• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkPathOpsCubic.h"
8 #include "SkPathOpsLine.h"
9 #include "SkPathOpsQuad.h"
10 
11 // Sources
12 // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549
13 // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
14 
15 // This turns a line segment into a parameterized line, of the form
16 // ax + by + c = 0
17 // When a^2 + b^2 == 1, the line is normalized.
18 // The distance to the line for (x, y) is d(x,y) = ax + by + c
19 //
20 // Note that the distances below are not necessarily normalized. To get the true
21 // distance, it's necessary to either call normalize() after xxxEndPoints(), or
22 // divide the result of xxxDistance() by sqrt(normalSquared())
23 
24 class SkLineParameters {
25 public:
26 
cubicEndPoints(const SkDCubic & pts)27     void cubicEndPoints(const SkDCubic& pts) {
28         int endIndex = 1;
29         cubicEndPoints(pts, 0, endIndex);
30         if (dy() != 0) {
31             return;
32         }
33         if (dx() == 0) {
34             cubicEndPoints(pts, 0, ++endIndex);
35             SkASSERT(endIndex == 2);
36             if (dy() != 0) {
37                 return;
38             }
39             if (dx() == 0) {
40                 cubicEndPoints(pts, 0, ++endIndex);  // line
41                 SkASSERT(endIndex == 3);
42                 return;
43             }
44         }
45         if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
46             return;
47         }
48         // if cubic tangent is on x axis, look at next control point to break tie
49         // control point may be approximate, so it must move significantly to account for error
50         if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) {
51             if (pts[0].fY > pts[endIndex].fY) {
52                 a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
53             }
54             return;
55         }
56         if (endIndex == 3) {
57             return;
58         }
59         SkASSERT(endIndex == 2);
60         if (pts[0].fY > pts[3].fY) {
61             a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
62         }
63     }
64 
cubicEndPoints(const SkDCubic & pts,int s,int e)65     void cubicEndPoints(const SkDCubic& pts, int s, int e) {
66         a = pts[s].fY - pts[e].fY;
67         b = pts[e].fX - pts[s].fX;
68         c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
69     }
70 
cubicPart(const SkDCubic & part)71     double cubicPart(const SkDCubic& part) {
72         cubicEndPoints(part);
73         if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) {
74             return pointDistance(part[3]);
75         }
76         return pointDistance(part[2]);
77     }
78 
lineEndPoints(const SkDLine & pts)79     void lineEndPoints(const SkDLine& pts) {
80         a = pts[0].fY - pts[1].fY;
81         b = pts[1].fX - pts[0].fX;
82         c = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY;
83     }
84 
quadEndPoints(const SkDQuad & pts)85     void quadEndPoints(const SkDQuad& pts) {
86         quadEndPoints(pts, 0, 1);
87         if (dy() != 0) {
88             return;
89         }
90         if (dx() == 0) {
91             quadEndPoints(pts, 0, 2);
92             return;
93         }
94         if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
95             return;
96         }
97         if (pts[0].fY > pts[2].fY) {
98             a = DBL_EPSILON;
99         }
100     }
101 
quadEndPoints(const SkDQuad & pts,int s,int e)102     void quadEndPoints(const SkDQuad& pts, int s, int e) {
103         a = pts[s].fY - pts[e].fY;
104         b = pts[e].fX - pts[s].fX;
105         c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
106     }
107 
quadPart(const SkDQuad & part)108     double quadPart(const SkDQuad& part) {
109         quadEndPoints(part);
110         return pointDistance(part[2]);
111     }
112 
normalSquared()113     double normalSquared() const {
114         return a * a + b * b;
115     }
116 
normalize()117     bool normalize() {
118         double normal = sqrt(normalSquared());
119         if (approximately_zero(normal)) {
120             a = b = c = 0;
121             return false;
122         }
123         double reciprocal = 1 / normal;
124         a *= reciprocal;
125         b *= reciprocal;
126         c *= reciprocal;
127         return true;
128     }
129 
cubicDistanceY(const SkDCubic & pts,SkDCubic & distance)130     void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const {
131         double oneThird = 1 / 3.0;
132         for (int index = 0; index < 4; ++index) {
133             distance[index].fX = index * oneThird;
134             distance[index].fY = a * pts[index].fX + b * pts[index].fY + c;
135         }
136     }
137 
quadDistanceY(const SkDQuad & pts,SkDQuad & distance)138     void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const {
139         double oneHalf = 1 / 2.0;
140         for (int index = 0; index < 3; ++index) {
141             distance[index].fX = index * oneHalf;
142             distance[index].fY = a * pts[index].fX + b * pts[index].fY + c;
143         }
144     }
145 
controlPtDistance(const SkDCubic & pts,int index)146     double controlPtDistance(const SkDCubic& pts, int index) const {
147         SkASSERT(index == 1 || index == 2);
148         return a * pts[index].fX + b * pts[index].fY + c;
149     }
150 
controlPtDistance(const SkDQuad & pts)151     double controlPtDistance(const SkDQuad& pts) const {
152         return a * pts[1].fX + b * pts[1].fY + c;
153     }
154 
pointDistance(const SkDPoint & pt)155     double pointDistance(const SkDPoint& pt) const {
156         return a * pt.fX + b * pt.fY + c;
157     }
158 
dx()159     double dx() const {
160         return b;
161     }
162 
dy()163     double dy() const {
164         return -a;
165     }
166 
167 private:
168     double a;
169     double b;
170     double c;
171 };
172