
90     float C = sqr(fRelX) + sqr(fRelY) - fRadius2;
91     int countRoots = find_quad_roots(fA, fB, C, roots);
92 
93     fRelX += fIncX;
94     fRelY += fIncY;
95     fB += fDB;
96 
97     if (0 == countRoots) {
98         return kDontDrawT;
99     }
100 
101     // Prefer the bigger t value if both give a radius(t) > 0
102     // find_quad_roots returns the values sorted, so we start with the last
103     float t = roots[countRoots - 1];
104     float r = lerp(fRadius, fDRadius, t);
105     if (r <= 0) {
106         t = roots[0];   // might be the same as roots[countRoots-1]
107         r = lerp(fRadius, fDRadius, t);
108         if (r <= 0) {
109             return kDontDrawT;
110         }
111     }
112     return SkFloatToFixed(t);
113 }
114 
115 typedef void (*TwoPointConicalProc)(TwoPtRadial* rec, SkPMColor* dstC,
116                                     const SkPMColor* cache, int toggle, int count);
117 
twopoint_clamp(TwoPtRadial * rec,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)118 static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
119                            const SkPMColor* SK_RESTRICT cache, int toggle,
120                            int count) {
121     for (; count > 0; --count) {
122         SkFixed t = rec->nextT();
123         if (TwoPtRadial::DontDrawT(t)) {
124             *dstC++ = 0;
125         } else {
126             SkFixed index = SkClampMax(t, 0xFFFF);
127             SkASSERT(index <= 0xFFFF);
128             *dstC++ = cache[toggle +
129                             (index >> SkGradientShaderBase::kCache32Shift)];
130         }
131         toggle = next_dither_toggle(toggle);
132     }
133 }
134 
twopoint_repeat(TwoPtRadial * rec,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)135 static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
136                             const SkPMColor* SK_RESTRICT cache, int toggle,
137                             int count) {
138     for (; count > 0; --count) {
139         SkFixed t = rec->nextT();
140         if (TwoPtRadial::DontDrawT(t)) {
141             *dstC++ = 0;
142         } else {
143             SkFixed index = repeat_tileproc(t);
144             SkASSERT(index <= 0xFFFF);
145             *dstC++ = cache[toggle +
146                             (index >> SkGradientShaderBase::kCache32Shift)];
147         }
148         toggle = next_dither_toggle(toggle);
149     }
150 }
151 
twopoint_mirror(TwoPtRadial * rec,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)152 static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
153                             const SkPMColor* SK_RESTRICT cache, int toggle,
154                             int count) {
155     for (; count > 0; --count) {
156         SkFixed t = rec->nextT();
157         if (TwoPtRadial::DontDrawT(t)) {
158             *dstC++ = 0;
159         } else {
160             SkFixed index = mirror_tileproc(t);
161             SkASSERT(index <= 0xFFFF);
162             *dstC++ = cache[toggle +
163                             (index >> SkGradientShaderBase::kCache32Shift)];
164         }
165         toggle = next_dither_toggle(toggle);
166     }
167 }
168 
init()169 void SkTwoPointConicalGradient::init() {
170     fRec.init(fCenter1, fRadius1, fCenter2, fRadius2);
171     fPtsToUnit.reset();
172 }
173 
174 /////////////////////////////////////////////////////////////////////
175 
SkTwoPointConicalGradient(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const Descriptor & desc)176 SkTwoPointConicalGradient::SkTwoPointConicalGradient(
177         const SkPoint& start, SkScalar startRadius,
178         const SkPoint& end, SkScalar endRadius,
179         const Descriptor& desc)
180     : SkGradientShaderBase(desc),
181     fCenter1(start),
182     fCenter2(end),
183     fRadius1(startRadius),
184     fRadius2(endRadius) {
185     // this is degenerate, and should be caught by our caller
186     SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
187     this->init();
188 }
189 
isOpaque() const190 bool SkTwoPointConicalGradient::isOpaque() const {
191     // Because areas outside the cone are left untouched, we cannot treat the
192     // shader as opaque even if the gradient itself is opaque.
193     // TODO(junov): Compute whether the cone fills the plane crbug.com/222380
194     return false;
195 }
196 
shadeSpan(int x,int y,SkPMColor * dstCParam,int count)197 void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
198                                           int count) {
199     int toggle = init_dither_toggle(x, y);
200 
201     SkASSERT(count > 0);
202 
203     SkPMColor* SK_RESTRICT dstC = dstCParam;
204 
205     SkMatrix::MapXYProc dstProc = fDstToIndexProc;
206 
207     const SkPMColor* SK_RESTRICT cache = this->getCache32();
208 
209     TwoPointConicalProc shadeProc = twopoint_repeat;
210     if (SkShader::kClamp_TileMode == fTileMode) {
211         shadeProc = twopoint_clamp;
212     } else if (SkShader::kMirror_TileMode == fTileMode) {
213         shadeProc = twopoint_mirror;
214     } else {
215         SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
216     }
217 
218     if (fDstToIndexClass != kPerspective_MatrixClass) {
219         SkPoint srcPt;
220         dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
221                 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
222         SkScalar dx, fx = srcPt.fX;
223         SkScalar dy, fy = srcPt.fY;
224 
225         if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
226             SkFixed fixedX, fixedY;
227             (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
228             dx = SkFixedToScalar(fixedX);
229             dy = SkFixedToScalar(fixedY);
230         } else {
231             SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
232             dx = fDstToIndex.getScaleX();
233             dy = fDstToIndex.getSkewY();
234         }
235 
236         fRec.setup(fx, fy, dx, dy);
237         (*shadeProc)(&fRec, dstC, cache, toggle, count);
238     } else {    // perspective case
239         SkScalar dstX = SkIntToScalar(x) + SK_ScalarHalf;
240         SkScalar dstY = SkIntToScalar(y) + SK_ScalarHalf;
241         for (; count > 0; --count) {
242             SkPoint srcPt;
243             dstProc(fDstToIndex, dstX, dstY, &srcPt);
244             fRec.setup(srcPt.fX, srcPt.fY, 0, 0);
245             (*shadeProc)(&fRec, dstC, cache, toggle, 1);
246 
247             dstX += SK_Scalar1;
248             toggle = next_dither_toggle(toggle);
249             dstC += 1;
250         }
251     }
252 }
253 
setContext(const SkBitmap & device,const SkPaint & paint,const SkMatrix & matrix)254 bool SkTwoPointConicalGradient::setContext(const SkBitmap& device,
255                                            const SkPaint& paint,
256                                            const SkMatrix& matrix) {
257     if (!this->INHERITED::setContext(device, paint, matrix)) {
258         return false;
259     }
260 
261     // we don't have a span16 proc
262     fFlags &= ~kHasSpan16_Flag;
263 
264     // in general, we might discard based on computed-radius, so clear
265     // this flag (todo: sometimes we can detect that we never discard...)
266     fFlags &= ~kOpaqueAlpha_Flag;
267 
268     return true;
269 }
270 
asABitmap(SkBitmap * bitmap,SkMatrix * matrix,SkShader::TileMode * xy) const271 SkShader::BitmapType SkTwoPointConicalGradient::asABitmap(
272     SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const {
273     SkPoint diff = fCenter2 - fCenter1;
274     SkScalar diffLen = 0;
275 
276     if (bitmap) {
277         this->getGradientTableBitmap(bitmap);
278     }
279     if (matrix) {
280         diffLen = diff.length();
281     }
282     if (matrix) {
283         if (diffLen) {
284             SkScalar invDiffLen = SkScalarInvert(diffLen);
285             // rotate to align circle centers with the x-axis
286             matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
287                               SkScalarMul(invDiffLen, diff.fX));
288         } else {
289             matrix->reset();
290         }
291         matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
292     }
293     if (xy) {
294         xy[0] = fTileMode;
295         xy[1] = kClamp_TileMode;
296     }
297     return kTwoPointConical_BitmapType;
298 }
299 
asAGradient(GradientInfo * info) const300 SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
301     GradientInfo* info) const {
302     if (info) {
303         commonAsAGradient(info);
304         info->fPoint[0] = fCenter1;
305         info->fPoint[1] = fCenter2;
306         info->fRadius[0] = fRadius1;
307         info->fRadius[1] = fRadius2;
308     }
309     return kConical_GradientType;
310 }
311 
SkTwoPointConicalGradient(SkFlattenableReadBuffer & buffer)312 SkTwoPointConicalGradient::SkTwoPointConicalGradient(
313     SkFlattenableReadBuffer& buffer)
314     : INHERITED(buffer),
315     fCenter1(buffer.readPoint()),
316     fCenter2(buffer.readPoint()),
317     fRadius1(buffer.readScalar()),
318     fRadius2(buffer.readScalar()) {
319     this->init();
320 };
321 
flatten(SkFlattenableWriteBuffer & buffer) const322 void SkTwoPointConicalGradient::flatten(
323     SkFlattenableWriteBuffer& buffer) const {
324     this->INHERITED::flatten(buffer);
325     buffer.writePoint(fCenter1);
326     buffer.writePoint(fCenter2);
327     buffer.writeScalar(fRadius1);
328     buffer.writeScalar(fRadius2);
329 }
330 
331 /////////////////////////////////////////////////////////////////////
332 
333 #if SK_SUPPORT_GPU
334 
335 #include "GrTBackendEffectFactory.h"
336 
337 // For brevity
338 typedef GrGLUniformManager::UniformHandle UniformHandle;
339 
340 class GrGLConical2Gradient : public GrGLGradientEffect {
341 public:
342 
343     GrGLConical2Gradient(const GrBackendEffectFactory& factory, const GrDrawEffect&);
~GrGLConical2Gradient()344     virtual ~GrGLConical2Gradient() { }
345 
346     virtual void emitCode(GrGLShaderBuilder*,
347                           const GrDrawEffect&,
348                           EffectKey,
349                           const char* outputColor,
350                           const char* inputColor,
351                           const TransformedCoordsArray&,
352                           const TextureSamplerArray&) SK_OVERRIDE;
353     virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
354 
355     static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps);
356 
357 protected:
358 
359     UniformHandle fParamUni;
360 
361     const char* fVSVaryingName;
362     const char* fFSVaryingName;
363 
364     bool fIsDegenerate;
365 
366     // @{
367     /// Values last uploaded as uniforms
368 
369     SkScalar fCachedCenter;
370     SkScalar fCachedRadius;
371     SkScalar fCachedDiffRadius;
372 
373     // @}
374 
375 private:
376 
377     typedef GrGLGradientEffect INHERITED;
378 
379 };
380 
381 /////////////////////////////////////////////////////////////////////
382 
383 class GrConical2Gradient : public GrGradientEffect {
384 public:
385 
Create(GrContext * ctx,const SkTwoPointConicalGradient & shader,const SkMatrix & matrix,SkShader::TileMode tm)386     static GrEffectRef* Create(GrContext* ctx,
387                                const SkTwoPointConicalGradient& shader,
388                                const SkMatrix& matrix,
389                                SkShader::TileMode tm) {
390         AutoEffectUnref effect(SkNEW_ARGS(GrConical2Gradient, (ctx, shader, matrix, tm)));
391         return CreateEffectRef(effect);
392     }
393 
~GrConical2Gradient()394     virtual ~GrConical2Gradient() { }
395 
Name()396     static const char* Name() { return "Two-Point Conical Gradient"; }
getFactory() const397     virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
398         return GrTBackendEffectFactory<GrConical2Gradient>::getInstance();
399     }
400 
401     // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
isDegenerate() const402     bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); }
center() const403     SkScalar center() const { return fCenterX1; }
diffRadius() const404     SkScalar diffRadius() const { return fDiffRadius; }
radius() const405     SkScalar radius() const { return fRadius0; }
406 
407     typedef GrGLConical2Gradient GLEffect;
408 
409 private:
onIsEqual(const GrEffect & sBase) const410     virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
411         const GrConical2Gradient& s = CastEffect<GrConical2Gradient>(sBase);
412         return (INHERITED::onIsEqual(sBase) &&
413                 this->fCenterX1 == s.fCenterX1 &&
414                 this->fRadius0 == s.fRadius0 &&
415                 this->fDiffRadius == s.fDiffRadius);
416     }
417 
GrConical2Gradient(GrContext * ctx,const SkTwoPointConicalGradient & shader,const SkMatrix & matrix,SkShader::TileMode tm)418     GrConical2Gradient(GrContext* ctx,
419                        const SkTwoPointConicalGradient& shader,
420                        const SkMatrix& matrix,
421                        SkShader::TileMode tm)
422         : INHERITED(ctx, shader, matrix, tm)
423         , fCenterX1(shader.getCenterX1())
424         , fRadius0(shader.getStartRadius())
425         , fDiffRadius(shader.getDiffRadius()) {
426         // We pass the linear part of the quadratic as a varying.
427         //    float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z)
428         fBTransform = this->getCoordTransform();
429         SkMatrix& bMatrix = *fBTransform.accessMatrix();
430         SkScalar r0dr = SkScalarMul(fRadius0, fDiffRadius);
431         bMatrix[SkMatrix::kMScaleX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) +
432                                             SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp0]));
433         bMatrix[SkMatrix::kMSkewX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) +
434                                            SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp1]));
435         bMatrix[SkMatrix::kMTransX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) +
436                                             SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp2]));
437         this->addCoordTransform(&fBTransform);
438     }
439 
440     GR_DECLARE_EFFECT_TEST;
441 
442     // @{
443     // Cache of values - these can change arbitrarily, EXCEPT
444     // we shouldn't change between degenerate and non-degenerate?!
445 
446     GrCoordTransform fBTransform;
447     SkScalar         fCenterX1;
448     SkScalar         fRadius0;
449     SkScalar         fDiffRadius;
450 
451     // @}
452 
453     typedef GrGradientEffect INHERITED;
454 };
455 
456 GR_DEFINE_EFFECT_TEST(GrConical2Gradient);
457 
TestCreate(SkRandom * random,GrContext * context,const GrDrawTargetCaps &,GrTexture **)458 GrEffectRef* GrConical2Gradient::TestCreate(SkRandom* random,
459                                             GrContext* context,
460                                             const GrDrawTargetCaps&,
461                                             GrTexture**) {
462     SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
463     SkScalar radius1 = random->nextUScalar1();
464     SkPoint center2;
465     SkScalar radius2;
466     do {
467         center2.set(random->nextUScalar1(), random->nextUScalar1());
468         radius2 = random->nextUScalar1 ();
469         // If the circles are identical the factory will give us an empty shader.
470     } while (radius1 == radius2 && center1 == center2);
471 
472     SkColor colors[kMaxRandomGradientColors];
473     SkScalar stopsArray[kMaxRandomGradientColors];
474     SkScalar* stops = stopsArray;
475     SkShader::TileMode tm;
476     int colorCount = RandomGradientParams(random, colors, &stops, &tm);
477     SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1,
478                                                                           center2, radius2,
479                                                                           colors, stops, colorCount,
480                                                                           tm));
481     SkPaint paint;
482     return shader->asNewEffect(context, paint);
483 }
484 
485 
486 /////////////////////////////////////////////////////////////////////
487 
GrGLConical2Gradient(const GrBackendEffectFactory & factory,const GrDrawEffect & drawEffect)488 GrGLConical2Gradient::GrGLConical2Gradient(const GrBackendEffectFactory& factory,
489                                            const GrDrawEffect& drawEffect)
490     : INHERITED(factory)
491     , fVSVaryingName(NULL)
492     , fFSVaryingName(NULL)
493     , fCachedCenter(SK_ScalarMax)
494     , fCachedRadius(-SK_ScalarMax)
495     , fCachedDiffRadius(-SK_ScalarMax) {
496 
497     const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
498     fIsDegenerate = data.isDegenerate();
499 }
500 
emitCode(GrGLShaderBuilder * builder,const GrDrawEffect &,EffectKey key,const char * outputColor,const char * inputColor,const TransformedCoordsArray & coords,const TextureSamplerArray & samplers)501 void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder,
502                                     const GrDrawEffect&,
503                                     EffectKey key,
504                                     const char* outputColor,
505                                     const char* inputColor,
506                                     const TransformedCoordsArray& coords,
507                                     const TextureSamplerArray& samplers) {
508     this->emitUniforms(builder, key);
509     fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
510                                          kFloat_GrSLType, "Conical2FSParams", 6);
511 
512     SkString cName("c");
513     SkString ac4Name("ac4");
514     SkString dName("d");
515     SkString qName("q");
516     SkString r0Name("r0");
517     SkString r1Name("r1");
518     SkString tName("t");
519     SkString p0; // 4a
520     SkString p1; // 1/a
521     SkString p2; // distance between centers
522     SkString p3; // start radius
523     SkString p4; // start radius squared
524     SkString p5; // difference in radii (r1 - r0)
525 
526     builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0);
527     builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1);
528     builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2);
529     builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3);
530     builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4);
531     builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5);
532 
533     // We interpolate the linear component in coords[1].
534     SkASSERT(coords[0].type() == coords[1].type());
535     const char* coords2D;
536     SkString bVar;
537     if (kVec3f_GrSLType == coords[0].type()) {
538         builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n",
539                                coords[0].c_str(), coords[1].c_str(), coords[0].c_str());
540         coords2D = "interpolants.xy";
541         bVar = "interpolants.z";
542     } else {
543         coords2D = coords[0].c_str();
544         bVar.printf("%s.x", coords[1].c_str());
545     }
546 
547     // output will default to transparent black (we simply won't write anything
548     // else to it if invalid, instead of discarding or returning prematurely)
549     builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
550 
551     // c = (x^2)+(y^2) - params[4]
552     builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
553                            cName.c_str(), coords2D, coords2D, p4.c_str());
554 
555     // Non-degenerate case (quadratic)
556     if (!fIsDegenerate) {
557 
558         // ac4 = params[0] * c
559         builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
560                                cName.c_str());
561 
562         // d = b^2 - ac4
563         builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
564                                bVar.c_str(), bVar.c_str(), ac4Name.c_str());
565 
566         // only proceed if discriminant is >= 0
567         builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());
568 
569         // intermediate value we'll use to compute the roots
570         // q = -0.5 * (b +/- sqrt(d))
571         builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
572                                " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
573                                bVar.c_str(), dName.c_str());
574 
575         // compute both roots
576         // r0 = q * params[1]
577         builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
578                                qName.c_str(), p1.c_str());
579         // r1 = c / q
580         builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
581                                cName.c_str(), qName.c_str());
582 
583         // Note: If there are two roots that both generate radius(t) > 0, the
584         // Canvas spec says to choose the larger t.
585 
586         // so we'll look at the larger one first:
587         builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
588                                r0Name.c_str(), r1Name.c_str());
589 
590         // if r(t) > 0, then we're done; t will be our x coordinate
591         builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
592                                p5.c_str(), p3.c_str());
593 
594         builder->fsCodeAppend("\t\t");
595         this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
596 
597         // otherwise, if r(t) for the larger root was <= 0, try the other root
598         builder->fsCodeAppend("\t\t} else {\n");
599         builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
600                                r0Name.c_str(), r1Name.c_str());
601 
602         // if r(t) > 0 for the smaller root, then t will be our x coordinate
603         builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
604                                tName.c_str(), p5.c_str(), p3.c_str());
605 
606         builder->fsCodeAppend("\t\t\t");
607         this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
608 
609         // end if (r(t) > 0) for smaller root
610         builder->fsCodeAppend("\t\t\t}\n");
611         // end if (r(t) > 0), else, for larger root
612         builder->fsCodeAppend("\t\t}\n");
613         // end if (discriminant >= 0)
614         builder->fsCodeAppend("\t}\n");
615     } else {
616 
617         // linear case: t = -c/b
618         builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
619                                cName.c_str(), bVar.c_str());
620 
621         // if r(t) > 0, then t will be the x coordinate
622         builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
623                                p5.c_str(), p3.c_str());
624         builder->fsCodeAppend("\t");
625         this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
626         builder->fsCodeAppend("\t}\n");
627     }
628 }
629 
setData(const GrGLUniformManager & uman,const GrDrawEffect & drawEffect)630 void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
631                                    const GrDrawEffect& drawEffect) {
632     INHERITED::setData(uman, drawEffect);
633     const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
634     SkASSERT(data.isDegenerate() == fIsDegenerate);
635     SkScalar centerX1 = data.center();
636     SkScalar radius0 = data.radius();
637     SkScalar diffRadius = data.diffRadius();
638 
639     if (fCachedCenter != centerX1 ||
640         fCachedRadius != radius0 ||
641         fCachedDiffRadius != diffRadius) {
642 
643         SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius;
644 
645         // When we're in the degenerate (linear) case, the second
646         // value will be INF but the program doesn't read it. (We
647         // use the same 6 uniforms even though we don't need them
648         // all in the linear case just to keep the code complexity
649         // down).
650         float values[6] = {
651             SkScalarToFloat(a * 4),
652             1.f / (SkScalarToFloat(a)),
653             SkScalarToFloat(centerX1),
654             SkScalarToFloat(radius0),
655             SkScalarToFloat(SkScalarMul(radius0, radius0)),
656             SkScalarToFloat(diffRadius)
657         };
658 
659         uman.set1fv(fParamUni, 6, values);
660         fCachedCenter = centerX1;
661         fCachedRadius = radius0;
662         fCachedDiffRadius = diffRadius;
663     }
664 }
665 
GenKey(const GrDrawEffect & drawEffect,const GrGLCaps &)666 GrGLEffect::EffectKey GrGLConical2Gradient::GenKey(const GrDrawEffect& drawEffect,
667                                                    const GrGLCaps&) {
668     enum {
669         kIsDegenerate = 1 << kBaseKeyBitCnt,
670     };
671 
672     EffectKey key = GenBaseGradientKey(drawEffect);
673     if (drawEffect.castEffect<GrConical2Gradient>().isDegenerate()) {
674         key |= kIsDegenerate;
675     }
676     return key;
677 }
678 
679 /////////////////////////////////////////////////////////////////////
680 
asNewEffect(GrContext * context,const SkPaint &) const681 GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext* context, const SkPaint&) const {
682     SkASSERT(NULL != context);
683     SkASSERT(fPtsToUnit.isIdentity());
684     // invert the localM, translate to center1, rotate so center2 is on x axis.
685     SkMatrix matrix;
686     if (!this->getLocalMatrix().invert(&matrix)) {
687         return NULL;
688     }
689     matrix.postTranslate(-fCenter1.fX, -fCenter1.fY);
690 
691     SkPoint diff = fCenter2 - fCenter1;
692     SkScalar diffLen = diff.length();
693     if (0 != diffLen) {
694         SkScalar invDiffLen = SkScalarInvert(diffLen);
695         SkMatrix rot;
696         rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY),
697                        SkScalarMul(invDiffLen, diff.fX));
698         matrix.postConcat(rot);
699     }
700 
701     return GrConical2Gradient::Create(context, *this, matrix, fTileMode);
702 }
703 
704 #else
705 
asNewEffect(GrContext *,const SkPaint &) const706 GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext*, const SkPaint&) const {
707     SkDEBUGFAIL("Should not call in GPU-less build");
708     return NULL;
709 }
710 
711 #endif
712 
713 #ifdef SK_DEVELOPER
toString(SkString * str) const714 void SkTwoPointConicalGradient::toString(SkString* str) const {
715     str->append("SkTwoPointConicalGradient: (");
716 
717     str->append("center1: (");
718     str->appendScalar(fCenter1.fX);
719     str->append(", ");
720     str->appendScalar(fCenter1.fY);
721     str->append(") radius1: ");
722     str->appendScalar(fRadius1);
723     str->append(" ");
724 
725     str->append("center2: (");
726     str->appendScalar(fCenter2.fX);
727     str->append(", ");
728     str->appendScalar(fCenter2.fY);
729     str->append(") radius2: ");
730     str->appendScalar(fRadius2);
731     str->append(" ");
732 
733     this->INHERITED::toString(str);
734 
735     str->append(")");
736 }
737 #endif
738