1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef GrRedBlackTree_DEFINED
9 #define GrRedBlackTree_DEFINED
10
11 #include "SkTypes.h"
12
13 template <typename T>
14 class GrLess {
15 public:
operator()16 bool operator()(const T& a, const T& b) const { return a < b; }
17 };
18
19 template <typename T>
20 class GrLess<T*> {
21 public:
operator()22 bool operator()(const T* a, const T* b) const { return *a < *b; }
23 };
24
25 /**
26 * In debug build this will cause full traversals of the tree when the validate
27 * is called on insert and remove. Useful for debugging but very slow.
28 */
29 #define DEEP_VALIDATE 0
30
31 /**
32 * A sorted tree that uses the red-black tree algorithm. Allows duplicate
33 * entries. Data is of type T and is compared using functor C. A single C object
34 * will be created and used for all comparisons.
35 */
36 template <typename T, typename C = GrLess<T> >
37 class GrRedBlackTree : public SkNoncopyable {
38 public:
39 /**
40 * Creates an empty tree.
41 */
42 GrRedBlackTree();
43 virtual ~GrRedBlackTree();
44
45 /**
46 * Class used to iterater through the tree. The valid range of the tree
47 * is given by [begin(), end()). It is legal to dereference begin() but not
48 * end(). The iterator has preincrement and predecrement operators, it is
49 * legal to decerement end() if the tree is not empty to get the last
50 * element. However, a last() helper is provided.
51 */
52 class Iter;
53
54 /**
55 * Add an element to the tree. Duplicates are allowed.
56 * @param t the item to add.
57 * @return an iterator to the item.
58 */
59 Iter insert(const T& t);
60
61 /**
62 * Removes all items in the tree.
63 */
64 void reset();
65
66 /**
67 * @return true if there are no items in the tree, false otherwise.
68 */
empty()69 bool empty() const {return 0 == fCount;}
70
71 /**
72 * @return the number of items in the tree.
73 */
count()74 int count() const {return fCount;}
75
76 /**
77 * @return an iterator to the first item in sorted order, or end() if empty
78 */
79 Iter begin();
80 /**
81 * Gets the last valid iterator. This is always valid, even on an empty.
82 * However, it can never be dereferenced. Useful as a loop terminator.
83 * @return an iterator that is just beyond the last item in sorted order.
84 */
85 Iter end();
86 /**
87 * @return an iterator that to the last item in sorted order, or end() if
88 * empty.
89 */
90 Iter last();
91
92 /**
93 * Finds an occurrence of an item.
94 * @param t the item to find.
95 * @return an iterator to a tree element equal to t or end() if none exists.
96 */
97 Iter find(const T& t);
98 /**
99 * Finds the first of an item in iterator order.
100 * @param t the item to find.
101 * @return an iterator to the first element equal to t or end() if
102 * none exists.
103 */
104 Iter findFirst(const T& t);
105 /**
106 * Finds the last of an item in iterator order.
107 * @param t the item to find.
108 * @return an iterator to the last element equal to t or end() if
109 * none exists.
110 */
111 Iter findLast(const T& t);
112 /**
113 * Gets the number of items in the tree equal to t.
114 * @param t the item to count.
115 * @return number of items equal to t in the tree
116 */
117 int countOf(const T& t) const;
118
119 /**
120 * Removes the item indicated by an iterator. The iterator will not be valid
121 * afterwards.
122 *
123 * @param iter iterator of item to remove. Must be valid (not end()).
124 */
remove(const Iter & iter)125 void remove(const Iter& iter) { deleteAtNode(iter.fN); }
126
127 static void UnitTest();
128
129 private:
130 enum Color {
131 kRed_Color,
132 kBlack_Color
133 };
134
135 enum Child {
136 kLeft_Child = 0,
137 kRight_Child = 1
138 };
139
140 struct Node {
141 T fItem;
142 Color fColor;
143
144 Node* fParent;
145 Node* fChildren[2];
146 };
147
148 void rotateRight(Node* n);
149 void rotateLeft(Node* n);
150
151 static Node* SuccessorNode(Node* x);
152 static Node* PredecessorNode(Node* x);
153
154 void deleteAtNode(Node* x);
155 static void RecursiveDelete(Node* x);
156
157 int onCountOf(const Node* n, const T& t) const;
158
159 #ifdef SK_DEBUG
160 void validate() const;
161 int checkNode(Node* n, int* blackHeight) const;
162 // checks relationship between a node and its children. allowRedRed means
163 // node may be in an intermediate state where a red parent has a red child.
164 bool validateChildRelations(const Node* n, bool allowRedRed) const;
165 // place to stick break point if validateChildRelations is failing.
validateChildRelationsFailed()166 bool validateChildRelationsFailed() const { return false; }
167 #else
validate()168 void validate() const {}
169 #endif
170
171 int fCount;
172 Node* fRoot;
173 Node* fFirst;
174 Node* fLast;
175
176 const C fComp;
177 };
178
179 template <typename T, typename C>
180 class GrRedBlackTree<T,C>::Iter {
181 public:
Iter()182 Iter() {};
Iter(const Iter & i)183 Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
184 Iter& operator =(const Iter& i) {
185 fN = i.fN;
186 fTree = i.fTree;
187 return *this;
188 }
189 // altering the sort value of the item using this method will cause
190 // errors.
191 T& operator *() const { return fN->fItem; }
192 bool operator ==(const Iter& i) const {
193 return fN == i.fN && fTree == i.fTree;
194 }
195 bool operator !=(const Iter& i) const { return !(*this == i); }
196 Iter& operator ++() {
197 SkASSERT(*this != fTree->end());
198 fN = SuccessorNode(fN);
199 return *this;
200 }
201 Iter& operator --() {
202 SkASSERT(*this != fTree->begin());
203 if (NULL != fN) {
204 fN = PredecessorNode(fN);
205 } else {
206 *this = fTree->last();
207 }
208 return *this;
209 }
210
211 private:
212 friend class GrRedBlackTree;
Iter(Node * n,GrRedBlackTree * tree)213 explicit Iter(Node* n, GrRedBlackTree* tree) {
214 fN = n;
215 fTree = tree;
216 }
217 Node* fN;
218 GrRedBlackTree* fTree;
219 };
220
221 template <typename T, typename C>
GrRedBlackTree()222 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
223 fRoot = NULL;
224 fFirst = NULL;
225 fLast = NULL;
226 fCount = 0;
227 validate();
228 }
229
230 template <typename T, typename C>
~GrRedBlackTree()231 GrRedBlackTree<T,C>::~GrRedBlackTree() {
232 RecursiveDelete(fRoot);
233 }
234
235 template <typename T, typename C>
begin()236 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
237 return Iter(fFirst, this);
238 }
239
240 template <typename T, typename C>
end()241 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
242 return Iter(NULL, this);
243 }
244
245 template <typename T, typename C>
last()246 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
247 return Iter(fLast, this);
248 }
249
250 template <typename T, typename C>
find(const T & t)251 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
252 Node* n = fRoot;
253 while (NULL != n) {
254 if (fComp(t, n->fItem)) {
255 n = n->fChildren[kLeft_Child];
256 } else {
257 if (!fComp(n->fItem, t)) {
258 return Iter(n, this);
259 }
260 n = n->fChildren[kRight_Child];
261 }
262 }
263 return end();
264 }
265
266 template <typename T, typename C>
findFirst(const T & t)267 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
268 Node* n = fRoot;
269 Node* leftMost = NULL;
270 while (NULL != n) {
271 if (fComp(t, n->fItem)) {
272 n = n->fChildren[kLeft_Child];
273 } else {
274 if (!fComp(n->fItem, t)) {
275 // found one. check if another in left subtree.
276 leftMost = n;
277 n = n->fChildren[kLeft_Child];
278 } else {
279 n = n->fChildren[kRight_Child];
280 }
281 }
282 }
283 return Iter(leftMost, this);
284 }
285
286 template <typename T, typename C>
findLast(const T & t)287 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
288 Node* n = fRoot;
289 Node* rightMost = NULL;
290 while (NULL != n) {
291 if (fComp(t, n->fItem)) {
292 n = n->fChildren[kLeft_Child];
293 } else {
294 if (!fComp(n->fItem, t)) {
295 // found one. check if another in right subtree.
296 rightMost = n;
297 }
298 n = n->fChildren[kRight_Child];
299 }
300 }
301 return Iter(rightMost, this);
302 }
303
304 template <typename T, typename C>
countOf(const T & t)305 int GrRedBlackTree<T,C>::countOf(const T& t) const {
306 return onCountOf(fRoot, t);
307 }
308
309 template <typename T, typename C>
onCountOf(const Node * n,const T & t)310 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
311 // this is count*log(n) :(
312 while (NULL != n) {
313 if (fComp(t, n->fItem)) {
314 n = n->fChildren[kLeft_Child];
315 } else {
316 if (!fComp(n->fItem, t)) {
317 int count = 1;
318 count += onCountOf(n->fChildren[kLeft_Child], t);
319 count += onCountOf(n->fChildren[kRight_Child], t);
320 return count;
321 }
322 n = n->fChildren[kRight_Child];
323 }
324 }
325 return 0;
326
327 }
328
329 template <typename T, typename C>
reset()330 void GrRedBlackTree<T,C>::reset() {
331 RecursiveDelete(fRoot);
332 fRoot = NULL;
333 fFirst = NULL;
334 fLast = NULL;
335 fCount = 0;
336 }
337
338 template <typename T, typename C>
insert(const T & t)339 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
340 validate();
341
342 ++fCount;
343
344 Node* x = SkNEW(Node);
345 x->fChildren[kLeft_Child] = NULL;
346 x->fChildren[kRight_Child] = NULL;
347 x->fItem = t;
348
349 Node* returnNode = x;
350
351 Node* gp = NULL;
352 Node* p = NULL;
353 Node* n = fRoot;
354 Child pc = kLeft_Child; // suppress uninit warning
355 Child gpc = kLeft_Child;
356
357 bool first = true;
358 bool last = true;
359 while (NULL != n) {
360 gpc = pc;
361 pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
362 first = first && kLeft_Child == pc;
363 last = last && kRight_Child == pc;
364 gp = p;
365 p = n;
366 n = p->fChildren[pc];
367 }
368 if (last) {
369 fLast = x;
370 }
371 if (first) {
372 fFirst = x;
373 }
374
375 if (NULL == p) {
376 fRoot = x;
377 x->fColor = kBlack_Color;
378 x->fParent = NULL;
379 SkASSERT(1 == fCount);
380 return Iter(returnNode, this);
381 }
382 p->fChildren[pc] = x;
383 x->fColor = kRed_Color;
384 x->fParent = p;
385
386 do {
387 // assumptions at loop start.
388 SkASSERT(NULL != x);
389 SkASSERT(kRed_Color == x->fColor);
390 // can't have a grandparent but no parent.
391 SkASSERT(!(NULL != gp && NULL == p));
392 // make sure pc and gpc are correct
393 SkASSERT(NULL == p || p->fChildren[pc] == x);
394 SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
395
396 // if x's parent is black then we didn't violate any of the
397 // red/black properties when we added x as red.
398 if (kBlack_Color == p->fColor) {
399 return Iter(returnNode, this);
400 }
401 // gp must be valid because if p was the root then it is black
402 SkASSERT(NULL != gp);
403 // gp must be black since it's child, p, is red.
404 SkASSERT(kBlack_Color == gp->fColor);
405
406
407 // x and its parent are red, violating red-black property.
408 Node* u = gp->fChildren[1-gpc];
409 // if x's uncle (p's sibling) is also red then we can flip
410 // p and u to black and make gp red. But then we have to recurse
411 // up to gp since it's parent may also be red.
412 if (NULL != u && kRed_Color == u->fColor) {
413 p->fColor = kBlack_Color;
414 u->fColor = kBlack_Color;
415 gp->fColor = kRed_Color;
416 x = gp;
417 p = x->fParent;
418 if (NULL == p) {
419 // x (prev gp) is the root, color it black and be done.
420 SkASSERT(fRoot == x);
421 x->fColor = kBlack_Color;
422 validate();
423 return Iter(returnNode, this);
424 }
425 gp = p->fParent;
426 pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
427 kRight_Child;
428 if (NULL != gp) {
429 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
430 kRight_Child;
431 }
432 continue;
433 } break;
434 } while (true);
435 // Here p is red but u is black and we still have to resolve the fact
436 // that x and p are both red.
437 SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
438 SkASSERT(kRed_Color == x->fColor);
439 SkASSERT(kRed_Color == p->fColor);
440 SkASSERT(kBlack_Color == gp->fColor);
441
442 // make x be on the same side of p as p is of gp. If it isn't already
443 // the case then rotate x up to p and swap their labels.
444 if (pc != gpc) {
445 if (kRight_Child == pc) {
446 rotateLeft(p);
447 Node* temp = p;
448 p = x;
449 x = temp;
450 pc = kLeft_Child;
451 } else {
452 rotateRight(p);
453 Node* temp = p;
454 p = x;
455 x = temp;
456 pc = kRight_Child;
457 }
458 }
459 // we now rotate gp down, pulling up p to be it's new parent.
460 // gp's child, u, that is not affected we know to be black. gp's new
461 // child is p's previous child (x's pre-rotation sibling) which must be
462 // black since p is red.
463 SkASSERT(NULL == p->fChildren[1-pc] ||
464 kBlack_Color == p->fChildren[1-pc]->fColor);
465 // Since gp's two children are black it can become red if p is made
466 // black. This leaves the black-height of both of p's new subtrees
467 // preserved and removes the red/red parent child relationship.
468 p->fColor = kBlack_Color;
469 gp->fColor = kRed_Color;
470 if (kLeft_Child == pc) {
471 rotateRight(gp);
472 } else {
473 rotateLeft(gp);
474 }
475 validate();
476 return Iter(returnNode, this);
477 }
478
479
480 template <typename T, typename C>
rotateRight(Node * n)481 void GrRedBlackTree<T,C>::rotateRight(Node* n) {
482 /* d? d?
483 * / /
484 * n s
485 * / \ ---> / \
486 * s a? c? n
487 * / \ / \
488 * c? b? b? a?
489 */
490 Node* d = n->fParent;
491 Node* s = n->fChildren[kLeft_Child];
492 SkASSERT(NULL != s);
493 Node* b = s->fChildren[kRight_Child];
494
495 if (NULL != d) {
496 Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
497 kRight_Child;
498 d->fChildren[c] = s;
499 } else {
500 SkASSERT(fRoot == n);
501 fRoot = s;
502 }
503 s->fParent = d;
504 s->fChildren[kRight_Child] = n;
505 n->fParent = s;
506 n->fChildren[kLeft_Child] = b;
507 if (NULL != b) {
508 b->fParent = n;
509 }
510
511 GR_DEBUGASSERT(validateChildRelations(d, true));
512 GR_DEBUGASSERT(validateChildRelations(s, true));
513 GR_DEBUGASSERT(validateChildRelations(n, false));
514 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
515 GR_DEBUGASSERT(validateChildRelations(b, true));
516 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
517 }
518
519 template <typename T, typename C>
rotateLeft(Node * n)520 void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
521
522 Node* d = n->fParent;
523 Node* s = n->fChildren[kRight_Child];
524 SkASSERT(NULL != s);
525 Node* b = s->fChildren[kLeft_Child];
526
527 if (NULL != d) {
528 Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
529 kLeft_Child;
530 d->fChildren[c] = s;
531 } else {
532 SkASSERT(fRoot == n);
533 fRoot = s;
534 }
535 s->fParent = d;
536 s->fChildren[kLeft_Child] = n;
537 n->fParent = s;
538 n->fChildren[kRight_Child] = b;
539 if (NULL != b) {
540 b->fParent = n;
541 }
542
543 GR_DEBUGASSERT(validateChildRelations(d, true));
544 GR_DEBUGASSERT(validateChildRelations(s, true));
545 GR_DEBUGASSERT(validateChildRelations(n, true));
546 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
547 GR_DEBUGASSERT(validateChildRelations(b, true));
548 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
549 }
550
551 template <typename T, typename C>
SuccessorNode(Node * x)552 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
553 SkASSERT(NULL != x);
554 if (NULL != x->fChildren[kRight_Child]) {
555 x = x->fChildren[kRight_Child];
556 while (NULL != x->fChildren[kLeft_Child]) {
557 x = x->fChildren[kLeft_Child];
558 }
559 return x;
560 }
561 while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) {
562 x = x->fParent;
563 }
564 return x->fParent;
565 }
566
567 template <typename T, typename C>
PredecessorNode(Node * x)568 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
569 SkASSERT(NULL != x);
570 if (NULL != x->fChildren[kLeft_Child]) {
571 x = x->fChildren[kLeft_Child];
572 while (NULL != x->fChildren[kRight_Child]) {
573 x = x->fChildren[kRight_Child];
574 }
575 return x;
576 }
577 while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
578 x = x->fParent;
579 }
580 return x->fParent;
581 }
582
583 template <typename T, typename C>
deleteAtNode(Node * x)584 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
585 SkASSERT(NULL != x);
586 validate();
587 --fCount;
588
589 bool hasLeft = NULL != x->fChildren[kLeft_Child];
590 bool hasRight = NULL != x->fChildren[kRight_Child];
591 Child c = hasLeft ? kLeft_Child : kRight_Child;
592
593 if (hasLeft && hasRight) {
594 // first and last can't have two children.
595 SkASSERT(fFirst != x);
596 SkASSERT(fLast != x);
597 // if x is an interior node then we find it's successor
598 // and swap them.
599 Node* s = x->fChildren[kRight_Child];
600 while (NULL != s->fChildren[kLeft_Child]) {
601 s = s->fChildren[kLeft_Child];
602 }
603 SkASSERT(NULL != s);
604 // this might be expensive relative to swapping node ptrs around.
605 // depends on T.
606 x->fItem = s->fItem;
607 x = s;
608 c = kRight_Child;
609 } else if (NULL == x->fParent) {
610 // if x was the root we just replace it with its child and make
611 // the new root (if the tree is not empty) black.
612 SkASSERT(fRoot == x);
613 fRoot = x->fChildren[c];
614 if (NULL != fRoot) {
615 fRoot->fParent = NULL;
616 fRoot->fColor = kBlack_Color;
617 if (x == fLast) {
618 SkASSERT(c == kLeft_Child);
619 fLast = fRoot;
620 } else if (x == fFirst) {
621 SkASSERT(c == kRight_Child);
622 fFirst = fRoot;
623 }
624 } else {
625 SkASSERT(fFirst == fLast && x == fFirst);
626 fFirst = NULL;
627 fLast = NULL;
628 SkASSERT(0 == fCount);
629 }
630 delete x;
631 validate();
632 return;
633 }
634
635 Child pc;
636 Node* p = x->fParent;
637 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
638
639 if (NULL == x->fChildren[c]) {
640 if (fLast == x) {
641 fLast = p;
642 SkASSERT(p == PredecessorNode(x));
643 } else if (fFirst == x) {
644 fFirst = p;
645 SkASSERT(p == SuccessorNode(x));
646 }
647 // x has two implicit black children.
648 Color xcolor = x->fColor;
649 p->fChildren[pc] = NULL;
650 delete x;
651 x = NULL;
652 // when x is red it can be with an implicit black leaf without
653 // violating any of the red-black tree properties.
654 if (kRed_Color == xcolor) {
655 validate();
656 return;
657 }
658 // s is p's other child (x's sibling)
659 Node* s = p->fChildren[1-pc];
660
661 //s cannot be an implicit black node because the original
662 // black-height at x was >= 2 and s's black-height must equal the
663 // initial black height of x.
664 SkASSERT(NULL != s);
665 SkASSERT(p == s->fParent);
666
667 // assigned in loop
668 Node* sl;
669 Node* sr;
670 bool slRed;
671 bool srRed;
672
673 do {
674 // When we start this loop x may already be deleted it is/was
675 // p's child on its pc side. x's children are/were black. The
676 // first time through the loop they are implict children.
677 // On later passes we will be walking up the tree and they will
678 // be real nodes.
679 // The x side of p has a black-height that is one less than the
680 // s side. It must be rebalanced.
681 SkASSERT(NULL != s);
682 SkASSERT(p == s->fParent);
683 SkASSERT(NULL == x || x->fParent == p);
684
685 //sl and sr are s's children, which may be implicit.
686 sl = s->fChildren[kLeft_Child];
687 sr = s->fChildren[kRight_Child];
688
689 // if the s is red we will rotate s and p, swap their colors so
690 // that x's new sibling is black
691 if (kRed_Color == s->fColor) {
692 // if s is red then it's parent must be black.
693 SkASSERT(kBlack_Color == p->fColor);
694 // s's children must also be black since s is red. They can't
695 // be implicit since s is red and it's black-height is >= 2.
696 SkASSERT(NULL != sl && kBlack_Color == sl->fColor);
697 SkASSERT(NULL != sr && kBlack_Color == sr->fColor);
698 p->fColor = kRed_Color;
699 s->fColor = kBlack_Color;
700 if (kLeft_Child == pc) {
701 rotateLeft(p);
702 s = sl;
703 } else {
704 rotateRight(p);
705 s = sr;
706 }
707 sl = s->fChildren[kLeft_Child];
708 sr = s->fChildren[kRight_Child];
709 }
710 // x and s are now both black.
711 SkASSERT(kBlack_Color == s->fColor);
712 SkASSERT(NULL == x || kBlack_Color == x->fColor);
713 SkASSERT(p == s->fParent);
714 SkASSERT(NULL == x || p == x->fParent);
715
716 // when x is deleted its subtree will have reduced black-height.
717 slRed = (NULL != sl && kRed_Color == sl->fColor);
718 srRed = (NULL != sr && kRed_Color == sr->fColor);
719 if (!slRed && !srRed) {
720 // if s can be made red that will balance out x's removal
721 // to make both subtrees of p have the same black-height.
722 if (kBlack_Color == p->fColor) {
723 s->fColor = kRed_Color;
724 // now subtree at p has black-height of one less than
725 // p's parent's other child's subtree. We move x up to
726 // p and go through the loop again. At the top of loop
727 // we assumed x and x's children are black, which holds
728 // by above ifs.
729 // if p is the root there is no other subtree to balance
730 // against.
731 x = p;
732 p = x->fParent;
733 if (NULL == p) {
734 SkASSERT(fRoot == x);
735 validate();
736 return;
737 } else {
738 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
739 kRight_Child;
740
741 }
742 s = p->fChildren[1-pc];
743 SkASSERT(NULL != s);
744 SkASSERT(p == s->fParent);
745 continue;
746 } else if (kRed_Color == p->fColor) {
747 // we can make p black and s red. This balance out p's
748 // two subtrees and keep the same black-height as it was
749 // before the delete.
750 s->fColor = kRed_Color;
751 p->fColor = kBlack_Color;
752 validate();
753 return;
754 }
755 }
756 break;
757 } while (true);
758 // if we made it here one or both of sl and sr is red.
759 // s and x are black. We make sure that a red child is on
760 // the same side of s as s is of p.
761 SkASSERT(slRed || srRed);
762 if (kLeft_Child == pc && !srRed) {
763 s->fColor = kRed_Color;
764 sl->fColor = kBlack_Color;
765 rotateRight(s);
766 sr = s;
767 s = sl;
768 //sl = s->fChildren[kLeft_Child]; don't need this
769 } else if (kRight_Child == pc && !slRed) {
770 s->fColor = kRed_Color;
771 sr->fColor = kBlack_Color;
772 rotateLeft(s);
773 sl = s;
774 s = sr;
775 //sr = s->fChildren[kRight_Child]; don't need this
776 }
777 // now p is either red or black, x and s are red and s's 1-pc
778 // child is red.
779 // We rotate p towards x, pulling s up to replace p. We make
780 // p be black and s takes p's old color.
781 // Whether p was red or black, we've increased its pc subtree
782 // rooted at x by 1 (balancing the imbalance at the start) and
783 // we've also its subtree rooted at s's black-height by 1. This
784 // can be balanced by making s's red child be black.
785 s->fColor = p->fColor;
786 p->fColor = kBlack_Color;
787 if (kLeft_Child == pc) {
788 SkASSERT(NULL != sr && kRed_Color == sr->fColor);
789 sr->fColor = kBlack_Color;
790 rotateLeft(p);
791 } else {
792 SkASSERT(NULL != sl && kRed_Color == sl->fColor);
793 sl->fColor = kBlack_Color;
794 rotateRight(p);
795 }
796 }
797 else {
798 // x has exactly one implicit black child. x cannot be red.
799 // Proof by contradiction: Assume X is red. Let c0 be x's implicit
800 // child and c1 be its non-implicit child. c1 must be black because
801 // red nodes always have two black children. Then the two subtrees
802 // of x rooted at c0 and c1 will have different black-heights.
803 SkASSERT(kBlack_Color == x->fColor);
804 // So we know x is black and has one implicit black child, c0. c1
805 // must be red, otherwise the subtree at c1 will have a different
806 // black-height than the subtree rooted at c0.
807 SkASSERT(kRed_Color == x->fChildren[c]->fColor);
808 // replace x with c1, making c1 black, preserves all red-black tree
809 // props.
810 Node* c1 = x->fChildren[c];
811 if (x == fFirst) {
812 SkASSERT(c == kRight_Child);
813 fFirst = c1;
814 while (NULL != fFirst->fChildren[kLeft_Child]) {
815 fFirst = fFirst->fChildren[kLeft_Child];
816 }
817 SkASSERT(fFirst == SuccessorNode(x));
818 } else if (x == fLast) {
819 SkASSERT(c == kLeft_Child);
820 fLast = c1;
821 while (NULL != fLast->fChildren[kRight_Child]) {
822 fLast = fLast->fChildren[kRight_Child];
823 }
824 SkASSERT(fLast == PredecessorNode(x));
825 }
826 c1->fParent = p;
827 p->fChildren[pc] = c1;
828 c1->fColor = kBlack_Color;
829 delete x;
830 validate();
831 }
832 validate();
833 }
834
835 template <typename T, typename C>
RecursiveDelete(Node * x)836 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
837 if (NULL != x) {
838 RecursiveDelete(x->fChildren[kLeft_Child]);
839 RecursiveDelete(x->fChildren[kRight_Child]);
840 delete x;
841 }
842 }
843
844 #ifdef SK_DEBUG
845 template <typename T, typename C>
validate()846 void GrRedBlackTree<T,C>::validate() const {
847 if (fCount) {
848 SkASSERT(NULL == fRoot->fParent);
849 SkASSERT(NULL != fFirst);
850 SkASSERT(NULL != fLast);
851
852 SkASSERT(kBlack_Color == fRoot->fColor);
853 if (1 == fCount) {
854 SkASSERT(fFirst == fRoot);
855 SkASSERT(fLast == fRoot);
856 SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
857 SkASSERT(0 == fRoot->fChildren[kRight_Child]);
858 }
859 } else {
860 SkASSERT(NULL == fRoot);
861 SkASSERT(NULL == fFirst);
862 SkASSERT(NULL == fLast);
863 }
864 #if DEEP_VALIDATE
865 int bh;
866 int count = checkNode(fRoot, &bh);
867 SkASSERT(count == fCount);
868 #endif
869 }
870
871 template <typename T, typename C>
checkNode(Node * n,int * bh)872 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
873 if (NULL != n) {
874 SkASSERT(validateChildRelations(n, false));
875 if (kBlack_Color == n->fColor) {
876 *bh += 1;
877 }
878 SkASSERT(!fComp(n->fItem, fFirst->fItem));
879 SkASSERT(!fComp(fLast->fItem, n->fItem));
880 int leftBh = *bh;
881 int rightBh = *bh;
882 int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
883 int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
884 SkASSERT(leftBh == rightBh);
885 *bh = leftBh;
886 return 1 + cl + cr;
887 }
888 return 0;
889 }
890
891 template <typename T, typename C>
validateChildRelations(const Node * n,bool allowRedRed)892 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
893 bool allowRedRed) const {
894 if (NULL != n) {
895 if (NULL != n->fChildren[kLeft_Child] ||
896 NULL != n->fChildren[kRight_Child]) {
897 if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
898 return validateChildRelationsFailed();
899 }
900 if (n->fChildren[kLeft_Child] == n->fParent &&
901 NULL != n->fParent) {
902 return validateChildRelationsFailed();
903 }
904 if (n->fChildren[kRight_Child] == n->fParent &&
905 NULL != n->fParent) {
906 return validateChildRelationsFailed();
907 }
908 if (NULL != n->fChildren[kLeft_Child]) {
909 if (!allowRedRed &&
910 kRed_Color == n->fChildren[kLeft_Child]->fColor &&
911 kRed_Color == n->fColor) {
912 return validateChildRelationsFailed();
913 }
914 if (n->fChildren[kLeft_Child]->fParent != n) {
915 return validateChildRelationsFailed();
916 }
917 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
918 (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
919 !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
920 return validateChildRelationsFailed();
921 }
922 }
923 if (NULL != n->fChildren[kRight_Child]) {
924 if (!allowRedRed &&
925 kRed_Color == n->fChildren[kRight_Child]->fColor &&
926 kRed_Color == n->fColor) {
927 return validateChildRelationsFailed();
928 }
929 if (n->fChildren[kRight_Child]->fParent != n) {
930 return validateChildRelationsFailed();
931 }
932 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
933 (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
934 !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
935 return validateChildRelationsFailed();
936 }
937 }
938 }
939 }
940 return true;
941 }
942 #endif
943
944 #include "SkRandom.h"
945
946 template <typename T, typename C>
UnitTest()947 void GrRedBlackTree<T,C>::UnitTest() {
948 GrRedBlackTree<int> tree;
949
950 SkRandom r;
951
952 int count[100] = {0};
953 // add 10K ints
954 for (int i = 0; i < 10000; ++i) {
955 int x = r.nextU()%100;
956 SkDEBUGCODE(Iter xi = ) tree.insert(x);
957 SkASSERT(*xi == x);
958 ++count[x];
959 }
960
961 tree.insert(0);
962 ++count[0];
963 tree.insert(99);
964 ++count[99];
965 SkASSERT(*tree.begin() == 0);
966 SkASSERT(*tree.last() == 99);
967 SkASSERT(--(++tree.begin()) == tree.begin());
968 SkASSERT(--tree.end() == tree.last());
969 SkASSERT(tree.count() == 10002);
970
971 int c = 0;
972 // check that we iterate through the correct number of
973 // elements and they are properly sorted.
974 for (Iter a = tree.begin(); tree.end() != a; ++a) {
975 Iter b = a;
976 ++b;
977 ++c;
978 SkASSERT(b == tree.end() || *a <= *b);
979 }
980 SkASSERT(c == tree.count());
981
982 // check that the tree reports the correct number of each int
983 // and that we can iterate through them correctly both forward
984 // and backward.
985 for (int i = 0; i < 100; ++i) {
986 int c;
987 c = tree.countOf(i);
988 SkASSERT(c == count[i]);
989 c = 0;
990 Iter iter = tree.findFirst(i);
991 while (iter != tree.end() && *iter == i) {
992 ++c;
993 ++iter;
994 }
995 SkASSERT(count[i] == c);
996 c = 0;
997 iter = tree.findLast(i);
998 if (iter != tree.end()) {
999 do {
1000 if (*iter == i) {
1001 ++c;
1002 } else {
1003 break;
1004 }
1005 if (iter != tree.begin()) {
1006 --iter;
1007 } else {
1008 break;
1009 }
1010 } while (true);
1011 }
1012 SkASSERT(c == count[i]);
1013 }
1014 // remove all the ints between 25 and 74. Randomly chose to remove
1015 // the first, last, or any entry for each.
1016 for (int i = 25; i < 75; ++i) {
1017 while (0 != tree.countOf(i)) {
1018 --count[i];
1019 int x = r.nextU() % 3;
1020 Iter iter;
1021 switch (x) {
1022 case 0:
1023 iter = tree.findFirst(i);
1024 break;
1025 case 1:
1026 iter = tree.findLast(i);
1027 break;
1028 case 2:
1029 default:
1030 iter = tree.find(i);
1031 break;
1032 }
1033 tree.remove(iter);
1034 }
1035 SkASSERT(0 == count[i]);
1036 SkASSERT(tree.findFirst(i) == tree.end());
1037 SkASSERT(tree.findLast(i) == tree.end());
1038 SkASSERT(tree.find(i) == tree.end());
1039 }
1040 // remove all of the 0 entries. (tests removing begin())
1041 SkASSERT(*tree.begin() == 0);
1042 SkASSERT(*(--tree.end()) == 99);
1043 while (0 != tree.countOf(0)) {
1044 --count[0];
1045 tree.remove(tree.find(0));
1046 }
1047 SkASSERT(0 == count[0]);
1048 SkASSERT(tree.findFirst(0) == tree.end());
1049 SkASSERT(tree.findLast(0) == tree.end());
1050 SkASSERT(tree.find(0) == tree.end());
1051 SkASSERT(0 < *tree.begin());
1052
1053 // remove all the 99 entries (tests removing last()).
1054 while (0 != tree.countOf(99)) {
1055 --count[99];
1056 tree.remove(tree.find(99));
1057 }
1058 SkASSERT(0 == count[99]);
1059 SkASSERT(tree.findFirst(99) == tree.end());
1060 SkASSERT(tree.findLast(99) == tree.end());
1061 SkASSERT(tree.find(99) == tree.end());
1062 SkASSERT(99 > *(--tree.end()));
1063 SkASSERT(tree.last() == --tree.end());
1064
1065 // Make sure iteration still goes through correct number of entries
1066 // and is still sorted correctly.
1067 c = 0;
1068 for (Iter a = tree.begin(); tree.end() != a; ++a) {
1069 Iter b = a;
1070 ++b;
1071 ++c;
1072 SkASSERT(b == tree.end() || *a <= *b);
1073 }
1074 SkASSERT(c == tree.count());
1075
1076 // repeat check that correct number of each entry is in the tree
1077 // and iterates correctly both forward and backward.
1078 for (int i = 0; i < 100; ++i) {
1079 SkASSERT(tree.countOf(i) == count[i]);
1080 int c = 0;
1081 Iter iter = tree.findFirst(i);
1082 while (iter != tree.end() && *iter == i) {
1083 ++c;
1084 ++iter;
1085 }
1086 SkASSERT(count[i] == c);
1087 c = 0;
1088 iter = tree.findLast(i);
1089 if (iter != tree.end()) {
1090 do {
1091 if (*iter == i) {
1092 ++c;
1093 } else {
1094 break;
1095 }
1096 if (iter != tree.begin()) {
1097 --iter;
1098 } else {
1099 break;
1100 }
1101 } while (true);
1102 }
1103 SkASSERT(count[i] == c);
1104 }
1105
1106 // remove all entries
1107 while (!tree.empty()) {
1108 tree.remove(tree.begin());
1109 }
1110
1111 // test reset on empty tree.
1112 tree.reset();
1113 }
1114
1115 #endif
1116