• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
2 /*
3  *  Roots3And4.c
4  *
5  *  Utility functions to find cubic and quartic roots,
6  *  coefficients are passed like this:
7  *
8  *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
9  *
10  *  The functions return the number of non-complex roots and
11  *  put the values into the s array.
12  *
13  *  Author:         Jochen Schwarze (schwarze@isa.de)
14  *
15  *  Jan 26, 1990    Version for Graphics Gems
16  *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
17  *                  (reported by Mark Podlipec),
18  *                  Old-style function definitions,
19  *                  IsZero() as a macro
20  *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
21  *                  <math.h>, though the functions exist in the library.
22  *                  If large coefficients are used, EQN_EPS should be
23  *                  reduced considerably (e.g. to 1E-30), results will be
24  *                  correct but multiple roots might be reported more
25  *                  than once.
26  */
27 
28 #include "SkPathOpsCubic.h"
29 #include "SkPathOpsQuad.h"
30 #include "SkQuarticRoot.h"
31 
SkReducedQuarticRoots(const double t4,const double t3,const double t2,const double t1,const double t0,const bool oneHint,double roots[4])32 int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
33         const double t0, const bool oneHint, double roots[4]) {
34 #ifdef SK_DEBUG
35     // create a string mathematica understands
36     // GDB set print repe 15 # if repeated digits is a bother
37     //     set print elements 400 # if line doesn't fit
38     char str[1024];
39     sk_bzero(str, sizeof(str));
40     SK_SNPRINTF(str, sizeof(str),
41             "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
42             t4, t3, t2, t1, t0);
43     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
45     SkDebugf("%s\n", str);
46 #endif
47 #endif
48     if (approximately_zero_when_compared_to(t4, t0)  // 0 is one root
49             && approximately_zero_when_compared_to(t4, t1)
50             && approximately_zero_when_compared_to(t4, t2)) {
51         if (approximately_zero_when_compared_to(t3, t0)
52             && approximately_zero_when_compared_to(t3, t1)
53             && approximately_zero_when_compared_to(t3, t2)) {
54             return SkDQuad::RootsReal(t2, t1, t0, roots);
55         }
56         if (approximately_zero_when_compared_to(t4, t3)) {
57             return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
58         }
59     }
60     if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))  // 0 is one root
61       //      && approximately_zero_when_compared_to(t0, t2)
62             && approximately_zero_when_compared_to(t0, t3)
63             && approximately_zero_when_compared_to(t0, t4)) {
64         int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
65         for (int i = 0; i < num; ++i) {
66             if (approximately_zero(roots[i])) {
67                 return num;
68             }
69         }
70         roots[num++] = 0;
71         return num;
72     }
73     if (oneHint) {
74         SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0));  // 1 is one root
75         // note that -C == A + B + D + E
76         int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
77         for (int i = 0; i < num; ++i) {
78             if (approximately_equal(roots[i], 1)) {
79                 return num;
80             }
81         }
82         roots[num++] = 1;
83         return num;
84     }
85     return -1;
86 }
87 
SkQuarticRootsReal(int firstCubicRoot,const double A,const double B,const double C,const double D,const double E,double s[4])88 int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
89         const double D, const double E, double s[4]) {
90     double  u, v;
91     /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
92     const double invA = 1 / A;
93     const double a = B * invA;
94     const double b = C * invA;
95     const double c = D * invA;
96     const double d = E * invA;
97     /*  substitute x = y - a/4 to eliminate cubic term:
98     x^4 + px^2 + qx + r = 0 */
99     const double a2 = a * a;
100     const double p = -3 * a2 / 8 + b;
101     const double q = a2 * a / 8 - a * b / 2 + c;
102     const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
103     int num;
104     if (approximately_zero(r)) {
105     /* no absolute term: y(y^3 + py + q) = 0 */
106         num = SkDCubic::RootsReal(1, 0, p, q, s);
107         s[num++] = 0;
108     } else {
109         /* solve the resolvent cubic ... */
110         double cubicRoots[3];
111         int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
112         int index;
113         /* ... and take one real solution ... */
114         double z;
115         num = 0;
116         int num2 = 0;
117         for (index = firstCubicRoot; index < roots; ++index) {
118             z = cubicRoots[index];
119             /* ... to build two quadric equations */
120             u = z * z - r;
121             v = 2 * z - p;
122             if (approximately_zero_squared(u)) {
123                 u = 0;
124             } else if (u > 0) {
125                 u = sqrt(u);
126             } else {
127                 continue;
128             }
129             if (approximately_zero_squared(v)) {
130                 v = 0;
131             } else if (v > 0) {
132                 v = sqrt(v);
133             } else {
134                 continue;
135             }
136             num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
137             num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
138             if (!((num | num2) & 1)) {
139                 break;  // prefer solutions without single quad roots
140             }
141         }
142         num += num2;
143         if (!num) {
144             return 0;  // no valid cubic root
145         }
146     }
147     /* resubstitute */
148     const double sub = a / 4;
149     for (int i = 0; i < num; ++i) {
150         s[i] -= sub;
151     }
152     // eliminate duplicates
153     for (int i = 0; i < num - 1; ++i) {
154         for (int j = i + 1; j < num; ) {
155             if (AlmostDequalUlps(s[i], s[j])) {
156                 if (j < --num) {
157                     s[j] = s[num];
158                 }
159             } else {
160                 ++j;
161             }
162         }
163     }
164     return num;
165 }
166