1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if V8_TARGET_ARCH_ARM
31
32 #include "bootstrapper.h"
33 #include "code-stubs.h"
34 #include "regexp-macro-assembler.h"
35 #include "stub-cache.h"
36
37 namespace v8 {
38 namespace internal {
39
40
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)41 void FastNewClosureStub::InitializeInterfaceDescriptor(
42 Isolate* isolate,
43 CodeStubInterfaceDescriptor* descriptor) {
44 static Register registers[] = { r2 };
45 descriptor->register_param_count_ = 1;
46 descriptor->register_params_ = registers;
47 descriptor->deoptimization_handler_ =
48 Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry;
49 }
50
51
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)52 void ToNumberStub::InitializeInterfaceDescriptor(
53 Isolate* isolate,
54 CodeStubInterfaceDescriptor* descriptor) {
55 static Register registers[] = { r0 };
56 descriptor->register_param_count_ = 1;
57 descriptor->register_params_ = registers;
58 descriptor->deoptimization_handler_ = NULL;
59 }
60
61
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)62 void NumberToStringStub::InitializeInterfaceDescriptor(
63 Isolate* isolate,
64 CodeStubInterfaceDescriptor* descriptor) {
65 static Register registers[] = { r0 };
66 descriptor->register_param_count_ = 1;
67 descriptor->register_params_ = registers;
68 descriptor->deoptimization_handler_ =
69 Runtime::FunctionForId(Runtime::kNumberToString)->entry;
70 }
71
72
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)73 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
74 Isolate* isolate,
75 CodeStubInterfaceDescriptor* descriptor) {
76 static Register registers[] = { r3, r2, r1 };
77 descriptor->register_param_count_ = 3;
78 descriptor->register_params_ = registers;
79 descriptor->deoptimization_handler_ =
80 Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry;
81 }
82
83
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)84 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
85 Isolate* isolate,
86 CodeStubInterfaceDescriptor* descriptor) {
87 static Register registers[] = { r3, r2, r1, r0 };
88 descriptor->register_param_count_ = 4;
89 descriptor->register_params_ = registers;
90 descriptor->deoptimization_handler_ =
91 Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry;
92 }
93
94
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)95 void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
96 Isolate* isolate,
97 CodeStubInterfaceDescriptor* descriptor) {
98 static Register registers[] = { r2 };
99 descriptor->register_param_count_ = 1;
100 descriptor->register_params_ = registers;
101 descriptor->deoptimization_handler_ = NULL;
102 }
103
104
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)105 void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
106 Isolate* isolate,
107 CodeStubInterfaceDescriptor* descriptor) {
108 static Register registers[] = { r1, r0 };
109 descriptor->register_param_count_ = 2;
110 descriptor->register_params_ = registers;
111 descriptor->deoptimization_handler_ =
112 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
113 }
114
115
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)116 void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
117 Isolate* isolate,
118 CodeStubInterfaceDescriptor* descriptor) {
119 static Register registers[] = { r1, r0 };
120 descriptor->register_param_count_ = 2;
121 descriptor->register_params_ = registers;
122 descriptor->deoptimization_handler_ =
123 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
124 }
125
126
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)127 void LoadFieldStub::InitializeInterfaceDescriptor(
128 Isolate* isolate,
129 CodeStubInterfaceDescriptor* descriptor) {
130 static Register registers[] = { r0 };
131 descriptor->register_param_count_ = 1;
132 descriptor->register_params_ = registers;
133 descriptor->deoptimization_handler_ = NULL;
134 }
135
136
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)137 void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
138 Isolate* isolate,
139 CodeStubInterfaceDescriptor* descriptor) {
140 static Register registers[] = { r1 };
141 descriptor->register_param_count_ = 1;
142 descriptor->register_params_ = registers;
143 descriptor->deoptimization_handler_ = NULL;
144 }
145
146
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)147 void KeyedArrayCallStub::InitializeInterfaceDescriptor(
148 Isolate* isolate,
149 CodeStubInterfaceDescriptor* descriptor) {
150 static Register registers[] = { r2 };
151 descriptor->register_param_count_ = 1;
152 descriptor->register_params_ = registers;
153 descriptor->continuation_type_ = TAIL_CALL_CONTINUATION;
154 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
155 descriptor->deoptimization_handler_ =
156 FUNCTION_ADDR(KeyedCallIC_MissFromStubFailure);
157 }
158
159
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)160 void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
161 Isolate* isolate,
162 CodeStubInterfaceDescriptor* descriptor) {
163 static Register registers[] = { r2, r1, r0 };
164 descriptor->register_param_count_ = 3;
165 descriptor->register_params_ = registers;
166 descriptor->deoptimization_handler_ =
167 FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
168 }
169
170
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)171 void TransitionElementsKindStub::InitializeInterfaceDescriptor(
172 Isolate* isolate,
173 CodeStubInterfaceDescriptor* descriptor) {
174 static Register registers[] = { r0, r1 };
175 descriptor->register_param_count_ = 2;
176 descriptor->register_params_ = registers;
177 Address entry =
178 Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
179 descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry);
180 }
181
182
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)183 void CompareNilICStub::InitializeInterfaceDescriptor(
184 Isolate* isolate,
185 CodeStubInterfaceDescriptor* descriptor) {
186 static Register registers[] = { r0 };
187 descriptor->register_param_count_ = 1;
188 descriptor->register_params_ = registers;
189 descriptor->deoptimization_handler_ =
190 FUNCTION_ADDR(CompareNilIC_Miss);
191 descriptor->SetMissHandler(
192 ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate));
193 }
194
195
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)196 void BinaryOpICStub::InitializeInterfaceDescriptor(
197 Isolate* isolate,
198 CodeStubInterfaceDescriptor* descriptor) {
199 static Register registers[] = { r1, r0 };
200 descriptor->register_param_count_ = 2;
201 descriptor->register_params_ = registers;
202 descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
203 descriptor->SetMissHandler(
204 ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate));
205 }
206
207
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)208 static void InitializeArrayConstructorDescriptor(
209 Isolate* isolate,
210 CodeStubInterfaceDescriptor* descriptor,
211 int constant_stack_parameter_count) {
212 // register state
213 // r0 -- number of arguments
214 // r1 -- function
215 // r2 -- type info cell with elements kind
216 static Register registers_variable_args[] = { r1, r2, r0 };
217 static Register registers_no_args[] = { r1, r2 };
218
219 if (constant_stack_parameter_count == 0) {
220 descriptor->register_param_count_ = 2;
221 descriptor->register_params_ = registers_no_args;
222 } else {
223 // stack param count needs (constructor pointer, and single argument)
224 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
225 descriptor->stack_parameter_count_ = r0;
226 descriptor->register_param_count_ = 3;
227 descriptor->register_params_ = registers_variable_args;
228 }
229
230 descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
231 descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
232 descriptor->deoptimization_handler_ =
233 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
234 }
235
236
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)237 static void InitializeInternalArrayConstructorDescriptor(
238 Isolate* isolate,
239 CodeStubInterfaceDescriptor* descriptor,
240 int constant_stack_parameter_count) {
241 // register state
242 // r0 -- number of arguments
243 // r1 -- constructor function
244 static Register registers_variable_args[] = { r1, r0 };
245 static Register registers_no_args[] = { r1 };
246
247 if (constant_stack_parameter_count == 0) {
248 descriptor->register_param_count_ = 1;
249 descriptor->register_params_ = registers_no_args;
250 } else {
251 // stack param count needs (constructor pointer, and single argument)
252 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
253 descriptor->stack_parameter_count_ = r0;
254 descriptor->register_param_count_ = 2;
255 descriptor->register_params_ = registers_variable_args;
256 }
257
258 descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
259 descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
260 descriptor->deoptimization_handler_ =
261 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
262 }
263
264
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)265 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
266 Isolate* isolate,
267 CodeStubInterfaceDescriptor* descriptor) {
268 InitializeArrayConstructorDescriptor(isolate, descriptor, 0);
269 }
270
271
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)272 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
273 Isolate* isolate,
274 CodeStubInterfaceDescriptor* descriptor) {
275 InitializeArrayConstructorDescriptor(isolate, descriptor, 1);
276 }
277
278
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)279 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
280 Isolate* isolate,
281 CodeStubInterfaceDescriptor* descriptor) {
282 InitializeArrayConstructorDescriptor(isolate, descriptor, -1);
283 }
284
285
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)286 void ToBooleanStub::InitializeInterfaceDescriptor(
287 Isolate* isolate,
288 CodeStubInterfaceDescriptor* descriptor) {
289 static Register registers[] = { r0 };
290 descriptor->register_param_count_ = 1;
291 descriptor->register_params_ = registers;
292 descriptor->deoptimization_handler_ =
293 FUNCTION_ADDR(ToBooleanIC_Miss);
294 descriptor->SetMissHandler(
295 ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate));
296 }
297
298
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)299 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
300 Isolate* isolate,
301 CodeStubInterfaceDescriptor* descriptor) {
302 InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0);
303 }
304
305
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)306 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
307 Isolate* isolate,
308 CodeStubInterfaceDescriptor* descriptor) {
309 InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1);
310 }
311
312
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)313 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
314 Isolate* isolate,
315 CodeStubInterfaceDescriptor* descriptor) {
316 InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1);
317 }
318
319
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)320 void StoreGlobalStub::InitializeInterfaceDescriptor(
321 Isolate* isolate,
322 CodeStubInterfaceDescriptor* descriptor) {
323 static Register registers[] = { r1, r2, r0 };
324 descriptor->register_param_count_ = 3;
325 descriptor->register_params_ = registers;
326 descriptor->deoptimization_handler_ =
327 FUNCTION_ADDR(StoreIC_MissFromStubFailure);
328 }
329
330
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)331 void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
332 Isolate* isolate,
333 CodeStubInterfaceDescriptor* descriptor) {
334 static Register registers[] = { r0, r3, r1, r2 };
335 descriptor->register_param_count_ = 4;
336 descriptor->register_params_ = registers;
337 descriptor->deoptimization_handler_ =
338 FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
339 }
340
341
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)342 void NewStringAddStub::InitializeInterfaceDescriptor(
343 Isolate* isolate,
344 CodeStubInterfaceDescriptor* descriptor) {
345 static Register registers[] = { r1, r0 };
346 descriptor->register_param_count_ = 2;
347 descriptor->register_params_ = registers;
348 descriptor->deoptimization_handler_ =
349 Runtime::FunctionForId(Runtime::kStringAdd)->entry;
350 }
351
352
353 #define __ ACCESS_MASM(masm)
354
355
356 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
357 Label* slow,
358 Condition cond);
359 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
360 Register lhs,
361 Register rhs,
362 Label* lhs_not_nan,
363 Label* slow,
364 bool strict);
365 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
366 Register lhs,
367 Register rhs);
368
369
GenerateLightweightMiss(MacroAssembler * masm)370 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
371 // Update the static counter each time a new code stub is generated.
372 Isolate* isolate = masm->isolate();
373 isolate->counters()->code_stubs()->Increment();
374
375 CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate);
376 int param_count = descriptor->register_param_count_;
377 {
378 // Call the runtime system in a fresh internal frame.
379 FrameScope scope(masm, StackFrame::INTERNAL);
380 ASSERT(descriptor->register_param_count_ == 0 ||
381 r0.is(descriptor->register_params_[param_count - 1]));
382 // Push arguments
383 for (int i = 0; i < param_count; ++i) {
384 __ push(descriptor->register_params_[i]);
385 }
386 ExternalReference miss = descriptor->miss_handler();
387 __ CallExternalReference(miss, descriptor->register_param_count_);
388 }
389
390 __ Ret();
391 }
392
393
Generate(MacroAssembler * masm)394 void FastNewContextStub::Generate(MacroAssembler* masm) {
395 // Try to allocate the context in new space.
396 Label gc;
397 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
398
399 // Attempt to allocate the context in new space.
400 __ Allocate(FixedArray::SizeFor(length), r0, r1, r2, &gc, TAG_OBJECT);
401
402 // Load the function from the stack.
403 __ ldr(r3, MemOperand(sp, 0));
404
405 // Set up the object header.
406 __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
407 __ mov(r2, Operand(Smi::FromInt(length)));
408 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
409 __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
410
411 // Set up the fixed slots, copy the global object from the previous context.
412 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
413 __ mov(r1, Operand(Smi::FromInt(0)));
414 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
415 __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
416 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
417 __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
418
419 // Initialize the rest of the slots to undefined.
420 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
421 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
422 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
423 }
424
425 // Remove the on-stack argument and return.
426 __ mov(cp, r0);
427 __ pop();
428 __ Ret();
429
430 // Need to collect. Call into runtime system.
431 __ bind(&gc);
432 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
433 }
434
435
Generate(MacroAssembler * masm)436 void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
437 // Stack layout on entry:
438 //
439 // [sp]: function.
440 // [sp + kPointerSize]: serialized scope info
441
442 // Try to allocate the context in new space.
443 Label gc;
444 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
445 __ Allocate(FixedArray::SizeFor(length), r0, r1, r2, &gc, TAG_OBJECT);
446
447 // Load the function from the stack.
448 __ ldr(r3, MemOperand(sp, 0));
449
450 // Load the serialized scope info from the stack.
451 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
452
453 // Set up the object header.
454 __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
455 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
456 __ mov(r2, Operand(Smi::FromInt(length)));
457 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
458
459 // If this block context is nested in the native context we get a smi
460 // sentinel instead of a function. The block context should get the
461 // canonical empty function of the native context as its closure which
462 // we still have to look up.
463 Label after_sentinel;
464 __ JumpIfNotSmi(r3, &after_sentinel);
465 if (FLAG_debug_code) {
466 __ cmp(r3, Operand::Zero());
467 __ Assert(eq, kExpected0AsASmiSentinel);
468 }
469 __ ldr(r3, GlobalObjectOperand());
470 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
471 __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
472 __ bind(&after_sentinel);
473
474 // Set up the fixed slots, copy the global object from the previous context.
475 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
476 __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
477 __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
478 __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
479 __ str(r2, ContextOperand(r0, Context::GLOBAL_OBJECT_INDEX));
480
481 // Initialize the rest of the slots to the hole value.
482 __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
483 for (int i = 0; i < slots_; i++) {
484 __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
485 }
486
487 // Remove the on-stack argument and return.
488 __ mov(cp, r0);
489 __ add(sp, sp, Operand(2 * kPointerSize));
490 __ Ret();
491
492 // Need to collect. Call into runtime system.
493 __ bind(&gc);
494 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
495 }
496
497
498 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
499 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
500 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
501 // scratch register. Destroys the source register. No GC occurs during this
502 // stub so you don't have to set up the frame.
503 class ConvertToDoubleStub : public PlatformCodeStub {
504 public:
ConvertToDoubleStub(Register result_reg_1,Register result_reg_2,Register source_reg,Register scratch_reg)505 ConvertToDoubleStub(Register result_reg_1,
506 Register result_reg_2,
507 Register source_reg,
508 Register scratch_reg)
509 : result1_(result_reg_1),
510 result2_(result_reg_2),
511 source_(source_reg),
512 zeros_(scratch_reg) { }
513
514 private:
515 Register result1_;
516 Register result2_;
517 Register source_;
518 Register zeros_;
519
520 // Minor key encoding in 16 bits.
521 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
522 class OpBits: public BitField<Token::Value, 2, 14> {};
523
MajorKey()524 Major MajorKey() { return ConvertToDouble; }
MinorKey()525 int MinorKey() {
526 // Encode the parameters in a unique 16 bit value.
527 return result1_.code() +
528 (result2_.code() << 4) +
529 (source_.code() << 8) +
530 (zeros_.code() << 12);
531 }
532
533 void Generate(MacroAssembler* masm);
534 };
535
536
Generate(MacroAssembler * masm)537 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
538 Register exponent = result1_;
539 Register mantissa = result2_;
540
541 Label not_special;
542 __ SmiUntag(source_);
543 // Move sign bit from source to destination. This works because the sign bit
544 // in the exponent word of the double has the same position and polarity as
545 // the 2's complement sign bit in a Smi.
546 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
547 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
548 // Subtract from 0 if source was negative.
549 __ rsb(source_, source_, Operand::Zero(), LeaveCC, ne);
550
551 // We have -1, 0 or 1, which we treat specially. Register source_ contains
552 // absolute value: it is either equal to 1 (special case of -1 and 1),
553 // greater than 1 (not a special case) or less than 1 (special case of 0).
554 __ cmp(source_, Operand(1));
555 __ b(gt, ¬_special);
556
557 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
558 const uint32_t exponent_word_for_1 =
559 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
560 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
561 // 1, 0 and -1 all have 0 for the second word.
562 __ mov(mantissa, Operand::Zero());
563 __ Ret();
564
565 __ bind(¬_special);
566 __ clz(zeros_, source_);
567 // Compute exponent and or it into the exponent register.
568 // We use mantissa as a scratch register here. Use a fudge factor to
569 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
570 // that fit in the ARM's constant field.
571 int fudge = 0x400;
572 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
573 __ add(mantissa, mantissa, Operand(fudge));
574 __ orr(exponent,
575 exponent,
576 Operand(mantissa, LSL, HeapNumber::kExponentShift));
577 // Shift up the source chopping the top bit off.
578 __ add(zeros_, zeros_, Operand(1));
579 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
580 __ mov(source_, Operand(source_, LSL, zeros_));
581 // Compute lower part of fraction (last 12 bits).
582 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
583 // And the top (top 20 bits).
584 __ orr(exponent,
585 exponent,
586 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
587 __ Ret();
588 }
589
590
Generate(MacroAssembler * masm)591 void DoubleToIStub::Generate(MacroAssembler* masm) {
592 Label out_of_range, only_low, negate, done;
593 Register input_reg = source();
594 Register result_reg = destination();
595
596 int double_offset = offset();
597 // Account for saved regs if input is sp.
598 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
599
600 // Immediate values for this stub fit in instructions, so it's safe to use ip.
601 Register scratch = ip;
602 Register scratch_low =
603 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
604 Register scratch_high =
605 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
606 LowDwVfpRegister double_scratch = kScratchDoubleReg;
607
608 __ Push(scratch_high, scratch_low);
609
610 if (!skip_fastpath()) {
611 // Load double input.
612 __ vldr(double_scratch, MemOperand(input_reg, double_offset));
613 __ vmov(scratch_low, scratch_high, double_scratch);
614
615 // Do fast-path convert from double to int.
616 __ vcvt_s32_f64(double_scratch.low(), double_scratch);
617 __ vmov(result_reg, double_scratch.low());
618
619 // If result is not saturated (0x7fffffff or 0x80000000), we are done.
620 __ sub(scratch, result_reg, Operand(1));
621 __ cmp(scratch, Operand(0x7ffffffe));
622 __ b(lt, &done);
623 } else {
624 // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
625 // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
626 if (double_offset == 0) {
627 __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
628 } else {
629 __ ldr(scratch_low, MemOperand(input_reg, double_offset));
630 __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
631 }
632 }
633
634 __ Ubfx(scratch, scratch_high,
635 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
636 // Load scratch with exponent - 1. This is faster than loading
637 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
638 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
639 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
640 // If exponent is greater than or equal to 84, the 32 less significant
641 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
642 // the result is 0.
643 // Compare exponent with 84 (compare exponent - 1 with 83).
644 __ cmp(scratch, Operand(83));
645 __ b(ge, &out_of_range);
646
647 // If we reach this code, 31 <= exponent <= 83.
648 // So, we don't have to handle cases where 0 <= exponent <= 20 for
649 // which we would need to shift right the high part of the mantissa.
650 // Scratch contains exponent - 1.
651 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
652 __ rsb(scratch, scratch, Operand(51), SetCC);
653 __ b(ls, &only_low);
654 // 21 <= exponent <= 51, shift scratch_low and scratch_high
655 // to generate the result.
656 __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
657 // Scratch contains: 52 - exponent.
658 // We needs: exponent - 20.
659 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
660 __ rsb(scratch, scratch, Operand(32));
661 __ Ubfx(result_reg, scratch_high,
662 0, HeapNumber::kMantissaBitsInTopWord);
663 // Set the implicit 1 before the mantissa part in scratch_high.
664 __ orr(result_reg, result_reg,
665 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
666 __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
667 __ b(&negate);
668
669 __ bind(&out_of_range);
670 __ mov(result_reg, Operand::Zero());
671 __ b(&done);
672
673 __ bind(&only_low);
674 // 52 <= exponent <= 83, shift only scratch_low.
675 // On entry, scratch contains: 52 - exponent.
676 __ rsb(scratch, scratch, Operand::Zero());
677 __ mov(result_reg, Operand(scratch_low, LSL, scratch));
678
679 __ bind(&negate);
680 // If input was positive, scratch_high ASR 31 equals 0 and
681 // scratch_high LSR 31 equals zero.
682 // New result = (result eor 0) + 0 = result.
683 // If the input was negative, we have to negate the result.
684 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
685 // New result = (result eor 0xffffffff) + 1 = 0 - result.
686 __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
687 __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
688
689 __ bind(&done);
690
691 __ Pop(scratch_high, scratch_low);
692 __ Ret();
693 }
694
695
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)696 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
697 Isolate* isolate) {
698 WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
699 WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
700 stub1.GetCode(isolate);
701 stub2.GetCode(isolate);
702 }
703
704
705 // See comment for class.
Generate(MacroAssembler * masm)706 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
707 Label max_negative_int;
708 // the_int_ has the answer which is a signed int32 but not a Smi.
709 // We test for the special value that has a different exponent. This test
710 // has the neat side effect of setting the flags according to the sign.
711 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
712 __ cmp(the_int_, Operand(0x80000000u));
713 __ b(eq, &max_negative_int);
714 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
715 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
716 uint32_t non_smi_exponent =
717 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
718 __ mov(scratch_, Operand(non_smi_exponent));
719 // Set the sign bit in scratch_ if the value was negative.
720 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
721 // Subtract from 0 if the value was negative.
722 __ rsb(the_int_, the_int_, Operand::Zero(), LeaveCC, cs);
723 // We should be masking the implict first digit of the mantissa away here,
724 // but it just ends up combining harmlessly with the last digit of the
725 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
726 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
727 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
728 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
729 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
730 __ str(scratch_, FieldMemOperand(the_heap_number_,
731 HeapNumber::kExponentOffset));
732 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
733 __ str(scratch_, FieldMemOperand(the_heap_number_,
734 HeapNumber::kMantissaOffset));
735 __ Ret();
736
737 __ bind(&max_negative_int);
738 // The max negative int32 is stored as a positive number in the mantissa of
739 // a double because it uses a sign bit instead of using two's complement.
740 // The actual mantissa bits stored are all 0 because the implicit most
741 // significant 1 bit is not stored.
742 non_smi_exponent += 1 << HeapNumber::kExponentShift;
743 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
744 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
745 __ mov(ip, Operand::Zero());
746 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
747 __ Ret();
748 }
749
750
751 // Handle the case where the lhs and rhs are the same object.
752 // Equality is almost reflexive (everything but NaN), so this is a test
753 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond)754 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
755 Label* slow,
756 Condition cond) {
757 Label not_identical;
758 Label heap_number, return_equal;
759 __ cmp(r0, r1);
760 __ b(ne, ¬_identical);
761
762 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
763 // so we do the second best thing - test it ourselves.
764 // They are both equal and they are not both Smis so both of them are not
765 // Smis. If it's not a heap number, then return equal.
766 if (cond == lt || cond == gt) {
767 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
768 __ b(ge, slow);
769 } else {
770 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
771 __ b(eq, &heap_number);
772 // Comparing JS objects with <=, >= is complicated.
773 if (cond != eq) {
774 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
775 __ b(ge, slow);
776 // Normally here we fall through to return_equal, but undefined is
777 // special: (undefined == undefined) == true, but
778 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
779 if (cond == le || cond == ge) {
780 __ cmp(r4, Operand(ODDBALL_TYPE));
781 __ b(ne, &return_equal);
782 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
783 __ cmp(r0, r2);
784 __ b(ne, &return_equal);
785 if (cond == le) {
786 // undefined <= undefined should fail.
787 __ mov(r0, Operand(GREATER));
788 } else {
789 // undefined >= undefined should fail.
790 __ mov(r0, Operand(LESS));
791 }
792 __ Ret();
793 }
794 }
795 }
796
797 __ bind(&return_equal);
798 if (cond == lt) {
799 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
800 } else if (cond == gt) {
801 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
802 } else {
803 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
804 }
805 __ Ret();
806
807 // For less and greater we don't have to check for NaN since the result of
808 // x < x is false regardless. For the others here is some code to check
809 // for NaN.
810 if (cond != lt && cond != gt) {
811 __ bind(&heap_number);
812 // It is a heap number, so return non-equal if it's NaN and equal if it's
813 // not NaN.
814
815 // The representation of NaN values has all exponent bits (52..62) set,
816 // and not all mantissa bits (0..51) clear.
817 // Read top bits of double representation (second word of value).
818 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
819 // Test that exponent bits are all set.
820 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
821 // NaNs have all-one exponents so they sign extend to -1.
822 __ cmp(r3, Operand(-1));
823 __ b(ne, &return_equal);
824
825 // Shift out flag and all exponent bits, retaining only mantissa.
826 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
827 // Or with all low-bits of mantissa.
828 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
829 __ orr(r0, r3, Operand(r2), SetCC);
830 // For equal we already have the right value in r0: Return zero (equal)
831 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
832 // not (it's a NaN). For <= and >= we need to load r0 with the failing
833 // value if it's a NaN.
834 if (cond != eq) {
835 // All-zero means Infinity means equal.
836 __ Ret(eq);
837 if (cond == le) {
838 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
839 } else {
840 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
841 }
842 }
843 __ Ret();
844 }
845 // No fall through here.
846
847 __ bind(¬_identical);
848 }
849
850
851 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)852 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
853 Register lhs,
854 Register rhs,
855 Label* lhs_not_nan,
856 Label* slow,
857 bool strict) {
858 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
859 (lhs.is(r1) && rhs.is(r0)));
860
861 Label rhs_is_smi;
862 __ JumpIfSmi(rhs, &rhs_is_smi);
863
864 // Lhs is a Smi. Check whether the rhs is a heap number.
865 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
866 if (strict) {
867 // If rhs is not a number and lhs is a Smi then strict equality cannot
868 // succeed. Return non-equal
869 // If rhs is r0 then there is already a non zero value in it.
870 if (!rhs.is(r0)) {
871 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
872 }
873 __ Ret(ne);
874 } else {
875 // Smi compared non-strictly with a non-Smi non-heap-number. Call
876 // the runtime.
877 __ b(ne, slow);
878 }
879
880 // Lhs is a smi, rhs is a number.
881 // Convert lhs to a double in d7.
882 __ SmiToDouble(d7, lhs);
883 // Load the double from rhs, tagged HeapNumber r0, to d6.
884 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
885
886 // We now have both loaded as doubles but we can skip the lhs nan check
887 // since it's a smi.
888 __ jmp(lhs_not_nan);
889
890 __ bind(&rhs_is_smi);
891 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
892 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
893 if (strict) {
894 // If lhs is not a number and rhs is a smi then strict equality cannot
895 // succeed. Return non-equal.
896 // If lhs is r0 then there is already a non zero value in it.
897 if (!lhs.is(r0)) {
898 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
899 }
900 __ Ret(ne);
901 } else {
902 // Smi compared non-strictly with a non-smi non-heap-number. Call
903 // the runtime.
904 __ b(ne, slow);
905 }
906
907 // Rhs is a smi, lhs is a heap number.
908 // Load the double from lhs, tagged HeapNumber r1, to d7.
909 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
910 // Convert rhs to a double in d6 .
911 __ SmiToDouble(d6, rhs);
912 // Fall through to both_loaded_as_doubles.
913 }
914
915
916 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)917 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
918 Register lhs,
919 Register rhs) {
920 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
921 (lhs.is(r1) && rhs.is(r0)));
922
923 // If either operand is a JS object or an oddball value, then they are
924 // not equal since their pointers are different.
925 // There is no test for undetectability in strict equality.
926 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
927 Label first_non_object;
928 // Get the type of the first operand into r2 and compare it with
929 // FIRST_SPEC_OBJECT_TYPE.
930 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
931 __ b(lt, &first_non_object);
932
933 // Return non-zero (r0 is not zero)
934 Label return_not_equal;
935 __ bind(&return_not_equal);
936 __ Ret();
937
938 __ bind(&first_non_object);
939 // Check for oddballs: true, false, null, undefined.
940 __ cmp(r2, Operand(ODDBALL_TYPE));
941 __ b(eq, &return_not_equal);
942
943 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
944 __ b(ge, &return_not_equal);
945
946 // Check for oddballs: true, false, null, undefined.
947 __ cmp(r3, Operand(ODDBALL_TYPE));
948 __ b(eq, &return_not_equal);
949
950 // Now that we have the types we might as well check for
951 // internalized-internalized.
952 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
953 __ orr(r2, r2, Operand(r3));
954 __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
955 __ b(eq, &return_not_equal);
956 }
957
958
959 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)960 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
961 Register lhs,
962 Register rhs,
963 Label* both_loaded_as_doubles,
964 Label* not_heap_numbers,
965 Label* slow) {
966 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
967 (lhs.is(r1) && rhs.is(r0)));
968
969 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
970 __ b(ne, not_heap_numbers);
971 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
972 __ cmp(r2, r3);
973 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
974
975 // Both are heap numbers. Load them up then jump to the code we have
976 // for that.
977 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
978 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
979 __ jmp(both_loaded_as_doubles);
980 }
981
982
983 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)984 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
985 Register lhs,
986 Register rhs,
987 Label* possible_strings,
988 Label* not_both_strings) {
989 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
990 (lhs.is(r1) && rhs.is(r0)));
991
992 // r2 is object type of rhs.
993 Label object_test;
994 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
995 __ tst(r2, Operand(kIsNotStringMask));
996 __ b(ne, &object_test);
997 __ tst(r2, Operand(kIsNotInternalizedMask));
998 __ b(ne, possible_strings);
999 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1000 __ b(ge, not_both_strings);
1001 __ tst(r3, Operand(kIsNotInternalizedMask));
1002 __ b(ne, possible_strings);
1003
1004 // Both are internalized. We already checked they weren't the same pointer
1005 // so they are not equal.
1006 __ mov(r0, Operand(NOT_EQUAL));
1007 __ Ret();
1008
1009 __ bind(&object_test);
1010 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
1011 __ b(lt, not_both_strings);
1012 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
1013 __ b(lt, not_both_strings);
1014 // If both objects are undetectable, they are equal. Otherwise, they
1015 // are not equal, since they are different objects and an object is not
1016 // equal to undefined.
1017 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1018 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1019 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1020 __ and_(r0, r2, Operand(r3));
1021 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1022 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1023 __ Ret();
1024 }
1025
1026
ICCompareStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareIC::State expected,Label * fail)1027 static void ICCompareStub_CheckInputType(MacroAssembler* masm,
1028 Register input,
1029 Register scratch,
1030 CompareIC::State expected,
1031 Label* fail) {
1032 Label ok;
1033 if (expected == CompareIC::SMI) {
1034 __ JumpIfNotSmi(input, fail);
1035 } else if (expected == CompareIC::NUMBER) {
1036 __ JumpIfSmi(input, &ok);
1037 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
1038 DONT_DO_SMI_CHECK);
1039 }
1040 // We could be strict about internalized/non-internalized here, but as long as
1041 // hydrogen doesn't care, the stub doesn't have to care either.
1042 __ bind(&ok);
1043 }
1044
1045
1046 // On entry r1 and r2 are the values to be compared.
1047 // On exit r0 is 0, positive or negative to indicate the result of
1048 // the comparison.
GenerateGeneric(MacroAssembler * masm)1049 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
1050 Register lhs = r1;
1051 Register rhs = r0;
1052 Condition cc = GetCondition();
1053
1054 Label miss;
1055 ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss);
1056 ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss);
1057
1058 Label slow; // Call builtin.
1059 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1060
1061 Label not_two_smis, smi_done;
1062 __ orr(r2, r1, r0);
1063 __ JumpIfNotSmi(r2, ¬_two_smis);
1064 __ mov(r1, Operand(r1, ASR, 1));
1065 __ sub(r0, r1, Operand(r0, ASR, 1));
1066 __ Ret();
1067 __ bind(¬_two_smis);
1068
1069 // NOTICE! This code is only reached after a smi-fast-case check, so
1070 // it is certain that at least one operand isn't a smi.
1071
1072 // Handle the case where the objects are identical. Either returns the answer
1073 // or goes to slow. Only falls through if the objects were not identical.
1074 EmitIdenticalObjectComparison(masm, &slow, cc);
1075
1076 // If either is a Smi (we know that not both are), then they can only
1077 // be strictly equal if the other is a HeapNumber.
1078 STATIC_ASSERT(kSmiTag == 0);
1079 ASSERT_EQ(0, Smi::FromInt(0));
1080 __ and_(r2, lhs, Operand(rhs));
1081 __ JumpIfNotSmi(r2, ¬_smis);
1082 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1083 // 1) Return the answer.
1084 // 2) Go to slow.
1085 // 3) Fall through to both_loaded_as_doubles.
1086 // 4) Jump to lhs_not_nan.
1087 // In cases 3 and 4 we have found out we were dealing with a number-number
1088 // comparison. If VFP3 is supported the double values of the numbers have
1089 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1090 // into r0, r1, r2, and r3.
1091 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
1092
1093 __ bind(&both_loaded_as_doubles);
1094 // The arguments have been converted to doubles and stored in d6 and d7, if
1095 // VFP3 is supported, or in r0, r1, r2, and r3.
1096 Isolate* isolate = masm->isolate();
1097 __ bind(&lhs_not_nan);
1098 Label no_nan;
1099 // ARMv7 VFP3 instructions to implement double precision comparison.
1100 __ VFPCompareAndSetFlags(d7, d6);
1101 Label nan;
1102 __ b(vs, &nan);
1103 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1104 __ mov(r0, Operand(LESS), LeaveCC, lt);
1105 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1106 __ Ret();
1107
1108 __ bind(&nan);
1109 // If one of the sides was a NaN then the v flag is set. Load r0 with
1110 // whatever it takes to make the comparison fail, since comparisons with NaN
1111 // always fail.
1112 if (cc == lt || cc == le) {
1113 __ mov(r0, Operand(GREATER));
1114 } else {
1115 __ mov(r0, Operand(LESS));
1116 }
1117 __ Ret();
1118
1119 __ bind(¬_smis);
1120 // At this point we know we are dealing with two different objects,
1121 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
1122 if (strict()) {
1123 // This returns non-equal for some object types, or falls through if it
1124 // was not lucky.
1125 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
1126 }
1127
1128 Label check_for_internalized_strings;
1129 Label flat_string_check;
1130 // Check for heap-number-heap-number comparison. Can jump to slow case,
1131 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1132 // that case. If the inputs are not doubles then jumps to
1133 // check_for_internalized_strings.
1134 // In this case r2 will contain the type of rhs_. Never falls through.
1135 EmitCheckForTwoHeapNumbers(masm,
1136 lhs,
1137 rhs,
1138 &both_loaded_as_doubles,
1139 &check_for_internalized_strings,
1140 &flat_string_check);
1141
1142 __ bind(&check_for_internalized_strings);
1143 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1144 // internalized strings.
1145 if (cc == eq && !strict()) {
1146 // Returns an answer for two internalized strings or two detectable objects.
1147 // Otherwise jumps to string case or not both strings case.
1148 // Assumes that r2 is the type of rhs_ on entry.
1149 EmitCheckForInternalizedStringsOrObjects(
1150 masm, lhs, rhs, &flat_string_check, &slow);
1151 }
1152
1153 // Check for both being sequential ASCII strings, and inline if that is the
1154 // case.
1155 __ bind(&flat_string_check);
1156
1157 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow);
1158
1159 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
1160 if (cc == eq) {
1161 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1162 lhs,
1163 rhs,
1164 r2,
1165 r3,
1166 r4);
1167 } else {
1168 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1169 lhs,
1170 rhs,
1171 r2,
1172 r3,
1173 r4,
1174 r5);
1175 }
1176 // Never falls through to here.
1177
1178 __ bind(&slow);
1179
1180 __ Push(lhs, rhs);
1181 // Figure out which native to call and setup the arguments.
1182 Builtins::JavaScript native;
1183 if (cc == eq) {
1184 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1185 } else {
1186 native = Builtins::COMPARE;
1187 int ncr; // NaN compare result
1188 if (cc == lt || cc == le) {
1189 ncr = GREATER;
1190 } else {
1191 ASSERT(cc == gt || cc == ge); // remaining cases
1192 ncr = LESS;
1193 }
1194 __ mov(r0, Operand(Smi::FromInt(ncr)));
1195 __ push(r0);
1196 }
1197
1198 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1199 // tagged as a small integer.
1200 __ InvokeBuiltin(native, JUMP_FUNCTION);
1201
1202 __ bind(&miss);
1203 GenerateMiss(masm);
1204 }
1205
1206
Generate(MacroAssembler * masm)1207 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1208 // We don't allow a GC during a store buffer overflow so there is no need to
1209 // store the registers in any particular way, but we do have to store and
1210 // restore them.
1211 __ stm(db_w, sp, kCallerSaved | lr.bit());
1212
1213 const Register scratch = r1;
1214
1215 if (save_doubles_ == kSaveFPRegs) {
1216 __ SaveFPRegs(sp, scratch);
1217 }
1218 const int argument_count = 1;
1219 const int fp_argument_count = 0;
1220
1221 AllowExternalCallThatCantCauseGC scope(masm);
1222 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1223 __ mov(r0, Operand(ExternalReference::isolate_address(masm->isolate())));
1224 __ CallCFunction(
1225 ExternalReference::store_buffer_overflow_function(masm->isolate()),
1226 argument_count);
1227 if (save_doubles_ == kSaveFPRegs) {
1228 __ RestoreFPRegs(sp, scratch);
1229 }
1230 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
1231 }
1232
1233
Generate(MacroAssembler * masm)1234 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
1235 // Untagged case: double input in d2, double result goes
1236 // into d2.
1237 // Tagged case: tagged input on top of stack and in r0,
1238 // tagged result (heap number) goes into r0.
1239
1240 Label input_not_smi;
1241 Label loaded;
1242 Label calculate;
1243 Label invalid_cache;
1244 const Register scratch0 = r9;
1245 Register scratch1 = no_reg; // will be r4
1246 const Register cache_entry = r0;
1247 const bool tagged = (argument_type_ == TAGGED);
1248
1249 if (tagged) {
1250 // Argument is a number and is on stack and in r0.
1251 // Load argument and check if it is a smi.
1252 __ JumpIfNotSmi(r0, &input_not_smi);
1253
1254 // Input is a smi. Convert to double and load the low and high words
1255 // of the double into r2, r3.
1256 __ SmiToDouble(d7, r0);
1257 __ vmov(r2, r3, d7);
1258 __ b(&loaded);
1259
1260 __ bind(&input_not_smi);
1261 // Check if input is a HeapNumber.
1262 __ CheckMap(r0,
1263 r1,
1264 Heap::kHeapNumberMapRootIndex,
1265 &calculate,
1266 DONT_DO_SMI_CHECK);
1267 // Input is a HeapNumber. Load it to a double register and store the
1268 // low and high words into r2, r3.
1269 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
1270 __ vmov(r2, r3, d0);
1271 } else {
1272 // Input is untagged double in d2. Output goes to d2.
1273 __ vmov(r2, r3, d2);
1274 }
1275 __ bind(&loaded);
1276 // r2 = low 32 bits of double value
1277 // r3 = high 32 bits of double value
1278 // Compute hash (the shifts are arithmetic):
1279 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
1280 __ eor(r1, r2, Operand(r3));
1281 __ eor(r1, r1, Operand(r1, ASR, 16));
1282 __ eor(r1, r1, Operand(r1, ASR, 8));
1283 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
1284 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
1285
1286 // r2 = low 32 bits of double value.
1287 // r3 = high 32 bits of double value.
1288 // r1 = TranscendentalCache::hash(double value).
1289 Isolate* isolate = masm->isolate();
1290 ExternalReference cache_array =
1291 ExternalReference::transcendental_cache_array_address(isolate);
1292 __ mov(cache_entry, Operand(cache_array));
1293 // cache_entry points to cache array.
1294 int cache_array_index
1295 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
1296 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
1297 // r0 points to the cache for the type type_.
1298 // If NULL, the cache hasn't been initialized yet, so go through runtime.
1299 __ cmp(cache_entry, Operand::Zero());
1300 __ b(eq, &invalid_cache);
1301
1302 #ifdef DEBUG
1303 // Check that the layout of cache elements match expectations.
1304 { TranscendentalCache::SubCache::Element test_elem[2];
1305 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
1306 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
1307 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
1308 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
1309 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
1310 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
1311 CHECK_EQ(0, elem_in0 - elem_start);
1312 CHECK_EQ(kIntSize, elem_in1 - elem_start);
1313 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
1314 }
1315 #endif
1316
1317 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
1318 __ add(r1, r1, Operand(r1, LSL, 1));
1319 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
1320 // Check if cache matches: Double value is stored in uint32_t[2] array.
1321 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
1322 __ cmp(r2, r4);
1323 __ cmp(r3, r5, eq);
1324 __ b(ne, &calculate);
1325
1326 scratch1 = r4; // Start of scratch1 range.
1327
1328 // Cache hit. Load result, cleanup and return.
1329 Counters* counters = masm->isolate()->counters();
1330 __ IncrementCounter(
1331 counters->transcendental_cache_hit(), 1, scratch0, scratch1);
1332 if (tagged) {
1333 // Pop input value from stack and load result into r0.
1334 __ pop();
1335 __ mov(r0, Operand(r6));
1336 } else {
1337 // Load result into d2.
1338 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
1339 }
1340 __ Ret();
1341
1342 __ bind(&calculate);
1343 __ IncrementCounter(
1344 counters->transcendental_cache_miss(), 1, scratch0, scratch1);
1345 if (tagged) {
1346 __ bind(&invalid_cache);
1347 ExternalReference runtime_function =
1348 ExternalReference(RuntimeFunction(), masm->isolate());
1349 __ TailCallExternalReference(runtime_function, 1, 1);
1350 } else {
1351 Label no_update;
1352 Label skip_cache;
1353
1354 // Call C function to calculate the result and update the cache.
1355 // r0: precalculated cache entry address.
1356 // r2 and r3: parts of the double value.
1357 // Store r0, r2 and r3 on stack for later before calling C function.
1358 __ Push(r3, r2, cache_entry);
1359 GenerateCallCFunction(masm, scratch0);
1360 __ GetCFunctionDoubleResult(d2);
1361
1362 // Try to update the cache. If we cannot allocate a
1363 // heap number, we return the result without updating.
1364 __ Pop(r3, r2, cache_entry);
1365 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
1366 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
1367 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
1368 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
1369 __ Ret();
1370
1371 __ bind(&invalid_cache);
1372 // The cache is invalid. Call runtime which will recreate the
1373 // cache.
1374 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
1375 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
1376 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
1377 {
1378 FrameScope scope(masm, StackFrame::INTERNAL);
1379 __ push(r0);
1380 __ CallRuntime(RuntimeFunction(), 1);
1381 }
1382 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
1383 __ Ret();
1384
1385 __ bind(&skip_cache);
1386 // Call C function to calculate the result and answer directly
1387 // without updating the cache.
1388 GenerateCallCFunction(masm, scratch0);
1389 __ GetCFunctionDoubleResult(d2);
1390 __ bind(&no_update);
1391
1392 // We return the value in d2 without adding it to the cache, but
1393 // we cause a scavenging GC so that future allocations will succeed.
1394 {
1395 FrameScope scope(masm, StackFrame::INTERNAL);
1396
1397 // Allocate an aligned object larger than a HeapNumber.
1398 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
1399 __ mov(scratch0, Operand(4 * kPointerSize));
1400 __ push(scratch0);
1401 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
1402 }
1403 __ Ret();
1404 }
1405 }
1406
1407
GenerateCallCFunction(MacroAssembler * masm,Register scratch)1408 void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
1409 Register scratch) {
1410 Isolate* isolate = masm->isolate();
1411
1412 __ push(lr);
1413 __ PrepareCallCFunction(0, 1, scratch);
1414 if (masm->use_eabi_hardfloat()) {
1415 __ vmov(d0, d2);
1416 } else {
1417 __ vmov(r0, r1, d2);
1418 }
1419 AllowExternalCallThatCantCauseGC scope(masm);
1420 switch (type_) {
1421 case TranscendentalCache::SIN:
1422 __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
1423 0, 1);
1424 break;
1425 case TranscendentalCache::COS:
1426 __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
1427 0, 1);
1428 break;
1429 case TranscendentalCache::TAN:
1430 __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
1431 0, 1);
1432 break;
1433 case TranscendentalCache::LOG:
1434 __ CallCFunction(ExternalReference::math_log_double_function(isolate),
1435 0, 1);
1436 break;
1437 default:
1438 UNIMPLEMENTED();
1439 break;
1440 }
1441 __ pop(lr);
1442 }
1443
1444
RuntimeFunction()1445 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
1446 switch (type_) {
1447 // Add more cases when necessary.
1448 case TranscendentalCache::SIN: return Runtime::kMath_sin;
1449 case TranscendentalCache::COS: return Runtime::kMath_cos;
1450 case TranscendentalCache::TAN: return Runtime::kMath_tan;
1451 case TranscendentalCache::LOG: return Runtime::kMath_log;
1452 default:
1453 UNIMPLEMENTED();
1454 return Runtime::kAbort;
1455 }
1456 }
1457
1458
Generate(MacroAssembler * masm)1459 void MathPowStub::Generate(MacroAssembler* masm) {
1460 const Register base = r1;
1461 const Register exponent = r2;
1462 const Register heapnumbermap = r5;
1463 const Register heapnumber = r0;
1464 const DwVfpRegister double_base = d0;
1465 const DwVfpRegister double_exponent = d1;
1466 const DwVfpRegister double_result = d2;
1467 const DwVfpRegister double_scratch = d3;
1468 const SwVfpRegister single_scratch = s6;
1469 const Register scratch = r9;
1470 const Register scratch2 = r4;
1471
1472 Label call_runtime, done, int_exponent;
1473 if (exponent_type_ == ON_STACK) {
1474 Label base_is_smi, unpack_exponent;
1475 // The exponent and base are supplied as arguments on the stack.
1476 // This can only happen if the stub is called from non-optimized code.
1477 // Load input parameters from stack to double registers.
1478 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
1479 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
1480
1481 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
1482
1483 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
1484 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
1485 __ cmp(scratch, heapnumbermap);
1486 __ b(ne, &call_runtime);
1487
1488 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
1489 __ jmp(&unpack_exponent);
1490
1491 __ bind(&base_is_smi);
1492 __ vmov(single_scratch, scratch);
1493 __ vcvt_f64_s32(double_base, single_scratch);
1494 __ bind(&unpack_exponent);
1495
1496 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
1497
1498 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
1499 __ cmp(scratch, heapnumbermap);
1500 __ b(ne, &call_runtime);
1501 __ vldr(double_exponent,
1502 FieldMemOperand(exponent, HeapNumber::kValueOffset));
1503 } else if (exponent_type_ == TAGGED) {
1504 // Base is already in double_base.
1505 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
1506
1507 __ vldr(double_exponent,
1508 FieldMemOperand(exponent, HeapNumber::kValueOffset));
1509 }
1510
1511 if (exponent_type_ != INTEGER) {
1512 Label int_exponent_convert;
1513 // Detect integer exponents stored as double.
1514 __ vcvt_u32_f64(single_scratch, double_exponent);
1515 // We do not check for NaN or Infinity here because comparing numbers on
1516 // ARM correctly distinguishes NaNs. We end up calling the built-in.
1517 __ vcvt_f64_u32(double_scratch, single_scratch);
1518 __ VFPCompareAndSetFlags(double_scratch, double_exponent);
1519 __ b(eq, &int_exponent_convert);
1520
1521 if (exponent_type_ == ON_STACK) {
1522 // Detect square root case. Crankshaft detects constant +/-0.5 at
1523 // compile time and uses DoMathPowHalf instead. We then skip this check
1524 // for non-constant cases of +/-0.5 as these hardly occur.
1525 Label not_plus_half;
1526
1527 // Test for 0.5.
1528 __ vmov(double_scratch, 0.5, scratch);
1529 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
1530 __ b(ne, ¬_plus_half);
1531
1532 // Calculates square root of base. Check for the special case of
1533 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
1534 __ vmov(double_scratch, -V8_INFINITY, scratch);
1535 __ VFPCompareAndSetFlags(double_base, double_scratch);
1536 __ vneg(double_result, double_scratch, eq);
1537 __ b(eq, &done);
1538
1539 // Add +0 to convert -0 to +0.
1540 __ vadd(double_scratch, double_base, kDoubleRegZero);
1541 __ vsqrt(double_result, double_scratch);
1542 __ jmp(&done);
1543
1544 __ bind(¬_plus_half);
1545 __ vmov(double_scratch, -0.5, scratch);
1546 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
1547 __ b(ne, &call_runtime);
1548
1549 // Calculates square root of base. Check for the special case of
1550 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
1551 __ vmov(double_scratch, -V8_INFINITY, scratch);
1552 __ VFPCompareAndSetFlags(double_base, double_scratch);
1553 __ vmov(double_result, kDoubleRegZero, eq);
1554 __ b(eq, &done);
1555
1556 // Add +0 to convert -0 to +0.
1557 __ vadd(double_scratch, double_base, kDoubleRegZero);
1558 __ vmov(double_result, 1.0, scratch);
1559 __ vsqrt(double_scratch, double_scratch);
1560 __ vdiv(double_result, double_result, double_scratch);
1561 __ jmp(&done);
1562 }
1563
1564 __ push(lr);
1565 {
1566 AllowExternalCallThatCantCauseGC scope(masm);
1567 __ PrepareCallCFunction(0, 2, scratch);
1568 __ SetCallCDoubleArguments(double_base, double_exponent);
1569 __ CallCFunction(
1570 ExternalReference::power_double_double_function(masm->isolate()),
1571 0, 2);
1572 }
1573 __ pop(lr);
1574 __ GetCFunctionDoubleResult(double_result);
1575 __ jmp(&done);
1576
1577 __ bind(&int_exponent_convert);
1578 __ vcvt_u32_f64(single_scratch, double_exponent);
1579 __ vmov(scratch, single_scratch);
1580 }
1581
1582 // Calculate power with integer exponent.
1583 __ bind(&int_exponent);
1584
1585 // Get two copies of exponent in the registers scratch and exponent.
1586 if (exponent_type_ == INTEGER) {
1587 __ mov(scratch, exponent);
1588 } else {
1589 // Exponent has previously been stored into scratch as untagged integer.
1590 __ mov(exponent, scratch);
1591 }
1592 __ vmov(double_scratch, double_base); // Back up base.
1593 __ vmov(double_result, 1.0, scratch2);
1594
1595 // Get absolute value of exponent.
1596 __ cmp(scratch, Operand::Zero());
1597 __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
1598 __ sub(scratch, scratch2, scratch, LeaveCC, mi);
1599
1600 Label while_true;
1601 __ bind(&while_true);
1602 __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
1603 __ vmul(double_result, double_result, double_scratch, cs);
1604 __ vmul(double_scratch, double_scratch, double_scratch, ne);
1605 __ b(ne, &while_true);
1606
1607 __ cmp(exponent, Operand::Zero());
1608 __ b(ge, &done);
1609 __ vmov(double_scratch, 1.0, scratch);
1610 __ vdiv(double_result, double_scratch, double_result);
1611 // Test whether result is zero. Bail out to check for subnormal result.
1612 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
1613 __ VFPCompareAndSetFlags(double_result, 0.0);
1614 __ b(ne, &done);
1615 // double_exponent may not containe the exponent value if the input was a
1616 // smi. We set it with exponent value before bailing out.
1617 __ vmov(single_scratch, exponent);
1618 __ vcvt_f64_s32(double_exponent, single_scratch);
1619
1620 // Returning or bailing out.
1621 Counters* counters = masm->isolate()->counters();
1622 if (exponent_type_ == ON_STACK) {
1623 // The arguments are still on the stack.
1624 __ bind(&call_runtime);
1625 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
1626
1627 // The stub is called from non-optimized code, which expects the result
1628 // as heap number in exponent.
1629 __ bind(&done);
1630 __ AllocateHeapNumber(
1631 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
1632 __ vstr(double_result,
1633 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
1634 ASSERT(heapnumber.is(r0));
1635 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1636 __ Ret(2);
1637 } else {
1638 __ push(lr);
1639 {
1640 AllowExternalCallThatCantCauseGC scope(masm);
1641 __ PrepareCallCFunction(0, 2, scratch);
1642 __ SetCallCDoubleArguments(double_base, double_exponent);
1643 __ CallCFunction(
1644 ExternalReference::power_double_double_function(masm->isolate()),
1645 0, 2);
1646 }
1647 __ pop(lr);
1648 __ GetCFunctionDoubleResult(double_result);
1649
1650 __ bind(&done);
1651 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1652 __ Ret();
1653 }
1654 }
1655
1656
NeedsImmovableCode()1657 bool CEntryStub::NeedsImmovableCode() {
1658 return true;
1659 }
1660
1661
GenerateStubsAheadOfTime(Isolate * isolate)1662 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1663 CEntryStub::GenerateAheadOfTime(isolate);
1664 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
1665 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1666 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1667 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1668 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1669 BinaryOpICStub::GenerateAheadOfTime(isolate);
1670 }
1671
1672
GenerateFPStubs(Isolate * isolate)1673 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1674 SaveFPRegsMode mode = kSaveFPRegs;
1675 CEntryStub save_doubles(1, mode);
1676 StoreBufferOverflowStub stub(mode);
1677 // These stubs might already be in the snapshot, detect that and don't
1678 // regenerate, which would lead to code stub initialization state being messed
1679 // up.
1680 Code* save_doubles_code;
1681 if (!save_doubles.FindCodeInCache(&save_doubles_code, isolate)) {
1682 save_doubles_code = *save_doubles.GetCode(isolate);
1683 }
1684 Code* store_buffer_overflow_code;
1685 if (!stub.FindCodeInCache(&store_buffer_overflow_code, isolate)) {
1686 store_buffer_overflow_code = *stub.GetCode(isolate);
1687 }
1688 isolate->set_fp_stubs_generated(true);
1689 }
1690
1691
GenerateAheadOfTime(Isolate * isolate)1692 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1693 CEntryStub stub(1, kDontSaveFPRegs);
1694 stub.GetCode(isolate);
1695 }
1696
1697
JumpIfOOM(MacroAssembler * masm,Register value,Register scratch,Label * oom_label)1698 static void JumpIfOOM(MacroAssembler* masm,
1699 Register value,
1700 Register scratch,
1701 Label* oom_label) {
1702 STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3);
1703 STATIC_ASSERT(kFailureTag == 3);
1704 __ and_(scratch, value, Operand(0xf));
1705 __ cmp(scratch, Operand(0xf));
1706 __ b(eq, oom_label);
1707 }
1708
1709
GenerateCore(MacroAssembler * masm,Label * throw_normal_exception,Label * throw_termination_exception,Label * throw_out_of_memory_exception,bool do_gc,bool always_allocate)1710 void CEntryStub::GenerateCore(MacroAssembler* masm,
1711 Label* throw_normal_exception,
1712 Label* throw_termination_exception,
1713 Label* throw_out_of_memory_exception,
1714 bool do_gc,
1715 bool always_allocate) {
1716 // r0: result parameter for PerformGC, if any
1717 // r4: number of arguments including receiver (C callee-saved)
1718 // r5: pointer to builtin function (C callee-saved)
1719 // r6: pointer to the first argument (C callee-saved)
1720 Isolate* isolate = masm->isolate();
1721
1722 if (do_gc) {
1723 // Passing r0.
1724 __ PrepareCallCFunction(2, 0, r1);
1725 __ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate())));
1726 __ CallCFunction(ExternalReference::perform_gc_function(isolate),
1727 2, 0);
1728 }
1729
1730 ExternalReference scope_depth =
1731 ExternalReference::heap_always_allocate_scope_depth(isolate);
1732 if (always_allocate) {
1733 __ mov(r0, Operand(scope_depth));
1734 __ ldr(r1, MemOperand(r0));
1735 __ add(r1, r1, Operand(1));
1736 __ str(r1, MemOperand(r0));
1737 }
1738
1739 // Call C built-in.
1740 // r0 = argc, r1 = argv
1741 __ mov(r0, Operand(r4));
1742 __ mov(r1, Operand(r6));
1743
1744 #if V8_HOST_ARCH_ARM
1745 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
1746 int frame_alignment_mask = frame_alignment - 1;
1747 if (FLAG_debug_code) {
1748 if (frame_alignment > kPointerSize) {
1749 Label alignment_as_expected;
1750 ASSERT(IsPowerOf2(frame_alignment));
1751 __ tst(sp, Operand(frame_alignment_mask));
1752 __ b(eq, &alignment_as_expected);
1753 // Don't use Check here, as it will call Runtime_Abort re-entering here.
1754 __ stop("Unexpected alignment");
1755 __ bind(&alignment_as_expected);
1756 }
1757 }
1758 #endif
1759
1760 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
1761
1762 // To let the GC traverse the return address of the exit frames, we need to
1763 // know where the return address is. The CEntryStub is unmovable, so
1764 // we can store the address on the stack to be able to find it again and
1765 // we never have to restore it, because it will not change.
1766 // Compute the return address in lr to return to after the jump below. Pc is
1767 // already at '+ 8' from the current instruction but return is after three
1768 // instructions so add another 4 to pc to get the return address.
1769 {
1770 // Prevent literal pool emission before return address.
1771 Assembler::BlockConstPoolScope block_const_pool(masm);
1772 masm->add(lr, pc, Operand(4));
1773 __ str(lr, MemOperand(sp, 0));
1774 masm->Jump(r5);
1775 }
1776
1777 __ VFPEnsureFPSCRState(r2);
1778
1779 if (always_allocate) {
1780 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
1781 // though (contain the result).
1782 __ mov(r2, Operand(scope_depth));
1783 __ ldr(r3, MemOperand(r2));
1784 __ sub(r3, r3, Operand(1));
1785 __ str(r3, MemOperand(r2));
1786 }
1787
1788 // check for failure result
1789 Label failure_returned;
1790 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
1791 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
1792 __ add(r2, r0, Operand(1));
1793 __ tst(r2, Operand(kFailureTagMask));
1794 __ b(eq, &failure_returned);
1795
1796 // Exit C frame and return.
1797 // r0:r1: result
1798 // sp: stack pointer
1799 // fp: frame pointer
1800 // Callee-saved register r4 still holds argc.
1801 __ LeaveExitFrame(save_doubles_, r4, true);
1802 __ mov(pc, lr);
1803
1804 // check if we should retry or throw exception
1805 Label retry;
1806 __ bind(&failure_returned);
1807 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
1808 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
1809 __ b(eq, &retry);
1810
1811 // Special handling of out of memory exceptions.
1812 JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception);
1813
1814 // Retrieve the pending exception.
1815 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1816 isolate)));
1817 __ ldr(r0, MemOperand(ip));
1818
1819 // See if we just retrieved an OOM exception.
1820 JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception);
1821
1822 // Clear the pending exception.
1823 __ mov(r3, Operand(isolate->factory()->the_hole_value()));
1824 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1825 isolate)));
1826 __ str(r3, MemOperand(ip));
1827
1828 // Special handling of termination exceptions which are uncatchable
1829 // by javascript code.
1830 __ cmp(r0, Operand(isolate->factory()->termination_exception()));
1831 __ b(eq, throw_termination_exception);
1832
1833 // Handle normal exception.
1834 __ jmp(throw_normal_exception);
1835
1836 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
1837 }
1838
1839
Generate(MacroAssembler * masm)1840 void CEntryStub::Generate(MacroAssembler* masm) {
1841 // Called from JavaScript; parameters are on stack as if calling JS function
1842 // r0: number of arguments including receiver
1843 // r1: pointer to builtin function
1844 // fp: frame pointer (restored after C call)
1845 // sp: stack pointer (restored as callee's sp after C call)
1846 // cp: current context (C callee-saved)
1847
1848 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1849
1850 // Result returned in r0 or r0+r1 by default.
1851
1852 // NOTE: Invocations of builtins may return failure objects
1853 // instead of a proper result. The builtin entry handles
1854 // this by performing a garbage collection and retrying the
1855 // builtin once.
1856
1857 // Compute the argv pointer in a callee-saved register.
1858 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
1859 __ sub(r6, r6, Operand(kPointerSize));
1860
1861 // Enter the exit frame that transitions from JavaScript to C++.
1862 FrameScope scope(masm, StackFrame::MANUAL);
1863 __ EnterExitFrame(save_doubles_);
1864
1865 // Set up argc and the builtin function in callee-saved registers.
1866 __ mov(r4, Operand(r0));
1867 __ mov(r5, Operand(r1));
1868
1869 // r4: number of arguments (C callee-saved)
1870 // r5: pointer to builtin function (C callee-saved)
1871 // r6: pointer to first argument (C callee-saved)
1872
1873 Label throw_normal_exception;
1874 Label throw_termination_exception;
1875 Label throw_out_of_memory_exception;
1876
1877 // Call into the runtime system.
1878 GenerateCore(masm,
1879 &throw_normal_exception,
1880 &throw_termination_exception,
1881 &throw_out_of_memory_exception,
1882 false,
1883 false);
1884
1885 // Do space-specific GC and retry runtime call.
1886 GenerateCore(masm,
1887 &throw_normal_exception,
1888 &throw_termination_exception,
1889 &throw_out_of_memory_exception,
1890 true,
1891 false);
1892
1893 // Do full GC and retry runtime call one final time.
1894 Failure* failure = Failure::InternalError();
1895 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
1896 GenerateCore(masm,
1897 &throw_normal_exception,
1898 &throw_termination_exception,
1899 &throw_out_of_memory_exception,
1900 true,
1901 true);
1902
1903 __ bind(&throw_out_of_memory_exception);
1904 // Set external caught exception to false.
1905 Isolate* isolate = masm->isolate();
1906 ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
1907 isolate);
1908 __ mov(r0, Operand(false, RelocInfo::NONE32));
1909 __ mov(r2, Operand(external_caught));
1910 __ str(r0, MemOperand(r2));
1911
1912 // Set pending exception and r0 to out of memory exception.
1913 Label already_have_failure;
1914 JumpIfOOM(masm, r0, ip, &already_have_failure);
1915 Failure* out_of_memory = Failure::OutOfMemoryException(0x1);
1916 __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
1917 __ bind(&already_have_failure);
1918 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1919 isolate)));
1920 __ str(r0, MemOperand(r2));
1921 // Fall through to the next label.
1922
1923 __ bind(&throw_termination_exception);
1924 __ ThrowUncatchable(r0);
1925
1926 __ bind(&throw_normal_exception);
1927 __ Throw(r0);
1928 }
1929
1930
GenerateBody(MacroAssembler * masm,bool is_construct)1931 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
1932 // r0: code entry
1933 // r1: function
1934 // r2: receiver
1935 // r3: argc
1936 // [sp+0]: argv
1937
1938 Label invoke, handler_entry, exit;
1939
1940 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1941
1942 // Called from C, so do not pop argc and args on exit (preserve sp)
1943 // No need to save register-passed args
1944 // Save callee-saved registers (incl. cp and fp), sp, and lr
1945 __ stm(db_w, sp, kCalleeSaved | lr.bit());
1946
1947 // Save callee-saved vfp registers.
1948 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1949 // Set up the reserved register for 0.0.
1950 __ vmov(kDoubleRegZero, 0.0);
1951 __ VFPEnsureFPSCRState(r4);
1952
1953 // Get address of argv, see stm above.
1954 // r0: code entry
1955 // r1: function
1956 // r2: receiver
1957 // r3: argc
1958
1959 // Set up argv in r4.
1960 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1961 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1962 __ ldr(r4, MemOperand(sp, offset_to_argv));
1963
1964 // Push a frame with special values setup to mark it as an entry frame.
1965 // r0: code entry
1966 // r1: function
1967 // r2: receiver
1968 // r3: argc
1969 // r4: argv
1970 Isolate* isolate = masm->isolate();
1971 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
1972 __ mov(r8, Operand(Smi::FromInt(marker)));
1973 __ mov(r6, Operand(Smi::FromInt(marker)));
1974 __ mov(r5,
1975 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
1976 __ ldr(r5, MemOperand(r5));
1977 __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1978 __ Push(ip, r8, r6, r5);
1979
1980 // Set up frame pointer for the frame to be pushed.
1981 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1982
1983 // If this is the outermost JS call, set js_entry_sp value.
1984 Label non_outermost_js;
1985 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1986 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1987 __ ldr(r6, MemOperand(r5));
1988 __ cmp(r6, Operand::Zero());
1989 __ b(ne, &non_outermost_js);
1990 __ str(fp, MemOperand(r5));
1991 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1992 Label cont;
1993 __ b(&cont);
1994 __ bind(&non_outermost_js);
1995 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1996 __ bind(&cont);
1997 __ push(ip);
1998
1999 // Jump to a faked try block that does the invoke, with a faked catch
2000 // block that sets the pending exception.
2001 __ jmp(&invoke);
2002
2003 // Block literal pool emission whilst taking the position of the handler
2004 // entry. This avoids making the assumption that literal pools are always
2005 // emitted after an instruction is emitted, rather than before.
2006 {
2007 Assembler::BlockConstPoolScope block_const_pool(masm);
2008 __ bind(&handler_entry);
2009 handler_offset_ = handler_entry.pos();
2010 // Caught exception: Store result (exception) in the pending exception
2011 // field in the JSEnv and return a failure sentinel. Coming in here the
2012 // fp will be invalid because the PushTryHandler below sets it to 0 to
2013 // signal the existence of the JSEntry frame.
2014 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2015 isolate)));
2016 }
2017 __ str(r0, MemOperand(ip));
2018 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
2019 __ b(&exit);
2020
2021 // Invoke: Link this frame into the handler chain. There's only one
2022 // handler block in this code object, so its index is 0.
2023 __ bind(&invoke);
2024 // Must preserve r0-r4, r5-r6 are available.
2025 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2026 // If an exception not caught by another handler occurs, this handler
2027 // returns control to the code after the bl(&invoke) above, which
2028 // restores all kCalleeSaved registers (including cp and fp) to their
2029 // saved values before returning a failure to C.
2030
2031 // Clear any pending exceptions.
2032 __ mov(r5, Operand(isolate->factory()->the_hole_value()));
2033 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2034 isolate)));
2035 __ str(r5, MemOperand(ip));
2036
2037 // Invoke the function by calling through JS entry trampoline builtin.
2038 // Notice that we cannot store a reference to the trampoline code directly in
2039 // this stub, because runtime stubs are not traversed when doing GC.
2040
2041 // Expected registers by Builtins::JSEntryTrampoline
2042 // r0: code entry
2043 // r1: function
2044 // r2: receiver
2045 // r3: argc
2046 // r4: argv
2047 if (is_construct) {
2048 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2049 isolate);
2050 __ mov(ip, Operand(construct_entry));
2051 } else {
2052 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
2053 __ mov(ip, Operand(entry));
2054 }
2055 __ ldr(ip, MemOperand(ip)); // deref address
2056
2057 // Branch and link to JSEntryTrampoline. We don't use the double underscore
2058 // macro for the add instruction because we don't want the coverage tool
2059 // inserting instructions here after we read the pc. We block literal pool
2060 // emission for the same reason.
2061 {
2062 Assembler::BlockConstPoolScope block_const_pool(masm);
2063 __ mov(lr, Operand(pc));
2064 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
2065 }
2066
2067 // Unlink this frame from the handler chain.
2068 __ PopTryHandler();
2069
2070 __ bind(&exit); // r0 holds result
2071 // Check if the current stack frame is marked as the outermost JS frame.
2072 Label non_outermost_js_2;
2073 __ pop(r5);
2074 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2075 __ b(ne, &non_outermost_js_2);
2076 __ mov(r6, Operand::Zero());
2077 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
2078 __ str(r6, MemOperand(r5));
2079 __ bind(&non_outermost_js_2);
2080
2081 // Restore the top frame descriptors from the stack.
2082 __ pop(r3);
2083 __ mov(ip,
2084 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
2085 __ str(r3, MemOperand(ip));
2086
2087 // Reset the stack to the callee saved registers.
2088 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
2089
2090 // Restore callee-saved registers and return.
2091 #ifdef DEBUG
2092 if (FLAG_debug_code) {
2093 __ mov(lr, Operand(pc));
2094 }
2095 #endif
2096
2097 // Restore callee-saved vfp registers.
2098 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
2099
2100 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
2101 }
2102
2103
2104 // Uses registers r0 to r4.
2105 // Expected input (depending on whether args are in registers or on the stack):
2106 // * object: r0 or at sp + 1 * kPointerSize.
2107 // * function: r1 or at sp.
2108 //
2109 // An inlined call site may have been generated before calling this stub.
2110 // In this case the offset to the inline site to patch is passed on the stack,
2111 // in the safepoint slot for register r4.
2112 // (See LCodeGen::DoInstanceOfKnownGlobal)
Generate(MacroAssembler * masm)2113 void InstanceofStub::Generate(MacroAssembler* masm) {
2114 // Call site inlining and patching implies arguments in registers.
2115 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2116 // ReturnTrueFalse is only implemented for inlined call sites.
2117 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
2118
2119 // Fixed register usage throughout the stub:
2120 const Register object = r0; // Object (lhs).
2121 Register map = r3; // Map of the object.
2122 const Register function = r1; // Function (rhs).
2123 const Register prototype = r4; // Prototype of the function.
2124 const Register inline_site = r9;
2125 const Register scratch = r2;
2126
2127 const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
2128
2129 Label slow, loop, is_instance, is_not_instance, not_js_object;
2130
2131 if (!HasArgsInRegisters()) {
2132 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
2133 __ ldr(function, MemOperand(sp, 0));
2134 }
2135
2136 // Check that the left hand is a JS object and load map.
2137 __ JumpIfSmi(object, ¬_js_object);
2138 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2139
2140 // If there is a call site cache don't look in the global cache, but do the
2141 // real lookup and update the call site cache.
2142 if (!HasCallSiteInlineCheck()) {
2143 Label miss;
2144 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
2145 __ b(ne, &miss);
2146 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
2147 __ b(ne, &miss);
2148 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
2149 __ Ret(HasArgsInRegisters() ? 0 : 2);
2150
2151 __ bind(&miss);
2152 }
2153
2154 // Get the prototype of the function.
2155 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2156
2157 // Check that the function prototype is a JS object.
2158 __ JumpIfSmi(prototype, &slow);
2159 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2160
2161 // Update the global instanceof or call site inlined cache with the current
2162 // map and function. The cached answer will be set when it is known below.
2163 if (!HasCallSiteInlineCheck()) {
2164 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
2165 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
2166 } else {
2167 ASSERT(HasArgsInRegisters());
2168 // Patch the (relocated) inlined map check.
2169
2170 // The offset was stored in r4 safepoint slot.
2171 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
2172 __ LoadFromSafepointRegisterSlot(scratch, r4);
2173 __ sub(inline_site, lr, scratch);
2174 // Get the map location in scratch and patch it.
2175 __ GetRelocatedValueLocation(inline_site, scratch);
2176 __ ldr(scratch, MemOperand(scratch));
2177 __ str(map, FieldMemOperand(scratch, Cell::kValueOffset));
2178 }
2179
2180 // Register mapping: r3 is object map and r4 is function prototype.
2181 // Get prototype of object into r2.
2182 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
2183
2184 // We don't need map any more. Use it as a scratch register.
2185 Register scratch2 = map;
2186 map = no_reg;
2187
2188 // Loop through the prototype chain looking for the function prototype.
2189 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
2190 __ bind(&loop);
2191 __ cmp(scratch, Operand(prototype));
2192 __ b(eq, &is_instance);
2193 __ cmp(scratch, scratch2);
2194 __ b(eq, &is_not_instance);
2195 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
2196 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
2197 __ jmp(&loop);
2198
2199 __ bind(&is_instance);
2200 if (!HasCallSiteInlineCheck()) {
2201 __ mov(r0, Operand(Smi::FromInt(0)));
2202 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
2203 } else {
2204 // Patch the call site to return true.
2205 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
2206 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
2207 // Get the boolean result location in scratch and patch it.
2208 __ GetRelocatedValueLocation(inline_site, scratch);
2209 __ str(r0, MemOperand(scratch));
2210
2211 if (!ReturnTrueFalseObject()) {
2212 __ mov(r0, Operand(Smi::FromInt(0)));
2213 }
2214 }
2215 __ Ret(HasArgsInRegisters() ? 0 : 2);
2216
2217 __ bind(&is_not_instance);
2218 if (!HasCallSiteInlineCheck()) {
2219 __ mov(r0, Operand(Smi::FromInt(1)));
2220 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
2221 } else {
2222 // Patch the call site to return false.
2223 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
2224 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
2225 // Get the boolean result location in scratch and patch it.
2226 __ GetRelocatedValueLocation(inline_site, scratch);
2227 __ str(r0, MemOperand(scratch));
2228
2229 if (!ReturnTrueFalseObject()) {
2230 __ mov(r0, Operand(Smi::FromInt(1)));
2231 }
2232 }
2233 __ Ret(HasArgsInRegisters() ? 0 : 2);
2234
2235 Label object_not_null, object_not_null_or_smi;
2236 __ bind(¬_js_object);
2237 // Before null, smi and string value checks, check that the rhs is a function
2238 // as for a non-function rhs an exception needs to be thrown.
2239 __ JumpIfSmi(function, &slow);
2240 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
2241 __ b(ne, &slow);
2242
2243 // Null is not instance of anything.
2244 __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
2245 __ b(ne, &object_not_null);
2246 __ mov(r0, Operand(Smi::FromInt(1)));
2247 __ Ret(HasArgsInRegisters() ? 0 : 2);
2248
2249 __ bind(&object_not_null);
2250 // Smi values are not instances of anything.
2251 __ JumpIfNotSmi(object, &object_not_null_or_smi);
2252 __ mov(r0, Operand(Smi::FromInt(1)));
2253 __ Ret(HasArgsInRegisters() ? 0 : 2);
2254
2255 __ bind(&object_not_null_or_smi);
2256 // String values are not instances of anything.
2257 __ IsObjectJSStringType(object, scratch, &slow);
2258 __ mov(r0, Operand(Smi::FromInt(1)));
2259 __ Ret(HasArgsInRegisters() ? 0 : 2);
2260
2261 // Slow-case. Tail call builtin.
2262 __ bind(&slow);
2263 if (!ReturnTrueFalseObject()) {
2264 if (HasArgsInRegisters()) {
2265 __ Push(r0, r1);
2266 }
2267 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2268 } else {
2269 {
2270 FrameScope scope(masm, StackFrame::INTERNAL);
2271 __ Push(r0, r1);
2272 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2273 }
2274 __ cmp(r0, Operand::Zero());
2275 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
2276 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
2277 __ Ret(HasArgsInRegisters() ? 0 : 2);
2278 }
2279 }
2280
2281
Generate(MacroAssembler * masm)2282 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
2283 Label miss;
2284 Register receiver;
2285 if (kind() == Code::KEYED_LOAD_IC) {
2286 // ----------- S t a t e -------------
2287 // -- lr : return address
2288 // -- r0 : key
2289 // -- r1 : receiver
2290 // -----------------------------------
2291 __ cmp(r0, Operand(masm->isolate()->factory()->prototype_string()));
2292 __ b(ne, &miss);
2293 receiver = r1;
2294 } else {
2295 ASSERT(kind() == Code::LOAD_IC);
2296 // ----------- S t a t e -------------
2297 // -- r2 : name
2298 // -- lr : return address
2299 // -- r0 : receiver
2300 // -- sp[0] : receiver
2301 // -----------------------------------
2302 receiver = r0;
2303 }
2304
2305 StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, r4, &miss);
2306 __ bind(&miss);
2307 StubCompiler::TailCallBuiltin(
2308 masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
2309 }
2310
2311
Generate(MacroAssembler * masm)2312 void StringLengthStub::Generate(MacroAssembler* masm) {
2313 Label miss;
2314 Register receiver;
2315 if (kind() == Code::KEYED_LOAD_IC) {
2316 // ----------- S t a t e -------------
2317 // -- lr : return address
2318 // -- r0 : key
2319 // -- r1 : receiver
2320 // -----------------------------------
2321 __ cmp(r0, Operand(masm->isolate()->factory()->length_string()));
2322 __ b(ne, &miss);
2323 receiver = r1;
2324 } else {
2325 ASSERT(kind() == Code::LOAD_IC);
2326 // ----------- S t a t e -------------
2327 // -- r2 : name
2328 // -- lr : return address
2329 // -- r0 : receiver
2330 // -- sp[0] : receiver
2331 // -----------------------------------
2332 receiver = r0;
2333 }
2334
2335 StubCompiler::GenerateLoadStringLength(masm, receiver, r3, r4, &miss);
2336
2337 __ bind(&miss);
2338 StubCompiler::TailCallBuiltin(
2339 masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
2340 }
2341
2342
Generate(MacroAssembler * masm)2343 void StoreArrayLengthStub::Generate(MacroAssembler* masm) {
2344 // This accepts as a receiver anything JSArray::SetElementsLength accepts
2345 // (currently anything except for external arrays which means anything with
2346 // elements of FixedArray type). Value must be a number, but only smis are
2347 // accepted as the most common case.
2348 Label miss;
2349
2350 Register receiver;
2351 Register value;
2352 if (kind() == Code::KEYED_STORE_IC) {
2353 // ----------- S t a t e -------------
2354 // -- lr : return address
2355 // -- r0 : value
2356 // -- r1 : key
2357 // -- r2 : receiver
2358 // -----------------------------------
2359 __ cmp(r1, Operand(masm->isolate()->factory()->length_string()));
2360 __ b(ne, &miss);
2361 receiver = r2;
2362 value = r0;
2363 } else {
2364 ASSERT(kind() == Code::STORE_IC);
2365 // ----------- S t a t e -------------
2366 // -- lr : return address
2367 // -- r0 : value
2368 // -- r1 : receiver
2369 // -- r2 : key
2370 // -----------------------------------
2371 receiver = r1;
2372 value = r0;
2373 }
2374 Register scratch = r3;
2375
2376 // Check that the receiver isn't a smi.
2377 __ JumpIfSmi(receiver, &miss);
2378
2379 // Check that the object is a JS array.
2380 __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
2381 __ b(ne, &miss);
2382
2383 // Check that elements are FixedArray.
2384 // We rely on StoreIC_ArrayLength below to deal with all types of
2385 // fast elements (including COW).
2386 __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset));
2387 __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE);
2388 __ b(ne, &miss);
2389
2390 // Check that the array has fast properties, otherwise the length
2391 // property might have been redefined.
2392 __ ldr(scratch, FieldMemOperand(receiver, JSArray::kPropertiesOffset));
2393 __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kMapOffset));
2394 __ CompareRoot(scratch, Heap::kHashTableMapRootIndex);
2395 __ b(eq, &miss);
2396
2397 // Check that value is a smi.
2398 __ JumpIfNotSmi(value, &miss);
2399
2400 // Prepare tail call to StoreIC_ArrayLength.
2401 __ Push(receiver, value);
2402
2403 ExternalReference ref =
2404 ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate());
2405 __ TailCallExternalReference(ref, 2, 1);
2406
2407 __ bind(&miss);
2408
2409 StubCompiler::TailCallBuiltin(
2410 masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
2411 }
2412
2413
left()2414 Register InstanceofStub::left() { return r0; }
2415
2416
right()2417 Register InstanceofStub::right() { return r1; }
2418
2419
GenerateReadElement(MacroAssembler * masm)2420 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
2421 // The displacement is the offset of the last parameter (if any)
2422 // relative to the frame pointer.
2423 const int kDisplacement =
2424 StandardFrameConstants::kCallerSPOffset - kPointerSize;
2425
2426 // Check that the key is a smi.
2427 Label slow;
2428 __ JumpIfNotSmi(r1, &slow);
2429
2430 // Check if the calling frame is an arguments adaptor frame.
2431 Label adaptor;
2432 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2433 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
2434 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2435 __ b(eq, &adaptor);
2436
2437 // Check index against formal parameters count limit passed in
2438 // through register r0. Use unsigned comparison to get negative
2439 // check for free.
2440 __ cmp(r1, r0);
2441 __ b(hs, &slow);
2442
2443 // Read the argument from the stack and return it.
2444 __ sub(r3, r0, r1);
2445 __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
2446 __ ldr(r0, MemOperand(r3, kDisplacement));
2447 __ Jump(lr);
2448
2449 // Arguments adaptor case: Check index against actual arguments
2450 // limit found in the arguments adaptor frame. Use unsigned
2451 // comparison to get negative check for free.
2452 __ bind(&adaptor);
2453 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
2454 __ cmp(r1, r0);
2455 __ b(cs, &slow);
2456
2457 // Read the argument from the adaptor frame and return it.
2458 __ sub(r3, r0, r1);
2459 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
2460 __ ldr(r0, MemOperand(r3, kDisplacement));
2461 __ Jump(lr);
2462
2463 // Slow-case: Handle non-smi or out-of-bounds access to arguments
2464 // by calling the runtime system.
2465 __ bind(&slow);
2466 __ push(r1);
2467 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
2468 }
2469
2470
GenerateNewNonStrictSlow(MacroAssembler * masm)2471 void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
2472 // sp[0] : number of parameters
2473 // sp[4] : receiver displacement
2474 // sp[8] : function
2475
2476 // Check if the calling frame is an arguments adaptor frame.
2477 Label runtime;
2478 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2479 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
2480 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2481 __ b(ne, &runtime);
2482
2483 // Patch the arguments.length and the parameters pointer in the current frame.
2484 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
2485 __ str(r2, MemOperand(sp, 0 * kPointerSize));
2486 __ add(r3, r3, Operand(r2, LSL, 1));
2487 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
2488 __ str(r3, MemOperand(sp, 1 * kPointerSize));
2489
2490 __ bind(&runtime);
2491 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2492 }
2493
2494
GenerateNewNonStrictFast(MacroAssembler * masm)2495 void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
2496 // Stack layout:
2497 // sp[0] : number of parameters (tagged)
2498 // sp[4] : address of receiver argument
2499 // sp[8] : function
2500 // Registers used over whole function:
2501 // r6 : allocated object (tagged)
2502 // r9 : mapped parameter count (tagged)
2503
2504 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
2505 // r1 = parameter count (tagged)
2506
2507 // Check if the calling frame is an arguments adaptor frame.
2508 Label runtime;
2509 Label adaptor_frame, try_allocate;
2510 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2511 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
2512 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2513 __ b(eq, &adaptor_frame);
2514
2515 // No adaptor, parameter count = argument count.
2516 __ mov(r2, r1);
2517 __ b(&try_allocate);
2518
2519 // We have an adaptor frame. Patch the parameters pointer.
2520 __ bind(&adaptor_frame);
2521 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
2522 __ add(r3, r3, Operand(r2, LSL, 1));
2523 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
2524 __ str(r3, MemOperand(sp, 1 * kPointerSize));
2525
2526 // r1 = parameter count (tagged)
2527 // r2 = argument count (tagged)
2528 // Compute the mapped parameter count = min(r1, r2) in r1.
2529 __ cmp(r1, Operand(r2));
2530 __ mov(r1, Operand(r2), LeaveCC, gt);
2531
2532 __ bind(&try_allocate);
2533
2534 // Compute the sizes of backing store, parameter map, and arguments object.
2535 // 1. Parameter map, has 2 extra words containing context and backing store.
2536 const int kParameterMapHeaderSize =
2537 FixedArray::kHeaderSize + 2 * kPointerSize;
2538 // If there are no mapped parameters, we do not need the parameter_map.
2539 __ cmp(r1, Operand(Smi::FromInt(0)));
2540 __ mov(r9, Operand::Zero(), LeaveCC, eq);
2541 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
2542 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
2543
2544 // 2. Backing store.
2545 __ add(r9, r9, Operand(r2, LSL, 1));
2546 __ add(r9, r9, Operand(FixedArray::kHeaderSize));
2547
2548 // 3. Arguments object.
2549 __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
2550
2551 // Do the allocation of all three objects in one go.
2552 __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
2553
2554 // r0 = address of new object(s) (tagged)
2555 // r2 = argument count (tagged)
2556 // Get the arguments boilerplate from the current native context into r4.
2557 const int kNormalOffset =
2558 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
2559 const int kAliasedOffset =
2560 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
2561
2562 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2563 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
2564 __ cmp(r1, Operand::Zero());
2565 __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
2566 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
2567
2568 // r0 = address of new object (tagged)
2569 // r1 = mapped parameter count (tagged)
2570 // r2 = argument count (tagged)
2571 // r4 = address of boilerplate object (tagged)
2572 // Copy the JS object part.
2573 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
2574 __ ldr(r3, FieldMemOperand(r4, i));
2575 __ str(r3, FieldMemOperand(r0, i));
2576 }
2577
2578 // Set up the callee in-object property.
2579 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
2580 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
2581 const int kCalleeOffset = JSObject::kHeaderSize +
2582 Heap::kArgumentsCalleeIndex * kPointerSize;
2583 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
2584
2585 // Use the length (smi tagged) and set that as an in-object property too.
2586 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2587 const int kLengthOffset = JSObject::kHeaderSize +
2588 Heap::kArgumentsLengthIndex * kPointerSize;
2589 __ str(r2, FieldMemOperand(r0, kLengthOffset));
2590
2591 // Set up the elements pointer in the allocated arguments object.
2592 // If we allocated a parameter map, r4 will point there, otherwise
2593 // it will point to the backing store.
2594 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
2595 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
2596
2597 // r0 = address of new object (tagged)
2598 // r1 = mapped parameter count (tagged)
2599 // r2 = argument count (tagged)
2600 // r4 = address of parameter map or backing store (tagged)
2601 // Initialize parameter map. If there are no mapped arguments, we're done.
2602 Label skip_parameter_map;
2603 __ cmp(r1, Operand(Smi::FromInt(0)));
2604 // Move backing store address to r3, because it is
2605 // expected there when filling in the unmapped arguments.
2606 __ mov(r3, r4, LeaveCC, eq);
2607 __ b(eq, &skip_parameter_map);
2608
2609 __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
2610 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
2611 __ add(r6, r1, Operand(Smi::FromInt(2)));
2612 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
2613 __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
2614 __ add(r6, r4, Operand(r1, LSL, 1));
2615 __ add(r6, r6, Operand(kParameterMapHeaderSize));
2616 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
2617
2618 // Copy the parameter slots and the holes in the arguments.
2619 // We need to fill in mapped_parameter_count slots. They index the context,
2620 // where parameters are stored in reverse order, at
2621 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
2622 // The mapped parameter thus need to get indices
2623 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
2624 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
2625 // We loop from right to left.
2626 Label parameters_loop, parameters_test;
2627 __ mov(r6, r1);
2628 __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
2629 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
2630 __ sub(r9, r9, Operand(r1));
2631 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
2632 __ add(r3, r4, Operand(r6, LSL, 1));
2633 __ add(r3, r3, Operand(kParameterMapHeaderSize));
2634
2635 // r6 = loop variable (tagged)
2636 // r1 = mapping index (tagged)
2637 // r3 = address of backing store (tagged)
2638 // r4 = address of parameter map (tagged), which is also the address of new
2639 // object + Heap::kArgumentsObjectSize (tagged)
2640 // r0 = temporary scratch (a.o., for address calculation)
2641 // r5 = the hole value
2642 __ jmp(¶meters_test);
2643
2644 __ bind(¶meters_loop);
2645 __ sub(r6, r6, Operand(Smi::FromInt(1)));
2646 __ mov(r0, Operand(r6, LSL, 1));
2647 __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
2648 __ str(r9, MemOperand(r4, r0));
2649 __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
2650 __ str(r5, MemOperand(r3, r0));
2651 __ add(r9, r9, Operand(Smi::FromInt(1)));
2652 __ bind(¶meters_test);
2653 __ cmp(r6, Operand(Smi::FromInt(0)));
2654 __ b(ne, ¶meters_loop);
2655
2656 // Restore r0 = new object (tagged)
2657 __ sub(r0, r4, Operand(Heap::kArgumentsObjectSize));
2658
2659 __ bind(&skip_parameter_map);
2660 // r0 = address of new object (tagged)
2661 // r2 = argument count (tagged)
2662 // r3 = address of backing store (tagged)
2663 // r5 = scratch
2664 // Copy arguments header and remaining slots (if there are any).
2665 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
2666 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
2667 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
2668
2669 Label arguments_loop, arguments_test;
2670 __ mov(r9, r1);
2671 __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
2672 __ sub(r4, r4, Operand(r9, LSL, 1));
2673 __ jmp(&arguments_test);
2674
2675 __ bind(&arguments_loop);
2676 __ sub(r4, r4, Operand(kPointerSize));
2677 __ ldr(r6, MemOperand(r4, 0));
2678 __ add(r5, r3, Operand(r9, LSL, 1));
2679 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
2680 __ add(r9, r9, Operand(Smi::FromInt(1)));
2681
2682 __ bind(&arguments_test);
2683 __ cmp(r9, Operand(r2));
2684 __ b(lt, &arguments_loop);
2685
2686 // Return and remove the on-stack parameters.
2687 __ add(sp, sp, Operand(3 * kPointerSize));
2688 __ Ret();
2689
2690 // Do the runtime call to allocate the arguments object.
2691 // r0 = address of new object (tagged)
2692 // r2 = argument count (tagged)
2693 __ bind(&runtime);
2694 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
2695 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2696 }
2697
2698
GenerateNewStrict(MacroAssembler * masm)2699 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
2700 // sp[0] : number of parameters
2701 // sp[4] : receiver displacement
2702 // sp[8] : function
2703 // Check if the calling frame is an arguments adaptor frame.
2704 Label adaptor_frame, try_allocate, runtime;
2705 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2706 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
2707 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2708 __ b(eq, &adaptor_frame);
2709
2710 // Get the length from the frame.
2711 __ ldr(r1, MemOperand(sp, 0));
2712 __ b(&try_allocate);
2713
2714 // Patch the arguments.length and the parameters pointer.
2715 __ bind(&adaptor_frame);
2716 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
2717 __ str(r1, MemOperand(sp, 0));
2718 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
2719 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
2720 __ str(r3, MemOperand(sp, 1 * kPointerSize));
2721
2722 // Try the new space allocation. Start out with computing the size
2723 // of the arguments object and the elements array in words.
2724 Label add_arguments_object;
2725 __ bind(&try_allocate);
2726 __ SmiUntag(r1, SetCC);
2727 __ b(eq, &add_arguments_object);
2728 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
2729 __ bind(&add_arguments_object);
2730 __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
2731
2732 // Do the allocation of both objects in one go.
2733 __ Allocate(r1, r0, r2, r3, &runtime,
2734 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
2735
2736 // Get the arguments boilerplate from the current native context.
2737 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2738 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
2739 __ ldr(r4, MemOperand(r4, Context::SlotOffset(
2740 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
2741
2742 // Copy the JS object part.
2743 __ CopyFields(r0, r4, d0, JSObject::kHeaderSize / kPointerSize);
2744
2745 // Get the length (smi tagged) and set that as an in-object property too.
2746 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2747 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
2748 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
2749 Heap::kArgumentsLengthIndex * kPointerSize));
2750
2751 // If there are no actual arguments, we're done.
2752 Label done;
2753 __ cmp(r1, Operand::Zero());
2754 __ b(eq, &done);
2755
2756 // Get the parameters pointer from the stack.
2757 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
2758
2759 // Set up the elements pointer in the allocated arguments object and
2760 // initialize the header in the elements fixed array.
2761 __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
2762 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
2763 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
2764 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
2765 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
2766 __ SmiUntag(r1);
2767
2768 // Copy the fixed array slots.
2769 Label loop;
2770 // Set up r4 to point to the first array slot.
2771 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2772 __ bind(&loop);
2773 // Pre-decrement r2 with kPointerSize on each iteration.
2774 // Pre-decrement in order to skip receiver.
2775 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
2776 // Post-increment r4 with kPointerSize on each iteration.
2777 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
2778 __ sub(r1, r1, Operand(1));
2779 __ cmp(r1, Operand::Zero());
2780 __ b(ne, &loop);
2781
2782 // Return and remove the on-stack parameters.
2783 __ bind(&done);
2784 __ add(sp, sp, Operand(3 * kPointerSize));
2785 __ Ret();
2786
2787 // Do the runtime call to allocate the arguments object.
2788 __ bind(&runtime);
2789 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
2790 }
2791
2792
Generate(MacroAssembler * masm)2793 void RegExpExecStub::Generate(MacroAssembler* masm) {
2794 // Just jump directly to runtime if native RegExp is not selected at compile
2795 // time or if regexp entry in generated code is turned off runtime switch or
2796 // at compilation.
2797 #ifdef V8_INTERPRETED_REGEXP
2798 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2799 #else // V8_INTERPRETED_REGEXP
2800
2801 // Stack frame on entry.
2802 // sp[0]: last_match_info (expected JSArray)
2803 // sp[4]: previous index
2804 // sp[8]: subject string
2805 // sp[12]: JSRegExp object
2806
2807 const int kLastMatchInfoOffset = 0 * kPointerSize;
2808 const int kPreviousIndexOffset = 1 * kPointerSize;
2809 const int kSubjectOffset = 2 * kPointerSize;
2810 const int kJSRegExpOffset = 3 * kPointerSize;
2811
2812 Label runtime;
2813 // Allocation of registers for this function. These are in callee save
2814 // registers and will be preserved by the call to the native RegExp code, as
2815 // this code is called using the normal C calling convention. When calling
2816 // directly from generated code the native RegExp code will not do a GC and
2817 // therefore the content of these registers are safe to use after the call.
2818 Register subject = r4;
2819 Register regexp_data = r5;
2820 Register last_match_info_elements = no_reg; // will be r6;
2821
2822 // Ensure that a RegExp stack is allocated.
2823 Isolate* isolate = masm->isolate();
2824 ExternalReference address_of_regexp_stack_memory_address =
2825 ExternalReference::address_of_regexp_stack_memory_address(isolate);
2826 ExternalReference address_of_regexp_stack_memory_size =
2827 ExternalReference::address_of_regexp_stack_memory_size(isolate);
2828 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
2829 __ ldr(r0, MemOperand(r0, 0));
2830 __ cmp(r0, Operand::Zero());
2831 __ b(eq, &runtime);
2832
2833 // Check that the first argument is a JSRegExp object.
2834 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
2835 __ JumpIfSmi(r0, &runtime);
2836 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
2837 __ b(ne, &runtime);
2838
2839 // Check that the RegExp has been compiled (data contains a fixed array).
2840 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
2841 if (FLAG_debug_code) {
2842 __ SmiTst(regexp_data);
2843 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2844 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
2845 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2846 }
2847
2848 // regexp_data: RegExp data (FixedArray)
2849 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2850 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2851 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2852 __ b(ne, &runtime);
2853
2854 // regexp_data: RegExp data (FixedArray)
2855 // Check that the number of captures fit in the static offsets vector buffer.
2856 __ ldr(r2,
2857 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2858 // Check (number_of_captures + 1) * 2 <= offsets vector size
2859 // Or number_of_captures * 2 <= offsets vector size - 2
2860 // Multiplying by 2 comes for free since r2 is smi-tagged.
2861 STATIC_ASSERT(kSmiTag == 0);
2862 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2863 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2864 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
2865 __ b(hi, &runtime);
2866
2867 // Reset offset for possibly sliced string.
2868 __ mov(r9, Operand::Zero());
2869 __ ldr(subject, MemOperand(sp, kSubjectOffset));
2870 __ JumpIfSmi(subject, &runtime);
2871 __ mov(r3, subject); // Make a copy of the original subject string.
2872 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2873 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2874 // subject: subject string
2875 // r3: subject string
2876 // r0: subject string instance type
2877 // regexp_data: RegExp data (FixedArray)
2878 // Handle subject string according to its encoding and representation:
2879 // (1) Sequential string? If yes, go to (5).
2880 // (2) Anything but sequential or cons? If yes, go to (6).
2881 // (3) Cons string. If the string is flat, replace subject with first string.
2882 // Otherwise bailout.
2883 // (4) Is subject external? If yes, go to (7).
2884 // (5) Sequential string. Load regexp code according to encoding.
2885 // (E) Carry on.
2886 /// [...]
2887
2888 // Deferred code at the end of the stub:
2889 // (6) Not a long external string? If yes, go to (8).
2890 // (7) External string. Make it, offset-wise, look like a sequential string.
2891 // Go to (5).
2892 // (8) Short external string or not a string? If yes, bail out to runtime.
2893 // (9) Sliced string. Replace subject with parent. Go to (4).
2894
2895 Label seq_string /* 5 */, external_string /* 7 */,
2896 check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
2897 not_long_external /* 8 */;
2898
2899 // (1) Sequential string? If yes, go to (5).
2900 __ and_(r1,
2901 r0,
2902 Operand(kIsNotStringMask |
2903 kStringRepresentationMask |
2904 kShortExternalStringMask),
2905 SetCC);
2906 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2907 __ b(eq, &seq_string); // Go to (5).
2908
2909 // (2) Anything but sequential or cons? If yes, go to (6).
2910 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2911 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2912 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2913 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2914 __ cmp(r1, Operand(kExternalStringTag));
2915 __ b(ge, ¬_seq_nor_cons); // Go to (6).
2916
2917 // (3) Cons string. Check that it's flat.
2918 // Replace subject with first string and reload instance type.
2919 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
2920 __ CompareRoot(r0, Heap::kempty_stringRootIndex);
2921 __ b(ne, &runtime);
2922 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2923
2924 // (4) Is subject external? If yes, go to (7).
2925 __ bind(&check_underlying);
2926 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2927 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2928 STATIC_ASSERT(kSeqStringTag == 0);
2929 __ tst(r0, Operand(kStringRepresentationMask));
2930 // The underlying external string is never a short external string.
2931 STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
2932 STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2933 __ b(ne, &external_string); // Go to (7).
2934
2935 // (5) Sequential string. Load regexp code according to encoding.
2936 __ bind(&seq_string);
2937 // subject: sequential subject string (or look-alike, external string)
2938 // r3: original subject string
2939 // Load previous index and check range before r3 is overwritten. We have to
2940 // use r3 instead of subject here because subject might have been only made
2941 // to look like a sequential string when it actually is an external string.
2942 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
2943 __ JumpIfNotSmi(r1, &runtime);
2944 __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
2945 __ cmp(r3, Operand(r1));
2946 __ b(ls, &runtime);
2947 __ SmiUntag(r1);
2948
2949 STATIC_ASSERT(4 == kOneByteStringTag);
2950 STATIC_ASSERT(kTwoByteStringTag == 0);
2951 __ and_(r0, r0, Operand(kStringEncodingMask));
2952 __ mov(r3, Operand(r0, ASR, 2), SetCC);
2953 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
2954 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
2955
2956 // (E) Carry on. String handling is done.
2957 // r6: irregexp code
2958 // Check that the irregexp code has been generated for the actual string
2959 // encoding. If it has, the field contains a code object otherwise it contains
2960 // a smi (code flushing support).
2961 __ JumpIfSmi(r6, &runtime);
2962
2963 // r1: previous index
2964 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
2965 // r6: code
2966 // subject: Subject string
2967 // regexp_data: RegExp data (FixedArray)
2968 // All checks done. Now push arguments for native regexp code.
2969 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
2970
2971 // Isolates: note we add an additional parameter here (isolate pointer).
2972 const int kRegExpExecuteArguments = 9;
2973 const int kParameterRegisters = 4;
2974 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2975
2976 // Stack pointer now points to cell where return address is to be written.
2977 // Arguments are before that on the stack or in registers.
2978
2979 // Argument 9 (sp[20]): Pass current isolate address.
2980 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
2981 __ str(r0, MemOperand(sp, 5 * kPointerSize));
2982
2983 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
2984 __ mov(r0, Operand(1));
2985 __ str(r0, MemOperand(sp, 4 * kPointerSize));
2986
2987 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
2988 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
2989 __ ldr(r0, MemOperand(r0, 0));
2990 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
2991 __ ldr(r2, MemOperand(r2, 0));
2992 __ add(r0, r0, Operand(r2));
2993 __ str(r0, MemOperand(sp, 3 * kPointerSize));
2994
2995 // Argument 6: Set the number of capture registers to zero to force global
2996 // regexps to behave as non-global. This does not affect non-global regexps.
2997 __ mov(r0, Operand::Zero());
2998 __ str(r0, MemOperand(sp, 2 * kPointerSize));
2999
3000 // Argument 5 (sp[4]): static offsets vector buffer.
3001 __ mov(r0,
3002 Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
3003 __ str(r0, MemOperand(sp, 1 * kPointerSize));
3004
3005 // For arguments 4 and 3 get string length, calculate start of string data and
3006 // calculate the shift of the index (0 for ASCII and 1 for two byte).
3007 __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
3008 __ eor(r3, r3, Operand(1));
3009 // Load the length from the original subject string from the previous stack
3010 // frame. Therefore we have to use fp, which points exactly to two pointer
3011 // sizes below the previous sp. (Because creating a new stack frame pushes
3012 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
3013 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
3014 // If slice offset is not 0, load the length from the original sliced string.
3015 // Argument 4, r3: End of string data
3016 // Argument 3, r2: Start of string data
3017 // Prepare start and end index of the input.
3018 __ add(r9, r7, Operand(r9, LSL, r3));
3019 __ add(r2, r9, Operand(r1, LSL, r3));
3020
3021 __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
3022 __ SmiUntag(r7);
3023 __ add(r3, r9, Operand(r7, LSL, r3));
3024
3025 // Argument 2 (r1): Previous index.
3026 // Already there
3027
3028 // Argument 1 (r0): Subject string.
3029 __ mov(r0, subject);
3030
3031 // Locate the code entry and call it.
3032 __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
3033 DirectCEntryStub stub;
3034 stub.GenerateCall(masm, r6);
3035
3036 __ LeaveExitFrame(false, no_reg, true);
3037
3038 last_match_info_elements = r6;
3039
3040 // r0: result
3041 // subject: subject string (callee saved)
3042 // regexp_data: RegExp data (callee saved)
3043 // last_match_info_elements: Last match info elements (callee saved)
3044 // Check the result.
3045 Label success;
3046 __ cmp(r0, Operand(1));
3047 // We expect exactly one result since we force the called regexp to behave
3048 // as non-global.
3049 __ b(eq, &success);
3050 Label failure;
3051 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
3052 __ b(eq, &failure);
3053 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
3054 // If not exception it can only be retry. Handle that in the runtime system.
3055 __ b(ne, &runtime);
3056 // Result must now be exception. If there is no pending exception already a
3057 // stack overflow (on the backtrack stack) was detected in RegExp code but
3058 // haven't created the exception yet. Handle that in the runtime system.
3059 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
3060 __ mov(r1, Operand(isolate->factory()->the_hole_value()));
3061 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3062 isolate)));
3063 __ ldr(r0, MemOperand(r2, 0));
3064 __ cmp(r0, r1);
3065 __ b(eq, &runtime);
3066
3067 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
3068
3069 // Check if the exception is a termination. If so, throw as uncatchable.
3070 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
3071
3072 Label termination_exception;
3073 __ b(eq, &termination_exception);
3074
3075 __ Throw(r0);
3076
3077 __ bind(&termination_exception);
3078 __ ThrowUncatchable(r0);
3079
3080 __ bind(&failure);
3081 // For failure and exception return null.
3082 __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
3083 __ add(sp, sp, Operand(4 * kPointerSize));
3084 __ Ret();
3085
3086 // Process the result from the native regexp code.
3087 __ bind(&success);
3088 __ ldr(r1,
3089 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
3090 // Calculate number of capture registers (number_of_captures + 1) * 2.
3091 // Multiplying by 2 comes for free since r1 is smi-tagged.
3092 STATIC_ASSERT(kSmiTag == 0);
3093 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3094 __ add(r1, r1, Operand(2)); // r1 was a smi.
3095
3096 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
3097 __ JumpIfSmi(r0, &runtime);
3098 __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
3099 __ b(ne, &runtime);
3100 // Check that the JSArray is in fast case.
3101 __ ldr(last_match_info_elements,
3102 FieldMemOperand(r0, JSArray::kElementsOffset));
3103 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
3104 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
3105 __ b(ne, &runtime);
3106 // Check that the last match info has space for the capture registers and the
3107 // additional information.
3108 __ ldr(r0,
3109 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
3110 __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
3111 __ cmp(r2, Operand::SmiUntag(r0));
3112 __ b(gt, &runtime);
3113
3114 // r1: number of capture registers
3115 // r4: subject string
3116 // Store the capture count.
3117 __ SmiTag(r2, r1);
3118 __ str(r2, FieldMemOperand(last_match_info_elements,
3119 RegExpImpl::kLastCaptureCountOffset));
3120 // Store last subject and last input.
3121 __ str(subject,
3122 FieldMemOperand(last_match_info_elements,
3123 RegExpImpl::kLastSubjectOffset));
3124 __ mov(r2, subject);
3125 __ RecordWriteField(last_match_info_elements,
3126 RegExpImpl::kLastSubjectOffset,
3127 subject,
3128 r3,
3129 kLRHasNotBeenSaved,
3130 kDontSaveFPRegs);
3131 __ mov(subject, r2);
3132 __ str(subject,
3133 FieldMemOperand(last_match_info_elements,
3134 RegExpImpl::kLastInputOffset));
3135 __ RecordWriteField(last_match_info_elements,
3136 RegExpImpl::kLastInputOffset,
3137 subject,
3138 r3,
3139 kLRHasNotBeenSaved,
3140 kDontSaveFPRegs);
3141
3142 // Get the static offsets vector filled by the native regexp code.
3143 ExternalReference address_of_static_offsets_vector =
3144 ExternalReference::address_of_static_offsets_vector(isolate);
3145 __ mov(r2, Operand(address_of_static_offsets_vector));
3146
3147 // r1: number of capture registers
3148 // r2: offsets vector
3149 Label next_capture, done;
3150 // Capture register counter starts from number of capture registers and
3151 // counts down until wraping after zero.
3152 __ add(r0,
3153 last_match_info_elements,
3154 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
3155 __ bind(&next_capture);
3156 __ sub(r1, r1, Operand(1), SetCC);
3157 __ b(mi, &done);
3158 // Read the value from the static offsets vector buffer.
3159 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
3160 // Store the smi value in the last match info.
3161 __ SmiTag(r3);
3162 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
3163 __ jmp(&next_capture);
3164 __ bind(&done);
3165
3166 // Return last match info.
3167 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
3168 __ add(sp, sp, Operand(4 * kPointerSize));
3169 __ Ret();
3170
3171 // Do the runtime call to execute the regexp.
3172 __ bind(&runtime);
3173 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3174
3175 // Deferred code for string handling.
3176 // (6) Not a long external string? If yes, go to (8).
3177 __ bind(¬_seq_nor_cons);
3178 // Compare flags are still set.
3179 __ b(gt, ¬_long_external); // Go to (8).
3180
3181 // (7) External string. Make it, offset-wise, look like a sequential string.
3182 __ bind(&external_string);
3183 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
3184 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
3185 if (FLAG_debug_code) {
3186 // Assert that we do not have a cons or slice (indirect strings) here.
3187 // Sequential strings have already been ruled out.
3188 __ tst(r0, Operand(kIsIndirectStringMask));
3189 __ Assert(eq, kExternalStringExpectedButNotFound);
3190 }
3191 __ ldr(subject,
3192 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
3193 // Move the pointer so that offset-wise, it looks like a sequential string.
3194 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3195 __ sub(subject,
3196 subject,
3197 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3198 __ jmp(&seq_string); // Go to (5).
3199
3200 // (8) Short external string or not a string? If yes, bail out to runtime.
3201 __ bind(¬_long_external);
3202 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
3203 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
3204 __ b(ne, &runtime);
3205
3206 // (9) Sliced string. Replace subject with parent. Go to (4).
3207 // Load offset into r9 and replace subject string with parent.
3208 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
3209 __ SmiUntag(r9);
3210 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
3211 __ jmp(&check_underlying); // Go to (4).
3212 #endif // V8_INTERPRETED_REGEXP
3213 }
3214
3215
Generate(MacroAssembler * masm)3216 void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
3217 const int kMaxInlineLength = 100;
3218 Label slowcase;
3219 Label done;
3220 Factory* factory = masm->isolate()->factory();
3221
3222 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
3223 STATIC_ASSERT(kSmiTag == 0);
3224 STATIC_ASSERT(kSmiTagSize == 1);
3225 __ JumpIfNotSmi(r1, &slowcase);
3226 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
3227 __ b(hi, &slowcase);
3228 // Smi-tagging is equivalent to multiplying by 2.
3229 // Allocate RegExpResult followed by FixedArray with size in ebx.
3230 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
3231 // Elements: [Map][Length][..elements..]
3232 // Size of JSArray with two in-object properties and the header of a
3233 // FixedArray.
3234 int objects_size =
3235 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
3236 __ SmiUntag(r5, r1);
3237 __ add(r2, r5, Operand(objects_size));
3238 __ Allocate(
3239 r2, // In: Size, in words.
3240 r0, // Out: Start of allocation (tagged).
3241 r3, // Scratch register.
3242 r4, // Scratch register.
3243 &slowcase,
3244 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
3245 // r0: Start of allocated area, object-tagged.
3246 // r1: Number of elements in array, as smi.
3247 // r5: Number of elements, untagged.
3248
3249 // Set JSArray map to global.regexp_result_map().
3250 // Set empty properties FixedArray.
3251 // Set elements to point to FixedArray allocated right after the JSArray.
3252 // Interleave operations for better latency.
3253 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3254 __ add(r3, r0, Operand(JSRegExpResult::kSize));
3255 __ mov(r4, Operand(factory->empty_fixed_array()));
3256 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
3257 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
3258 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
3259 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
3260 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
3261
3262 // Set input, index and length fields from arguments.
3263 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
3264 __ ldr(r2, MemOperand(sp, kPointerSize * 1));
3265 __ ldr(r6, MemOperand(sp, kPointerSize * 2));
3266 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
3267 __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
3268 __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
3269
3270 // Fill out the elements FixedArray.
3271 // r0: JSArray, tagged.
3272 // r3: FixedArray, tagged.
3273 // r5: Number of elements in array, untagged.
3274
3275 // Set map.
3276 __ mov(r2, Operand(factory->fixed_array_map()));
3277 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
3278 // Set FixedArray length.
3279 __ SmiTag(r6, r5);
3280 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
3281 // Fill contents of fixed-array with undefined.
3282 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
3283 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3284 // Fill fixed array elements with undefined.
3285 // r0: JSArray, tagged.
3286 // r2: undefined.
3287 // r3: Start of elements in FixedArray.
3288 // r5: Number of elements to fill.
3289 Label loop;
3290 __ cmp(r5, Operand::Zero());
3291 __ bind(&loop);
3292 __ b(le, &done); // Jump if r5 is negative or zero.
3293 __ sub(r5, r5, Operand(1), SetCC);
3294 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
3295 __ jmp(&loop);
3296
3297 __ bind(&done);
3298 __ add(sp, sp, Operand(3 * kPointerSize));
3299 __ Ret();
3300
3301 __ bind(&slowcase);
3302 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
3303 }
3304
3305
GenerateRecordCallTarget(MacroAssembler * masm)3306 static void GenerateRecordCallTarget(MacroAssembler* masm) {
3307 // Cache the called function in a global property cell. Cache states
3308 // are uninitialized, monomorphic (indicated by a JSFunction), and
3309 // megamorphic.
3310 // r0 : number of arguments to the construct function
3311 // r1 : the function to call
3312 // r2 : cache cell for call target
3313 Label initialize, done, miss, megamorphic, not_array_function;
3314
3315 ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
3316 masm->isolate()->heap()->undefined_value());
3317 ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
3318 masm->isolate()->heap()->the_hole_value());
3319
3320 // Load the cache state into r3.
3321 __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
3322
3323 // A monomorphic cache hit or an already megamorphic state: invoke the
3324 // function without changing the state.
3325 __ cmp(r3, r1);
3326 __ b(eq, &done);
3327
3328 // If we came here, we need to see if we are the array function.
3329 // If we didn't have a matching function, and we didn't find the megamorph
3330 // sentinel, then we have in the cell either some other function or an
3331 // AllocationSite. Do a map check on the object in ecx.
3332 __ ldr(r5, FieldMemOperand(r3, 0));
3333 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
3334 __ b(ne, &miss);
3335
3336 // Make sure the function is the Array() function
3337 __ LoadArrayFunction(r3);
3338 __ cmp(r1, r3);
3339 __ b(ne, &megamorphic);
3340 __ jmp(&done);
3341
3342 __ bind(&miss);
3343
3344 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
3345 // megamorphic.
3346 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
3347 __ b(eq, &initialize);
3348 // MegamorphicSentinel is an immortal immovable object (undefined) so no
3349 // write-barrier is needed.
3350 __ bind(&megamorphic);
3351 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
3352 __ str(ip, FieldMemOperand(r2, Cell::kValueOffset));
3353 __ jmp(&done);
3354
3355 // An uninitialized cache is patched with the function or sentinel to
3356 // indicate the ElementsKind if function is the Array constructor.
3357 __ bind(&initialize);
3358 // Make sure the function is the Array() function
3359 __ LoadArrayFunction(r3);
3360 __ cmp(r1, r3);
3361 __ b(ne, ¬_array_function);
3362
3363 // The target function is the Array constructor,
3364 // Create an AllocationSite if we don't already have it, store it in the cell
3365 {
3366 FrameScope scope(masm, StackFrame::INTERNAL);
3367
3368 // Arguments register must be smi-tagged to call out.
3369 __ SmiTag(r0);
3370 __ Push(r2, r1, r0);
3371
3372 CreateAllocationSiteStub create_stub;
3373 __ CallStub(&create_stub);
3374
3375 __ Pop(r2, r1, r0);
3376 __ SmiUntag(r0);
3377 }
3378 __ b(&done);
3379
3380 __ bind(¬_array_function);
3381 __ str(r1, FieldMemOperand(r2, Cell::kValueOffset));
3382 // No need for a write barrier here - cells are rescanned.
3383
3384 __ bind(&done);
3385 }
3386
3387
Generate(MacroAssembler * masm)3388 void CallFunctionStub::Generate(MacroAssembler* masm) {
3389 // r1 : the function to call
3390 // r2 : cache cell for call target
3391 Label slow, non_function;
3392
3393 // The receiver might implicitly be the global object. This is
3394 // indicated by passing the hole as the receiver to the call
3395 // function stub.
3396 if (ReceiverMightBeImplicit()) {
3397 Label call;
3398 // Get the receiver from the stack.
3399 // function, receiver [, arguments]
3400 __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
3401 // Call as function is indicated with the hole.
3402 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
3403 __ b(ne, &call);
3404 // Patch the receiver on the stack with the global receiver object.
3405 __ ldr(r3,
3406 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
3407 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset));
3408 __ str(r3, MemOperand(sp, argc_ * kPointerSize));
3409 __ bind(&call);
3410 }
3411
3412 // Check that the function is really a JavaScript function.
3413 // r1: pushed function (to be verified)
3414 __ JumpIfSmi(r1, &non_function);
3415 // Get the map of the function object.
3416 __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
3417 __ b(ne, &slow);
3418
3419 if (RecordCallTarget()) {
3420 GenerateRecordCallTarget(masm);
3421 }
3422
3423 // Fast-case: Invoke the function now.
3424 // r1: pushed function
3425 ParameterCount actual(argc_);
3426
3427 if (ReceiverMightBeImplicit()) {
3428 Label call_as_function;
3429 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
3430 __ b(eq, &call_as_function);
3431 __ InvokeFunction(r1,
3432 actual,
3433 JUMP_FUNCTION,
3434 NullCallWrapper(),
3435 CALL_AS_METHOD);
3436 __ bind(&call_as_function);
3437 }
3438 __ InvokeFunction(r1,
3439 actual,
3440 JUMP_FUNCTION,
3441 NullCallWrapper(),
3442 CALL_AS_FUNCTION);
3443
3444 // Slow-case: Non-function called.
3445 __ bind(&slow);
3446 if (RecordCallTarget()) {
3447 // If there is a call target cache, mark it megamorphic in the
3448 // non-function case. MegamorphicSentinel is an immortal immovable
3449 // object (undefined) so no write barrier is needed.
3450 ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
3451 masm->isolate()->heap()->undefined_value());
3452 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
3453 __ str(ip, FieldMemOperand(r2, Cell::kValueOffset));
3454 }
3455 // Check for function proxy.
3456 __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
3457 __ b(ne, &non_function);
3458 __ push(r1); // put proxy as additional argument
3459 __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE32));
3460 __ mov(r2, Operand::Zero());
3461 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
3462 __ SetCallKind(r5, CALL_AS_METHOD);
3463 {
3464 Handle<Code> adaptor =
3465 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
3466 __ Jump(adaptor, RelocInfo::CODE_TARGET);
3467 }
3468
3469 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
3470 // of the original receiver from the call site).
3471 __ bind(&non_function);
3472 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
3473 __ mov(r0, Operand(argc_)); // Set up the number of arguments.
3474 __ mov(r2, Operand::Zero());
3475 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
3476 __ SetCallKind(r5, CALL_AS_METHOD);
3477 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
3478 RelocInfo::CODE_TARGET);
3479 }
3480
3481
Generate(MacroAssembler * masm)3482 void CallConstructStub::Generate(MacroAssembler* masm) {
3483 // r0 : number of arguments
3484 // r1 : the function to call
3485 // r2 : cache cell for call target
3486 Label slow, non_function_call;
3487
3488 // Check that the function is not a smi.
3489 __ JumpIfSmi(r1, &non_function_call);
3490 // Check that the function is a JSFunction.
3491 __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
3492 __ b(ne, &slow);
3493
3494 if (RecordCallTarget()) {
3495 GenerateRecordCallTarget(masm);
3496 }
3497
3498 // Jump to the function-specific construct stub.
3499 Register jmp_reg = r3;
3500 __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
3501 __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
3502 SharedFunctionInfo::kConstructStubOffset));
3503 __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
3504
3505 // r0: number of arguments
3506 // r1: called object
3507 // r3: object type
3508 Label do_call;
3509 __ bind(&slow);
3510 __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
3511 __ b(ne, &non_function_call);
3512 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
3513 __ jmp(&do_call);
3514
3515 __ bind(&non_function_call);
3516 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
3517 __ bind(&do_call);
3518 // Set expected number of arguments to zero (not changing r0).
3519 __ mov(r2, Operand::Zero());
3520 __ SetCallKind(r5, CALL_AS_METHOD);
3521 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
3522 RelocInfo::CODE_TARGET);
3523 }
3524
3525
3526 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)3527 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3528 Label flat_string;
3529 Label ascii_string;
3530 Label got_char_code;
3531 Label sliced_string;
3532
3533 // If the receiver is a smi trigger the non-string case.
3534 __ JumpIfSmi(object_, receiver_not_string_);
3535
3536 // Fetch the instance type of the receiver into result register.
3537 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3538 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3539 // If the receiver is not a string trigger the non-string case.
3540 __ tst(result_, Operand(kIsNotStringMask));
3541 __ b(ne, receiver_not_string_);
3542
3543 // If the index is non-smi trigger the non-smi case.
3544 __ JumpIfNotSmi(index_, &index_not_smi_);
3545 __ bind(&got_smi_index_);
3546
3547 // Check for index out of range.
3548 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
3549 __ cmp(ip, Operand(index_));
3550 __ b(ls, index_out_of_range_);
3551
3552 __ SmiUntag(index_);
3553
3554 StringCharLoadGenerator::Generate(masm,
3555 object_,
3556 index_,
3557 result_,
3558 &call_runtime_);
3559
3560 __ SmiTag(result_);
3561 __ bind(&exit_);
3562 }
3563
3564
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3565 void StringCharCodeAtGenerator::GenerateSlow(
3566 MacroAssembler* masm,
3567 const RuntimeCallHelper& call_helper) {
3568 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3569
3570 // Index is not a smi.
3571 __ bind(&index_not_smi_);
3572 // If index is a heap number, try converting it to an integer.
3573 __ CheckMap(index_,
3574 result_,
3575 Heap::kHeapNumberMapRootIndex,
3576 index_not_number_,
3577 DONT_DO_SMI_CHECK);
3578 call_helper.BeforeCall(masm);
3579 __ push(object_);
3580 __ push(index_); // Consumed by runtime conversion function.
3581 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3582 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3583 } else {
3584 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3585 // NumberToSmi discards numbers that are not exact integers.
3586 __ CallRuntime(Runtime::kNumberToSmi, 1);
3587 }
3588 // Save the conversion result before the pop instructions below
3589 // have a chance to overwrite it.
3590 __ Move(index_, r0);
3591 __ pop(object_);
3592 // Reload the instance type.
3593 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3594 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3595 call_helper.AfterCall(masm);
3596 // If index is still not a smi, it must be out of range.
3597 __ JumpIfNotSmi(index_, index_out_of_range_);
3598 // Otherwise, return to the fast path.
3599 __ jmp(&got_smi_index_);
3600
3601 // Call runtime. We get here when the receiver is a string and the
3602 // index is a number, but the code of getting the actual character
3603 // is too complex (e.g., when the string needs to be flattened).
3604 __ bind(&call_runtime_);
3605 call_helper.BeforeCall(masm);
3606 __ SmiTag(index_);
3607 __ Push(object_, index_);
3608 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
3609 __ Move(result_, r0);
3610 call_helper.AfterCall(masm);
3611 __ jmp(&exit_);
3612
3613 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3614 }
3615
3616
3617 // -------------------------------------------------------------------------
3618 // StringCharFromCodeGenerator
3619
GenerateFast(MacroAssembler * masm)3620 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3621 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3622 STATIC_ASSERT(kSmiTag == 0);
3623 STATIC_ASSERT(kSmiShiftSize == 0);
3624 ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1));
3625 __ tst(code_,
3626 Operand(kSmiTagMask |
3627 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3628 __ b(ne, &slow_case_);
3629
3630 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3631 // At this point code register contains smi tagged ASCII char code.
3632 __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
3633 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3634 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
3635 __ b(eq, &slow_case_);
3636 __ bind(&exit_);
3637 }
3638
3639
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3640 void StringCharFromCodeGenerator::GenerateSlow(
3641 MacroAssembler* masm,
3642 const RuntimeCallHelper& call_helper) {
3643 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3644
3645 __ bind(&slow_case_);
3646 call_helper.BeforeCall(masm);
3647 __ push(code_);
3648 __ CallRuntime(Runtime::kCharFromCode, 1);
3649 __ Move(result_, r0);
3650 call_helper.AfterCall(masm);
3651 __ jmp(&exit_);
3652
3653 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3654 }
3655
3656
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,bool ascii)3657 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3658 Register dest,
3659 Register src,
3660 Register count,
3661 Register scratch,
3662 bool ascii) {
3663 Label loop;
3664 Label done;
3665 // This loop just copies one character at a time, as it is only used for very
3666 // short strings.
3667 if (!ascii) {
3668 __ add(count, count, Operand(count), SetCC);
3669 } else {
3670 __ cmp(count, Operand::Zero());
3671 }
3672 __ b(eq, &done);
3673
3674 __ bind(&loop);
3675 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
3676 // Perform sub between load and dependent store to get the load time to
3677 // complete.
3678 __ sub(count, count, Operand(1), SetCC);
3679 __ strb(scratch, MemOperand(dest, 1, PostIndex));
3680 // last iteration.
3681 __ b(gt, &loop);
3682
3683 __ bind(&done);
3684 }
3685
3686
3687 enum CopyCharactersFlags {
3688 COPY_ASCII = 1,
3689 DEST_ALWAYS_ALIGNED = 2
3690 };
3691
3692
GenerateCopyCharactersLong(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch1,Register scratch2,Register scratch3,Register scratch4,int flags)3693 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
3694 Register dest,
3695 Register src,
3696 Register count,
3697 Register scratch1,
3698 Register scratch2,
3699 Register scratch3,
3700 Register scratch4,
3701 int flags) {
3702 bool ascii = (flags & COPY_ASCII) != 0;
3703 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
3704
3705 if (dest_always_aligned && FLAG_debug_code) {
3706 // Check that destination is actually word aligned if the flag says
3707 // that it is.
3708 __ tst(dest, Operand(kPointerAlignmentMask));
3709 __ Check(eq, kDestinationOfCopyNotAligned);
3710 }
3711
3712 const int kReadAlignment = 4;
3713 const int kReadAlignmentMask = kReadAlignment - 1;
3714 // Ensure that reading an entire aligned word containing the last character
3715 // of a string will not read outside the allocated area (because we pad up
3716 // to kObjectAlignment).
3717 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
3718 // Assumes word reads and writes are little endian.
3719 // Nothing to do for zero characters.
3720 Label done;
3721 if (!ascii) {
3722 __ add(count, count, Operand(count), SetCC);
3723 } else {
3724 __ cmp(count, Operand::Zero());
3725 }
3726 __ b(eq, &done);
3727
3728 // Assume that you cannot read (or write) unaligned.
3729 Label byte_loop;
3730 // Must copy at least eight bytes, otherwise just do it one byte at a time.
3731 __ cmp(count, Operand(8));
3732 __ add(count, dest, Operand(count));
3733 Register limit = count; // Read until src equals this.
3734 __ b(lt, &byte_loop);
3735
3736 if (!dest_always_aligned) {
3737 // Align dest by byte copying. Copies between zero and three bytes.
3738 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
3739 Label dest_aligned;
3740 __ b(eq, &dest_aligned);
3741 __ cmp(scratch4, Operand(2));
3742 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
3743 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
3744 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
3745 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
3746 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
3747 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
3748 __ bind(&dest_aligned);
3749 }
3750
3751 Label simple_loop;
3752
3753 __ sub(scratch4, dest, Operand(src));
3754 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
3755 __ b(eq, &simple_loop);
3756 // Shift register is number of bits in a source word that
3757 // must be combined with bits in the next source word in order
3758 // to create a destination word.
3759
3760 // Complex loop for src/dst that are not aligned the same way.
3761 {
3762 Label loop;
3763 __ mov(scratch4, Operand(scratch4, LSL, 3));
3764 Register left_shift = scratch4;
3765 __ and_(src, src, Operand(~3)); // Round down to load previous word.
3766 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
3767 // Store the "shift" most significant bits of scratch in the least
3768 // signficant bits (i.e., shift down by (32-shift)).
3769 __ rsb(scratch2, left_shift, Operand(32));
3770 Register right_shift = scratch2;
3771 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
3772
3773 __ bind(&loop);
3774 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
3775 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
3776 __ str(scratch1, MemOperand(dest, 4, PostIndex));
3777 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
3778 // Loop if four or more bytes left to copy.
3779 __ sub(scratch3, limit, Operand(dest));
3780 __ sub(scratch3, scratch3, Operand(4), SetCC);
3781 __ b(ge, &loop);
3782 }
3783 // There is now between zero and three bytes left to copy (negative that
3784 // number is in scratch3), and between one and three bytes already read into
3785 // scratch1 (eight times that number in scratch4). We may have read past
3786 // the end of the string, but because objects are aligned, we have not read
3787 // past the end of the object.
3788 // Find the minimum of remaining characters to move and preloaded characters
3789 // and write those as bytes.
3790 __ add(scratch3, scratch3, Operand(4), SetCC);
3791 __ b(eq, &done);
3792 __ cmp(scratch4, Operand(scratch3, LSL, 3), ne);
3793 // Move minimum of bytes read and bytes left to copy to scratch4.
3794 __ mov(scratch3, Operand(scratch4, LSR, 3), LeaveCC, lt);
3795 // Between one and three (value in scratch3) characters already read into
3796 // scratch ready to write.
3797 __ cmp(scratch3, Operand(2));
3798 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
3799 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
3800 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
3801 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
3802 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
3803 // Copy any remaining bytes.
3804 __ b(&byte_loop);
3805
3806 // Simple loop.
3807 // Copy words from src to dst, until less than four bytes left.
3808 // Both src and dest are word aligned.
3809 __ bind(&simple_loop);
3810 {
3811 Label loop;
3812 __ bind(&loop);
3813 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
3814 __ sub(scratch3, limit, Operand(dest));
3815 __ str(scratch1, MemOperand(dest, 4, PostIndex));
3816 // Compare to 8, not 4, because we do the substraction before increasing
3817 // dest.
3818 __ cmp(scratch3, Operand(8));
3819 __ b(ge, &loop);
3820 }
3821
3822 // Copy bytes from src to dst until dst hits limit.
3823 __ bind(&byte_loop);
3824 __ cmp(dest, Operand(limit));
3825 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
3826 __ b(ge, &done);
3827 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
3828 __ b(&byte_loop);
3829
3830 __ bind(&done);
3831 }
3832
3833
GenerateTwoCharacterStringTableProbe(MacroAssembler * masm,Register c1,Register c2,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * not_found)3834 void StringHelper::GenerateTwoCharacterStringTableProbe(MacroAssembler* masm,
3835 Register c1,
3836 Register c2,
3837 Register scratch1,
3838 Register scratch2,
3839 Register scratch3,
3840 Register scratch4,
3841 Register scratch5,
3842 Label* not_found) {
3843 // Register scratch3 is the general scratch register in this function.
3844 Register scratch = scratch3;
3845
3846 // Make sure that both characters are not digits as such strings has a
3847 // different hash algorithm. Don't try to look for these in the string table.
3848 Label not_array_index;
3849 __ sub(scratch, c1, Operand(static_cast<int>('0')));
3850 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
3851 __ b(hi, ¬_array_index);
3852 __ sub(scratch, c2, Operand(static_cast<int>('0')));
3853 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
3854
3855 // If check failed combine both characters into single halfword.
3856 // This is required by the contract of the method: code at the
3857 // not_found branch expects this combination in c1 register
3858 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
3859 __ b(ls, not_found);
3860
3861 __ bind(¬_array_index);
3862 // Calculate the two character string hash.
3863 Register hash = scratch1;
3864 StringHelper::GenerateHashInit(masm, hash, c1);
3865 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
3866 StringHelper::GenerateHashGetHash(masm, hash);
3867
3868 // Collect the two characters in a register.
3869 Register chars = c1;
3870 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
3871
3872 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
3873 // hash: hash of two character string.
3874
3875 // Load string table
3876 // Load address of first element of the string table.
3877 Register string_table = c2;
3878 __ LoadRoot(string_table, Heap::kStringTableRootIndex);
3879
3880 Register undefined = scratch4;
3881 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3882
3883 // Calculate capacity mask from the string table capacity.
3884 Register mask = scratch2;
3885 __ ldr(mask, FieldMemOperand(string_table, StringTable::kCapacityOffset));
3886 __ mov(mask, Operand(mask, ASR, 1));
3887 __ sub(mask, mask, Operand(1));
3888
3889 // Calculate untagged address of the first element of the string table.
3890 Register first_string_table_element = string_table;
3891 __ add(first_string_table_element, string_table,
3892 Operand(StringTable::kElementsStartOffset - kHeapObjectTag));
3893
3894 // Registers
3895 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
3896 // hash: hash of two character string
3897 // mask: capacity mask
3898 // first_string_table_element: address of the first element of
3899 // the string table
3900 // undefined: the undefined object
3901 // scratch: -
3902
3903 // Perform a number of probes in the string table.
3904 const int kProbes = 4;
3905 Label found_in_string_table;
3906 Label next_probe[kProbes];
3907 Register candidate = scratch5; // Scratch register contains candidate.
3908 for (int i = 0; i < kProbes; i++) {
3909 // Calculate entry in string table.
3910 if (i > 0) {
3911 __ add(candidate, hash, Operand(StringTable::GetProbeOffset(i)));
3912 } else {
3913 __ mov(candidate, hash);
3914 }
3915
3916 __ and_(candidate, candidate, Operand(mask));
3917
3918 // Load the entry from the symble table.
3919 STATIC_ASSERT(StringTable::kEntrySize == 1);
3920 __ ldr(candidate,
3921 MemOperand(first_string_table_element,
3922 candidate,
3923 LSL,
3924 kPointerSizeLog2));
3925
3926 // If entry is undefined no string with this hash can be found.
3927 Label is_string;
3928 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
3929 __ b(ne, &is_string);
3930
3931 __ cmp(undefined, candidate);
3932 __ b(eq, not_found);
3933 // Must be the hole (deleted entry).
3934 if (FLAG_debug_code) {
3935 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
3936 __ cmp(ip, candidate);
3937 __ Assert(eq, kOddballInStringTableIsNotUndefinedOrTheHole);
3938 }
3939 __ jmp(&next_probe[i]);
3940
3941 __ bind(&is_string);
3942
3943 // Check that the candidate is a non-external ASCII string. The instance
3944 // type is still in the scratch register from the CompareObjectType
3945 // operation.
3946 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
3947
3948 // If length is not 2 the string is not a candidate.
3949 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
3950 __ cmp(scratch, Operand(Smi::FromInt(2)));
3951 __ b(ne, &next_probe[i]);
3952
3953 // Check if the two characters match.
3954 // Assumes that word load is little endian.
3955 __ ldrh(scratch, FieldMemOperand(candidate, SeqOneByteString::kHeaderSize));
3956 __ cmp(chars, scratch);
3957 __ b(eq, &found_in_string_table);
3958 __ bind(&next_probe[i]);
3959 }
3960
3961 // No matching 2 character string found by probing.
3962 __ jmp(not_found);
3963
3964 // Scratch register contains result when we fall through to here.
3965 Register result = candidate;
3966 __ bind(&found_in_string_table);
3967 __ Move(r0, result);
3968 }
3969
3970
GenerateHashInit(MacroAssembler * masm,Register hash,Register character)3971 void StringHelper::GenerateHashInit(MacroAssembler* masm,
3972 Register hash,
3973 Register character) {
3974 // hash = character + (character << 10);
3975 __ LoadRoot(hash, Heap::kHashSeedRootIndex);
3976 // Untag smi seed and add the character.
3977 __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
3978 // hash += hash << 10;
3979 __ add(hash, hash, Operand(hash, LSL, 10));
3980 // hash ^= hash >> 6;
3981 __ eor(hash, hash, Operand(hash, LSR, 6));
3982 }
3983
3984
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character)3985 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
3986 Register hash,
3987 Register character) {
3988 // hash += character;
3989 __ add(hash, hash, Operand(character));
3990 // hash += hash << 10;
3991 __ add(hash, hash, Operand(hash, LSL, 10));
3992 // hash ^= hash >> 6;
3993 __ eor(hash, hash, Operand(hash, LSR, 6));
3994 }
3995
3996
GenerateHashGetHash(MacroAssembler * masm,Register hash)3997 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
3998 Register hash) {
3999 // hash += hash << 3;
4000 __ add(hash, hash, Operand(hash, LSL, 3));
4001 // hash ^= hash >> 11;
4002 __ eor(hash, hash, Operand(hash, LSR, 11));
4003 // hash += hash << 15;
4004 __ add(hash, hash, Operand(hash, LSL, 15));
4005
4006 __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
4007
4008 // if (hash == 0) hash = 27;
4009 __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
4010 }
4011
4012
Generate(MacroAssembler * masm)4013 void SubStringStub::Generate(MacroAssembler* masm) {
4014 Label runtime;
4015
4016 // Stack frame on entry.
4017 // lr: return address
4018 // sp[0]: to
4019 // sp[4]: from
4020 // sp[8]: string
4021
4022 // This stub is called from the native-call %_SubString(...), so
4023 // nothing can be assumed about the arguments. It is tested that:
4024 // "string" is a sequential string,
4025 // both "from" and "to" are smis, and
4026 // 0 <= from <= to <= string.length.
4027 // If any of these assumptions fail, we call the runtime system.
4028
4029 const int kToOffset = 0 * kPointerSize;
4030 const int kFromOffset = 1 * kPointerSize;
4031 const int kStringOffset = 2 * kPointerSize;
4032
4033 __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
4034 STATIC_ASSERT(kFromOffset == kToOffset + 4);
4035 STATIC_ASSERT(kSmiTag == 0);
4036 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4037
4038 // Arithmetic shift right by one un-smi-tags. In this case we rotate right
4039 // instead because we bail out on non-smi values: ROR and ASR are equivalent
4040 // for smis but they set the flags in a way that's easier to optimize.
4041 __ mov(r2, Operand(r2, ROR, 1), SetCC);
4042 __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
4043 // If either to or from had the smi tag bit set, then C is set now, and N
4044 // has the same value: we rotated by 1, so the bottom bit is now the top bit.
4045 // We want to bailout to runtime here if From is negative. In that case, the
4046 // next instruction is not executed and we fall through to bailing out to
4047 // runtime.
4048 // Executed if both r2 and r3 are untagged integers.
4049 __ sub(r2, r2, Operand(r3), SetCC, cc);
4050 // One of the above un-smis or the above SUB could have set N==1.
4051 __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
4052
4053 // Make sure first argument is a string.
4054 __ ldr(r0, MemOperand(sp, kStringOffset));
4055 // Do a JumpIfSmi, but fold its jump into the subsequent string test.
4056 __ SmiTst(r0);
4057 Condition is_string = masm->IsObjectStringType(r0, r1, ne);
4058 ASSERT(is_string == eq);
4059 __ b(NegateCondition(is_string), &runtime);
4060
4061 Label single_char;
4062 __ cmp(r2, Operand(1));
4063 __ b(eq, &single_char);
4064
4065 // Short-cut for the case of trivial substring.
4066 Label return_r0;
4067 // r0: original string
4068 // r2: result string length
4069 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
4070 __ cmp(r2, Operand(r4, ASR, 1));
4071 // Return original string.
4072 __ b(eq, &return_r0);
4073 // Longer than original string's length or negative: unsafe arguments.
4074 __ b(hi, &runtime);
4075 // Shorter than original string's length: an actual substring.
4076
4077 // Deal with different string types: update the index if necessary
4078 // and put the underlying string into r5.
4079 // r0: original string
4080 // r1: instance type
4081 // r2: length
4082 // r3: from index (untagged)
4083 Label underlying_unpacked, sliced_string, seq_or_external_string;
4084 // If the string is not indirect, it can only be sequential or external.
4085 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
4086 STATIC_ASSERT(kIsIndirectStringMask != 0);
4087 __ tst(r1, Operand(kIsIndirectStringMask));
4088 __ b(eq, &seq_or_external_string);
4089
4090 __ tst(r1, Operand(kSlicedNotConsMask));
4091 __ b(ne, &sliced_string);
4092 // Cons string. Check whether it is flat, then fetch first part.
4093 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
4094 __ CompareRoot(r5, Heap::kempty_stringRootIndex);
4095 __ b(ne, &runtime);
4096 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
4097 // Update instance type.
4098 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
4099 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
4100 __ jmp(&underlying_unpacked);
4101
4102 __ bind(&sliced_string);
4103 // Sliced string. Fetch parent and correct start index by offset.
4104 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
4105 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
4106 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
4107 // Update instance type.
4108 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
4109 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
4110 __ jmp(&underlying_unpacked);
4111
4112 __ bind(&seq_or_external_string);
4113 // Sequential or external string. Just move string to the expected register.
4114 __ mov(r5, r0);
4115
4116 __ bind(&underlying_unpacked);
4117
4118 if (FLAG_string_slices) {
4119 Label copy_routine;
4120 // r5: underlying subject string
4121 // r1: instance type of underlying subject string
4122 // r2: length
4123 // r3: adjusted start index (untagged)
4124 __ cmp(r2, Operand(SlicedString::kMinLength));
4125 // Short slice. Copy instead of slicing.
4126 __ b(lt, ©_routine);
4127 // Allocate new sliced string. At this point we do not reload the instance
4128 // type including the string encoding because we simply rely on the info
4129 // provided by the original string. It does not matter if the original
4130 // string's encoding is wrong because we always have to recheck encoding of
4131 // the newly created string's parent anyways due to externalized strings.
4132 Label two_byte_slice, set_slice_header;
4133 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
4134 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
4135 __ tst(r1, Operand(kStringEncodingMask));
4136 __ b(eq, &two_byte_slice);
4137 __ AllocateAsciiSlicedString(r0, r2, r6, r4, &runtime);
4138 __ jmp(&set_slice_header);
4139 __ bind(&two_byte_slice);
4140 __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
4141 __ bind(&set_slice_header);
4142 __ mov(r3, Operand(r3, LSL, 1));
4143 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
4144 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
4145 __ jmp(&return_r0);
4146
4147 __ bind(©_routine);
4148 }
4149
4150 // r5: underlying subject string
4151 // r1: instance type of underlying subject string
4152 // r2: length
4153 // r3: adjusted start index (untagged)
4154 Label two_byte_sequential, sequential_string, allocate_result;
4155 STATIC_ASSERT(kExternalStringTag != 0);
4156 STATIC_ASSERT(kSeqStringTag == 0);
4157 __ tst(r1, Operand(kExternalStringTag));
4158 __ b(eq, &sequential_string);
4159
4160 // Handle external string.
4161 // Rule out short external strings.
4162 STATIC_CHECK(kShortExternalStringTag != 0);
4163 __ tst(r1, Operand(kShortExternalStringTag));
4164 __ b(ne, &runtime);
4165 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
4166 // r5 already points to the first character of underlying string.
4167 __ jmp(&allocate_result);
4168
4169 __ bind(&sequential_string);
4170 // Locate first character of underlying subject string.
4171 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
4172 __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4173
4174 __ bind(&allocate_result);
4175 // Sequential acii string. Allocate the result.
4176 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
4177 __ tst(r1, Operand(kStringEncodingMask));
4178 __ b(eq, &two_byte_sequential);
4179
4180 // Allocate and copy the resulting ASCII string.
4181 __ AllocateAsciiString(r0, r2, r4, r6, r1, &runtime);
4182
4183 // Locate first character of substring to copy.
4184 __ add(r5, r5, r3);
4185 // Locate first character of result.
4186 __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4187
4188 // r0: result string
4189 // r1: first character of result string
4190 // r2: result string length
4191 // r5: first character of substring to copy
4192 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
4193 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r9,
4194 COPY_ASCII | DEST_ALWAYS_ALIGNED);
4195 __ jmp(&return_r0);
4196
4197 // Allocate and copy the resulting two-byte string.
4198 __ bind(&two_byte_sequential);
4199 __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
4200
4201 // Locate first character of substring to copy.
4202 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
4203 __ add(r5, r5, Operand(r3, LSL, 1));
4204 // Locate first character of result.
4205 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
4206
4207 // r0: result string.
4208 // r1: first character of result.
4209 // r2: result length.
4210 // r5: first character of substring to copy.
4211 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
4212 StringHelper::GenerateCopyCharactersLong(
4213 masm, r1, r5, r2, r3, r4, r6, r9, DEST_ALWAYS_ALIGNED);
4214
4215 __ bind(&return_r0);
4216 Counters* counters = masm->isolate()->counters();
4217 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
4218 __ Drop(3);
4219 __ Ret();
4220
4221 // Just jump to runtime to create the sub string.
4222 __ bind(&runtime);
4223 __ TailCallRuntime(Runtime::kSubString, 3, 1);
4224
4225 __ bind(&single_char);
4226 // r0: original string
4227 // r1: instance type
4228 // r2: length
4229 // r3: from index (untagged)
4230 __ SmiTag(r3, r3);
4231 StringCharAtGenerator generator(
4232 r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
4233 generator.GenerateFast(masm);
4234 __ Drop(3);
4235 __ Ret();
4236 generator.SkipSlow(masm, &runtime);
4237 }
4238
4239
GenerateFlatAsciiStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)4240 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
4241 Register left,
4242 Register right,
4243 Register scratch1,
4244 Register scratch2,
4245 Register scratch3) {
4246 Register length = scratch1;
4247
4248 // Compare lengths.
4249 Label strings_not_equal, check_zero_length;
4250 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
4251 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
4252 __ cmp(length, scratch2);
4253 __ b(eq, &check_zero_length);
4254 __ bind(&strings_not_equal);
4255 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
4256 __ Ret();
4257
4258 // Check if the length is zero.
4259 Label compare_chars;
4260 __ bind(&check_zero_length);
4261 STATIC_ASSERT(kSmiTag == 0);
4262 __ cmp(length, Operand::Zero());
4263 __ b(ne, &compare_chars);
4264 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
4265 __ Ret();
4266
4267 // Compare characters.
4268 __ bind(&compare_chars);
4269 GenerateAsciiCharsCompareLoop(masm,
4270 left, right, length, scratch2, scratch3,
4271 &strings_not_equal);
4272
4273 // Characters are equal.
4274 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
4275 __ Ret();
4276 }
4277
4278
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)4279 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
4280 Register left,
4281 Register right,
4282 Register scratch1,
4283 Register scratch2,
4284 Register scratch3,
4285 Register scratch4) {
4286 Label result_not_equal, compare_lengths;
4287 // Find minimum length and length difference.
4288 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
4289 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
4290 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
4291 Register length_delta = scratch3;
4292 __ mov(scratch1, scratch2, LeaveCC, gt);
4293 Register min_length = scratch1;
4294 STATIC_ASSERT(kSmiTag == 0);
4295 __ cmp(min_length, Operand::Zero());
4296 __ b(eq, &compare_lengths);
4297
4298 // Compare loop.
4299 GenerateAsciiCharsCompareLoop(masm,
4300 left, right, min_length, scratch2, scratch4,
4301 &result_not_equal);
4302
4303 // Compare lengths - strings up to min-length are equal.
4304 __ bind(&compare_lengths);
4305 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
4306 // Use length_delta as result if it's zero.
4307 __ mov(r0, Operand(length_delta), SetCC);
4308 __ bind(&result_not_equal);
4309 // Conditionally update the result based either on length_delta or
4310 // the last comparion performed in the loop above.
4311 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
4312 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
4313 __ Ret();
4314 }
4315
4316
GenerateAsciiCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Label * chars_not_equal)4317 void StringCompareStub::GenerateAsciiCharsCompareLoop(
4318 MacroAssembler* masm,
4319 Register left,
4320 Register right,
4321 Register length,
4322 Register scratch1,
4323 Register scratch2,
4324 Label* chars_not_equal) {
4325 // Change index to run from -length to -1 by adding length to string
4326 // start. This means that loop ends when index reaches zero, which
4327 // doesn't need an additional compare.
4328 __ SmiUntag(length);
4329 __ add(scratch1, length,
4330 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4331 __ add(left, left, Operand(scratch1));
4332 __ add(right, right, Operand(scratch1));
4333 __ rsb(length, length, Operand::Zero());
4334 Register index = length; // index = -length;
4335
4336 // Compare loop.
4337 Label loop;
4338 __ bind(&loop);
4339 __ ldrb(scratch1, MemOperand(left, index));
4340 __ ldrb(scratch2, MemOperand(right, index));
4341 __ cmp(scratch1, scratch2);
4342 __ b(ne, chars_not_equal);
4343 __ add(index, index, Operand(1), SetCC);
4344 __ b(ne, &loop);
4345 }
4346
4347
Generate(MacroAssembler * masm)4348 void StringCompareStub::Generate(MacroAssembler* masm) {
4349 Label runtime;
4350
4351 Counters* counters = masm->isolate()->counters();
4352
4353 // Stack frame on entry.
4354 // sp[0]: right string
4355 // sp[4]: left string
4356 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
4357
4358 Label not_same;
4359 __ cmp(r0, r1);
4360 __ b(ne, ¬_same);
4361 STATIC_ASSERT(EQUAL == 0);
4362 STATIC_ASSERT(kSmiTag == 0);
4363 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
4364 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
4365 __ add(sp, sp, Operand(2 * kPointerSize));
4366 __ Ret();
4367
4368 __ bind(¬_same);
4369
4370 // Check that both objects are sequential ASCII strings.
4371 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
4372
4373 // Compare flat ASCII strings natively. Remove arguments from stack first.
4374 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
4375 __ add(sp, sp, Operand(2 * kPointerSize));
4376 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
4377
4378 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
4379 // tagged as a small integer.
4380 __ bind(&runtime);
4381 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
4382 }
4383
4384
Generate(MacroAssembler * masm)4385 void StringAddStub::Generate(MacroAssembler* masm) {
4386 Label call_runtime, call_builtin;
4387 Builtins::JavaScript builtin_id = Builtins::ADD;
4388
4389 Counters* counters = masm->isolate()->counters();
4390
4391 // Stack on entry:
4392 // sp[0]: second argument (right).
4393 // sp[4]: first argument (left).
4394
4395 // Load the two arguments.
4396 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
4397 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
4398
4399 // Make sure that both arguments are strings if not known in advance.
4400 // Otherwise, at least one of the arguments is definitely a string,
4401 // and we convert the one that is not known to be a string.
4402 if ((flags_ & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
4403 ASSERT((flags_ & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT);
4404 ASSERT((flags_ & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT);
4405 __ JumpIfEitherSmi(r0, r1, &call_runtime);
4406 // Load instance types.
4407 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4408 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4409 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4410 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4411 STATIC_ASSERT(kStringTag == 0);
4412 // If either is not a string, go to runtime.
4413 __ tst(r4, Operand(kIsNotStringMask));
4414 __ tst(r5, Operand(kIsNotStringMask), eq);
4415 __ b(ne, &call_runtime);
4416 } else if ((flags_ & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT) {
4417 ASSERT((flags_ & STRING_ADD_CHECK_RIGHT) == 0);
4418 GenerateConvertArgument(
4419 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
4420 builtin_id = Builtins::STRING_ADD_RIGHT;
4421 } else if ((flags_ & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT) {
4422 ASSERT((flags_ & STRING_ADD_CHECK_LEFT) == 0);
4423 GenerateConvertArgument(
4424 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
4425 builtin_id = Builtins::STRING_ADD_LEFT;
4426 }
4427
4428 // Both arguments are strings.
4429 // r0: first string
4430 // r1: second string
4431 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4432 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4433 {
4434 Label strings_not_empty;
4435 // Check if either of the strings are empty. In that case return the other.
4436 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
4437 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
4438 STATIC_ASSERT(kSmiTag == 0);
4439 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
4440 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
4441 STATIC_ASSERT(kSmiTag == 0);
4442 // Else test if second string is empty.
4443 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
4444 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
4445
4446 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4447 __ add(sp, sp, Operand(2 * kPointerSize));
4448 __ Ret();
4449
4450 __ bind(&strings_not_empty);
4451 }
4452
4453 __ SmiUntag(r2);
4454 __ SmiUntag(r3);
4455 // Both strings are non-empty.
4456 // r0: first string
4457 // r1: second string
4458 // r2: length of first string
4459 // r3: length of second string
4460 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4461 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4462 // Look at the length of the result of adding the two strings.
4463 Label string_add_flat_result, longer_than_two;
4464 // Adding two lengths can't overflow.
4465 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
4466 __ add(r6, r2, Operand(r3));
4467 // Use the string table when adding two one character strings, as it
4468 // helps later optimizations to return a string here.
4469 __ cmp(r6, Operand(2));
4470 __ b(ne, &longer_than_two);
4471
4472 // Check that both strings are non-external ASCII strings.
4473 if ((flags_ & STRING_ADD_CHECK_BOTH) != STRING_ADD_CHECK_BOTH) {
4474 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4475 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4476 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4477 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4478 }
4479 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r3,
4480 &call_runtime);
4481
4482 // Get the two characters forming the sub string.
4483 __ ldrb(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
4484 __ ldrb(r3, FieldMemOperand(r1, SeqOneByteString::kHeaderSize));
4485
4486 // Try to lookup two character string in string table. If it is not found
4487 // just allocate a new one.
4488 Label make_two_character_string;
4489 StringHelper::GenerateTwoCharacterStringTableProbe(
4490 masm, r2, r3, r6, r0, r4, r5, r9, &make_two_character_string);
4491 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4492 __ add(sp, sp, Operand(2 * kPointerSize));
4493 __ Ret();
4494
4495 __ bind(&make_two_character_string);
4496 // Resulting string has length 2 and first chars of two strings
4497 // are combined into single halfword in r2 register.
4498 // So we can fill resulting string without two loops by a single
4499 // halfword store instruction (which assumes that processor is
4500 // in a little endian mode)
4501 __ mov(r6, Operand(2));
4502 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
4503 __ strh(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
4504 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4505 __ add(sp, sp, Operand(2 * kPointerSize));
4506 __ Ret();
4507
4508 __ bind(&longer_than_two);
4509 // Check if resulting string will be flat.
4510 __ cmp(r6, Operand(ConsString::kMinLength));
4511 __ b(lt, &string_add_flat_result);
4512 // Handle exceptionally long strings in the runtime system.
4513 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
4514 ASSERT(IsPowerOf2(String::kMaxLength + 1));
4515 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
4516 __ cmp(r6, Operand(String::kMaxLength + 1));
4517 __ b(hs, &call_runtime);
4518
4519 // If result is not supposed to be flat, allocate a cons string object.
4520 // If both strings are ASCII the result is an ASCII cons string.
4521 if ((flags_ & STRING_ADD_CHECK_BOTH) != STRING_ADD_CHECK_BOTH) {
4522 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4523 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4524 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4525 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4526 }
4527 Label non_ascii, allocated, ascii_data;
4528 STATIC_ASSERT(kTwoByteStringTag == 0);
4529 __ tst(r4, Operand(kStringEncodingMask));
4530 __ tst(r5, Operand(kStringEncodingMask), ne);
4531 __ b(eq, &non_ascii);
4532
4533 // Allocate an ASCII cons string.
4534 __ bind(&ascii_data);
4535 __ AllocateAsciiConsString(r3, r6, r4, r5, &call_runtime);
4536 __ bind(&allocated);
4537 // Fill the fields of the cons string.
4538 Label skip_write_barrier, after_writing;
4539 ExternalReference high_promotion_mode = ExternalReference::
4540 new_space_high_promotion_mode_active_address(masm->isolate());
4541 __ mov(r4, Operand(high_promotion_mode));
4542 __ ldr(r4, MemOperand(r4, 0));
4543 __ cmp(r4, Operand::Zero());
4544 __ b(eq, &skip_write_barrier);
4545
4546 __ str(r0, FieldMemOperand(r3, ConsString::kFirstOffset));
4547 __ RecordWriteField(r3,
4548 ConsString::kFirstOffset,
4549 r0,
4550 r4,
4551 kLRHasNotBeenSaved,
4552 kDontSaveFPRegs);
4553 __ str(r1, FieldMemOperand(r3, ConsString::kSecondOffset));
4554 __ RecordWriteField(r3,
4555 ConsString::kSecondOffset,
4556 r1,
4557 r4,
4558 kLRHasNotBeenSaved,
4559 kDontSaveFPRegs);
4560 __ jmp(&after_writing);
4561
4562 __ bind(&skip_write_barrier);
4563 __ str(r0, FieldMemOperand(r3, ConsString::kFirstOffset));
4564 __ str(r1, FieldMemOperand(r3, ConsString::kSecondOffset));
4565
4566 __ bind(&after_writing);
4567
4568 __ mov(r0, Operand(r3));
4569 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4570 __ add(sp, sp, Operand(2 * kPointerSize));
4571 __ Ret();
4572
4573 __ bind(&non_ascii);
4574 // At least one of the strings is two-byte. Check whether it happens
4575 // to contain only one byte characters.
4576 // r4: first instance type.
4577 // r5: second instance type.
4578 __ tst(r4, Operand(kOneByteDataHintMask));
4579 __ tst(r5, Operand(kOneByteDataHintMask), ne);
4580 __ b(ne, &ascii_data);
4581 __ eor(r4, r4, Operand(r5));
4582 STATIC_ASSERT(kOneByteStringTag != 0 && kOneByteDataHintTag != 0);
4583 __ and_(r4, r4, Operand(kOneByteStringTag | kOneByteDataHintTag));
4584 __ cmp(r4, Operand(kOneByteStringTag | kOneByteDataHintTag));
4585 __ b(eq, &ascii_data);
4586
4587 // Allocate a two byte cons string.
4588 __ AllocateTwoByteConsString(r3, r6, r4, r5, &call_runtime);
4589 __ jmp(&allocated);
4590
4591 // We cannot encounter sliced strings or cons strings here since:
4592 STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
4593 // Handle creating a flat result from either external or sequential strings.
4594 // Locate the first characters' locations.
4595 // r0: first string
4596 // r1: second string
4597 // r2: length of first string
4598 // r3: length of second string
4599 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4600 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4601 // r6: sum of lengths.
4602 Label first_prepared, second_prepared;
4603 __ bind(&string_add_flat_result);
4604 if ((flags_ & STRING_ADD_CHECK_BOTH) != STRING_ADD_CHECK_BOTH) {
4605 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4606 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4607 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4608 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4609 }
4610
4611 // Check whether both strings have same encoding
4612 __ eor(ip, r4, Operand(r5));
4613 ASSERT(__ ImmediateFitsAddrMode1Instruction(kStringEncodingMask));
4614 __ tst(ip, Operand(kStringEncodingMask));
4615 __ b(ne, &call_runtime);
4616
4617 STATIC_ASSERT(kSeqStringTag == 0);
4618 __ tst(r4, Operand(kStringRepresentationMask));
4619 STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4620 __ add(r6,
4621 r0,
4622 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
4623 LeaveCC,
4624 eq);
4625 __ b(eq, &first_prepared);
4626 // External string: rule out short external string and load string resource.
4627 STATIC_ASSERT(kShortExternalStringTag != 0);
4628 __ tst(r4, Operand(kShortExternalStringMask));
4629 __ b(ne, &call_runtime);
4630 __ ldr(r6, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
4631 __ bind(&first_prepared);
4632
4633 STATIC_ASSERT(kSeqStringTag == 0);
4634 __ tst(r5, Operand(kStringRepresentationMask));
4635 STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4636 __ add(r1,
4637 r1,
4638 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
4639 LeaveCC,
4640 eq);
4641 __ b(eq, &second_prepared);
4642 // External string: rule out short external string and load string resource.
4643 STATIC_ASSERT(kShortExternalStringTag != 0);
4644 __ tst(r5, Operand(kShortExternalStringMask));
4645 __ b(ne, &call_runtime);
4646 __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
4647 __ bind(&second_prepared);
4648
4649 Label non_ascii_string_add_flat_result;
4650 // r6: first character of first string
4651 // r1: first character of second string
4652 // r2: length of first string.
4653 // r3: length of second string.
4654 // Both strings have the same encoding.
4655 STATIC_ASSERT(kTwoByteStringTag == 0);
4656 __ tst(r5, Operand(kStringEncodingMask));
4657 __ b(eq, &non_ascii_string_add_flat_result);
4658
4659 __ add(r2, r2, Operand(r3));
4660 __ AllocateAsciiString(r0, r2, r4, r5, r9, &call_runtime);
4661 __ sub(r2, r2, Operand(r3));
4662 __ add(r5, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4663 // r0: result string.
4664 // r6: first character of first string.
4665 // r1: first character of second string.
4666 // r2: length of first string.
4667 // r3: length of second string.
4668 // r5: first character of result.
4669 StringHelper::GenerateCopyCharacters(masm, r5, r6, r2, r4, true);
4670 // r5: next character of result.
4671 StringHelper::GenerateCopyCharacters(masm, r5, r1, r3, r4, true);
4672 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4673 __ add(sp, sp, Operand(2 * kPointerSize));
4674 __ Ret();
4675
4676 __ bind(&non_ascii_string_add_flat_result);
4677 __ add(r2, r2, Operand(r3));
4678 __ AllocateTwoByteString(r0, r2, r4, r5, r9, &call_runtime);
4679 __ sub(r2, r2, Operand(r3));
4680 __ add(r5, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
4681 // r0: result string.
4682 // r6: first character of first string.
4683 // r1: first character of second string.
4684 // r2: length of first string.
4685 // r3: length of second string.
4686 // r5: first character of result.
4687 StringHelper::GenerateCopyCharacters(masm, r5, r6, r2, r4, false);
4688 // r5: next character of result.
4689 StringHelper::GenerateCopyCharacters(masm, r5, r1, r3, r4, false);
4690 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4691 __ add(sp, sp, Operand(2 * kPointerSize));
4692 __ Ret();
4693
4694 // Just jump to runtime to add the two strings.
4695 __ bind(&call_runtime);
4696 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
4697
4698 if (call_builtin.is_linked()) {
4699 __ bind(&call_builtin);
4700 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
4701 }
4702 }
4703
4704
GenerateRegisterArgsPush(MacroAssembler * masm)4705 void StringAddStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
4706 __ push(r0);
4707 __ push(r1);
4708 }
4709
4710
GenerateRegisterArgsPop(MacroAssembler * masm)4711 void StringAddStub::GenerateRegisterArgsPop(MacroAssembler* masm) {
4712 __ pop(r1);
4713 __ pop(r0);
4714 }
4715
4716
GenerateConvertArgument(MacroAssembler * masm,int stack_offset,Register arg,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * slow)4717 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
4718 int stack_offset,
4719 Register arg,
4720 Register scratch1,
4721 Register scratch2,
4722 Register scratch3,
4723 Register scratch4,
4724 Label* slow) {
4725 // First check if the argument is already a string.
4726 Label not_string, done;
4727 __ JumpIfSmi(arg, ¬_string);
4728 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
4729 __ b(lt, &done);
4730
4731 // Check the number to string cache.
4732 __ bind(¬_string);
4733 // Puts the cached result into scratch1.
4734 __ LookupNumberStringCache(arg, scratch1, scratch2, scratch3, scratch4, slow);
4735 __ mov(arg, scratch1);
4736 __ str(arg, MemOperand(sp, stack_offset));
4737 __ bind(&done);
4738 }
4739
4740
GenerateSmis(MacroAssembler * masm)4741 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
4742 ASSERT(state_ == CompareIC::SMI);
4743 Label miss;
4744 __ orr(r2, r1, r0);
4745 __ JumpIfNotSmi(r2, &miss);
4746
4747 if (GetCondition() == eq) {
4748 // For equality we do not care about the sign of the result.
4749 __ sub(r0, r0, r1, SetCC);
4750 } else {
4751 // Untag before subtracting to avoid handling overflow.
4752 __ SmiUntag(r1);
4753 __ sub(r0, r1, Operand::SmiUntag(r0));
4754 }
4755 __ Ret();
4756
4757 __ bind(&miss);
4758 GenerateMiss(masm);
4759 }
4760
4761
GenerateNumbers(MacroAssembler * masm)4762 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
4763 ASSERT(state_ == CompareIC::NUMBER);
4764
4765 Label generic_stub;
4766 Label unordered, maybe_undefined1, maybe_undefined2;
4767 Label miss;
4768
4769 if (left_ == CompareIC::SMI) {
4770 __ JumpIfNotSmi(r1, &miss);
4771 }
4772 if (right_ == CompareIC::SMI) {
4773 __ JumpIfNotSmi(r0, &miss);
4774 }
4775
4776 // Inlining the double comparison and falling back to the general compare
4777 // stub if NaN is involved.
4778 // Load left and right operand.
4779 Label done, left, left_smi, right_smi;
4780 __ JumpIfSmi(r0, &right_smi);
4781 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
4782 DONT_DO_SMI_CHECK);
4783 __ sub(r2, r0, Operand(kHeapObjectTag));
4784 __ vldr(d1, r2, HeapNumber::kValueOffset);
4785 __ b(&left);
4786 __ bind(&right_smi);
4787 __ SmiToDouble(d1, r0);
4788
4789 __ bind(&left);
4790 __ JumpIfSmi(r1, &left_smi);
4791 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
4792 DONT_DO_SMI_CHECK);
4793 __ sub(r2, r1, Operand(kHeapObjectTag));
4794 __ vldr(d0, r2, HeapNumber::kValueOffset);
4795 __ b(&done);
4796 __ bind(&left_smi);
4797 __ SmiToDouble(d0, r1);
4798
4799 __ bind(&done);
4800 // Compare operands.
4801 __ VFPCompareAndSetFlags(d0, d1);
4802
4803 // Don't base result on status bits when a NaN is involved.
4804 __ b(vs, &unordered);
4805
4806 // Return a result of -1, 0, or 1, based on status bits.
4807 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
4808 __ mov(r0, Operand(LESS), LeaveCC, lt);
4809 __ mov(r0, Operand(GREATER), LeaveCC, gt);
4810 __ Ret();
4811
4812 __ bind(&unordered);
4813 __ bind(&generic_stub);
4814 ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC,
4815 CompareIC::GENERIC);
4816 __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
4817
4818 __ bind(&maybe_undefined1);
4819 if (Token::IsOrderedRelationalCompareOp(op_)) {
4820 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
4821 __ b(ne, &miss);
4822 __ JumpIfSmi(r1, &unordered);
4823 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
4824 __ b(ne, &maybe_undefined2);
4825 __ jmp(&unordered);
4826 }
4827
4828 __ bind(&maybe_undefined2);
4829 if (Token::IsOrderedRelationalCompareOp(op_)) {
4830 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
4831 __ b(eq, &unordered);
4832 }
4833
4834 __ bind(&miss);
4835 GenerateMiss(masm);
4836 }
4837
4838
GenerateInternalizedStrings(MacroAssembler * masm)4839 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
4840 ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
4841 Label miss;
4842
4843 // Registers containing left and right operands respectively.
4844 Register left = r1;
4845 Register right = r0;
4846 Register tmp1 = r2;
4847 Register tmp2 = r3;
4848
4849 // Check that both operands are heap objects.
4850 __ JumpIfEitherSmi(left, right, &miss);
4851
4852 // Check that both operands are internalized strings.
4853 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
4854 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
4855 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
4856 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
4857 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
4858 __ orr(tmp1, tmp1, Operand(tmp2));
4859 __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
4860 __ b(ne, &miss);
4861
4862 // Internalized strings are compared by identity.
4863 __ cmp(left, right);
4864 // Make sure r0 is non-zero. At this point input operands are
4865 // guaranteed to be non-zero.
4866 ASSERT(right.is(r0));
4867 STATIC_ASSERT(EQUAL == 0);
4868 STATIC_ASSERT(kSmiTag == 0);
4869 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
4870 __ Ret();
4871
4872 __ bind(&miss);
4873 GenerateMiss(masm);
4874 }
4875
4876
GenerateUniqueNames(MacroAssembler * masm)4877 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
4878 ASSERT(state_ == CompareIC::UNIQUE_NAME);
4879 ASSERT(GetCondition() == eq);
4880 Label miss;
4881
4882 // Registers containing left and right operands respectively.
4883 Register left = r1;
4884 Register right = r0;
4885 Register tmp1 = r2;
4886 Register tmp2 = r3;
4887
4888 // Check that both operands are heap objects.
4889 __ JumpIfEitherSmi(left, right, &miss);
4890
4891 // Check that both operands are unique names. This leaves the instance
4892 // types loaded in tmp1 and tmp2.
4893 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
4894 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
4895 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
4896 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
4897
4898 __ JumpIfNotUniqueName(tmp1, &miss);
4899 __ JumpIfNotUniqueName(tmp2, &miss);
4900
4901 // Unique names are compared by identity.
4902 __ cmp(left, right);
4903 // Make sure r0 is non-zero. At this point input operands are
4904 // guaranteed to be non-zero.
4905 ASSERT(right.is(r0));
4906 STATIC_ASSERT(EQUAL == 0);
4907 STATIC_ASSERT(kSmiTag == 0);
4908 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
4909 __ Ret();
4910
4911 __ bind(&miss);
4912 GenerateMiss(masm);
4913 }
4914
4915
GenerateStrings(MacroAssembler * masm)4916 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
4917 ASSERT(state_ == CompareIC::STRING);
4918 Label miss;
4919
4920 bool equality = Token::IsEqualityOp(op_);
4921
4922 // Registers containing left and right operands respectively.
4923 Register left = r1;
4924 Register right = r0;
4925 Register tmp1 = r2;
4926 Register tmp2 = r3;
4927 Register tmp3 = r4;
4928 Register tmp4 = r5;
4929
4930 // Check that both operands are heap objects.
4931 __ JumpIfEitherSmi(left, right, &miss);
4932
4933 // Check that both operands are strings. This leaves the instance
4934 // types loaded in tmp1 and tmp2.
4935 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
4936 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
4937 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
4938 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
4939 STATIC_ASSERT(kNotStringTag != 0);
4940 __ orr(tmp3, tmp1, tmp2);
4941 __ tst(tmp3, Operand(kIsNotStringMask));
4942 __ b(ne, &miss);
4943
4944 // Fast check for identical strings.
4945 __ cmp(left, right);
4946 STATIC_ASSERT(EQUAL == 0);
4947 STATIC_ASSERT(kSmiTag == 0);
4948 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
4949 __ Ret(eq);
4950
4951 // Handle not identical strings.
4952
4953 // Check that both strings are internalized strings. If they are, we're done
4954 // because we already know they are not identical. We know they are both
4955 // strings.
4956 if (equality) {
4957 ASSERT(GetCondition() == eq);
4958 STATIC_ASSERT(kInternalizedTag == 0);
4959 __ orr(tmp3, tmp1, Operand(tmp2));
4960 __ tst(tmp3, Operand(kIsNotInternalizedMask));
4961 // Make sure r0 is non-zero. At this point input operands are
4962 // guaranteed to be non-zero.
4963 ASSERT(right.is(r0));
4964 __ Ret(eq);
4965 }
4966
4967 // Check that both strings are sequential ASCII.
4968 Label runtime;
4969 __ JumpIfBothInstanceTypesAreNotSequentialAscii(
4970 tmp1, tmp2, tmp3, tmp4, &runtime);
4971
4972 // Compare flat ASCII strings. Returns when done.
4973 if (equality) {
4974 StringCompareStub::GenerateFlatAsciiStringEquals(
4975 masm, left, right, tmp1, tmp2, tmp3);
4976 } else {
4977 StringCompareStub::GenerateCompareFlatAsciiStrings(
4978 masm, left, right, tmp1, tmp2, tmp3, tmp4);
4979 }
4980
4981 // Handle more complex cases in runtime.
4982 __ bind(&runtime);
4983 __ Push(left, right);
4984 if (equality) {
4985 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
4986 } else {
4987 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
4988 }
4989
4990 __ bind(&miss);
4991 GenerateMiss(masm);
4992 }
4993
4994
GenerateObjects(MacroAssembler * masm)4995 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
4996 ASSERT(state_ == CompareIC::OBJECT);
4997 Label miss;
4998 __ and_(r2, r1, Operand(r0));
4999 __ JumpIfSmi(r2, &miss);
5000
5001 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
5002 __ b(ne, &miss);
5003 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
5004 __ b(ne, &miss);
5005
5006 ASSERT(GetCondition() == eq);
5007 __ sub(r0, r0, Operand(r1));
5008 __ Ret();
5009
5010 __ bind(&miss);
5011 GenerateMiss(masm);
5012 }
5013
5014
GenerateKnownObjects(MacroAssembler * masm)5015 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
5016 Label miss;
5017 __ and_(r2, r1, Operand(r0));
5018 __ JumpIfSmi(r2, &miss);
5019 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5020 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
5021 __ cmp(r2, Operand(known_map_));
5022 __ b(ne, &miss);
5023 __ cmp(r3, Operand(known_map_));
5024 __ b(ne, &miss);
5025
5026 __ sub(r0, r0, Operand(r1));
5027 __ Ret();
5028
5029 __ bind(&miss);
5030 GenerateMiss(masm);
5031 }
5032
5033
5034
GenerateMiss(MacroAssembler * masm)5035 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
5036 {
5037 // Call the runtime system in a fresh internal frame.
5038 ExternalReference miss =
5039 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
5040
5041 FrameScope scope(masm, StackFrame::INTERNAL);
5042 __ Push(r1, r0);
5043 __ Push(lr, r1, r0);
5044 __ mov(ip, Operand(Smi::FromInt(op_)));
5045 __ push(ip);
5046 __ CallExternalReference(miss, 3);
5047 // Compute the entry point of the rewritten stub.
5048 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
5049 // Restore registers.
5050 __ pop(lr);
5051 __ Pop(r1, r0);
5052 }
5053
5054 __ Jump(r2);
5055 }
5056
5057
Generate(MacroAssembler * masm)5058 void DirectCEntryStub::Generate(MacroAssembler* masm) {
5059 // Place the return address on the stack, making the call
5060 // GC safe. The RegExp backend also relies on this.
5061 __ str(lr, MemOperand(sp, 0));
5062 __ blx(ip); // Call the C++ function.
5063 __ VFPEnsureFPSCRState(r2);
5064 __ ldr(pc, MemOperand(sp, 0));
5065 }
5066
5067
GenerateCall(MacroAssembler * masm,Register target)5068 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
5069 Register target) {
5070 intptr_t code =
5071 reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location());
5072 __ Move(ip, target);
5073 __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
5074 __ blx(lr); // Call the stub.
5075 }
5076
5077
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)5078 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
5079 Label* miss,
5080 Label* done,
5081 Register receiver,
5082 Register properties,
5083 Handle<Name> name,
5084 Register scratch0) {
5085 ASSERT(name->IsUniqueName());
5086 // If names of slots in range from 1 to kProbes - 1 for the hash value are
5087 // not equal to the name and kProbes-th slot is not used (its name is the
5088 // undefined value), it guarantees the hash table doesn't contain the
5089 // property. It's true even if some slots represent deleted properties
5090 // (their names are the hole value).
5091 for (int i = 0; i < kInlinedProbes; i++) {
5092 // scratch0 points to properties hash.
5093 // Compute the masked index: (hash + i + i * i) & mask.
5094 Register index = scratch0;
5095 // Capacity is smi 2^n.
5096 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
5097 __ sub(index, index, Operand(1));
5098 __ and_(index, index, Operand(
5099 Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
5100
5101 // Scale the index by multiplying by the entry size.
5102 ASSERT(NameDictionary::kEntrySize == 3);
5103 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
5104
5105 Register entity_name = scratch0;
5106 // Having undefined at this place means the name is not contained.
5107 ASSERT_EQ(kSmiTagSize, 1);
5108 Register tmp = properties;
5109 __ add(tmp, properties, Operand(index, LSL, 1));
5110 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
5111
5112 ASSERT(!tmp.is(entity_name));
5113 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
5114 __ cmp(entity_name, tmp);
5115 __ b(eq, done);
5116
5117 // Load the hole ready for use below:
5118 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
5119
5120 // Stop if found the property.
5121 __ cmp(entity_name, Operand(Handle<Name>(name)));
5122 __ b(eq, miss);
5123
5124 Label good;
5125 __ cmp(entity_name, tmp);
5126 __ b(eq, &good);
5127
5128 // Check if the entry name is not a unique name.
5129 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
5130 __ ldrb(entity_name,
5131 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
5132 __ JumpIfNotUniqueName(entity_name, miss);
5133 __ bind(&good);
5134
5135 // Restore the properties.
5136 __ ldr(properties,
5137 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
5138 }
5139
5140 const int spill_mask =
5141 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
5142 r2.bit() | r1.bit() | r0.bit());
5143
5144 __ stm(db_w, sp, spill_mask);
5145 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
5146 __ mov(r1, Operand(Handle<Name>(name)));
5147 NameDictionaryLookupStub stub(NEGATIVE_LOOKUP);
5148 __ CallStub(&stub);
5149 __ cmp(r0, Operand::Zero());
5150 __ ldm(ia_w, sp, spill_mask);
5151
5152 __ b(eq, done);
5153 __ b(ne, miss);
5154 }
5155
5156
5157 // Probe the name dictionary in the |elements| register. Jump to the
5158 // |done| label if a property with the given name is found. Jump to
5159 // the |miss| label otherwise.
5160 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)5161 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
5162 Label* miss,
5163 Label* done,
5164 Register elements,
5165 Register name,
5166 Register scratch1,
5167 Register scratch2) {
5168 ASSERT(!elements.is(scratch1));
5169 ASSERT(!elements.is(scratch2));
5170 ASSERT(!name.is(scratch1));
5171 ASSERT(!name.is(scratch2));
5172
5173 __ AssertName(name);
5174
5175 // Compute the capacity mask.
5176 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
5177 __ SmiUntag(scratch1);
5178 __ sub(scratch1, scratch1, Operand(1));
5179
5180 // Generate an unrolled loop that performs a few probes before
5181 // giving up. Measurements done on Gmail indicate that 2 probes
5182 // cover ~93% of loads from dictionaries.
5183 for (int i = 0; i < kInlinedProbes; i++) {
5184 // Compute the masked index: (hash + i + i * i) & mask.
5185 __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
5186 if (i > 0) {
5187 // Add the probe offset (i + i * i) left shifted to avoid right shifting
5188 // the hash in a separate instruction. The value hash + i + i * i is right
5189 // shifted in the following and instruction.
5190 ASSERT(NameDictionary::GetProbeOffset(i) <
5191 1 << (32 - Name::kHashFieldOffset));
5192 __ add(scratch2, scratch2, Operand(
5193 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
5194 }
5195 __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
5196
5197 // Scale the index by multiplying by the element size.
5198 ASSERT(NameDictionary::kEntrySize == 3);
5199 // scratch2 = scratch2 * 3.
5200 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
5201
5202 // Check if the key is identical to the name.
5203 __ add(scratch2, elements, Operand(scratch2, LSL, 2));
5204 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
5205 __ cmp(name, Operand(ip));
5206 __ b(eq, done);
5207 }
5208
5209 const int spill_mask =
5210 (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
5211 r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
5212 ~(scratch1.bit() | scratch2.bit());
5213
5214 __ stm(db_w, sp, spill_mask);
5215 if (name.is(r0)) {
5216 ASSERT(!elements.is(r1));
5217 __ Move(r1, name);
5218 __ Move(r0, elements);
5219 } else {
5220 __ Move(r0, elements);
5221 __ Move(r1, name);
5222 }
5223 NameDictionaryLookupStub stub(POSITIVE_LOOKUP);
5224 __ CallStub(&stub);
5225 __ cmp(r0, Operand::Zero());
5226 __ mov(scratch2, Operand(r2));
5227 __ ldm(ia_w, sp, spill_mask);
5228
5229 __ b(ne, done);
5230 __ b(eq, miss);
5231 }
5232
5233
Generate(MacroAssembler * masm)5234 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
5235 // This stub overrides SometimesSetsUpAFrame() to return false. That means
5236 // we cannot call anything that could cause a GC from this stub.
5237 // Registers:
5238 // result: NameDictionary to probe
5239 // r1: key
5240 // dictionary: NameDictionary to probe.
5241 // index: will hold an index of entry if lookup is successful.
5242 // might alias with result_.
5243 // Returns:
5244 // result_ is zero if lookup failed, non zero otherwise.
5245
5246 Register result = r0;
5247 Register dictionary = r0;
5248 Register key = r1;
5249 Register index = r2;
5250 Register mask = r3;
5251 Register hash = r4;
5252 Register undefined = r5;
5253 Register entry_key = r6;
5254
5255 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
5256
5257 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
5258 __ SmiUntag(mask);
5259 __ sub(mask, mask, Operand(1));
5260
5261 __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
5262
5263 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5264
5265 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
5266 // Compute the masked index: (hash + i + i * i) & mask.
5267 // Capacity is smi 2^n.
5268 if (i > 0) {
5269 // Add the probe offset (i + i * i) left shifted to avoid right shifting
5270 // the hash in a separate instruction. The value hash + i + i * i is right
5271 // shifted in the following and instruction.
5272 ASSERT(NameDictionary::GetProbeOffset(i) <
5273 1 << (32 - Name::kHashFieldOffset));
5274 __ add(index, hash, Operand(
5275 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
5276 } else {
5277 __ mov(index, Operand(hash));
5278 }
5279 __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
5280
5281 // Scale the index by multiplying by the entry size.
5282 ASSERT(NameDictionary::kEntrySize == 3);
5283 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
5284
5285 ASSERT_EQ(kSmiTagSize, 1);
5286 __ add(index, dictionary, Operand(index, LSL, 2));
5287 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
5288
5289 // Having undefined at this place means the name is not contained.
5290 __ cmp(entry_key, Operand(undefined));
5291 __ b(eq, ¬_in_dictionary);
5292
5293 // Stop if found the property.
5294 __ cmp(entry_key, Operand(key));
5295 __ b(eq, &in_dictionary);
5296
5297 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
5298 // Check if the entry name is not a unique name.
5299 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
5300 __ ldrb(entry_key,
5301 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
5302 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
5303 }
5304 }
5305
5306 __ bind(&maybe_in_dictionary);
5307 // If we are doing negative lookup then probing failure should be
5308 // treated as a lookup success. For positive lookup probing failure
5309 // should be treated as lookup failure.
5310 if (mode_ == POSITIVE_LOOKUP) {
5311 __ mov(result, Operand::Zero());
5312 __ Ret();
5313 }
5314
5315 __ bind(&in_dictionary);
5316 __ mov(result, Operand(1));
5317 __ Ret();
5318
5319 __ bind(¬_in_dictionary);
5320 __ mov(result, Operand::Zero());
5321 __ Ret();
5322 }
5323
5324
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)5325 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
5326 Isolate* isolate) {
5327 StoreBufferOverflowStub stub1(kDontSaveFPRegs);
5328 stub1.GetCode(isolate);
5329 // Hydrogen code stubs need stub2 at snapshot time.
5330 StoreBufferOverflowStub stub2(kSaveFPRegs);
5331 stub2.GetCode(isolate);
5332 }
5333
5334
CanUseFPRegisters()5335 bool CodeStub::CanUseFPRegisters() {
5336 return true; // VFP2 is a base requirement for V8
5337 }
5338
5339
5340 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
5341 // the value has just been written into the object, now this stub makes sure
5342 // we keep the GC informed. The word in the object where the value has been
5343 // written is in the address register.
Generate(MacroAssembler * masm)5344 void RecordWriteStub::Generate(MacroAssembler* masm) {
5345 Label skip_to_incremental_noncompacting;
5346 Label skip_to_incremental_compacting;
5347
5348 // The first two instructions are generated with labels so as to get the
5349 // offset fixed up correctly by the bind(Label*) call. We patch it back and
5350 // forth between a compare instructions (a nop in this position) and the
5351 // real branch when we start and stop incremental heap marking.
5352 // See RecordWriteStub::Patch for details.
5353 {
5354 // Block literal pool emission, as the position of these two instructions
5355 // is assumed by the patching code.
5356 Assembler::BlockConstPoolScope block_const_pool(masm);
5357 __ b(&skip_to_incremental_noncompacting);
5358 __ b(&skip_to_incremental_compacting);
5359 }
5360
5361 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
5362 __ RememberedSetHelper(object_,
5363 address_,
5364 value_,
5365 save_fp_regs_mode_,
5366 MacroAssembler::kReturnAtEnd);
5367 }
5368 __ Ret();
5369
5370 __ bind(&skip_to_incremental_noncompacting);
5371 GenerateIncremental(masm, INCREMENTAL);
5372
5373 __ bind(&skip_to_incremental_compacting);
5374 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
5375
5376 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
5377 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
5378 ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
5379 ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
5380 PatchBranchIntoNop(masm, 0);
5381 PatchBranchIntoNop(masm, Assembler::kInstrSize);
5382 }
5383
5384
GenerateIncremental(MacroAssembler * masm,Mode mode)5385 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
5386 regs_.Save(masm);
5387
5388 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
5389 Label dont_need_remembered_set;
5390
5391 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
5392 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
5393 regs_.scratch0(),
5394 &dont_need_remembered_set);
5395
5396 __ CheckPageFlag(regs_.object(),
5397 regs_.scratch0(),
5398 1 << MemoryChunk::SCAN_ON_SCAVENGE,
5399 ne,
5400 &dont_need_remembered_set);
5401
5402 // First notify the incremental marker if necessary, then update the
5403 // remembered set.
5404 CheckNeedsToInformIncrementalMarker(
5405 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
5406 InformIncrementalMarker(masm, mode);
5407 regs_.Restore(masm);
5408 __ RememberedSetHelper(object_,
5409 address_,
5410 value_,
5411 save_fp_regs_mode_,
5412 MacroAssembler::kReturnAtEnd);
5413
5414 __ bind(&dont_need_remembered_set);
5415 }
5416
5417 CheckNeedsToInformIncrementalMarker(
5418 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
5419 InformIncrementalMarker(masm, mode);
5420 regs_.Restore(masm);
5421 __ Ret();
5422 }
5423
5424
InformIncrementalMarker(MacroAssembler * masm,Mode mode)5425 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
5426 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
5427 int argument_count = 3;
5428 __ PrepareCallCFunction(argument_count, regs_.scratch0());
5429 Register address =
5430 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
5431 ASSERT(!address.is(regs_.object()));
5432 ASSERT(!address.is(r0));
5433 __ Move(address, regs_.address());
5434 __ Move(r0, regs_.object());
5435 __ Move(r1, address);
5436 __ mov(r2, Operand(ExternalReference::isolate_address(masm->isolate())));
5437
5438 AllowExternalCallThatCantCauseGC scope(masm);
5439 if (mode == INCREMENTAL_COMPACTION) {
5440 __ CallCFunction(
5441 ExternalReference::incremental_evacuation_record_write_function(
5442 masm->isolate()),
5443 argument_count);
5444 } else {
5445 ASSERT(mode == INCREMENTAL);
5446 __ CallCFunction(
5447 ExternalReference::incremental_marking_record_write_function(
5448 masm->isolate()),
5449 argument_count);
5450 }
5451 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
5452 }
5453
5454
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)5455 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
5456 MacroAssembler* masm,
5457 OnNoNeedToInformIncrementalMarker on_no_need,
5458 Mode mode) {
5459 Label on_black;
5460 Label need_incremental;
5461 Label need_incremental_pop_scratch;
5462
5463 __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
5464 __ ldr(regs_.scratch1(),
5465 MemOperand(regs_.scratch0(),
5466 MemoryChunk::kWriteBarrierCounterOffset));
5467 __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
5468 __ str(regs_.scratch1(),
5469 MemOperand(regs_.scratch0(),
5470 MemoryChunk::kWriteBarrierCounterOffset));
5471 __ b(mi, &need_incremental);
5472
5473 // Let's look at the color of the object: If it is not black we don't have
5474 // to inform the incremental marker.
5475 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
5476
5477 regs_.Restore(masm);
5478 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
5479 __ RememberedSetHelper(object_,
5480 address_,
5481 value_,
5482 save_fp_regs_mode_,
5483 MacroAssembler::kReturnAtEnd);
5484 } else {
5485 __ Ret();
5486 }
5487
5488 __ bind(&on_black);
5489
5490 // Get the value from the slot.
5491 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
5492
5493 if (mode == INCREMENTAL_COMPACTION) {
5494 Label ensure_not_white;
5495
5496 __ CheckPageFlag(regs_.scratch0(), // Contains value.
5497 regs_.scratch1(), // Scratch.
5498 MemoryChunk::kEvacuationCandidateMask,
5499 eq,
5500 &ensure_not_white);
5501
5502 __ CheckPageFlag(regs_.object(),
5503 regs_.scratch1(), // Scratch.
5504 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
5505 eq,
5506 &need_incremental);
5507
5508 __ bind(&ensure_not_white);
5509 }
5510
5511 // We need extra registers for this, so we push the object and the address
5512 // register temporarily.
5513 __ Push(regs_.object(), regs_.address());
5514 __ EnsureNotWhite(regs_.scratch0(), // The value.
5515 regs_.scratch1(), // Scratch.
5516 regs_.object(), // Scratch.
5517 regs_.address(), // Scratch.
5518 &need_incremental_pop_scratch);
5519 __ Pop(regs_.object(), regs_.address());
5520
5521 regs_.Restore(masm);
5522 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
5523 __ RememberedSetHelper(object_,
5524 address_,
5525 value_,
5526 save_fp_regs_mode_,
5527 MacroAssembler::kReturnAtEnd);
5528 } else {
5529 __ Ret();
5530 }
5531
5532 __ bind(&need_incremental_pop_scratch);
5533 __ Pop(regs_.object(), regs_.address());
5534
5535 __ bind(&need_incremental);
5536
5537 // Fall through when we need to inform the incremental marker.
5538 }
5539
5540
Generate(MacroAssembler * masm)5541 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
5542 // ----------- S t a t e -------------
5543 // -- r0 : element value to store
5544 // -- r3 : element index as smi
5545 // -- sp[0] : array literal index in function as smi
5546 // -- sp[4] : array literal
5547 // clobbers r1, r2, r4
5548 // -----------------------------------
5549
5550 Label element_done;
5551 Label double_elements;
5552 Label smi_element;
5553 Label slow_elements;
5554 Label fast_elements;
5555
5556 // Get array literal index, array literal and its map.
5557 __ ldr(r4, MemOperand(sp, 0 * kPointerSize));
5558 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
5559 __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
5560
5561 __ CheckFastElements(r2, r5, &double_elements);
5562 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
5563 __ JumpIfSmi(r0, &smi_element);
5564 __ CheckFastSmiElements(r2, r5, &fast_elements);
5565
5566 // Store into the array literal requires a elements transition. Call into
5567 // the runtime.
5568 __ bind(&slow_elements);
5569 // call.
5570 __ Push(r1, r3, r0);
5571 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5572 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
5573 __ Push(r5, r4);
5574 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
5575
5576 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
5577 __ bind(&fast_elements);
5578 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
5579 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
5580 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5581 __ str(r0, MemOperand(r6, 0));
5582 // Update the write barrier for the array store.
5583 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
5584 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
5585 __ Ret();
5586
5587 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
5588 // and value is Smi.
5589 __ bind(&smi_element);
5590 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
5591 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
5592 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
5593 __ Ret();
5594
5595 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
5596 __ bind(&double_elements);
5597 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
5598 __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
5599 __ Ret();
5600 }
5601
5602
Generate(MacroAssembler * masm)5603 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
5604 CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs);
5605 __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
5606 int parameter_count_offset =
5607 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
5608 __ ldr(r1, MemOperand(fp, parameter_count_offset));
5609 if (function_mode_ == JS_FUNCTION_STUB_MODE) {
5610 __ add(r1, r1, Operand(1));
5611 }
5612 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
5613 __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
5614 __ add(sp, sp, r1);
5615 __ Ret();
5616 }
5617
5618
Generate(MacroAssembler * masm)5619 void StubFailureTailCallTrampolineStub::Generate(MacroAssembler* masm) {
5620 CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs);
5621 __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
5622 __ mov(r1, r0);
5623 int parameter_count_offset =
5624 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
5625 __ ldr(r0, MemOperand(fp, parameter_count_offset));
5626 // The parameter count above includes the receiver for the arguments passed to
5627 // the deoptimization handler. Subtract the receiver for the parameter count
5628 // for the call.
5629 __ sub(r0, r0, Operand(1));
5630 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
5631 ParameterCount argument_count(r0);
5632 __ InvokeFunction(
5633 r1, argument_count, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
5634 }
5635
5636
MaybeCallEntryHook(MacroAssembler * masm)5637 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
5638 if (masm->isolate()->function_entry_hook() != NULL) {
5639 PredictableCodeSizeScope predictable(masm, 4 * Assembler::kInstrSize);
5640 ProfileEntryHookStub stub;
5641 __ push(lr);
5642 __ CallStub(&stub);
5643 __ pop(lr);
5644 }
5645 }
5646
5647
Generate(MacroAssembler * masm)5648 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
5649 // The entry hook is a "push lr" instruction, followed by a call.
5650 const int32_t kReturnAddressDistanceFromFunctionStart =
5651 3 * Assembler::kInstrSize;
5652
5653 // This should contain all kCallerSaved registers.
5654 const RegList kSavedRegs =
5655 1 << 0 | // r0
5656 1 << 1 | // r1
5657 1 << 2 | // r2
5658 1 << 3 | // r3
5659 1 << 5 | // r5
5660 1 << 9; // r9
5661 // We also save lr, so the count here is one higher than the mask indicates.
5662 const int32_t kNumSavedRegs = 7;
5663
5664 ASSERT((kCallerSaved & kSavedRegs) == kCallerSaved);
5665
5666 // Save all caller-save registers as this may be called from anywhere.
5667 __ stm(db_w, sp, kSavedRegs | lr.bit());
5668
5669 // Compute the function's address for the first argument.
5670 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
5671
5672 // The caller's return address is above the saved temporaries.
5673 // Grab that for the second argument to the hook.
5674 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
5675
5676 // Align the stack if necessary.
5677 int frame_alignment = masm->ActivationFrameAlignment();
5678 if (frame_alignment > kPointerSize) {
5679 __ mov(r5, sp);
5680 ASSERT(IsPowerOf2(frame_alignment));
5681 __ and_(sp, sp, Operand(-frame_alignment));
5682 }
5683
5684 #if V8_HOST_ARCH_ARM
5685 int32_t entry_hook =
5686 reinterpret_cast<int32_t>(masm->isolate()->function_entry_hook());
5687 __ mov(ip, Operand(entry_hook));
5688 #else
5689 // Under the simulator we need to indirect the entry hook through a
5690 // trampoline function at a known address.
5691 // It additionally takes an isolate as a third parameter
5692 __ mov(r2, Operand(ExternalReference::isolate_address(masm->isolate())));
5693
5694 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
5695 __ mov(ip, Operand(ExternalReference(&dispatcher,
5696 ExternalReference::BUILTIN_CALL,
5697 masm->isolate())));
5698 #endif
5699 __ Call(ip);
5700
5701 // Restore the stack pointer if needed.
5702 if (frame_alignment > kPointerSize) {
5703 __ mov(sp, r5);
5704 }
5705
5706 // Also pop pc to get Ret(0).
5707 __ ldm(ia_w, sp, kSavedRegs | pc.bit());
5708 }
5709
5710
5711 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)5712 static void CreateArrayDispatch(MacroAssembler* masm,
5713 AllocationSiteOverrideMode mode) {
5714 if (mode == DISABLE_ALLOCATION_SITES) {
5715 T stub(GetInitialFastElementsKind(),
5716 CONTEXT_CHECK_REQUIRED,
5717 mode);
5718 __ TailCallStub(&stub);
5719 } else if (mode == DONT_OVERRIDE) {
5720 int last_index = GetSequenceIndexFromFastElementsKind(
5721 TERMINAL_FAST_ELEMENTS_KIND);
5722 for (int i = 0; i <= last_index; ++i) {
5723 Label next;
5724 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5725 __ cmp(r3, Operand(kind));
5726 __ b(ne, &next);
5727 T stub(kind);
5728 __ TailCallStub(&stub);
5729 __ bind(&next);
5730 }
5731
5732 // If we reached this point there is a problem.
5733 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5734 } else {
5735 UNREACHABLE();
5736 }
5737 }
5738
5739
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)5740 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
5741 AllocationSiteOverrideMode mode) {
5742 // r2 - type info cell (if mode != DISABLE_ALLOCATION_SITES)
5743 // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
5744 // r0 - number of arguments
5745 // r1 - constructor?
5746 // sp[0] - last argument
5747 Label normal_sequence;
5748 if (mode == DONT_OVERRIDE) {
5749 ASSERT(FAST_SMI_ELEMENTS == 0);
5750 ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
5751 ASSERT(FAST_ELEMENTS == 2);
5752 ASSERT(FAST_HOLEY_ELEMENTS == 3);
5753 ASSERT(FAST_DOUBLE_ELEMENTS == 4);
5754 ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
5755
5756 // is the low bit set? If so, we are holey and that is good.
5757 __ tst(r3, Operand(1));
5758 __ b(ne, &normal_sequence);
5759 }
5760
5761 // look at the first argument
5762 __ ldr(r5, MemOperand(sp, 0));
5763 __ cmp(r5, Operand::Zero());
5764 __ b(eq, &normal_sequence);
5765
5766 if (mode == DISABLE_ALLOCATION_SITES) {
5767 ElementsKind initial = GetInitialFastElementsKind();
5768 ElementsKind holey_initial = GetHoleyElementsKind(initial);
5769
5770 ArraySingleArgumentConstructorStub stub_holey(holey_initial,
5771 CONTEXT_CHECK_REQUIRED,
5772 DISABLE_ALLOCATION_SITES);
5773 __ TailCallStub(&stub_holey);
5774
5775 __ bind(&normal_sequence);
5776 ArraySingleArgumentConstructorStub stub(initial,
5777 CONTEXT_CHECK_REQUIRED,
5778 DISABLE_ALLOCATION_SITES);
5779 __ TailCallStub(&stub);
5780 } else if (mode == DONT_OVERRIDE) {
5781 // We are going to create a holey array, but our kind is non-holey.
5782 // Fix kind and retry (only if we have an allocation site in the cell).
5783 __ add(r3, r3, Operand(1));
5784 __ ldr(r5, FieldMemOperand(r2, Cell::kValueOffset));
5785
5786 if (FLAG_debug_code) {
5787 __ ldr(r5, FieldMemOperand(r5, 0));
5788 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
5789 __ Assert(eq, kExpectedAllocationSiteInCell);
5790 __ ldr(r5, FieldMemOperand(r2, Cell::kValueOffset));
5791 }
5792
5793 // Save the resulting elements kind in type info. We can't just store r3
5794 // in the AllocationSite::transition_info field because elements kind is
5795 // restricted to a portion of the field...upper bits need to be left alone.
5796 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5797 __ ldr(r4, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
5798 __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
5799 __ str(r4, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
5800
5801 __ bind(&normal_sequence);
5802 int last_index = GetSequenceIndexFromFastElementsKind(
5803 TERMINAL_FAST_ELEMENTS_KIND);
5804 for (int i = 0; i <= last_index; ++i) {
5805 Label next;
5806 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5807 __ cmp(r3, Operand(kind));
5808 __ b(ne, &next);
5809 ArraySingleArgumentConstructorStub stub(kind);
5810 __ TailCallStub(&stub);
5811 __ bind(&next);
5812 }
5813
5814 // If we reached this point there is a problem.
5815 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5816 } else {
5817 UNREACHABLE();
5818 }
5819 }
5820
5821
5822 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)5823 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
5824 ElementsKind initial_kind = GetInitialFastElementsKind();
5825 ElementsKind initial_holey_kind = GetHoleyElementsKind(initial_kind);
5826
5827 int to_index = GetSequenceIndexFromFastElementsKind(
5828 TERMINAL_FAST_ELEMENTS_KIND);
5829 for (int i = 0; i <= to_index; ++i) {
5830 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5831 T stub(kind);
5832 stub.GetCode(isolate);
5833 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE ||
5834 (!FLAG_track_allocation_sites &&
5835 (kind == initial_kind || kind == initial_holey_kind))) {
5836 T stub1(kind, CONTEXT_CHECK_REQUIRED, DISABLE_ALLOCATION_SITES);
5837 stub1.GetCode(isolate);
5838 }
5839 }
5840 }
5841
5842
GenerateStubsAheadOfTime(Isolate * isolate)5843 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
5844 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
5845 isolate);
5846 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
5847 isolate);
5848 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
5849 isolate);
5850 }
5851
5852
GenerateStubsAheadOfTime(Isolate * isolate)5853 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
5854 Isolate* isolate) {
5855 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
5856 for (int i = 0; i < 2; i++) {
5857 // For internal arrays we only need a few things
5858 InternalArrayNoArgumentConstructorStub stubh1(kinds[i]);
5859 stubh1.GetCode(isolate);
5860 InternalArraySingleArgumentConstructorStub stubh2(kinds[i]);
5861 stubh2.GetCode(isolate);
5862 InternalArrayNArgumentsConstructorStub stubh3(kinds[i]);
5863 stubh3.GetCode(isolate);
5864 }
5865 }
5866
5867
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)5868 void ArrayConstructorStub::GenerateDispatchToArrayStub(
5869 MacroAssembler* masm,
5870 AllocationSiteOverrideMode mode) {
5871 if (argument_count_ == ANY) {
5872 Label not_zero_case, not_one_case;
5873 __ tst(r0, r0);
5874 __ b(ne, ¬_zero_case);
5875 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5876
5877 __ bind(¬_zero_case);
5878 __ cmp(r0, Operand(1));
5879 __ b(gt, ¬_one_case);
5880 CreateArrayDispatchOneArgument(masm, mode);
5881
5882 __ bind(¬_one_case);
5883 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5884 } else if (argument_count_ == NONE) {
5885 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5886 } else if (argument_count_ == ONE) {
5887 CreateArrayDispatchOneArgument(masm, mode);
5888 } else if (argument_count_ == MORE_THAN_ONE) {
5889 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5890 } else {
5891 UNREACHABLE();
5892 }
5893 }
5894
5895
Generate(MacroAssembler * masm)5896 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5897 // ----------- S t a t e -------------
5898 // -- r0 : argc (only if argument_count_ == ANY)
5899 // -- r1 : constructor
5900 // -- r2 : type info cell
5901 // -- sp[0] : return address
5902 // -- sp[4] : last argument
5903 // -----------------------------------
5904 if (FLAG_debug_code) {
5905 // The array construct code is only set for the global and natives
5906 // builtin Array functions which always have maps.
5907
5908 // Initial map for the builtin Array function should be a map.
5909 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
5910 // Will both indicate a NULL and a Smi.
5911 __ tst(r3, Operand(kSmiTagMask));
5912 __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
5913 __ CompareObjectType(r3, r3, r4, MAP_TYPE);
5914 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
5915
5916 // We should either have undefined in ebx or a valid cell
5917 Label okay_here;
5918 Handle<Map> cell_map = masm->isolate()->factory()->cell_map();
5919 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
5920 __ b(eq, &okay_here);
5921 __ ldr(r3, FieldMemOperand(r2, 0));
5922 __ cmp(r3, Operand(cell_map));
5923 __ Assert(eq, kExpectedPropertyCellInRegisterEbx);
5924 __ bind(&okay_here);
5925 }
5926
5927 Label no_info;
5928 // Get the elements kind and case on that.
5929 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
5930 __ b(eq, &no_info);
5931 __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
5932
5933 // If the type cell is undefined, or contains anything other than an
5934 // AllocationSite, call an array constructor that doesn't use AllocationSites.
5935 __ ldr(r4, FieldMemOperand(r3, 0));
5936 __ CompareRoot(r4, Heap::kAllocationSiteMapRootIndex);
5937 __ b(ne, &no_info);
5938
5939 __ ldr(r3, FieldMemOperand(r3, AllocationSite::kTransitionInfoOffset));
5940 __ SmiUntag(r3);
5941 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5942 __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
5943 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5944
5945 __ bind(&no_info);
5946 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
5947 }
5948
5949
GenerateCase(MacroAssembler * masm,ElementsKind kind)5950 void InternalArrayConstructorStub::GenerateCase(
5951 MacroAssembler* masm, ElementsKind kind) {
5952 Label not_zero_case, not_one_case;
5953 Label normal_sequence;
5954
5955 __ tst(r0, r0);
5956 __ b(ne, ¬_zero_case);
5957 InternalArrayNoArgumentConstructorStub stub0(kind);
5958 __ TailCallStub(&stub0);
5959
5960 __ bind(¬_zero_case);
5961 __ cmp(r0, Operand(1));
5962 __ b(gt, ¬_one_case);
5963
5964 if (IsFastPackedElementsKind(kind)) {
5965 // We might need to create a holey array
5966 // look at the first argument
5967 __ ldr(r3, MemOperand(sp, 0));
5968 __ cmp(r3, Operand::Zero());
5969 __ b(eq, &normal_sequence);
5970
5971 InternalArraySingleArgumentConstructorStub
5972 stub1_holey(GetHoleyElementsKind(kind));
5973 __ TailCallStub(&stub1_holey);
5974 }
5975
5976 __ bind(&normal_sequence);
5977 InternalArraySingleArgumentConstructorStub stub1(kind);
5978 __ TailCallStub(&stub1);
5979
5980 __ bind(¬_one_case);
5981 InternalArrayNArgumentsConstructorStub stubN(kind);
5982 __ TailCallStub(&stubN);
5983 }
5984
5985
Generate(MacroAssembler * masm)5986 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5987 // ----------- S t a t e -------------
5988 // -- r0 : argc
5989 // -- r1 : constructor
5990 // -- sp[0] : return address
5991 // -- sp[4] : last argument
5992 // -----------------------------------
5993
5994 if (FLAG_debug_code) {
5995 // The array construct code is only set for the global and natives
5996 // builtin Array functions which always have maps.
5997
5998 // Initial map for the builtin Array function should be a map.
5999 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
6000 // Will both indicate a NULL and a Smi.
6001 __ tst(r3, Operand(kSmiTagMask));
6002 __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
6003 __ CompareObjectType(r3, r3, r4, MAP_TYPE);
6004 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
6005 }
6006
6007 // Figure out the right elements kind
6008 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
6009 // Load the map's "bit field 2" into |result|. We only need the first byte,
6010 // but the following bit field extraction takes care of that anyway.
6011 __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
6012 // Retrieve elements_kind from bit field 2.
6013 __ Ubfx(r3, r3, Map::kElementsKindShift, Map::kElementsKindBitCount);
6014
6015 if (FLAG_debug_code) {
6016 Label done;
6017 __ cmp(r3, Operand(FAST_ELEMENTS));
6018 __ b(eq, &done);
6019 __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
6020 __ Assert(eq,
6021 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
6022 __ bind(&done);
6023 }
6024
6025 Label fast_elements_case;
6026 __ cmp(r3, Operand(FAST_ELEMENTS));
6027 __ b(eq, &fast_elements_case);
6028 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
6029
6030 __ bind(&fast_elements_case);
6031 GenerateCase(masm, FAST_ELEMENTS);
6032 }
6033
6034
6035 #undef __
6036
6037 } } // namespace v8::internal
6038
6039 #endif // V8_TARGET_ARCH_ARM
6040