• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrPathUtils_DEFINED
9 #define GrPathUtils_DEFINED
10 
11 #include "GrPoint.h"
12 #include "SkRect.h"
13 #include "SkPath.h"
14 #include "SkTArray.h"
15 
16 class SkMatrix;
17 
18 /**
19  *  Utilities for evaluating paths.
20  */
21 namespace GrPathUtils {
22     SkScalar scaleToleranceToSrc(SkScalar devTol,
23                                  const SkMatrix& viewM,
24                                  const SkRect& pathBounds);
25 
26     /// Since we divide by tol if we're computing exact worst-case bounds,
27     /// very small tolerances will be increased to gMinCurveTol.
28     int worstCasePointCount(const SkPath&,
29                             int* subpaths,
30                             SkScalar tol);
31 
32     /// Since we divide by tol if we're computing exact worst-case bounds,
33     /// very small tolerances will be increased to gMinCurveTol.
34     uint32_t quadraticPointCount(const GrPoint points[], SkScalar tol);
35 
36     uint32_t generateQuadraticPoints(const GrPoint& p0,
37                                      const GrPoint& p1,
38                                      const GrPoint& p2,
39                                      SkScalar tolSqd,
40                                      GrPoint** points,
41                                      uint32_t pointsLeft);
42 
43     /// Since we divide by tol if we're computing exact worst-case bounds,
44     /// very small tolerances will be increased to gMinCurveTol.
45     uint32_t cubicPointCount(const GrPoint points[], SkScalar tol);
46 
47     uint32_t generateCubicPoints(const GrPoint& p0,
48                                  const GrPoint& p1,
49                                  const GrPoint& p2,
50                                  const GrPoint& p3,
51                                  SkScalar tolSqd,
52                                  GrPoint** points,
53                                  uint32_t pointsLeft);
54 
55     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
56     // u^2-v = 0 specifies the quad. The matrix is determined by the control
57     // points of the quadratic.
58     class QuadUVMatrix {
59     public:
QuadUVMatrix()60         QuadUVMatrix() {};
61         // Initialize the matrix from the control pts
QuadUVMatrix(const GrPoint controlPts[3])62         QuadUVMatrix(const GrPoint controlPts[3]) { this->set(controlPts); }
63         void set(const GrPoint controlPts[3]);
64 
65         /**
66          * Applies the matrix to vertex positions to compute UV coords. This
67          * has been templated so that the compiler can easliy unroll the loop
68          * and reorder to avoid stalling for loads. The assumption is that a
69          * path renderer will have a small fixed number of vertices that it
70          * uploads for each quad.
71          *
72          * N is the number of vertices.
73          * STRIDE is the size of each vertex.
74          * UV_OFFSET is the offset of the UV values within each vertex.
75          * vertices is a pointer to the first vertex.
76          */
77         template <int N, size_t STRIDE, size_t UV_OFFSET>
apply(const void * vertices)78         void apply(const void* vertices) {
79             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
80             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
81             float sx = fM[0];
82             float kx = fM[1];
83             float tx = fM[2];
84             float ky = fM[3];
85             float sy = fM[4];
86             float ty = fM[5];
87             for (int i = 0; i < N; ++i) {
88                 const GrPoint* xy = reinterpret_cast<const GrPoint*>(xyPtr);
89                 GrPoint* uv = reinterpret_cast<GrPoint*>(uvPtr);
90                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
91                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
92                 xyPtr += STRIDE;
93                 uvPtr += STRIDE;
94             }
95         }
96     private:
97         float fM[6];
98     };
99 
100     // Input is 3 control points and a weight for a bezier conic. Calculates the
101     // three linear functionals (K,L,M) that represent the implicit equation of the
102     // conic, K^2 - LM.
103     //
104     // Output:
105     //  K = (klm[0], klm[1], klm[2])
106     //  L = (klm[3], klm[4], klm[5])
107     //  M = (klm[6], klm[7], klm[8])
108     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]);
109 
110     // Converts a cubic into a sequence of quads. If working in device space
111     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
112     // result is sets of 3 points in quads (TODO: share endpoints in returned
113     // array)
114     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
115     // ensure that the new control point lies between the lines ab and cd. The
116     // convex path renderer requires this. It starts with a path where all the
117     // control points taken together form a convex polygon. It relies on this
118     // property and the quadratic approximation of cubics step cannot alter it.
119     // Setting constrainWithinTangents to true enforces this property. When this
120     // is true the cubic must be simple and dir must specify the orientation of
121     // the cubic. Otherwise, dir is ignored.
122     void convertCubicToQuads(const GrPoint p[4],
123                              SkScalar tolScale,
124                              bool constrainWithinTangents,
125                              SkPath::Direction dir,
126                              SkTArray<SkPoint, true>* quads);
127 
128     // Chops the cubic bezier passed in by src, at the double point (intersection point)
129     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
130     // the double point: ls and ms. We chop the cubic at these values if they are between 0 and 1.
131     // Return value:
132     // Value of 3: ls and ms are both between (0,1), and dst will contain the three cubics,
133     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not NULL
134     // Value of 2: Only one of ls and ms are between (0,1), and dst will contain the two cubics,
135     //             dst[0..3] and dst[3..6] if dst is not NULL
136     // Value of 1: Neither ls or ms are between (0,1), and dst will contain the one original cubic,
137     //             dst[0..3] if dst is not NULL
138     //
139     // Optional KLM Calculation:
140     // The function can also return the KLM linear functionals for the chopped cubic implicit form
141     // of K^3 - LM.
142     // It will calculate a single set of KLM values that can be shared by all sub cubics, except
143     // for the subsection that is "the loop" the K and L values need to be negated.
144     // Output:
145     // klm:     Holds the values for the linear functionals as:
146     //          K = (klm[0], klm[1], klm[2])
147     //          L = (klm[3], klm[4], klm[5])
148     //          M = (klm[6], klm[7], klm[8])
149     // klm_rev: These values are flags for the corresponding sub cubic saying whether or not
150     //          the K and L values need to be flipped. A value of -1.f means flip K and L and
151     //          a value of 1.f means do nothing.
152     //          *****DO NOT FLIP M, JUST K AND L*****
153     //
154     // Notice that the klm lines are calculated in the same space as the input control points.
155     // If you transform the points the lines will also need to be transformed. This can be done
156     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
157     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = NULL,
158                                     SkScalar klm[9] = NULL, SkScalar klm_rev[3] = NULL);
159 
160     // Input is p which holds the 4 control points of a non-rational cubic Bezier curve.
161     // Output is the coefficients of the three linear functionals K, L, & M which
162     // represent the implicit form of the cubic as f(x,y,w) = K^3 - LM. The w term
163     // will always be 1. The output is stored in the array klm, where the values are:
164     // K = (klm[0], klm[1], klm[2])
165     // L = (klm[3], klm[4], klm[5])
166     // M = (klm[6], klm[7], klm[8])
167     //
168     // Notice that the klm lines are calculated in the same space as the input control points.
169     // If you transform the points the lines will also need to be transformed. This can be done
170     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
171     void getCubicKLM(const SkPoint p[4], SkScalar klm[9]);
172 };
173 #endif
174