• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2008 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkInterpolator.h"
11 #include "SkMath.h"
12 #include "SkTSearch.h"
13 
SkInterpolatorBase()14 SkInterpolatorBase::SkInterpolatorBase() {
15     fStorage    = NULL;
16     fTimes      = NULL;
17     SkDEBUGCODE(fTimesArray = NULL;)
18 }
19 
~SkInterpolatorBase()20 SkInterpolatorBase::~SkInterpolatorBase() {
21     if (fStorage) {
22         sk_free(fStorage);
23     }
24 }
25 
reset(int elemCount,int frameCount)26 void SkInterpolatorBase::reset(int elemCount, int frameCount) {
27     fFlags = 0;
28     fElemCount = SkToU8(elemCount);
29     fFrameCount = SkToS16(frameCount);
30     fRepeat = SK_Scalar1;
31     if (fStorage) {
32         sk_free(fStorage);
33         fStorage = NULL;
34         fTimes = NULL;
35         SkDEBUGCODE(fTimesArray = NULL);
36     }
37 }
38 
39 /*  Each value[] run is formated as:
40         <time (in msec)>
41         <blend>
42         <data[fElemCount]>
43 
44     Totaling fElemCount+2 entries per keyframe
45 */
46 
getDuration(SkMSec * startTime,SkMSec * endTime) const47 bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
48     if (fFrameCount == 0) {
49         return false;
50     }
51 
52     if (startTime) {
53         *startTime = fTimes[0].fTime;
54     }
55     if (endTime) {
56         *endTime = fTimes[fFrameCount - 1].fTime;
57     }
58     return true;
59 }
60 
ComputeRelativeT(SkMSec time,SkMSec prevTime,SkMSec nextTime,const SkScalar blend[4])61 SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime,
62                                   SkMSec nextTime, const SkScalar blend[4]) {
63     SkASSERT(time > prevTime && time < nextTime);
64 
65     SkScalar t = SkScalarDiv((SkScalar)(time - prevTime),
66                              (SkScalar)(nextTime - prevTime));
67     return blend ?
68             SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
69 }
70 
timeToT(SkMSec time,SkScalar * T,int * indexPtr,SkBool * exactPtr) const71 SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T,
72                                         int* indexPtr, SkBool* exactPtr) const {
73     SkASSERT(fFrameCount > 0);
74     Result  result = kNormal_Result;
75     if (fRepeat != SK_Scalar1) {
76         SkMSec startTime = 0, endTime = 0;  // initialize to avoid warning
77         this->getDuration(&startTime, &endTime);
78         SkMSec totalTime = endTime - startTime;
79         SkMSec offsetTime = time - startTime;
80         endTime = SkScalarMulFloor(fRepeat, totalTime);
81         if (offsetTime >= endTime) {
82             SkScalar fraction = SkScalarFraction(fRepeat);
83             offsetTime = fraction == 0 && fRepeat > 0 ? totalTime :
84                 (SkMSec) SkScalarMulFloor(fraction, totalTime);
85             result = kFreezeEnd_Result;
86         } else {
87             int mirror = fFlags & kMirror;
88             offsetTime = offsetTime % (totalTime << mirror);
89             if (offsetTime > totalTime) { // can only be true if fMirror is true
90                 offsetTime = (totalTime << 1) - offsetTime;
91             }
92         }
93         time = offsetTime + startTime;
94     }
95 
96     int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time,
97                                   sizeof(SkTimeCode));
98 
99     bool    exact = true;
100 
101     if (index < 0) {
102         index = ~index;
103         if (index == 0) {
104             result = kFreezeStart_Result;
105         } else if (index == fFrameCount) {
106             if (fFlags & kReset) {
107                 index = 0;
108             } else {
109                 index -= 1;
110             }
111             result = kFreezeEnd_Result;
112         } else {
113             exact = false;
114         }
115     }
116     SkASSERT(index < fFrameCount);
117     const SkTimeCode* nextTime = &fTimes[index];
118     SkMSec   nextT = nextTime[0].fTime;
119     if (exact) {
120         *T = 0;
121     } else {
122         SkMSec prevT = nextTime[-1].fTime;
123         *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
124     }
125     *indexPtr = index;
126     *exactPtr = exact;
127     return result;
128 }
129 
130 
SkInterpolator()131 SkInterpolator::SkInterpolator() {
132     INHERITED::reset(0, 0);
133     fValues = NULL;
134     SkDEBUGCODE(fScalarsArray = NULL;)
135 }
136 
SkInterpolator(int elemCount,int frameCount)137 SkInterpolator::SkInterpolator(int elemCount, int frameCount) {
138     SkASSERT(elemCount > 0);
139     this->reset(elemCount, frameCount);
140 }
141 
reset(int elemCount,int frameCount)142 void SkInterpolator::reset(int elemCount, int frameCount) {
143     INHERITED::reset(elemCount, frameCount);
144     fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount +
145                                 sizeof(SkTimeCode)) * frameCount);
146     fTimes = (SkTimeCode*) fStorage;
147     fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount);
148 #ifdef SK_DEBUG
149     fTimesArray = (SkTimeCode(*)[10]) fTimes;
150     fScalarsArray = (SkScalar(*)[10]) fValues;
151 #endif
152 }
153 
154 #define SK_Fixed1Third      (SK_Fixed1/3)
155 #define SK_Fixed2Third      (SK_Fixed1*2/3)
156 
157 static const SkScalar gIdentityBlend[4] = {
158 #ifdef SK_SCALAR_IS_FLOAT
159     0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f
160 #else
161     SK_Fixed1Third, SK_Fixed1Third, SK_Fixed2Third, SK_Fixed2Third
162 #endif
163 };
164 
setKeyFrame(int index,SkMSec time,const SkScalar values[],const SkScalar blend[4])165 bool SkInterpolator::setKeyFrame(int index, SkMSec time,
166                             const SkScalar values[], const SkScalar blend[4]) {
167     SkASSERT(values != NULL);
168 
169     if (blend == NULL) {
170         blend = gIdentityBlend;
171     }
172 
173     bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time,
174                                                sizeof(SkTimeCode));
175     SkASSERT(success);
176     if (success) {
177         SkTimeCode* timeCode = &fTimes[index];
178         timeCode->fTime = time;
179         memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
180         SkScalar* dst = &fValues[fElemCount * index];
181         memcpy(dst, values, fElemCount * sizeof(SkScalar));
182     }
183     return success;
184 }
185 
timeToValues(SkMSec time,SkScalar values[]) const186 SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time,
187                                                     SkScalar values[]) const {
188     SkScalar T;
189     int index;
190     SkBool exact;
191     Result result = timeToT(time, &T, &index, &exact);
192     if (values) {
193         const SkScalar* nextSrc = &fValues[index * fElemCount];
194 
195         if (exact) {
196             memcpy(values, nextSrc, fElemCount * sizeof(SkScalar));
197         } else {
198             SkASSERT(index > 0);
199 
200             const SkScalar* prevSrc = nextSrc - fElemCount;
201 
202             for (int i = fElemCount - 1; i >= 0; --i) {
203                 values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
204             }
205         }
206     }
207     return result;
208 }
209 
210 ///////////////////////////////////////////////////////////////////////////////
211 
212 typedef int Dot14;
213 #define Dot14_ONE       (1 << 14)
214 #define Dot14_HALF      (1 << 13)
215 
216 #define Dot14ToFloat(x) ((x) / 16384.f)
217 
Dot14Mul(Dot14 a,Dot14 b)218 static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
219     return (a * b + Dot14_HALF) >> 14;
220 }
221 
eval_cubic(Dot14 t,Dot14 A,Dot14 B,Dot14 C)222 static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
223     return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
224 }
225 
pin_and_convert(SkScalar x)226 static inline Dot14 pin_and_convert(SkScalar x) {
227     if (x <= 0) {
228         return 0;
229     }
230     if (x >= SK_Scalar1) {
231         return Dot14_ONE;
232     }
233     return SkScalarToFixed(x) >> 2;
234 }
235 
SkUnitCubicInterp(SkScalar value,SkScalar bx,SkScalar by,SkScalar cx,SkScalar cy)236 SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by,
237                            SkScalar cx, SkScalar cy) {
238     // pin to the unit-square, and convert to 2.14
239     Dot14 x = pin_and_convert(value);
240 
241     if (x == 0) return 0;
242     if (x == Dot14_ONE) return SK_Scalar1;
243 
244     Dot14 b = pin_and_convert(bx);
245     Dot14 c = pin_and_convert(cx);
246 
247     // Now compute our coefficients from the control points
248     //  t   -> 3b
249     //  t^2 -> 3c - 6b
250     //  t^3 -> 3b - 3c + 1
251     Dot14 A = 3*b;
252     Dot14 B = 3*(c - 2*b);
253     Dot14 C = 3*(b - c) + Dot14_ONE;
254 
255     // Now search for a t value given x
256     Dot14   t = Dot14_HALF;
257     Dot14   dt = Dot14_HALF;
258     for (int i = 0; i < 13; i++) {
259         dt >>= 1;
260         Dot14 guess = eval_cubic(t, A, B, C);
261         if (x < guess) {
262             t -= dt;
263         } else {
264             t += dt;
265         }
266     }
267 
268     // Now we have t, so compute the coeff for Y and evaluate
269     b = pin_and_convert(by);
270     c = pin_and_convert(cy);
271     A = 3*b;
272     B = 3*(c - 2*b);
273     C = 3*(b - c) + Dot14_ONE;
274     return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
275 }
276 
277 ///////////////////////////////////////////////////////////////////////////////
278 ///////////////////////////////////////////////////////////////////////////////
279 
280 #ifdef SK_DEBUG
281 
282 #ifdef SK_SUPPORT_UNITTEST
iset(SkScalar array[3],int a,int b,int c)283     static SkScalar* iset(SkScalar array[3], int a, int b, int c) {
284         array[0] = SkIntToScalar(a);
285         array[1] = SkIntToScalar(b);
286         array[2] = SkIntToScalar(c);
287         return array;
288     }
289 #endif
290 
UnitTest()291 void SkInterpolator::UnitTest() {
292 #ifdef SK_SUPPORT_UNITTEST
293     SkInterpolator  inter(3, 2);
294     SkScalar        v1[3], v2[3], v[3], vv[3];
295     Result          result;
296 
297     inter.setKeyFrame(0, 100, iset(v1, 10, 20, 30), 0);
298     inter.setKeyFrame(1, 200, iset(v2, 110, 220, 330));
299 
300     result = inter.timeToValues(0, v);
301     SkASSERT(result == kFreezeStart_Result);
302     SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
303 
304     result = inter.timeToValues(99, v);
305     SkASSERT(result == kFreezeStart_Result);
306     SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
307 
308     result = inter.timeToValues(100, v);
309     SkASSERT(result == kNormal_Result);
310     SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
311 
312     result = inter.timeToValues(200, v);
313     SkASSERT(result == kNormal_Result);
314     SkASSERT(memcmp(v, v2, sizeof(v)) == 0);
315 
316     result = inter.timeToValues(201, v);
317     SkASSERT(result == kFreezeEnd_Result);
318     SkASSERT(memcmp(v, v2, sizeof(v)) == 0);
319 
320     result = inter.timeToValues(150, v);
321     SkASSERT(result == kNormal_Result);
322     SkASSERT(memcmp(v, iset(vv, 60, 120, 180), sizeof(v)) == 0);
323 
324     result = inter.timeToValues(125, v);
325     SkASSERT(result == kNormal_Result);
326     result = inter.timeToValues(175, v);
327     SkASSERT(result == kNormal_Result);
328 #endif
329 }
330 
331 #endif
332