• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkIntersections.h"
9 #include "SkPathOpsCubic.h"
10 #include "SkPathOpsLine.h"
11 #include "SkPathOpsPoint.h"
12 #include "SkPathOpsQuad.h"
13 #include "SkPathOpsRect.h"
14 #include "SkReduceOrder.h"
15 #include "SkTSort.h"
16 
17 #if ONE_OFF_DEBUG
18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
20 #endif
21 
22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
24 #define SWAP_TOP_DEBUG 0
25 
26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
27 
quadPart(const SkDCubic & cubic,double tStart,double tEnd,SkReduceOrder * reducer)28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
29     SkDCubic part = cubic.subDivide(tStart, tEnd);
30     SkDQuad quad = part.toQuad();
31     // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
32     // extremely shallow quadratic?
33     int order = reducer->reduce(quad);
34 #if DEBUG_QUAD_PART
35     SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
36             " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
37             cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
38             cubic[3].fX, cubic[3].fY, tStart, tEnd);
39     SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
40              "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
41             part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
42             part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
43             quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
44 #if DEBUG_QUAD_PART_SHOW_SIMPLE
45     SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
46     if (order > 1) {
47         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
48     }
49     if (order > 2) {
50         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
51     }
52     SkDebugf(")\n");
53     SkASSERT(order < 4 && order > 0);
54 #endif
55 #endif
56     return order;
57 }
58 
intersectWithOrder(const SkDQuad & simple1,int order1,const SkDQuad & simple2,int order2,SkIntersections & i)59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
60         int order2, SkIntersections& i) {
61     if (order1 == 3 && order2 == 3) {
62         i.intersect(simple1, simple2);
63     } else if (order1 <= 2 && order2 <= 2) {
64         i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
65     } else if (order1 == 3 && order2 <= 2) {
66         i.intersect(simple1, (const SkDLine&) simple2);
67     } else {
68         SkASSERT(order1 <= 2 && order2 == 3);
69         i.intersect(simple2, (const SkDLine&) simple1);
70         i.swapPts();
71     }
72 }
73 
74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
75 // chase intersections near quadratic ends, requiring odd hacks to find them.
intersect(const SkDCubic & cubic1,double t1s,double t1e,const SkDCubic & cubic2,double t2s,double t2e,double precisionScale,SkIntersections & i)76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
77         double t2s, double t2e, double precisionScale, SkIntersections& i) {
78     i.upDepth();
79     SkDCubic c1 = cubic1.subDivide(t1s, t1e);
80     SkDCubic c2 = cubic2.subDivide(t2s, t2e);
81     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
82     // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
83     c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
84     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
85     c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
86     double t1Start = t1s;
87     int ts1Count = ts1.count();
88     for (int i1 = 0; i1 <= ts1Count; ++i1) {
89         const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
90         const double t1 = t1s + (t1e - t1s) * tEnd1;
91         SkReduceOrder s1;
92         int o1 = quadPart(cubic1, t1Start, t1, &s1);
93         double t2Start = t2s;
94         int ts2Count = ts2.count();
95         for (int i2 = 0; i2 <= ts2Count; ++i2) {
96             const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
97             const double t2 = t2s + (t2e - t2s) * tEnd2;
98             if (&cubic1 == &cubic2 && t1Start >= t2Start) {
99                 t2Start = t2;
100                 continue;
101             }
102             SkReduceOrder s2;
103             int o2 = quadPart(cubic2, t2Start, t2, &s2);
104         #if ONE_OFF_DEBUG
105             char tab[] = "                  ";
106             if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
107                     && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
108                 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
109                         __FUNCTION__, t1Start, t1, t2Start, t2);
110                 SkIntersections xlocals;
111                 xlocals.allowNear(false);
112                 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
113                 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
114             }
115         #endif
116             SkIntersections locals;
117             locals.allowNear(false);
118             intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
119             int tCount = locals.used();
120             for (int tIdx = 0; tIdx < tCount; ++tIdx) {
121                 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
122                 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
123     // if the computed t is not sufficiently precise, iterate
124                 SkDPoint p1 = cubic1.ptAtT(to1);
125                 SkDPoint p2 = cubic2.ptAtT(to2);
126                 if (p1.approximatelyEqual(p2)) {
127     // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
128 //                    SkASSERT(!locals.isCoincident(tIdx));
129                     if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
130                         if (i.swapped()) {  //  FIXME: insert should respect swap
131                             i.insert(to2, to1, p1);
132                         } else {
133                             i.insert(to1, to2, p1);
134                         }
135                     }
136                 } else {
137                     double offset = precisionScale / 16;  // FIME: const is arbitrary: test, refine
138                     double c1Bottom = tIdx == 0 ? 0 :
139                             (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
140                     double c1Min = SkTMax(c1Bottom, to1 - offset);
141                     double c1Top = tIdx == tCount - 1 ? 1 :
142                             (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
143                     double c1Max = SkTMin(c1Top, to1 + offset);
144                     double c2Min = SkTMax(0., to2 - offset);
145                     double c2Max = SkTMin(1., to2 + offset);
146                 #if ONE_OFF_DEBUG
147                     SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
148                             __FUNCTION__,
149                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
150                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
151                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
152                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
153                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
154                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
155                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
156                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
157                     SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
158                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
159                             i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
160                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
161                     SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
162                             " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
163                             c1Max, c2Min, c2Max);
164                 #endif
165                     intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
166                 #if ONE_OFF_DEBUG
167                     SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
168                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
169                 #endif
170                     if (tCount > 1) {
171                         c1Min = SkTMax(0., to1 - offset);
172                         c1Max = SkTMin(1., to1 + offset);
173                         double c2Bottom = tIdx == 0 ? to2 :
174                                 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
175                         double c2Top = tIdx == tCount - 1 ? to2 :
176                                 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
177                         if (c2Bottom > c2Top) {
178                             SkTSwap(c2Bottom, c2Top);
179                         }
180                         if (c2Bottom == to2) {
181                             c2Bottom = 0;
182                         }
183                         if (c2Top == to2) {
184                             c2Top = 1;
185                         }
186                         c2Min = SkTMax(c2Bottom, to2 - offset);
187                         c2Max = SkTMin(c2Top, to2 + offset);
188                     #if ONE_OFF_DEBUG
189                         SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
190                             __FUNCTION__,
191                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
192                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
193                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
194                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
195                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
196                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
197                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
198                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
199                         SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
200                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
201                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
202                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
203                         SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
204                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
205                                 c1Max, c2Min, c2Max);
206                     #endif
207                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
208                 #if ONE_OFF_DEBUG
209                     SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
210                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
211                 #endif
212                         c1Min = SkTMax(c1Bottom, to1 - offset);
213                         c1Max = SkTMin(c1Top, to1 + offset);
214                     #if ONE_OFF_DEBUG
215                         SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
216                         __FUNCTION__,
217                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
218                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
219                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
220                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
221                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
222                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
223                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
224                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
225                         SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
226                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
227                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
228                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
229                         SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
230                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
231                                 c1Max, c2Min, c2Max);
232                     #endif
233                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
234                 #if ONE_OFF_DEBUG
235                     SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
236                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
237                 #endif
238                     }
239           //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
240                     // FIXME: if no intersection is found, either quadratics intersected where
241                     // cubics did not, or the intersection was missed. In the former case, expect
242                     // the quadratics to be nearly parallel at the point of intersection, and check
243                     // for that.
244                 }
245             }
246             t2Start = t2;
247         }
248         t1Start = t1;
249     }
250     i.downDepth();
251 }
252 
253     // if two ends intersect, check middle for coincidence
cubicCheckCoincidence(const SkDCubic & c1,const SkDCubic & c2)254 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
255     if (fUsed < 2) {
256         return false;
257     }
258     int last = fUsed - 1;
259     double tRange1 = fT[0][last] - fT[0][0];
260     double tRange2 = fT[1][last] - fT[1][0];
261     for (int index = 1; index < 5; ++index) {
262         double testT1 = fT[0][0] + tRange1 * index / 5;
263         double testT2 = fT[1][0] + tRange2 * index / 5;
264         SkDPoint testPt1 = c1.ptAtT(testT1);
265         SkDPoint testPt2 = c2.ptAtT(testT2);
266         if (!testPt1.approximatelyEqual(testPt2)) {
267             return false;
268         }
269     }
270     if (fUsed > 2) {
271         fPt[1] = fPt[last];
272         fT[0][1] = fT[0][last];
273         fT[1][1] = fT[1][last];
274         fUsed = 2;
275     }
276     fIsCoincident[0] = fIsCoincident[1] = 0x03;
277     return true;
278 }
279 
280 #define LINE_FRACTION 0.1
281 
282 // intersect the end of the cubic with the other. Try lines from the end to control and opposite
283 // end to determine range of t on opposite cubic.
cubicExactEnd(const SkDCubic & cubic1,bool start,const SkDCubic & cubic2)284 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
285     int t1Index = start ? 0 : 3;
286     double testT = (double) !start;
287     bool swap = swapped();
288     // quad/quad at this point checks to see if exact matches have already been found
289     // cubic/cubic can't reject so easily since cubics can intersect same point more than once
290     SkDLine tmpLine;
291     tmpLine[0] = tmpLine[1] = cubic2[t1Index];
292     tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
293     tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
294     SkIntersections impTs;
295     impTs.allowNear(false);
296     impTs.intersectRay(cubic1, tmpLine);
297     for (int index = 0; index < impTs.used(); ++index) {
298         SkDPoint realPt = impTs.pt(index);
299         if (!tmpLine[0].approximatelyEqual(realPt)) {
300             continue;
301         }
302         if (swap) {
303             insert(testT, impTs[0][index], tmpLine[0]);
304         } else {
305             insert(impTs[0][index], testT, tmpLine[0]);
306         }
307         return true;
308     }
309     return false;
310 }
311 
cubicNearEnd(const SkDCubic & cubic1,bool start,const SkDCubic & cubic2,const SkDRect & bounds2)312 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
313                          const SkDRect& bounds2) {
314     SkDLine line;
315     int t1Index = start ? 0 : 3;
316     double testT = (double) !start;
317    // don't bother if the two cubics are connnected
318     static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
319     static const int kMaxLineCubicIntersections = 3;
320     SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
321     line[0] = cubic1[t1Index];
322     // this variant looks for intersections with the end point and lines parallel to other points
323     for (int index = 0; index < kPointsInCubic; ++index) {
324         if (index == t1Index) {
325             continue;
326         }
327         SkDVector dxy1 = cubic1[index] - line[0];
328         dxy1 /= SkDCubic::gPrecisionUnit;
329         line[1] = line[0] + dxy1;
330         SkDRect lineBounds;
331         lineBounds.setBounds(line);
332         if (!bounds2.intersects(&lineBounds)) {
333             continue;
334         }
335         SkIntersections local;
336         if (!local.intersect(cubic2, line)) {
337             continue;
338         }
339         for (int idx2 = 0; idx2 < local.used(); ++idx2) {
340             double foundT = local[0][idx2];
341             if (approximately_less_than_zero(foundT)
342                     || approximately_greater_than_one(foundT)) {
343                 continue;
344             }
345             if (local.pt(idx2).approximatelyEqual(line[0])) {
346                 if (swapped()) {  // FIXME: insert should respect swap
347                     insert(foundT, testT, line[0]);
348                 } else {
349                     insert(testT, foundT, line[0]);
350                 }
351             } else {
352                 tVals.push_back(foundT);
353             }
354         }
355     }
356     if (tVals.count() == 0) {
357         return;
358     }
359     SkTQSort<double>(tVals.begin(), tVals.end() - 1);
360     double tMin1 = start ? 0 : 1 - LINE_FRACTION;
361     double tMax1 = start ? LINE_FRACTION : 1;
362     int tIdx = 0;
363     do {
364         int tLast = tIdx;
365         while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
366             ++tLast;
367         }
368         double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
369         double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
370         int lastUsed = used();
371         ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
372         if (lastUsed == used()) {
373             tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
374             tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
375             ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
376         }
377         tIdx = tLast + 1;
378     } while (tIdx < tVals.count());
379     return;
380 }
381 
382 const double CLOSE_ENOUGH = 0.001;
383 
closeStart(const SkDCubic & cubic,int cubicIndex,SkIntersections & i,SkDPoint & pt)384 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
385     if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
386         return false;
387     }
388     pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
389     return true;
390 }
391 
closeEnd(const SkDCubic & cubic,int cubicIndex,SkIntersections & i,SkDPoint & pt)392 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
393     int last = i.used() - 1;
394     if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
395         return false;
396     }
397     pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
398     return true;
399 }
400 
only_end_pts_in_common(const SkDCubic & c1,const SkDCubic & c2)401 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
402 // the idea here is to see at minimum do a quick reject by rotating all points
403 // to either side of the line formed by connecting the endpoints
404 // if the opposite curves points are on the line or on the other side, the
405 // curves at most intersect at the endpoints
406     for (int oddMan = 0; oddMan < 4; ++oddMan) {
407         const SkDPoint* endPt[3];
408         for (int opp = 1; opp < 4; ++opp) {
409             int end = oddMan ^ opp;  // choose a value not equal to oddMan
410             endPt[opp - 1] = &c1[end];
411         }
412         for (int triTest = 0; triTest < 3; ++triTest) {
413             double origX = endPt[triTest]->fX;
414             double origY = endPt[triTest]->fY;
415             int oppTest = triTest + 1;
416             if (3 == oppTest) {
417                 oppTest = 0;
418             }
419             double adj = endPt[oppTest]->fX - origX;
420             double opp = endPt[oppTest]->fY - origY;
421             double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
422             if (approximately_zero(sign)) {
423                 goto tryNextHalfPlane;
424             }
425             for (int n = 0; n < 4; ++n) {
426                 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
427                 if (test * sign > 0 && !precisely_zero(test)) {
428                     goto tryNextHalfPlane;
429                 }
430             }
431         }
432         return true;
433 tryNextHalfPlane:
434         ;
435     }
436     return false;
437 }
438 
intersect(const SkDCubic & c1,const SkDCubic & c2)439 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
440     if (fMax == 0) {
441         fMax = 9;
442     }
443     bool selfIntersect = &c1 == &c2;
444     if (selfIntersect) {
445         if (c1[0].approximatelyEqual(c1[3])) {
446             insert(0, 1, c1[0]);
447             return fUsed;
448         }
449     } else {
450         // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
451         for (int i1 = 0; i1 < 4; i1 += 3) {
452             for (int i2 = 0; i2 < 4; i2 += 3) {
453                 if (c1[i1].approximatelyEqual(c2[i2])) {
454                     insert(i1 >> 1, i2 >> 1, c1[i1]);
455                 }
456             }
457         }
458     }
459     SkASSERT(fUsed < 4);
460     if (!selfIntersect) {
461         if (only_end_pts_in_common(c1, c2)) {
462             return fUsed;
463         }
464         if (only_end_pts_in_common(c2, c1)) {
465             return fUsed;
466         }
467     }
468     // quad/quad does linear test here -- cubic does not
469     // cubics which are really lines should have been detected in reduce step earlier
470     int exactEndBits = 0;
471     if (selfIntersect) {
472         if (fUsed) {
473             return fUsed;
474         }
475     } else {
476         exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
477         exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
478         swap();
479         exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
480         exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
481         swap();
482     }
483     if (cubicCheckCoincidence(c1, c2)) {
484         SkASSERT(!selfIntersect);
485         return fUsed;
486     }
487     // FIXME: pass in cached bounds from caller
488     SkDRect c2Bounds;
489     c2Bounds.setBounds(c2);
490     if (!(exactEndBits & 4)) {
491         cubicNearEnd(c1, false, c2, c2Bounds);
492     }
493     if (!(exactEndBits & 8)) {
494         cubicNearEnd(c1, true, c2, c2Bounds);
495     }
496     if (!selfIntersect) {
497         SkDRect c1Bounds;
498         c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
499         swap();
500         if (!(exactEndBits & 1)) {
501             cubicNearEnd(c2, false, c1, c1Bounds);
502         }
503         if (!(exactEndBits & 2)) {
504             cubicNearEnd(c2, true, c1, c1Bounds);
505         }
506         swap();
507     }
508     if (cubicCheckCoincidence(c1, c2)) {
509         SkASSERT(!selfIntersect);
510         return fUsed;
511     }
512     SkIntersections i;
513     i.fAllowNear = false;
514     i.fMax = 9;
515     ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
516     int compCount = i.used();
517     if (compCount) {
518         int exactCount = used();
519         if (exactCount == 0) {
520             set(i);
521         } else {
522             // at least one is exact or near, and at least one was computed. Eliminate duplicates
523             for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
524                 for (int cpIdx = 0; cpIdx < compCount; ) {
525                     if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
526                         i.removeOne(cpIdx);
527                         --compCount;
528                         continue;
529                     }
530                     double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
531                     SkDPoint pt = c1.ptAtT(tAvg);
532                     if (!pt.approximatelyEqual(fPt[exIdx])) {
533                         ++cpIdx;
534                         continue;
535                     }
536                     tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
537                     pt = c2.ptAtT(tAvg);
538                     if (!pt.approximatelyEqual(fPt[exIdx])) {
539                         ++cpIdx;
540                         continue;
541                     }
542                     i.removeOne(cpIdx);
543                     --compCount;
544                 }
545             }
546             // if mid t evaluates to nearly the same point, skip the t
547             for (int cpIdx = 0; cpIdx < compCount - 1; ) {
548                 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
549                 SkDPoint pt = c1.ptAtT(tAvg);
550                 if (!pt.approximatelyEqual(fPt[cpIdx])) {
551                     ++cpIdx;
552                     continue;
553                 }
554                 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
555                 pt = c2.ptAtT(tAvg);
556                 if (!pt.approximatelyEqual(fPt[cpIdx])) {
557                     ++cpIdx;
558                     continue;
559                 }
560                 i.removeOne(cpIdx);
561                 --compCount;
562             }
563             // in addition to adding below missing function, think about how to say
564             append(i);
565         }
566     }
567     // If an end point and a second point very close to the end is returned, the second
568     // point may have been detected because the approximate quads
569     // intersected at the end and close to it. Verify that the second point is valid.
570     if (fUsed <= 1) {
571         return fUsed;
572     }
573     SkDPoint pt[2];
574     if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
575             && pt[0].approximatelyEqual(pt[1])) {
576         removeOne(1);
577     }
578     if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
579             && pt[0].approximatelyEqual(pt[1])) {
580         removeOne(used() - 2);
581     }
582     // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
583     // the span as coincident
584     if (fUsed >= 2 && !coincidentUsed()) {
585         int last = fUsed - 1;
586         int match = 0;
587         for (int index = 0; index < last; ++index) {
588             double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
589             double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
590             pt[0] = c1.ptAtT(mid1);
591             pt[1] = c2.ptAtT(mid2);
592             if (pt[0].approximatelyEqual(pt[1])) {
593                 match |= 1 << index;
594             }
595         }
596         if (match) {
597 #if DEBUG_CONCIDENT
598             if (((match + 1) & match) != 0) {
599                 SkDebugf("%s coincident hole\n", __FUNCTION__);
600             }
601 #endif
602             // for now, assume that everything from start to finish is coincident
603             if (fUsed > 2) {
604                   fPt[1] = fPt[last];
605                   fT[0][1] = fT[0][last];
606                   fT[1][1] = fT[1][last];
607                   fIsCoincident[0] = 0x03;
608                   fIsCoincident[1] = 0x03;
609                   fUsed = 2;
610             }
611         }
612     }
613     return fUsed;
614 }
615 
616 // Up promote the quad to a cubic.
617 // OPTIMIZATION If this is a common use case, optimize by duplicating
618 // the intersect 3 loop to avoid the promotion  / demotion code
intersect(const SkDCubic & cubic,const SkDQuad & quad)619 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
620     fMax = 6;
621     SkDCubic up = quad.toCubic();
622     (void) intersect(cubic, up);
623     return used();
624 }
625 
626 /* http://www.ag.jku.at/compass/compasssample.pdf
627 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
628 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
629 SINTEF Applied Mathematics http://www.sintef.no )
630 describes a method to find the self intersection of a cubic by taking the gradient of the implicit
631 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
632 
intersect(const SkDCubic & c)633 int SkIntersections::intersect(const SkDCubic& c) {
634     fMax = 1;
635     // check to see if x or y end points are the extrema. Are other quick rejects possible?
636     if (c.endsAreExtremaInXOrY()) {
637         return false;
638     }
639     (void) intersect(c, c);
640     if (used() > 0) {
641         SkASSERT(used() == 1);
642         if (fT[0][0] > fT[1][0]) {
643             swapPts();
644         }
645     }
646     return used();
647 }
648