• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if V8_TARGET_ARCH_ARM
31 
32 #include "bootstrapper.h"
33 #include "code-stubs.h"
34 #include "regexp-macro-assembler.h"
35 #include "stub-cache.h"
36 
37 namespace v8 {
38 namespace internal {
39 
40 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)41 void FastNewClosureStub::InitializeInterfaceDescriptor(
42     Isolate* isolate,
43     CodeStubInterfaceDescriptor* descriptor) {
44   static Register registers[] = { r2 };
45   descriptor->register_param_count_ = 1;
46   descriptor->register_params_ = registers;
47   descriptor->deoptimization_handler_ =
48       Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry;
49 }
50 
51 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)52 void ToNumberStub::InitializeInterfaceDescriptor(
53     Isolate* isolate,
54     CodeStubInterfaceDescriptor* descriptor) {
55   static Register registers[] = { r0 };
56   descriptor->register_param_count_ = 1;
57   descriptor->register_params_ = registers;
58   descriptor->deoptimization_handler_ = NULL;
59 }
60 
61 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)62 void NumberToStringStub::InitializeInterfaceDescriptor(
63     Isolate* isolate,
64     CodeStubInterfaceDescriptor* descriptor) {
65   static Register registers[] = { r0 };
66   descriptor->register_param_count_ = 1;
67   descriptor->register_params_ = registers;
68   descriptor->deoptimization_handler_ =
69       Runtime::FunctionForId(Runtime::kNumberToString)->entry;
70 }
71 
72 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)73 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
74     Isolate* isolate,
75     CodeStubInterfaceDescriptor* descriptor) {
76   static Register registers[] = { r3, r2, r1 };
77   descriptor->register_param_count_ = 3;
78   descriptor->register_params_ = registers;
79   descriptor->deoptimization_handler_ =
80       Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry;
81 }
82 
83 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)84 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
85     Isolate* isolate,
86     CodeStubInterfaceDescriptor* descriptor) {
87   static Register registers[] = { r3, r2, r1, r0 };
88   descriptor->register_param_count_ = 4;
89   descriptor->register_params_ = registers;
90   descriptor->deoptimization_handler_ =
91       Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry;
92 }
93 
94 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)95 void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
96     Isolate* isolate,
97     CodeStubInterfaceDescriptor* descriptor) {
98   static Register registers[] = { r2 };
99   descriptor->register_param_count_ = 1;
100   descriptor->register_params_ = registers;
101   descriptor->deoptimization_handler_ = NULL;
102 }
103 
104 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)105 void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
106     Isolate* isolate,
107     CodeStubInterfaceDescriptor* descriptor) {
108   static Register registers[] = { r1, r0 };
109   descriptor->register_param_count_ = 2;
110   descriptor->register_params_ = registers;
111   descriptor->deoptimization_handler_ =
112       FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
113 }
114 
115 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)116 void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
117     Isolate* isolate,
118     CodeStubInterfaceDescriptor* descriptor) {
119   static Register registers[] = { r1, r0 };
120   descriptor->register_param_count_ = 2;
121   descriptor->register_params_ = registers;
122   descriptor->deoptimization_handler_ =
123       FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
124 }
125 
126 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)127 void LoadFieldStub::InitializeInterfaceDescriptor(
128     Isolate* isolate,
129     CodeStubInterfaceDescriptor* descriptor) {
130   static Register registers[] = { r0 };
131   descriptor->register_param_count_ = 1;
132   descriptor->register_params_ = registers;
133   descriptor->deoptimization_handler_ = NULL;
134 }
135 
136 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)137 void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
138     Isolate* isolate,
139     CodeStubInterfaceDescriptor* descriptor) {
140   static Register registers[] = { r1 };
141   descriptor->register_param_count_ = 1;
142   descriptor->register_params_ = registers;
143   descriptor->deoptimization_handler_ = NULL;
144 }
145 
146 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)147 void KeyedArrayCallStub::InitializeInterfaceDescriptor(
148     Isolate* isolate,
149     CodeStubInterfaceDescriptor* descriptor) {
150   static Register registers[] = { r2 };
151   descriptor->register_param_count_ = 1;
152   descriptor->register_params_ = registers;
153   descriptor->continuation_type_ = TAIL_CALL_CONTINUATION;
154   descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
155   descriptor->deoptimization_handler_ =
156       FUNCTION_ADDR(KeyedCallIC_MissFromStubFailure);
157 }
158 
159 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)160 void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
161     Isolate* isolate,
162     CodeStubInterfaceDescriptor* descriptor) {
163   static Register registers[] = { r2, r1, r0 };
164   descriptor->register_param_count_ = 3;
165   descriptor->register_params_ = registers;
166   descriptor->deoptimization_handler_ =
167       FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
168 }
169 
170 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)171 void TransitionElementsKindStub::InitializeInterfaceDescriptor(
172     Isolate* isolate,
173     CodeStubInterfaceDescriptor* descriptor) {
174   static Register registers[] = { r0, r1 };
175   descriptor->register_param_count_ = 2;
176   descriptor->register_params_ = registers;
177   Address entry =
178       Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
179   descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry);
180 }
181 
182 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)183 void CompareNilICStub::InitializeInterfaceDescriptor(
184     Isolate* isolate,
185     CodeStubInterfaceDescriptor* descriptor) {
186   static Register registers[] = { r0 };
187   descriptor->register_param_count_ = 1;
188   descriptor->register_params_ = registers;
189   descriptor->deoptimization_handler_ =
190       FUNCTION_ADDR(CompareNilIC_Miss);
191   descriptor->SetMissHandler(
192       ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate));
193 }
194 
195 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)196 void BinaryOpICStub::InitializeInterfaceDescriptor(
197     Isolate* isolate,
198     CodeStubInterfaceDescriptor* descriptor) {
199   static Register registers[] = { r1, r0 };
200   descriptor->register_param_count_ = 2;
201   descriptor->register_params_ = registers;
202   descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
203   descriptor->SetMissHandler(
204       ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate));
205 }
206 
207 
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)208 static void InitializeArrayConstructorDescriptor(
209     Isolate* isolate,
210     CodeStubInterfaceDescriptor* descriptor,
211     int constant_stack_parameter_count) {
212   // register state
213   // r0 -- number of arguments
214   // r1 -- function
215   // r2 -- type info cell with elements kind
216   static Register registers_variable_args[] = { r1, r2, r0 };
217   static Register registers_no_args[] = { r1, r2 };
218 
219   if (constant_stack_parameter_count == 0) {
220     descriptor->register_param_count_ = 2;
221     descriptor->register_params_ = registers_no_args;
222   } else {
223     // stack param count needs (constructor pointer, and single argument)
224     descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
225     descriptor->stack_parameter_count_ = r0;
226     descriptor->register_param_count_ = 3;
227     descriptor->register_params_ = registers_variable_args;
228   }
229 
230   descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
231   descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
232   descriptor->deoptimization_handler_ =
233       Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
234 }
235 
236 
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)237 static void InitializeInternalArrayConstructorDescriptor(
238     Isolate* isolate,
239     CodeStubInterfaceDescriptor* descriptor,
240     int constant_stack_parameter_count) {
241   // register state
242   // r0 -- number of arguments
243   // r1 -- constructor function
244   static Register registers_variable_args[] = { r1, r0 };
245   static Register registers_no_args[] = { r1 };
246 
247   if (constant_stack_parameter_count == 0) {
248     descriptor->register_param_count_ = 1;
249     descriptor->register_params_ = registers_no_args;
250   } else {
251     // stack param count needs (constructor pointer, and single argument)
252     descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
253     descriptor->stack_parameter_count_ = r0;
254     descriptor->register_param_count_ = 2;
255     descriptor->register_params_ = registers_variable_args;
256   }
257 
258   descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
259   descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
260   descriptor->deoptimization_handler_ =
261       Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
262 }
263 
264 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)265 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
266     Isolate* isolate,
267     CodeStubInterfaceDescriptor* descriptor) {
268   InitializeArrayConstructorDescriptor(isolate, descriptor, 0);
269 }
270 
271 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)272 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
273     Isolate* isolate,
274     CodeStubInterfaceDescriptor* descriptor) {
275   InitializeArrayConstructorDescriptor(isolate, descriptor, 1);
276 }
277 
278 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)279 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
280     Isolate* isolate,
281     CodeStubInterfaceDescriptor* descriptor) {
282   InitializeArrayConstructorDescriptor(isolate, descriptor, -1);
283 }
284 
285 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)286 void ToBooleanStub::InitializeInterfaceDescriptor(
287     Isolate* isolate,
288     CodeStubInterfaceDescriptor* descriptor) {
289   static Register registers[] = { r0 };
290   descriptor->register_param_count_ = 1;
291   descriptor->register_params_ = registers;
292   descriptor->deoptimization_handler_ =
293       FUNCTION_ADDR(ToBooleanIC_Miss);
294   descriptor->SetMissHandler(
295       ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate));
296 }
297 
298 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)299 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
300     Isolate* isolate,
301     CodeStubInterfaceDescriptor* descriptor) {
302   InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0);
303 }
304 
305 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)306 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
307     Isolate* isolate,
308     CodeStubInterfaceDescriptor* descriptor) {
309   InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1);
310 }
311 
312 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)313 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
314     Isolate* isolate,
315     CodeStubInterfaceDescriptor* descriptor) {
316   InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1);
317 }
318 
319 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)320 void StoreGlobalStub::InitializeInterfaceDescriptor(
321     Isolate* isolate,
322     CodeStubInterfaceDescriptor* descriptor) {
323   static Register registers[] = { r1, r2, r0 };
324   descriptor->register_param_count_ = 3;
325   descriptor->register_params_ = registers;
326   descriptor->deoptimization_handler_ =
327       FUNCTION_ADDR(StoreIC_MissFromStubFailure);
328 }
329 
330 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)331 void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
332     Isolate* isolate,
333     CodeStubInterfaceDescriptor* descriptor) {
334   static Register registers[] = { r0, r3, r1, r2 };
335   descriptor->register_param_count_ = 4;
336   descriptor->register_params_ = registers;
337   descriptor->deoptimization_handler_ =
338       FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
339 }
340 
341 
InitializeInterfaceDescriptor(Isolate * isolate,CodeStubInterfaceDescriptor * descriptor)342 void NewStringAddStub::InitializeInterfaceDescriptor(
343     Isolate* isolate,
344     CodeStubInterfaceDescriptor* descriptor) {
345   static Register registers[] = { r1, r0 };
346   descriptor->register_param_count_ = 2;
347   descriptor->register_params_ = registers;
348   descriptor->deoptimization_handler_ =
349       Runtime::FunctionForId(Runtime::kStringAdd)->entry;
350 }
351 
352 
353 #define __ ACCESS_MASM(masm)
354 
355 
356 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
357                                           Label* slow,
358                                           Condition cond);
359 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
360                                     Register lhs,
361                                     Register rhs,
362                                     Label* lhs_not_nan,
363                                     Label* slow,
364                                     bool strict);
365 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
366                                            Register lhs,
367                                            Register rhs);
368 
369 
GenerateLightweightMiss(MacroAssembler * masm)370 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
371   // Update the static counter each time a new code stub is generated.
372   Isolate* isolate = masm->isolate();
373   isolate->counters()->code_stubs()->Increment();
374 
375   CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate);
376   int param_count = descriptor->register_param_count_;
377   {
378     // Call the runtime system in a fresh internal frame.
379     FrameScope scope(masm, StackFrame::INTERNAL);
380     ASSERT(descriptor->register_param_count_ == 0 ||
381            r0.is(descriptor->register_params_[param_count - 1]));
382     // Push arguments
383     for (int i = 0; i < param_count; ++i) {
384       __ push(descriptor->register_params_[i]);
385     }
386     ExternalReference miss = descriptor->miss_handler();
387     __ CallExternalReference(miss, descriptor->register_param_count_);
388   }
389 
390   __ Ret();
391 }
392 
393 
Generate(MacroAssembler * masm)394 void FastNewContextStub::Generate(MacroAssembler* masm) {
395   // Try to allocate the context in new space.
396   Label gc;
397   int length = slots_ + Context::MIN_CONTEXT_SLOTS;
398 
399   // Attempt to allocate the context in new space.
400   __ Allocate(FixedArray::SizeFor(length), r0, r1, r2, &gc, TAG_OBJECT);
401 
402   // Load the function from the stack.
403   __ ldr(r3, MemOperand(sp, 0));
404 
405   // Set up the object header.
406   __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
407   __ mov(r2, Operand(Smi::FromInt(length)));
408   __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
409   __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
410 
411   // Set up the fixed slots, copy the global object from the previous context.
412   __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
413   __ mov(r1, Operand(Smi::FromInt(0)));
414   __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
415   __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
416   __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
417   __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
418 
419   // Initialize the rest of the slots to undefined.
420   __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
421   for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
422     __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
423   }
424 
425   // Remove the on-stack argument and return.
426   __ mov(cp, r0);
427   __ pop();
428   __ Ret();
429 
430   // Need to collect. Call into runtime system.
431   __ bind(&gc);
432   __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
433 }
434 
435 
Generate(MacroAssembler * masm)436 void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
437   // Stack layout on entry:
438   //
439   // [sp]: function.
440   // [sp + kPointerSize]: serialized scope info
441 
442   // Try to allocate the context in new space.
443   Label gc;
444   int length = slots_ + Context::MIN_CONTEXT_SLOTS;
445   __ Allocate(FixedArray::SizeFor(length), r0, r1, r2, &gc, TAG_OBJECT);
446 
447   // Load the function from the stack.
448   __ ldr(r3, MemOperand(sp, 0));
449 
450   // Load the serialized scope info from the stack.
451   __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
452 
453   // Set up the object header.
454   __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
455   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
456   __ mov(r2, Operand(Smi::FromInt(length)));
457   __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
458 
459   // If this block context is nested in the native context we get a smi
460   // sentinel instead of a function. The block context should get the
461   // canonical empty function of the native context as its closure which
462   // we still have to look up.
463   Label after_sentinel;
464   __ JumpIfNotSmi(r3, &after_sentinel);
465   if (FLAG_debug_code) {
466     __ cmp(r3, Operand::Zero());
467     __ Assert(eq, kExpected0AsASmiSentinel);
468   }
469   __ ldr(r3, GlobalObjectOperand());
470   __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
471   __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
472   __ bind(&after_sentinel);
473 
474   // Set up the fixed slots, copy the global object from the previous context.
475   __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
476   __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
477   __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
478   __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
479   __ str(r2, ContextOperand(r0, Context::GLOBAL_OBJECT_INDEX));
480 
481   // Initialize the rest of the slots to the hole value.
482   __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
483   for (int i = 0; i < slots_; i++) {
484     __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
485   }
486 
487   // Remove the on-stack argument and return.
488   __ mov(cp, r0);
489   __ add(sp, sp, Operand(2 * kPointerSize));
490   __ Ret();
491 
492   // Need to collect. Call into runtime system.
493   __ bind(&gc);
494   __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
495 }
496 
497 
498 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
499 // registers.  The format is 1 sign bit, 11 exponent bits (biased 1023) and
500 // 52 fraction bits (20 in the first word, 32 in the second).  Zeros is a
501 // scratch register.  Destroys the source register.  No GC occurs during this
502 // stub so you don't have to set up the frame.
503 class ConvertToDoubleStub : public PlatformCodeStub {
504  public:
ConvertToDoubleStub(Register result_reg_1,Register result_reg_2,Register source_reg,Register scratch_reg)505   ConvertToDoubleStub(Register result_reg_1,
506                       Register result_reg_2,
507                       Register source_reg,
508                       Register scratch_reg)
509       : result1_(result_reg_1),
510         result2_(result_reg_2),
511         source_(source_reg),
512         zeros_(scratch_reg) { }
513 
514  private:
515   Register result1_;
516   Register result2_;
517   Register source_;
518   Register zeros_;
519 
520   // Minor key encoding in 16 bits.
521   class ModeBits: public BitField<OverwriteMode, 0, 2> {};
522   class OpBits: public BitField<Token::Value, 2, 14> {};
523 
MajorKey()524   Major MajorKey() { return ConvertToDouble; }
MinorKey()525   int MinorKey() {
526     // Encode the parameters in a unique 16 bit value.
527     return  result1_.code() +
528            (result2_.code() << 4) +
529            (source_.code() << 8) +
530            (zeros_.code() << 12);
531   }
532 
533   void Generate(MacroAssembler* masm);
534 };
535 
536 
Generate(MacroAssembler * masm)537 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
538   Register exponent = result1_;
539   Register mantissa = result2_;
540 
541   Label not_special;
542   __ SmiUntag(source_);
543   // Move sign bit from source to destination.  This works because the sign bit
544   // in the exponent word of the double has the same position and polarity as
545   // the 2's complement sign bit in a Smi.
546   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
547   __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
548   // Subtract from 0 if source was negative.
549   __ rsb(source_, source_, Operand::Zero(), LeaveCC, ne);
550 
551   // We have -1, 0 or 1, which we treat specially. Register source_ contains
552   // absolute value: it is either equal to 1 (special case of -1 and 1),
553   // greater than 1 (not a special case) or less than 1 (special case of 0).
554   __ cmp(source_, Operand(1));
555   __ b(gt, &not_special);
556 
557   // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
558   const uint32_t exponent_word_for_1 =
559       HeapNumber::kExponentBias << HeapNumber::kExponentShift;
560   __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
561   // 1, 0 and -1 all have 0 for the second word.
562   __ mov(mantissa, Operand::Zero());
563   __ Ret();
564 
565   __ bind(&not_special);
566   __ clz(zeros_, source_);
567   // Compute exponent and or it into the exponent register.
568   // We use mantissa as a scratch register here.  Use a fudge factor to
569   // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
570   // that fit in the ARM's constant field.
571   int fudge = 0x400;
572   __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
573   __ add(mantissa, mantissa, Operand(fudge));
574   __ orr(exponent,
575          exponent,
576          Operand(mantissa, LSL, HeapNumber::kExponentShift));
577   // Shift up the source chopping the top bit off.
578   __ add(zeros_, zeros_, Operand(1));
579   // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
580   __ mov(source_, Operand(source_, LSL, zeros_));
581   // Compute lower part of fraction (last 12 bits).
582   __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
583   // And the top (top 20 bits).
584   __ orr(exponent,
585          exponent,
586          Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
587   __ Ret();
588 }
589 
590 
Generate(MacroAssembler * masm)591 void DoubleToIStub::Generate(MacroAssembler* masm) {
592   Label out_of_range, only_low, negate, done;
593   Register input_reg = source();
594   Register result_reg = destination();
595 
596   int double_offset = offset();
597   // Account for saved regs if input is sp.
598   if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
599 
600   // Immediate values for this stub fit in instructions, so it's safe to use ip.
601   Register scratch = ip;
602   Register scratch_low =
603       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
604   Register scratch_high =
605       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
606   LowDwVfpRegister double_scratch = kScratchDoubleReg;
607 
608   __ Push(scratch_high, scratch_low);
609 
610   if (!skip_fastpath()) {
611     // Load double input.
612     __ vldr(double_scratch, MemOperand(input_reg, double_offset));
613     __ vmov(scratch_low, scratch_high, double_scratch);
614 
615     // Do fast-path convert from double to int.
616     __ vcvt_s32_f64(double_scratch.low(), double_scratch);
617     __ vmov(result_reg, double_scratch.low());
618 
619     // If result is not saturated (0x7fffffff or 0x80000000), we are done.
620     __ sub(scratch, result_reg, Operand(1));
621     __ cmp(scratch, Operand(0x7ffffffe));
622     __ b(lt, &done);
623   } else {
624     // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
625     // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
626     if (double_offset == 0) {
627       __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
628     } else {
629       __ ldr(scratch_low, MemOperand(input_reg, double_offset));
630       __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
631     }
632   }
633 
634   __ Ubfx(scratch, scratch_high,
635          HeapNumber::kExponentShift, HeapNumber::kExponentBits);
636   // Load scratch with exponent - 1. This is faster than loading
637   // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
638   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
639   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
640   // If exponent is greater than or equal to 84, the 32 less significant
641   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
642   // the result is 0.
643   // Compare exponent with 84 (compare exponent - 1 with 83).
644   __ cmp(scratch, Operand(83));
645   __ b(ge, &out_of_range);
646 
647   // If we reach this code, 31 <= exponent <= 83.
648   // So, we don't have to handle cases where 0 <= exponent <= 20 for
649   // which we would need to shift right the high part of the mantissa.
650   // Scratch contains exponent - 1.
651   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
652   __ rsb(scratch, scratch, Operand(51), SetCC);
653   __ b(ls, &only_low);
654   // 21 <= exponent <= 51, shift scratch_low and scratch_high
655   // to generate the result.
656   __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
657   // Scratch contains: 52 - exponent.
658   // We needs: exponent - 20.
659   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
660   __ rsb(scratch, scratch, Operand(32));
661   __ Ubfx(result_reg, scratch_high,
662           0, HeapNumber::kMantissaBitsInTopWord);
663   // Set the implicit 1 before the mantissa part in scratch_high.
664   __ orr(result_reg, result_reg,
665          Operand(1 << HeapNumber::kMantissaBitsInTopWord));
666   __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
667   __ b(&negate);
668 
669   __ bind(&out_of_range);
670   __ mov(result_reg, Operand::Zero());
671   __ b(&done);
672 
673   __ bind(&only_low);
674   // 52 <= exponent <= 83, shift only scratch_low.
675   // On entry, scratch contains: 52 - exponent.
676   __ rsb(scratch, scratch, Operand::Zero());
677   __ mov(result_reg, Operand(scratch_low, LSL, scratch));
678 
679   __ bind(&negate);
680   // If input was positive, scratch_high ASR 31 equals 0 and
681   // scratch_high LSR 31 equals zero.
682   // New result = (result eor 0) + 0 = result.
683   // If the input was negative, we have to negate the result.
684   // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
685   // New result = (result eor 0xffffffff) + 1 = 0 - result.
686   __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
687   __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
688 
689   __ bind(&done);
690 
691   __ Pop(scratch_high, scratch_low);
692   __ Ret();
693 }
694 
695 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)696 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
697     Isolate* isolate) {
698   WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
699   WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
700   stub1.GetCode(isolate);
701   stub2.GetCode(isolate);
702 }
703 
704 
705 // See comment for class.
Generate(MacroAssembler * masm)706 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
707   Label max_negative_int;
708   // the_int_ has the answer which is a signed int32 but not a Smi.
709   // We test for the special value that has a different exponent.  This test
710   // has the neat side effect of setting the flags according to the sign.
711   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
712   __ cmp(the_int_, Operand(0x80000000u));
713   __ b(eq, &max_negative_int);
714   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
715   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
716   uint32_t non_smi_exponent =
717       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
718   __ mov(scratch_, Operand(non_smi_exponent));
719   // Set the sign bit in scratch_ if the value was negative.
720   __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
721   // Subtract from 0 if the value was negative.
722   __ rsb(the_int_, the_int_, Operand::Zero(), LeaveCC, cs);
723   // We should be masking the implict first digit of the mantissa away here,
724   // but it just ends up combining harmlessly with the last digit of the
725   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
726   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
727   ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
728   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
729   __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
730   __ str(scratch_, FieldMemOperand(the_heap_number_,
731                                    HeapNumber::kExponentOffset));
732   __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
733   __ str(scratch_, FieldMemOperand(the_heap_number_,
734                                    HeapNumber::kMantissaOffset));
735   __ Ret();
736 
737   __ bind(&max_negative_int);
738   // The max negative int32 is stored as a positive number in the mantissa of
739   // a double because it uses a sign bit instead of using two's complement.
740   // The actual mantissa bits stored are all 0 because the implicit most
741   // significant 1 bit is not stored.
742   non_smi_exponent += 1 << HeapNumber::kExponentShift;
743   __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
744   __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
745   __ mov(ip, Operand::Zero());
746   __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
747   __ Ret();
748 }
749 
750 
751 // Handle the case where the lhs and rhs are the same object.
752 // Equality is almost reflexive (everything but NaN), so this is a test
753 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond)754 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
755                                           Label* slow,
756                                           Condition cond) {
757   Label not_identical;
758   Label heap_number, return_equal;
759   __ cmp(r0, r1);
760   __ b(ne, &not_identical);
761 
762   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
763   // so we do the second best thing - test it ourselves.
764   // They are both equal and they are not both Smis so both of them are not
765   // Smis.  If it's not a heap number, then return equal.
766   if (cond == lt || cond == gt) {
767     __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
768     __ b(ge, slow);
769   } else {
770     __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
771     __ b(eq, &heap_number);
772     // Comparing JS objects with <=, >= is complicated.
773     if (cond != eq) {
774       __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
775       __ b(ge, slow);
776       // Normally here we fall through to return_equal, but undefined is
777       // special: (undefined == undefined) == true, but
778       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
779       if (cond == le || cond == ge) {
780         __ cmp(r4, Operand(ODDBALL_TYPE));
781         __ b(ne, &return_equal);
782         __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
783         __ cmp(r0, r2);
784         __ b(ne, &return_equal);
785         if (cond == le) {
786           // undefined <= undefined should fail.
787           __ mov(r0, Operand(GREATER));
788         } else  {
789           // undefined >= undefined should fail.
790           __ mov(r0, Operand(LESS));
791         }
792         __ Ret();
793       }
794     }
795   }
796 
797   __ bind(&return_equal);
798   if (cond == lt) {
799     __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
800   } else if (cond == gt) {
801     __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
802   } else {
803     __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
804   }
805   __ Ret();
806 
807   // For less and greater we don't have to check for NaN since the result of
808   // x < x is false regardless.  For the others here is some code to check
809   // for NaN.
810   if (cond != lt && cond != gt) {
811     __ bind(&heap_number);
812     // It is a heap number, so return non-equal if it's NaN and equal if it's
813     // not NaN.
814 
815     // The representation of NaN values has all exponent bits (52..62) set,
816     // and not all mantissa bits (0..51) clear.
817     // Read top bits of double representation (second word of value).
818     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
819     // Test that exponent bits are all set.
820     __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
821     // NaNs have all-one exponents so they sign extend to -1.
822     __ cmp(r3, Operand(-1));
823     __ b(ne, &return_equal);
824 
825     // Shift out flag and all exponent bits, retaining only mantissa.
826     __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
827     // Or with all low-bits of mantissa.
828     __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
829     __ orr(r0, r3, Operand(r2), SetCC);
830     // For equal we already have the right value in r0:  Return zero (equal)
831     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
832     // not (it's a NaN).  For <= and >= we need to load r0 with the failing
833     // value if it's a NaN.
834     if (cond != eq) {
835       // All-zero means Infinity means equal.
836       __ Ret(eq);
837       if (cond == le) {
838         __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
839       } else {
840         __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
841       }
842     }
843     __ Ret();
844   }
845   // No fall through here.
846 
847   __ bind(&not_identical);
848 }
849 
850 
851 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)852 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
853                                     Register lhs,
854                                     Register rhs,
855                                     Label* lhs_not_nan,
856                                     Label* slow,
857                                     bool strict) {
858   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
859          (lhs.is(r1) && rhs.is(r0)));
860 
861   Label rhs_is_smi;
862   __ JumpIfSmi(rhs, &rhs_is_smi);
863 
864   // Lhs is a Smi.  Check whether the rhs is a heap number.
865   __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
866   if (strict) {
867     // If rhs is not a number and lhs is a Smi then strict equality cannot
868     // succeed.  Return non-equal
869     // If rhs is r0 then there is already a non zero value in it.
870     if (!rhs.is(r0)) {
871       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
872     }
873     __ Ret(ne);
874   } else {
875     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
876     // the runtime.
877     __ b(ne, slow);
878   }
879 
880   // Lhs is a smi, rhs is a number.
881   // Convert lhs to a double in d7.
882   __ SmiToDouble(d7, lhs);
883   // Load the double from rhs, tagged HeapNumber r0, to d6.
884   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
885 
886   // We now have both loaded as doubles but we can skip the lhs nan check
887   // since it's a smi.
888   __ jmp(lhs_not_nan);
889 
890   __ bind(&rhs_is_smi);
891   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
892   __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
893   if (strict) {
894     // If lhs is not a number and rhs is a smi then strict equality cannot
895     // succeed.  Return non-equal.
896     // If lhs is r0 then there is already a non zero value in it.
897     if (!lhs.is(r0)) {
898       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
899     }
900     __ Ret(ne);
901   } else {
902     // Smi compared non-strictly with a non-smi non-heap-number.  Call
903     // the runtime.
904     __ b(ne, slow);
905   }
906 
907   // Rhs is a smi, lhs is a heap number.
908   // Load the double from lhs, tagged HeapNumber r1, to d7.
909   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
910   // Convert rhs to a double in d6              .
911   __ SmiToDouble(d6, rhs);
912   // Fall through to both_loaded_as_doubles.
913 }
914 
915 
916 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)917 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
918                                            Register lhs,
919                                            Register rhs) {
920     ASSERT((lhs.is(r0) && rhs.is(r1)) ||
921            (lhs.is(r1) && rhs.is(r0)));
922 
923     // If either operand is a JS object or an oddball value, then they are
924     // not equal since their pointers are different.
925     // There is no test for undetectability in strict equality.
926     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
927     Label first_non_object;
928     // Get the type of the first operand into r2 and compare it with
929     // FIRST_SPEC_OBJECT_TYPE.
930     __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
931     __ b(lt, &first_non_object);
932 
933     // Return non-zero (r0 is not zero)
934     Label return_not_equal;
935     __ bind(&return_not_equal);
936     __ Ret();
937 
938     __ bind(&first_non_object);
939     // Check for oddballs: true, false, null, undefined.
940     __ cmp(r2, Operand(ODDBALL_TYPE));
941     __ b(eq, &return_not_equal);
942 
943     __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
944     __ b(ge, &return_not_equal);
945 
946     // Check for oddballs: true, false, null, undefined.
947     __ cmp(r3, Operand(ODDBALL_TYPE));
948     __ b(eq, &return_not_equal);
949 
950     // Now that we have the types we might as well check for
951     // internalized-internalized.
952     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
953     __ orr(r2, r2, Operand(r3));
954     __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
955     __ b(eq, &return_not_equal);
956 }
957 
958 
959 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)960 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
961                                        Register lhs,
962                                        Register rhs,
963                                        Label* both_loaded_as_doubles,
964                                        Label* not_heap_numbers,
965                                        Label* slow) {
966   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
967          (lhs.is(r1) && rhs.is(r0)));
968 
969   __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
970   __ b(ne, not_heap_numbers);
971   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
972   __ cmp(r2, r3);
973   __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
974 
975   // Both are heap numbers.  Load them up then jump to the code we have
976   // for that.
977   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
978   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
979   __ jmp(both_loaded_as_doubles);
980 }
981 
982 
983 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)984 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
985                                                      Register lhs,
986                                                      Register rhs,
987                                                      Label* possible_strings,
988                                                      Label* not_both_strings) {
989   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
990          (lhs.is(r1) && rhs.is(r0)));
991 
992   // r2 is object type of rhs.
993   Label object_test;
994   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
995   __ tst(r2, Operand(kIsNotStringMask));
996   __ b(ne, &object_test);
997   __ tst(r2, Operand(kIsNotInternalizedMask));
998   __ b(ne, possible_strings);
999   __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1000   __ b(ge, not_both_strings);
1001   __ tst(r3, Operand(kIsNotInternalizedMask));
1002   __ b(ne, possible_strings);
1003 
1004   // Both are internalized.  We already checked they weren't the same pointer
1005   // so they are not equal.
1006   __ mov(r0, Operand(NOT_EQUAL));
1007   __ Ret();
1008 
1009   __ bind(&object_test);
1010   __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
1011   __ b(lt, not_both_strings);
1012   __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
1013   __ b(lt, not_both_strings);
1014   // If both objects are undetectable, they are equal. Otherwise, they
1015   // are not equal, since they are different objects and an object is not
1016   // equal to undefined.
1017   __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1018   __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1019   __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1020   __ and_(r0, r2, Operand(r3));
1021   __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1022   __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1023   __ Ret();
1024 }
1025 
1026 
ICCompareStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareIC::State expected,Label * fail)1027 static void ICCompareStub_CheckInputType(MacroAssembler* masm,
1028                                          Register input,
1029                                          Register scratch,
1030                                          CompareIC::State expected,
1031                                          Label* fail) {
1032   Label ok;
1033   if (expected == CompareIC::SMI) {
1034     __ JumpIfNotSmi(input, fail);
1035   } else if (expected == CompareIC::NUMBER) {
1036     __ JumpIfSmi(input, &ok);
1037     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
1038                 DONT_DO_SMI_CHECK);
1039   }
1040   // We could be strict about internalized/non-internalized here, but as long as
1041   // hydrogen doesn't care, the stub doesn't have to care either.
1042   __ bind(&ok);
1043 }
1044 
1045 
1046 // On entry r1 and r2 are the values to be compared.
1047 // On exit r0 is 0, positive or negative to indicate the result of
1048 // the comparison.
GenerateGeneric(MacroAssembler * masm)1049 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
1050   Register lhs = r1;
1051   Register rhs = r0;
1052   Condition cc = GetCondition();
1053 
1054   Label miss;
1055   ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss);
1056   ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss);
1057 
1058   Label slow;  // Call builtin.
1059   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1060 
1061   Label not_two_smis, smi_done;
1062   __ orr(r2, r1, r0);
1063   __ JumpIfNotSmi(r2, &not_two_smis);
1064   __ mov(r1, Operand(r1, ASR, 1));
1065   __ sub(r0, r1, Operand(r0, ASR, 1));
1066   __ Ret();
1067   __ bind(&not_two_smis);
1068 
1069   // NOTICE! This code is only reached after a smi-fast-case check, so
1070   // it is certain that at least one operand isn't a smi.
1071 
1072   // Handle the case where the objects are identical.  Either returns the answer
1073   // or goes to slow.  Only falls through if the objects were not identical.
1074   EmitIdenticalObjectComparison(masm, &slow, cc);
1075 
1076   // If either is a Smi (we know that not both are), then they can only
1077   // be strictly equal if the other is a HeapNumber.
1078   STATIC_ASSERT(kSmiTag == 0);
1079   ASSERT_EQ(0, Smi::FromInt(0));
1080   __ and_(r2, lhs, Operand(rhs));
1081   __ JumpIfNotSmi(r2, &not_smis);
1082   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
1083   // 1) Return the answer.
1084   // 2) Go to slow.
1085   // 3) Fall through to both_loaded_as_doubles.
1086   // 4) Jump to lhs_not_nan.
1087   // In cases 3 and 4 we have found out we were dealing with a number-number
1088   // comparison.  If VFP3 is supported the double values of the numbers have
1089   // been loaded into d7 and d6.  Otherwise, the double values have been loaded
1090   // into r0, r1, r2, and r3.
1091   EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
1092 
1093   __ bind(&both_loaded_as_doubles);
1094   // The arguments have been converted to doubles and stored in d6 and d7, if
1095   // VFP3 is supported, or in r0, r1, r2, and r3.
1096   Isolate* isolate = masm->isolate();
1097   __ bind(&lhs_not_nan);
1098   Label no_nan;
1099   // ARMv7 VFP3 instructions to implement double precision comparison.
1100   __ VFPCompareAndSetFlags(d7, d6);
1101   Label nan;
1102   __ b(vs, &nan);
1103   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1104   __ mov(r0, Operand(LESS), LeaveCC, lt);
1105   __ mov(r0, Operand(GREATER), LeaveCC, gt);
1106   __ Ret();
1107 
1108   __ bind(&nan);
1109   // If one of the sides was a NaN then the v flag is set.  Load r0 with
1110   // whatever it takes to make the comparison fail, since comparisons with NaN
1111   // always fail.
1112   if (cc == lt || cc == le) {
1113     __ mov(r0, Operand(GREATER));
1114   } else {
1115     __ mov(r0, Operand(LESS));
1116   }
1117   __ Ret();
1118 
1119   __ bind(&not_smis);
1120   // At this point we know we are dealing with two different objects,
1121   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
1122   if (strict()) {
1123     // This returns non-equal for some object types, or falls through if it
1124     // was not lucky.
1125     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
1126   }
1127 
1128   Label check_for_internalized_strings;
1129   Label flat_string_check;
1130   // Check for heap-number-heap-number comparison.  Can jump to slow case,
1131   // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1132   // that case.  If the inputs are not doubles then jumps to
1133   // check_for_internalized_strings.
1134   // In this case r2 will contain the type of rhs_.  Never falls through.
1135   EmitCheckForTwoHeapNumbers(masm,
1136                              lhs,
1137                              rhs,
1138                              &both_loaded_as_doubles,
1139                              &check_for_internalized_strings,
1140                              &flat_string_check);
1141 
1142   __ bind(&check_for_internalized_strings);
1143   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1144   // internalized strings.
1145   if (cc == eq && !strict()) {
1146     // Returns an answer for two internalized strings or two detectable objects.
1147     // Otherwise jumps to string case or not both strings case.
1148     // Assumes that r2 is the type of rhs_ on entry.
1149     EmitCheckForInternalizedStringsOrObjects(
1150         masm, lhs, rhs, &flat_string_check, &slow);
1151   }
1152 
1153   // Check for both being sequential ASCII strings, and inline if that is the
1154   // case.
1155   __ bind(&flat_string_check);
1156 
1157   __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow);
1158 
1159   __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
1160   if (cc == eq) {
1161     StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1162                                                      lhs,
1163                                                      rhs,
1164                                                      r2,
1165                                                      r3,
1166                                                      r4);
1167   } else {
1168     StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1169                                                        lhs,
1170                                                        rhs,
1171                                                        r2,
1172                                                        r3,
1173                                                        r4,
1174                                                        r5);
1175   }
1176   // Never falls through to here.
1177 
1178   __ bind(&slow);
1179 
1180   __ Push(lhs, rhs);
1181   // Figure out which native to call and setup the arguments.
1182   Builtins::JavaScript native;
1183   if (cc == eq) {
1184     native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1185   } else {
1186     native = Builtins::COMPARE;
1187     int ncr;  // NaN compare result
1188     if (cc == lt || cc == le) {
1189       ncr = GREATER;
1190     } else {
1191       ASSERT(cc == gt || cc == ge);  // remaining cases
1192       ncr = LESS;
1193     }
1194     __ mov(r0, Operand(Smi::FromInt(ncr)));
1195     __ push(r0);
1196   }
1197 
1198   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1199   // tagged as a small integer.
1200   __ InvokeBuiltin(native, JUMP_FUNCTION);
1201 
1202   __ bind(&miss);
1203   GenerateMiss(masm);
1204 }
1205 
1206 
Generate(MacroAssembler * masm)1207 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1208   // We don't allow a GC during a store buffer overflow so there is no need to
1209   // store the registers in any particular way, but we do have to store and
1210   // restore them.
1211   __ stm(db_w, sp, kCallerSaved | lr.bit());
1212 
1213   const Register scratch = r1;
1214 
1215   if (save_doubles_ == kSaveFPRegs) {
1216     __ SaveFPRegs(sp, scratch);
1217   }
1218   const int argument_count = 1;
1219   const int fp_argument_count = 0;
1220 
1221   AllowExternalCallThatCantCauseGC scope(masm);
1222   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1223   __ mov(r0, Operand(ExternalReference::isolate_address(masm->isolate())));
1224   __ CallCFunction(
1225       ExternalReference::store_buffer_overflow_function(masm->isolate()),
1226       argument_count);
1227   if (save_doubles_ == kSaveFPRegs) {
1228     __ RestoreFPRegs(sp, scratch);
1229   }
1230   __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
1231 }
1232 
1233 
Generate(MacroAssembler * masm)1234 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
1235   // Untagged case: double input in d2, double result goes
1236   //   into d2.
1237   // Tagged case: tagged input on top of stack and in r0,
1238   //   tagged result (heap number) goes into r0.
1239 
1240   Label input_not_smi;
1241   Label loaded;
1242   Label calculate;
1243   Label invalid_cache;
1244   const Register scratch0 = r9;
1245   Register scratch1 = no_reg;  // will be r4
1246   const Register cache_entry = r0;
1247   const bool tagged = (argument_type_ == TAGGED);
1248 
1249   if (tagged) {
1250     // Argument is a number and is on stack and in r0.
1251     // Load argument and check if it is a smi.
1252     __ JumpIfNotSmi(r0, &input_not_smi);
1253 
1254     // Input is a smi. Convert to double and load the low and high words
1255     // of the double into r2, r3.
1256     __ SmiToDouble(d7, r0);
1257     __ vmov(r2, r3, d7);
1258     __ b(&loaded);
1259 
1260     __ bind(&input_not_smi);
1261     // Check if input is a HeapNumber.
1262     __ CheckMap(r0,
1263                 r1,
1264                 Heap::kHeapNumberMapRootIndex,
1265                 &calculate,
1266                 DONT_DO_SMI_CHECK);
1267     // Input is a HeapNumber. Load it to a double register and store the
1268     // low and high words into r2, r3.
1269     __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
1270     __ vmov(r2, r3, d0);
1271   } else {
1272     // Input is untagged double in d2. Output goes to d2.
1273     __ vmov(r2, r3, d2);
1274   }
1275   __ bind(&loaded);
1276   // r2 = low 32 bits of double value
1277   // r3 = high 32 bits of double value
1278   // Compute hash (the shifts are arithmetic):
1279   //   h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
1280   __ eor(r1, r2, Operand(r3));
1281   __ eor(r1, r1, Operand(r1, ASR, 16));
1282   __ eor(r1, r1, Operand(r1, ASR, 8));
1283   ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
1284   __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
1285 
1286   // r2 = low 32 bits of double value.
1287   // r3 = high 32 bits of double value.
1288   // r1 = TranscendentalCache::hash(double value).
1289   Isolate* isolate = masm->isolate();
1290   ExternalReference cache_array =
1291       ExternalReference::transcendental_cache_array_address(isolate);
1292   __ mov(cache_entry, Operand(cache_array));
1293   // cache_entry points to cache array.
1294   int cache_array_index
1295       = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
1296   __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
1297   // r0 points to the cache for the type type_.
1298   // If NULL, the cache hasn't been initialized yet, so go through runtime.
1299   __ cmp(cache_entry, Operand::Zero());
1300   __ b(eq, &invalid_cache);
1301 
1302 #ifdef DEBUG
1303   // Check that the layout of cache elements match expectations.
1304   { TranscendentalCache::SubCache::Element test_elem[2];
1305     char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
1306     char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
1307     char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
1308     char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
1309     char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
1310     CHECK_EQ(12, elem2_start - elem_start);  // Two uint_32's and a pointer.
1311     CHECK_EQ(0, elem_in0 - elem_start);
1312     CHECK_EQ(kIntSize, elem_in1 - elem_start);
1313     CHECK_EQ(2 * kIntSize, elem_out - elem_start);
1314   }
1315 #endif
1316 
1317   // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
1318   __ add(r1, r1, Operand(r1, LSL, 1));
1319   __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
1320   // Check if cache matches: Double value is stored in uint32_t[2] array.
1321   __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
1322   __ cmp(r2, r4);
1323   __ cmp(r3, r5, eq);
1324   __ b(ne, &calculate);
1325 
1326   scratch1 = r4;  // Start of scratch1 range.
1327 
1328   // Cache hit. Load result, cleanup and return.
1329   Counters* counters = masm->isolate()->counters();
1330   __ IncrementCounter(
1331       counters->transcendental_cache_hit(), 1, scratch0, scratch1);
1332   if (tagged) {
1333     // Pop input value from stack and load result into r0.
1334     __ pop();
1335     __ mov(r0, Operand(r6));
1336   } else {
1337     // Load result into d2.
1338     __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
1339   }
1340   __ Ret();
1341 
1342   __ bind(&calculate);
1343   __ IncrementCounter(
1344       counters->transcendental_cache_miss(), 1, scratch0, scratch1);
1345   if (tagged) {
1346     __ bind(&invalid_cache);
1347     ExternalReference runtime_function =
1348         ExternalReference(RuntimeFunction(), masm->isolate());
1349     __ TailCallExternalReference(runtime_function, 1, 1);
1350   } else {
1351     Label no_update;
1352     Label skip_cache;
1353 
1354     // Call C function to calculate the result and update the cache.
1355     // r0: precalculated cache entry address.
1356     // r2 and r3: parts of the double value.
1357     // Store r0, r2 and r3 on stack for later before calling C function.
1358     __ Push(r3, r2, cache_entry);
1359     GenerateCallCFunction(masm, scratch0);
1360     __ GetCFunctionDoubleResult(d2);
1361 
1362     // Try to update the cache. If we cannot allocate a
1363     // heap number, we return the result without updating.
1364     __ Pop(r3, r2, cache_entry);
1365     __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
1366     __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
1367     __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
1368     __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
1369     __ Ret();
1370 
1371     __ bind(&invalid_cache);
1372     // The cache is invalid. Call runtime which will recreate the
1373     // cache.
1374     __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
1375     __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
1376     __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
1377     {
1378       FrameScope scope(masm, StackFrame::INTERNAL);
1379       __ push(r0);
1380       __ CallRuntime(RuntimeFunction(), 1);
1381     }
1382     __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
1383     __ Ret();
1384 
1385     __ bind(&skip_cache);
1386     // Call C function to calculate the result and answer directly
1387     // without updating the cache.
1388     GenerateCallCFunction(masm, scratch0);
1389     __ GetCFunctionDoubleResult(d2);
1390     __ bind(&no_update);
1391 
1392     // We return the value in d2 without adding it to the cache, but
1393     // we cause a scavenging GC so that future allocations will succeed.
1394     {
1395       FrameScope scope(masm, StackFrame::INTERNAL);
1396 
1397       // Allocate an aligned object larger than a HeapNumber.
1398       ASSERT(4 * kPointerSize >= HeapNumber::kSize);
1399       __ mov(scratch0, Operand(4 * kPointerSize));
1400       __ push(scratch0);
1401       __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
1402     }
1403     __ Ret();
1404   }
1405 }
1406 
1407 
GenerateCallCFunction(MacroAssembler * masm,Register scratch)1408 void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
1409                                                     Register scratch) {
1410   Isolate* isolate = masm->isolate();
1411 
1412   __ push(lr);
1413   __ PrepareCallCFunction(0, 1, scratch);
1414   if (masm->use_eabi_hardfloat()) {
1415     __ vmov(d0, d2);
1416   } else {
1417     __ vmov(r0, r1, d2);
1418   }
1419   AllowExternalCallThatCantCauseGC scope(masm);
1420   switch (type_) {
1421     case TranscendentalCache::SIN:
1422       __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
1423           0, 1);
1424       break;
1425     case TranscendentalCache::COS:
1426       __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
1427           0, 1);
1428       break;
1429     case TranscendentalCache::TAN:
1430       __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
1431           0, 1);
1432       break;
1433     case TranscendentalCache::LOG:
1434       __ CallCFunction(ExternalReference::math_log_double_function(isolate),
1435           0, 1);
1436       break;
1437     default:
1438       UNIMPLEMENTED();
1439       break;
1440   }
1441   __ pop(lr);
1442 }
1443 
1444 
RuntimeFunction()1445 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
1446   switch (type_) {
1447     // Add more cases when necessary.
1448     case TranscendentalCache::SIN: return Runtime::kMath_sin;
1449     case TranscendentalCache::COS: return Runtime::kMath_cos;
1450     case TranscendentalCache::TAN: return Runtime::kMath_tan;
1451     case TranscendentalCache::LOG: return Runtime::kMath_log;
1452     default:
1453       UNIMPLEMENTED();
1454       return Runtime::kAbort;
1455   }
1456 }
1457 
1458 
Generate(MacroAssembler * masm)1459 void MathPowStub::Generate(MacroAssembler* masm) {
1460   const Register base = r1;
1461   const Register exponent = r2;
1462   const Register heapnumbermap = r5;
1463   const Register heapnumber = r0;
1464   const DwVfpRegister double_base = d0;
1465   const DwVfpRegister double_exponent = d1;
1466   const DwVfpRegister double_result = d2;
1467   const DwVfpRegister double_scratch = d3;
1468   const SwVfpRegister single_scratch = s6;
1469   const Register scratch = r9;
1470   const Register scratch2 = r4;
1471 
1472   Label call_runtime, done, int_exponent;
1473   if (exponent_type_ == ON_STACK) {
1474     Label base_is_smi, unpack_exponent;
1475     // The exponent and base are supplied as arguments on the stack.
1476     // This can only happen if the stub is called from non-optimized code.
1477     // Load input parameters from stack to double registers.
1478     __ ldr(base, MemOperand(sp, 1 * kPointerSize));
1479     __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
1480 
1481     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
1482 
1483     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
1484     __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
1485     __ cmp(scratch, heapnumbermap);
1486     __ b(ne, &call_runtime);
1487 
1488     __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
1489     __ jmp(&unpack_exponent);
1490 
1491     __ bind(&base_is_smi);
1492     __ vmov(single_scratch, scratch);
1493     __ vcvt_f64_s32(double_base, single_scratch);
1494     __ bind(&unpack_exponent);
1495 
1496     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
1497 
1498     __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
1499     __ cmp(scratch, heapnumbermap);
1500     __ b(ne, &call_runtime);
1501     __ vldr(double_exponent,
1502             FieldMemOperand(exponent, HeapNumber::kValueOffset));
1503   } else if (exponent_type_ == TAGGED) {
1504     // Base is already in double_base.
1505     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
1506 
1507     __ vldr(double_exponent,
1508             FieldMemOperand(exponent, HeapNumber::kValueOffset));
1509   }
1510 
1511   if (exponent_type_ != INTEGER) {
1512     Label int_exponent_convert;
1513     // Detect integer exponents stored as double.
1514     __ vcvt_u32_f64(single_scratch, double_exponent);
1515     // We do not check for NaN or Infinity here because comparing numbers on
1516     // ARM correctly distinguishes NaNs.  We end up calling the built-in.
1517     __ vcvt_f64_u32(double_scratch, single_scratch);
1518     __ VFPCompareAndSetFlags(double_scratch, double_exponent);
1519     __ b(eq, &int_exponent_convert);
1520 
1521     if (exponent_type_ == ON_STACK) {
1522       // Detect square root case.  Crankshaft detects constant +/-0.5 at
1523       // compile time and uses DoMathPowHalf instead.  We then skip this check
1524       // for non-constant cases of +/-0.5 as these hardly occur.
1525       Label not_plus_half;
1526 
1527       // Test for 0.5.
1528       __ vmov(double_scratch, 0.5, scratch);
1529       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
1530       __ b(ne, &not_plus_half);
1531 
1532       // Calculates square root of base.  Check for the special case of
1533       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
1534       __ vmov(double_scratch, -V8_INFINITY, scratch);
1535       __ VFPCompareAndSetFlags(double_base, double_scratch);
1536       __ vneg(double_result, double_scratch, eq);
1537       __ b(eq, &done);
1538 
1539       // Add +0 to convert -0 to +0.
1540       __ vadd(double_scratch, double_base, kDoubleRegZero);
1541       __ vsqrt(double_result, double_scratch);
1542       __ jmp(&done);
1543 
1544       __ bind(&not_plus_half);
1545       __ vmov(double_scratch, -0.5, scratch);
1546       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
1547       __ b(ne, &call_runtime);
1548 
1549       // Calculates square root of base.  Check for the special case of
1550       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
1551       __ vmov(double_scratch, -V8_INFINITY, scratch);
1552       __ VFPCompareAndSetFlags(double_base, double_scratch);
1553       __ vmov(double_result, kDoubleRegZero, eq);
1554       __ b(eq, &done);
1555 
1556       // Add +0 to convert -0 to +0.
1557       __ vadd(double_scratch, double_base, kDoubleRegZero);
1558       __ vmov(double_result, 1.0, scratch);
1559       __ vsqrt(double_scratch, double_scratch);
1560       __ vdiv(double_result, double_result, double_scratch);
1561       __ jmp(&done);
1562     }
1563 
1564     __ push(lr);
1565     {
1566       AllowExternalCallThatCantCauseGC scope(masm);
1567       __ PrepareCallCFunction(0, 2, scratch);
1568       __ SetCallCDoubleArguments(double_base, double_exponent);
1569       __ CallCFunction(
1570           ExternalReference::power_double_double_function(masm->isolate()),
1571           0, 2);
1572     }
1573     __ pop(lr);
1574     __ GetCFunctionDoubleResult(double_result);
1575     __ jmp(&done);
1576 
1577     __ bind(&int_exponent_convert);
1578     __ vcvt_u32_f64(single_scratch, double_exponent);
1579     __ vmov(scratch, single_scratch);
1580   }
1581 
1582   // Calculate power with integer exponent.
1583   __ bind(&int_exponent);
1584 
1585   // Get two copies of exponent in the registers scratch and exponent.
1586   if (exponent_type_ == INTEGER) {
1587     __ mov(scratch, exponent);
1588   } else {
1589     // Exponent has previously been stored into scratch as untagged integer.
1590     __ mov(exponent, scratch);
1591   }
1592   __ vmov(double_scratch, double_base);  // Back up base.
1593   __ vmov(double_result, 1.0, scratch2);
1594 
1595   // Get absolute value of exponent.
1596   __ cmp(scratch, Operand::Zero());
1597   __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
1598   __ sub(scratch, scratch2, scratch, LeaveCC, mi);
1599 
1600   Label while_true;
1601   __ bind(&while_true);
1602   __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
1603   __ vmul(double_result, double_result, double_scratch, cs);
1604   __ vmul(double_scratch, double_scratch, double_scratch, ne);
1605   __ b(ne, &while_true);
1606 
1607   __ cmp(exponent, Operand::Zero());
1608   __ b(ge, &done);
1609   __ vmov(double_scratch, 1.0, scratch);
1610   __ vdiv(double_result, double_scratch, double_result);
1611   // Test whether result is zero.  Bail out to check for subnormal result.
1612   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
1613   __ VFPCompareAndSetFlags(double_result, 0.0);
1614   __ b(ne, &done);
1615   // double_exponent may not containe the exponent value if the input was a
1616   // smi.  We set it with exponent value before bailing out.
1617   __ vmov(single_scratch, exponent);
1618   __ vcvt_f64_s32(double_exponent, single_scratch);
1619 
1620   // Returning or bailing out.
1621   Counters* counters = masm->isolate()->counters();
1622   if (exponent_type_ == ON_STACK) {
1623     // The arguments are still on the stack.
1624     __ bind(&call_runtime);
1625     __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
1626 
1627     // The stub is called from non-optimized code, which expects the result
1628     // as heap number in exponent.
1629     __ bind(&done);
1630     __ AllocateHeapNumber(
1631         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
1632     __ vstr(double_result,
1633             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
1634     ASSERT(heapnumber.is(r0));
1635     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1636     __ Ret(2);
1637   } else {
1638     __ push(lr);
1639     {
1640       AllowExternalCallThatCantCauseGC scope(masm);
1641       __ PrepareCallCFunction(0, 2, scratch);
1642       __ SetCallCDoubleArguments(double_base, double_exponent);
1643       __ CallCFunction(
1644           ExternalReference::power_double_double_function(masm->isolate()),
1645           0, 2);
1646     }
1647     __ pop(lr);
1648     __ GetCFunctionDoubleResult(double_result);
1649 
1650     __ bind(&done);
1651     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1652     __ Ret();
1653   }
1654 }
1655 
1656 
NeedsImmovableCode()1657 bool CEntryStub::NeedsImmovableCode() {
1658   return true;
1659 }
1660 
1661 
GenerateStubsAheadOfTime(Isolate * isolate)1662 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1663   CEntryStub::GenerateAheadOfTime(isolate);
1664   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
1665   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1666   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1667   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1668   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1669   BinaryOpICStub::GenerateAheadOfTime(isolate);
1670 }
1671 
1672 
GenerateFPStubs(Isolate * isolate)1673 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1674   SaveFPRegsMode mode = kSaveFPRegs;
1675   CEntryStub save_doubles(1, mode);
1676   StoreBufferOverflowStub stub(mode);
1677   // These stubs might already be in the snapshot, detect that and don't
1678   // regenerate, which would lead to code stub initialization state being messed
1679   // up.
1680   Code* save_doubles_code;
1681   if (!save_doubles.FindCodeInCache(&save_doubles_code, isolate)) {
1682     save_doubles_code = *save_doubles.GetCode(isolate);
1683   }
1684   Code* store_buffer_overflow_code;
1685   if (!stub.FindCodeInCache(&store_buffer_overflow_code, isolate)) {
1686       store_buffer_overflow_code = *stub.GetCode(isolate);
1687   }
1688   isolate->set_fp_stubs_generated(true);
1689 }
1690 
1691 
GenerateAheadOfTime(Isolate * isolate)1692 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1693   CEntryStub stub(1, kDontSaveFPRegs);
1694   stub.GetCode(isolate);
1695 }
1696 
1697 
JumpIfOOM(MacroAssembler * masm,Register value,Register scratch,Label * oom_label)1698 static void JumpIfOOM(MacroAssembler* masm,
1699                       Register value,
1700                       Register scratch,
1701                       Label* oom_label) {
1702   STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3);
1703   STATIC_ASSERT(kFailureTag == 3);
1704   __ and_(scratch, value, Operand(0xf));
1705   __ cmp(scratch, Operand(0xf));
1706   __ b(eq, oom_label);
1707 }
1708 
1709 
GenerateCore(MacroAssembler * masm,Label * throw_normal_exception,Label * throw_termination_exception,Label * throw_out_of_memory_exception,bool do_gc,bool always_allocate)1710 void CEntryStub::GenerateCore(MacroAssembler* masm,
1711                               Label* throw_normal_exception,
1712                               Label* throw_termination_exception,
1713                               Label* throw_out_of_memory_exception,
1714                               bool do_gc,
1715                               bool always_allocate) {
1716   // r0: result parameter for PerformGC, if any
1717   // r4: number of arguments including receiver  (C callee-saved)
1718   // r5: pointer to builtin function  (C callee-saved)
1719   // r6: pointer to the first argument (C callee-saved)
1720   Isolate* isolate = masm->isolate();
1721 
1722   if (do_gc) {
1723     // Passing r0.
1724     __ PrepareCallCFunction(2, 0, r1);
1725     __ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate())));
1726     __ CallCFunction(ExternalReference::perform_gc_function(isolate),
1727         2, 0);
1728   }
1729 
1730   ExternalReference scope_depth =
1731       ExternalReference::heap_always_allocate_scope_depth(isolate);
1732   if (always_allocate) {
1733     __ mov(r0, Operand(scope_depth));
1734     __ ldr(r1, MemOperand(r0));
1735     __ add(r1, r1, Operand(1));
1736     __ str(r1, MemOperand(r0));
1737   }
1738 
1739   // Call C built-in.
1740   // r0 = argc, r1 = argv
1741   __ mov(r0, Operand(r4));
1742   __ mov(r1, Operand(r6));
1743 
1744 #if V8_HOST_ARCH_ARM
1745   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
1746   int frame_alignment_mask = frame_alignment - 1;
1747   if (FLAG_debug_code) {
1748     if (frame_alignment > kPointerSize) {
1749       Label alignment_as_expected;
1750       ASSERT(IsPowerOf2(frame_alignment));
1751       __ tst(sp, Operand(frame_alignment_mask));
1752       __ b(eq, &alignment_as_expected);
1753       // Don't use Check here, as it will call Runtime_Abort re-entering here.
1754       __ stop("Unexpected alignment");
1755       __ bind(&alignment_as_expected);
1756     }
1757   }
1758 #endif
1759 
1760   __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
1761 
1762   // To let the GC traverse the return address of the exit frames, we need to
1763   // know where the return address is. The CEntryStub is unmovable, so
1764   // we can store the address on the stack to be able to find it again and
1765   // we never have to restore it, because it will not change.
1766   // Compute the return address in lr to return to after the jump below. Pc is
1767   // already at '+ 8' from the current instruction but return is after three
1768   // instructions so add another 4 to pc to get the return address.
1769   {
1770     // Prevent literal pool emission before return address.
1771     Assembler::BlockConstPoolScope block_const_pool(masm);
1772     masm->add(lr, pc, Operand(4));
1773     __ str(lr, MemOperand(sp, 0));
1774     masm->Jump(r5);
1775   }
1776 
1777   __ VFPEnsureFPSCRState(r2);
1778 
1779   if (always_allocate) {
1780     // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
1781     // though (contain the result).
1782     __ mov(r2, Operand(scope_depth));
1783     __ ldr(r3, MemOperand(r2));
1784     __ sub(r3, r3, Operand(1));
1785     __ str(r3, MemOperand(r2));
1786   }
1787 
1788   // check for failure result
1789   Label failure_returned;
1790   STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
1791   // Lower 2 bits of r2 are 0 iff r0 has failure tag.
1792   __ add(r2, r0, Operand(1));
1793   __ tst(r2, Operand(kFailureTagMask));
1794   __ b(eq, &failure_returned);
1795 
1796   // Exit C frame and return.
1797   // r0:r1: result
1798   // sp: stack pointer
1799   // fp: frame pointer
1800   //  Callee-saved register r4 still holds argc.
1801   __ LeaveExitFrame(save_doubles_, r4, true);
1802   __ mov(pc, lr);
1803 
1804   // check if we should retry or throw exception
1805   Label retry;
1806   __ bind(&failure_returned);
1807   STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
1808   __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
1809   __ b(eq, &retry);
1810 
1811   // Special handling of out of memory exceptions.
1812   JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception);
1813 
1814   // Retrieve the pending exception.
1815   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1816                                        isolate)));
1817   __ ldr(r0, MemOperand(ip));
1818 
1819   // See if we just retrieved an OOM exception.
1820   JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception);
1821 
1822   // Clear the pending exception.
1823   __ mov(r3, Operand(isolate->factory()->the_hole_value()));
1824   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1825                                        isolate)));
1826   __ str(r3, MemOperand(ip));
1827 
1828   // Special handling of termination exceptions which are uncatchable
1829   // by javascript code.
1830   __ cmp(r0, Operand(isolate->factory()->termination_exception()));
1831   __ b(eq, throw_termination_exception);
1832 
1833   // Handle normal exception.
1834   __ jmp(throw_normal_exception);
1835 
1836   __ bind(&retry);  // pass last failure (r0) as parameter (r0) when retrying
1837 }
1838 
1839 
Generate(MacroAssembler * masm)1840 void CEntryStub::Generate(MacroAssembler* masm) {
1841   // Called from JavaScript; parameters are on stack as if calling JS function
1842   // r0: number of arguments including receiver
1843   // r1: pointer to builtin function
1844   // fp: frame pointer  (restored after C call)
1845   // sp: stack pointer  (restored as callee's sp after C call)
1846   // cp: current context  (C callee-saved)
1847 
1848   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1849 
1850   // Result returned in r0 or r0+r1 by default.
1851 
1852   // NOTE: Invocations of builtins may return failure objects
1853   // instead of a proper result. The builtin entry handles
1854   // this by performing a garbage collection and retrying the
1855   // builtin once.
1856 
1857   // Compute the argv pointer in a callee-saved register.
1858   __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
1859   __ sub(r6, r6, Operand(kPointerSize));
1860 
1861   // Enter the exit frame that transitions from JavaScript to C++.
1862   FrameScope scope(masm, StackFrame::MANUAL);
1863   __ EnterExitFrame(save_doubles_);
1864 
1865   // Set up argc and the builtin function in callee-saved registers.
1866   __ mov(r4, Operand(r0));
1867   __ mov(r5, Operand(r1));
1868 
1869   // r4: number of arguments (C callee-saved)
1870   // r5: pointer to builtin function (C callee-saved)
1871   // r6: pointer to first argument (C callee-saved)
1872 
1873   Label throw_normal_exception;
1874   Label throw_termination_exception;
1875   Label throw_out_of_memory_exception;
1876 
1877   // Call into the runtime system.
1878   GenerateCore(masm,
1879                &throw_normal_exception,
1880                &throw_termination_exception,
1881                &throw_out_of_memory_exception,
1882                false,
1883                false);
1884 
1885   // Do space-specific GC and retry runtime call.
1886   GenerateCore(masm,
1887                &throw_normal_exception,
1888                &throw_termination_exception,
1889                &throw_out_of_memory_exception,
1890                true,
1891                false);
1892 
1893   // Do full GC and retry runtime call one final time.
1894   Failure* failure = Failure::InternalError();
1895   __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
1896   GenerateCore(masm,
1897                &throw_normal_exception,
1898                &throw_termination_exception,
1899                &throw_out_of_memory_exception,
1900                true,
1901                true);
1902 
1903   __ bind(&throw_out_of_memory_exception);
1904   // Set external caught exception to false.
1905   Isolate* isolate = masm->isolate();
1906   ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
1907                                     isolate);
1908   __ mov(r0, Operand(false, RelocInfo::NONE32));
1909   __ mov(r2, Operand(external_caught));
1910   __ str(r0, MemOperand(r2));
1911 
1912   // Set pending exception and r0 to out of memory exception.
1913   Label already_have_failure;
1914   JumpIfOOM(masm, r0, ip, &already_have_failure);
1915   Failure* out_of_memory = Failure::OutOfMemoryException(0x1);
1916   __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
1917   __ bind(&already_have_failure);
1918   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1919                                        isolate)));
1920   __ str(r0, MemOperand(r2));
1921   // Fall through to the next label.
1922 
1923   __ bind(&throw_termination_exception);
1924   __ ThrowUncatchable(r0);
1925 
1926   __ bind(&throw_normal_exception);
1927   __ Throw(r0);
1928 }
1929 
1930 
GenerateBody(MacroAssembler * masm,bool is_construct)1931 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
1932   // r0: code entry
1933   // r1: function
1934   // r2: receiver
1935   // r3: argc
1936   // [sp+0]: argv
1937 
1938   Label invoke, handler_entry, exit;
1939 
1940   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1941 
1942   // Called from C, so do not pop argc and args on exit (preserve sp)
1943   // No need to save register-passed args
1944   // Save callee-saved registers (incl. cp and fp), sp, and lr
1945   __ stm(db_w, sp, kCalleeSaved | lr.bit());
1946 
1947   // Save callee-saved vfp registers.
1948   __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1949   // Set up the reserved register for 0.0.
1950   __ vmov(kDoubleRegZero, 0.0);
1951   __ VFPEnsureFPSCRState(r4);
1952 
1953   // Get address of argv, see stm above.
1954   // r0: code entry
1955   // r1: function
1956   // r2: receiver
1957   // r3: argc
1958 
1959   // Set up argv in r4.
1960   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1961   offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1962   __ ldr(r4, MemOperand(sp, offset_to_argv));
1963 
1964   // Push a frame with special values setup to mark it as an entry frame.
1965   // r0: code entry
1966   // r1: function
1967   // r2: receiver
1968   // r3: argc
1969   // r4: argv
1970   Isolate* isolate = masm->isolate();
1971   int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
1972   __ mov(r8, Operand(Smi::FromInt(marker)));
1973   __ mov(r6, Operand(Smi::FromInt(marker)));
1974   __ mov(r5,
1975          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
1976   __ ldr(r5, MemOperand(r5));
1977   __ mov(ip, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1978   __ Push(ip, r8, r6, r5);
1979 
1980   // Set up frame pointer for the frame to be pushed.
1981   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1982 
1983   // If this is the outermost JS call, set js_entry_sp value.
1984   Label non_outermost_js;
1985   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1986   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1987   __ ldr(r6, MemOperand(r5));
1988   __ cmp(r6, Operand::Zero());
1989   __ b(ne, &non_outermost_js);
1990   __ str(fp, MemOperand(r5));
1991   __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1992   Label cont;
1993   __ b(&cont);
1994   __ bind(&non_outermost_js);
1995   __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1996   __ bind(&cont);
1997   __ push(ip);
1998 
1999   // Jump to a faked try block that does the invoke, with a faked catch
2000   // block that sets the pending exception.
2001   __ jmp(&invoke);
2002 
2003   // Block literal pool emission whilst taking the position of the handler
2004   // entry. This avoids making the assumption that literal pools are always
2005   // emitted after an instruction is emitted, rather than before.
2006   {
2007     Assembler::BlockConstPoolScope block_const_pool(masm);
2008     __ bind(&handler_entry);
2009     handler_offset_ = handler_entry.pos();
2010     // Caught exception: Store result (exception) in the pending exception
2011     // field in the JSEnv and return a failure sentinel.  Coming in here the
2012     // fp will be invalid because the PushTryHandler below sets it to 0 to
2013     // signal the existence of the JSEntry frame.
2014     __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2015                                          isolate)));
2016   }
2017   __ str(r0, MemOperand(ip));
2018   __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
2019   __ b(&exit);
2020 
2021   // Invoke: Link this frame into the handler chain.  There's only one
2022   // handler block in this code object, so its index is 0.
2023   __ bind(&invoke);
2024   // Must preserve r0-r4, r5-r6 are available.
2025   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2026   // If an exception not caught by another handler occurs, this handler
2027   // returns control to the code after the bl(&invoke) above, which
2028   // restores all kCalleeSaved registers (including cp and fp) to their
2029   // saved values before returning a failure to C.
2030 
2031   // Clear any pending exceptions.
2032   __ mov(r5, Operand(isolate->factory()->the_hole_value()));
2033   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2034                                        isolate)));
2035   __ str(r5, MemOperand(ip));
2036 
2037   // Invoke the function by calling through JS entry trampoline builtin.
2038   // Notice that we cannot store a reference to the trampoline code directly in
2039   // this stub, because runtime stubs are not traversed when doing GC.
2040 
2041   // Expected registers by Builtins::JSEntryTrampoline
2042   // r0: code entry
2043   // r1: function
2044   // r2: receiver
2045   // r3: argc
2046   // r4: argv
2047   if (is_construct) {
2048     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2049                                       isolate);
2050     __ mov(ip, Operand(construct_entry));
2051   } else {
2052     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
2053     __ mov(ip, Operand(entry));
2054   }
2055   __ ldr(ip, MemOperand(ip));  // deref address
2056 
2057   // Branch and link to JSEntryTrampoline.  We don't use the double underscore
2058   // macro for the add instruction because we don't want the coverage tool
2059   // inserting instructions here after we read the pc. We block literal pool
2060   // emission for the same reason.
2061   {
2062     Assembler::BlockConstPoolScope block_const_pool(masm);
2063     __ mov(lr, Operand(pc));
2064     masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
2065   }
2066 
2067   // Unlink this frame from the handler chain.
2068   __ PopTryHandler();
2069 
2070   __ bind(&exit);  // r0 holds result
2071   // Check if the current stack frame is marked as the outermost JS frame.
2072   Label non_outermost_js_2;
2073   __ pop(r5);
2074   __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2075   __ b(ne, &non_outermost_js_2);
2076   __ mov(r6, Operand::Zero());
2077   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
2078   __ str(r6, MemOperand(r5));
2079   __ bind(&non_outermost_js_2);
2080 
2081   // Restore the top frame descriptors from the stack.
2082   __ pop(r3);
2083   __ mov(ip,
2084          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
2085   __ str(r3, MemOperand(ip));
2086 
2087   // Reset the stack to the callee saved registers.
2088   __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
2089 
2090   // Restore callee-saved registers and return.
2091 #ifdef DEBUG
2092   if (FLAG_debug_code) {
2093     __ mov(lr, Operand(pc));
2094   }
2095 #endif
2096 
2097   // Restore callee-saved vfp registers.
2098   __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
2099 
2100   __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
2101 }
2102 
2103 
2104 // Uses registers r0 to r4.
2105 // Expected input (depending on whether args are in registers or on the stack):
2106 // * object: r0 or at sp + 1 * kPointerSize.
2107 // * function: r1 or at sp.
2108 //
2109 // An inlined call site may have been generated before calling this stub.
2110 // In this case the offset to the inline site to patch is passed on the stack,
2111 // in the safepoint slot for register r4.
2112 // (See LCodeGen::DoInstanceOfKnownGlobal)
Generate(MacroAssembler * masm)2113 void InstanceofStub::Generate(MacroAssembler* masm) {
2114   // Call site inlining and patching implies arguments in registers.
2115   ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2116   // ReturnTrueFalse is only implemented for inlined call sites.
2117   ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
2118 
2119   // Fixed register usage throughout the stub:
2120   const Register object = r0;  // Object (lhs).
2121   Register map = r3;  // Map of the object.
2122   const Register function = r1;  // Function (rhs).
2123   const Register prototype = r4;  // Prototype of the function.
2124   const Register inline_site = r9;
2125   const Register scratch = r2;
2126 
2127   const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
2128 
2129   Label slow, loop, is_instance, is_not_instance, not_js_object;
2130 
2131   if (!HasArgsInRegisters()) {
2132     __ ldr(object, MemOperand(sp, 1 * kPointerSize));
2133     __ ldr(function, MemOperand(sp, 0));
2134   }
2135 
2136   // Check that the left hand is a JS object and load map.
2137   __ JumpIfSmi(object, &not_js_object);
2138   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
2139 
2140   // If there is a call site cache don't look in the global cache, but do the
2141   // real lookup and update the call site cache.
2142   if (!HasCallSiteInlineCheck()) {
2143     Label miss;
2144     __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
2145     __ b(ne, &miss);
2146     __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
2147     __ b(ne, &miss);
2148     __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
2149     __ Ret(HasArgsInRegisters() ? 0 : 2);
2150 
2151     __ bind(&miss);
2152   }
2153 
2154   // Get the prototype of the function.
2155   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2156 
2157   // Check that the function prototype is a JS object.
2158   __ JumpIfSmi(prototype, &slow);
2159   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2160 
2161   // Update the global instanceof or call site inlined cache with the current
2162   // map and function. The cached answer will be set when it is known below.
2163   if (!HasCallSiteInlineCheck()) {
2164     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
2165     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
2166   } else {
2167     ASSERT(HasArgsInRegisters());
2168     // Patch the (relocated) inlined map check.
2169 
2170     // The offset was stored in r4 safepoint slot.
2171     // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
2172     __ LoadFromSafepointRegisterSlot(scratch, r4);
2173     __ sub(inline_site, lr, scratch);
2174     // Get the map location in scratch and patch it.
2175     __ GetRelocatedValueLocation(inline_site, scratch);
2176     __ ldr(scratch, MemOperand(scratch));
2177     __ str(map, FieldMemOperand(scratch, Cell::kValueOffset));
2178   }
2179 
2180   // Register mapping: r3 is object map and r4 is function prototype.
2181   // Get prototype of object into r2.
2182   __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
2183 
2184   // We don't need map any more. Use it as a scratch register.
2185   Register scratch2 = map;
2186   map = no_reg;
2187 
2188   // Loop through the prototype chain looking for the function prototype.
2189   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
2190   __ bind(&loop);
2191   __ cmp(scratch, Operand(prototype));
2192   __ b(eq, &is_instance);
2193   __ cmp(scratch, scratch2);
2194   __ b(eq, &is_not_instance);
2195   __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
2196   __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
2197   __ jmp(&loop);
2198 
2199   __ bind(&is_instance);
2200   if (!HasCallSiteInlineCheck()) {
2201     __ mov(r0, Operand(Smi::FromInt(0)));
2202     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
2203   } else {
2204     // Patch the call site to return true.
2205     __ LoadRoot(r0, Heap::kTrueValueRootIndex);
2206     __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
2207     // Get the boolean result location in scratch and patch it.
2208     __ GetRelocatedValueLocation(inline_site, scratch);
2209     __ str(r0, MemOperand(scratch));
2210 
2211     if (!ReturnTrueFalseObject()) {
2212       __ mov(r0, Operand(Smi::FromInt(0)));
2213     }
2214   }
2215   __ Ret(HasArgsInRegisters() ? 0 : 2);
2216 
2217   __ bind(&is_not_instance);
2218   if (!HasCallSiteInlineCheck()) {
2219     __ mov(r0, Operand(Smi::FromInt(1)));
2220     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
2221   } else {
2222     // Patch the call site to return false.
2223     __ LoadRoot(r0, Heap::kFalseValueRootIndex);
2224     __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
2225     // Get the boolean result location in scratch and patch it.
2226     __ GetRelocatedValueLocation(inline_site, scratch);
2227     __ str(r0, MemOperand(scratch));
2228 
2229     if (!ReturnTrueFalseObject()) {
2230       __ mov(r0, Operand(Smi::FromInt(1)));
2231     }
2232   }
2233   __ Ret(HasArgsInRegisters() ? 0 : 2);
2234 
2235   Label object_not_null, object_not_null_or_smi;
2236   __ bind(&not_js_object);
2237   // Before null, smi and string value checks, check that the rhs is a function
2238   // as for a non-function rhs an exception needs to be thrown.
2239   __ JumpIfSmi(function, &slow);
2240   __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
2241   __ b(ne, &slow);
2242 
2243   // Null is not instance of anything.
2244   __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
2245   __ b(ne, &object_not_null);
2246   __ mov(r0, Operand(Smi::FromInt(1)));
2247   __ Ret(HasArgsInRegisters() ? 0 : 2);
2248 
2249   __ bind(&object_not_null);
2250   // Smi values are not instances of anything.
2251   __ JumpIfNotSmi(object, &object_not_null_or_smi);
2252   __ mov(r0, Operand(Smi::FromInt(1)));
2253   __ Ret(HasArgsInRegisters() ? 0 : 2);
2254 
2255   __ bind(&object_not_null_or_smi);
2256   // String values are not instances of anything.
2257   __ IsObjectJSStringType(object, scratch, &slow);
2258   __ mov(r0, Operand(Smi::FromInt(1)));
2259   __ Ret(HasArgsInRegisters() ? 0 : 2);
2260 
2261   // Slow-case.  Tail call builtin.
2262   __ bind(&slow);
2263   if (!ReturnTrueFalseObject()) {
2264     if (HasArgsInRegisters()) {
2265       __ Push(r0, r1);
2266     }
2267   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2268   } else {
2269     {
2270       FrameScope scope(masm, StackFrame::INTERNAL);
2271       __ Push(r0, r1);
2272       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2273     }
2274     __ cmp(r0, Operand::Zero());
2275     __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
2276     __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
2277     __ Ret(HasArgsInRegisters() ? 0 : 2);
2278   }
2279 }
2280 
2281 
Generate(MacroAssembler * masm)2282 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
2283   Label miss;
2284   Register receiver;
2285   if (kind() == Code::KEYED_LOAD_IC) {
2286     // ----------- S t a t e -------------
2287     //  -- lr    : return address
2288     //  -- r0    : key
2289     //  -- r1    : receiver
2290     // -----------------------------------
2291     __ cmp(r0, Operand(masm->isolate()->factory()->prototype_string()));
2292     __ b(ne, &miss);
2293     receiver = r1;
2294   } else {
2295     ASSERT(kind() == Code::LOAD_IC);
2296     // ----------- S t a t e -------------
2297     //  -- r2    : name
2298     //  -- lr    : return address
2299     //  -- r0    : receiver
2300     //  -- sp[0] : receiver
2301     // -----------------------------------
2302     receiver = r0;
2303   }
2304 
2305   StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, r4, &miss);
2306   __ bind(&miss);
2307   StubCompiler::TailCallBuiltin(
2308       masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
2309 }
2310 
2311 
Generate(MacroAssembler * masm)2312 void StringLengthStub::Generate(MacroAssembler* masm) {
2313   Label miss;
2314   Register receiver;
2315   if (kind() == Code::KEYED_LOAD_IC) {
2316     // ----------- S t a t e -------------
2317     //  -- lr    : return address
2318     //  -- r0    : key
2319     //  -- r1    : receiver
2320     // -----------------------------------
2321     __ cmp(r0, Operand(masm->isolate()->factory()->length_string()));
2322     __ b(ne, &miss);
2323     receiver = r1;
2324   } else {
2325     ASSERT(kind() == Code::LOAD_IC);
2326     // ----------- S t a t e -------------
2327     //  -- r2    : name
2328     //  -- lr    : return address
2329     //  -- r0    : receiver
2330     //  -- sp[0] : receiver
2331     // -----------------------------------
2332     receiver = r0;
2333   }
2334 
2335   StubCompiler::GenerateLoadStringLength(masm, receiver, r3, r4, &miss);
2336 
2337   __ bind(&miss);
2338   StubCompiler::TailCallBuiltin(
2339       masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
2340 }
2341 
2342 
Generate(MacroAssembler * masm)2343 void StoreArrayLengthStub::Generate(MacroAssembler* masm) {
2344   // This accepts as a receiver anything JSArray::SetElementsLength accepts
2345   // (currently anything except for external arrays which means anything with
2346   // elements of FixedArray type).  Value must be a number, but only smis are
2347   // accepted as the most common case.
2348   Label miss;
2349 
2350   Register receiver;
2351   Register value;
2352   if (kind() == Code::KEYED_STORE_IC) {
2353     // ----------- S t a t e -------------
2354     //  -- lr    : return address
2355     //  -- r0    : value
2356     //  -- r1    : key
2357     //  -- r2    : receiver
2358     // -----------------------------------
2359     __ cmp(r1, Operand(masm->isolate()->factory()->length_string()));
2360     __ b(ne, &miss);
2361     receiver = r2;
2362     value = r0;
2363   } else {
2364     ASSERT(kind() == Code::STORE_IC);
2365     // ----------- S t a t e -------------
2366     //  -- lr    : return address
2367     //  -- r0    : value
2368     //  -- r1    : receiver
2369     //  -- r2    : key
2370     // -----------------------------------
2371     receiver = r1;
2372     value = r0;
2373   }
2374   Register scratch = r3;
2375 
2376   // Check that the receiver isn't a smi.
2377   __ JumpIfSmi(receiver, &miss);
2378 
2379   // Check that the object is a JS array.
2380   __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
2381   __ b(ne, &miss);
2382 
2383   // Check that elements are FixedArray.
2384   // We rely on StoreIC_ArrayLength below to deal with all types of
2385   // fast elements (including COW).
2386   __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset));
2387   __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE);
2388   __ b(ne, &miss);
2389 
2390   // Check that the array has fast properties, otherwise the length
2391   // property might have been redefined.
2392   __ ldr(scratch, FieldMemOperand(receiver, JSArray::kPropertiesOffset));
2393   __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kMapOffset));
2394   __ CompareRoot(scratch, Heap::kHashTableMapRootIndex);
2395   __ b(eq, &miss);
2396 
2397   // Check that value is a smi.
2398   __ JumpIfNotSmi(value, &miss);
2399 
2400   // Prepare tail call to StoreIC_ArrayLength.
2401   __ Push(receiver, value);
2402 
2403   ExternalReference ref =
2404       ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate());
2405   __ TailCallExternalReference(ref, 2, 1);
2406 
2407   __ bind(&miss);
2408 
2409   StubCompiler::TailCallBuiltin(
2410       masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
2411 }
2412 
2413 
left()2414 Register InstanceofStub::left() { return r0; }
2415 
2416 
right()2417 Register InstanceofStub::right() { return r1; }
2418 
2419 
GenerateReadElement(MacroAssembler * masm)2420 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
2421   // The displacement is the offset of the last parameter (if any)
2422   // relative to the frame pointer.
2423   const int kDisplacement =
2424       StandardFrameConstants::kCallerSPOffset - kPointerSize;
2425 
2426   // Check that the key is a smi.
2427   Label slow;
2428   __ JumpIfNotSmi(r1, &slow);
2429 
2430   // Check if the calling frame is an arguments adaptor frame.
2431   Label adaptor;
2432   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2433   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
2434   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2435   __ b(eq, &adaptor);
2436 
2437   // Check index against formal parameters count limit passed in
2438   // through register r0. Use unsigned comparison to get negative
2439   // check for free.
2440   __ cmp(r1, r0);
2441   __ b(hs, &slow);
2442 
2443   // Read the argument from the stack and return it.
2444   __ sub(r3, r0, r1);
2445   __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
2446   __ ldr(r0, MemOperand(r3, kDisplacement));
2447   __ Jump(lr);
2448 
2449   // Arguments adaptor case: Check index against actual arguments
2450   // limit found in the arguments adaptor frame. Use unsigned
2451   // comparison to get negative check for free.
2452   __ bind(&adaptor);
2453   __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
2454   __ cmp(r1, r0);
2455   __ b(cs, &slow);
2456 
2457   // Read the argument from the adaptor frame and return it.
2458   __ sub(r3, r0, r1);
2459   __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
2460   __ ldr(r0, MemOperand(r3, kDisplacement));
2461   __ Jump(lr);
2462 
2463   // Slow-case: Handle non-smi or out-of-bounds access to arguments
2464   // by calling the runtime system.
2465   __ bind(&slow);
2466   __ push(r1);
2467   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
2468 }
2469 
2470 
GenerateNewNonStrictSlow(MacroAssembler * masm)2471 void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
2472   // sp[0] : number of parameters
2473   // sp[4] : receiver displacement
2474   // sp[8] : function
2475 
2476   // Check if the calling frame is an arguments adaptor frame.
2477   Label runtime;
2478   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2479   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
2480   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2481   __ b(ne, &runtime);
2482 
2483   // Patch the arguments.length and the parameters pointer in the current frame.
2484   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
2485   __ str(r2, MemOperand(sp, 0 * kPointerSize));
2486   __ add(r3, r3, Operand(r2, LSL, 1));
2487   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
2488   __ str(r3, MemOperand(sp, 1 * kPointerSize));
2489 
2490   __ bind(&runtime);
2491   __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2492 }
2493 
2494 
GenerateNewNonStrictFast(MacroAssembler * masm)2495 void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
2496   // Stack layout:
2497   //  sp[0] : number of parameters (tagged)
2498   //  sp[4] : address of receiver argument
2499   //  sp[8] : function
2500   // Registers used over whole function:
2501   //  r6 : allocated object (tagged)
2502   //  r9 : mapped parameter count (tagged)
2503 
2504   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
2505   // r1 = parameter count (tagged)
2506 
2507   // Check if the calling frame is an arguments adaptor frame.
2508   Label runtime;
2509   Label adaptor_frame, try_allocate;
2510   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2511   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
2512   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2513   __ b(eq, &adaptor_frame);
2514 
2515   // No adaptor, parameter count = argument count.
2516   __ mov(r2, r1);
2517   __ b(&try_allocate);
2518 
2519   // We have an adaptor frame. Patch the parameters pointer.
2520   __ bind(&adaptor_frame);
2521   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
2522   __ add(r3, r3, Operand(r2, LSL, 1));
2523   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
2524   __ str(r3, MemOperand(sp, 1 * kPointerSize));
2525 
2526   // r1 = parameter count (tagged)
2527   // r2 = argument count (tagged)
2528   // Compute the mapped parameter count = min(r1, r2) in r1.
2529   __ cmp(r1, Operand(r2));
2530   __ mov(r1, Operand(r2), LeaveCC, gt);
2531 
2532   __ bind(&try_allocate);
2533 
2534   // Compute the sizes of backing store, parameter map, and arguments object.
2535   // 1. Parameter map, has 2 extra words containing context and backing store.
2536   const int kParameterMapHeaderSize =
2537       FixedArray::kHeaderSize + 2 * kPointerSize;
2538   // If there are no mapped parameters, we do not need the parameter_map.
2539   __ cmp(r1, Operand(Smi::FromInt(0)));
2540   __ mov(r9, Operand::Zero(), LeaveCC, eq);
2541   __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
2542   __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
2543 
2544   // 2. Backing store.
2545   __ add(r9, r9, Operand(r2, LSL, 1));
2546   __ add(r9, r9, Operand(FixedArray::kHeaderSize));
2547 
2548   // 3. Arguments object.
2549   __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
2550 
2551   // Do the allocation of all three objects in one go.
2552   __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
2553 
2554   // r0 = address of new object(s) (tagged)
2555   // r2 = argument count (tagged)
2556   // Get the arguments boilerplate from the current native context into r4.
2557   const int kNormalOffset =
2558       Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
2559   const int kAliasedOffset =
2560       Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
2561 
2562   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2563   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
2564   __ cmp(r1, Operand::Zero());
2565   __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
2566   __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
2567 
2568   // r0 = address of new object (tagged)
2569   // r1 = mapped parameter count (tagged)
2570   // r2 = argument count (tagged)
2571   // r4 = address of boilerplate object (tagged)
2572   // Copy the JS object part.
2573   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
2574     __ ldr(r3, FieldMemOperand(r4, i));
2575     __ str(r3, FieldMemOperand(r0, i));
2576   }
2577 
2578   // Set up the callee in-object property.
2579   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
2580   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
2581   const int kCalleeOffset = JSObject::kHeaderSize +
2582       Heap::kArgumentsCalleeIndex * kPointerSize;
2583   __ str(r3, FieldMemOperand(r0, kCalleeOffset));
2584 
2585   // Use the length (smi tagged) and set that as an in-object property too.
2586   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2587   const int kLengthOffset = JSObject::kHeaderSize +
2588       Heap::kArgumentsLengthIndex * kPointerSize;
2589   __ str(r2, FieldMemOperand(r0, kLengthOffset));
2590 
2591   // Set up the elements pointer in the allocated arguments object.
2592   // If we allocated a parameter map, r4 will point there, otherwise
2593   // it will point to the backing store.
2594   __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
2595   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
2596 
2597   // r0 = address of new object (tagged)
2598   // r1 = mapped parameter count (tagged)
2599   // r2 = argument count (tagged)
2600   // r4 = address of parameter map or backing store (tagged)
2601   // Initialize parameter map. If there are no mapped arguments, we're done.
2602   Label skip_parameter_map;
2603   __ cmp(r1, Operand(Smi::FromInt(0)));
2604   // Move backing store address to r3, because it is
2605   // expected there when filling in the unmapped arguments.
2606   __ mov(r3, r4, LeaveCC, eq);
2607   __ b(eq, &skip_parameter_map);
2608 
2609   __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
2610   __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
2611   __ add(r6, r1, Operand(Smi::FromInt(2)));
2612   __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
2613   __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
2614   __ add(r6, r4, Operand(r1, LSL, 1));
2615   __ add(r6, r6, Operand(kParameterMapHeaderSize));
2616   __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
2617 
2618   // Copy the parameter slots and the holes in the arguments.
2619   // We need to fill in mapped_parameter_count slots. They index the context,
2620   // where parameters are stored in reverse order, at
2621   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
2622   // The mapped parameter thus need to get indices
2623   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
2624   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
2625   // We loop from right to left.
2626   Label parameters_loop, parameters_test;
2627   __ mov(r6, r1);
2628   __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
2629   __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
2630   __ sub(r9, r9, Operand(r1));
2631   __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
2632   __ add(r3, r4, Operand(r6, LSL, 1));
2633   __ add(r3, r3, Operand(kParameterMapHeaderSize));
2634 
2635   // r6 = loop variable (tagged)
2636   // r1 = mapping index (tagged)
2637   // r3 = address of backing store (tagged)
2638   // r4 = address of parameter map (tagged), which is also the address of new
2639   //      object + Heap::kArgumentsObjectSize (tagged)
2640   // r0 = temporary scratch (a.o., for address calculation)
2641   // r5 = the hole value
2642   __ jmp(&parameters_test);
2643 
2644   __ bind(&parameters_loop);
2645   __ sub(r6, r6, Operand(Smi::FromInt(1)));
2646   __ mov(r0, Operand(r6, LSL, 1));
2647   __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
2648   __ str(r9, MemOperand(r4, r0));
2649   __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
2650   __ str(r5, MemOperand(r3, r0));
2651   __ add(r9, r9, Operand(Smi::FromInt(1)));
2652   __ bind(&parameters_test);
2653   __ cmp(r6, Operand(Smi::FromInt(0)));
2654   __ b(ne, &parameters_loop);
2655 
2656   // Restore r0 = new object (tagged)
2657   __ sub(r0, r4, Operand(Heap::kArgumentsObjectSize));
2658 
2659   __ bind(&skip_parameter_map);
2660   // r0 = address of new object (tagged)
2661   // r2 = argument count (tagged)
2662   // r3 = address of backing store (tagged)
2663   // r5 = scratch
2664   // Copy arguments header and remaining slots (if there are any).
2665   __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
2666   __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
2667   __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
2668 
2669   Label arguments_loop, arguments_test;
2670   __ mov(r9, r1);
2671   __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
2672   __ sub(r4, r4, Operand(r9, LSL, 1));
2673   __ jmp(&arguments_test);
2674 
2675   __ bind(&arguments_loop);
2676   __ sub(r4, r4, Operand(kPointerSize));
2677   __ ldr(r6, MemOperand(r4, 0));
2678   __ add(r5, r3, Operand(r9, LSL, 1));
2679   __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
2680   __ add(r9, r9, Operand(Smi::FromInt(1)));
2681 
2682   __ bind(&arguments_test);
2683   __ cmp(r9, Operand(r2));
2684   __ b(lt, &arguments_loop);
2685 
2686   // Return and remove the on-stack parameters.
2687   __ add(sp, sp, Operand(3 * kPointerSize));
2688   __ Ret();
2689 
2690   // Do the runtime call to allocate the arguments object.
2691   // r0 = address of new object (tagged)
2692   // r2 = argument count (tagged)
2693   __ bind(&runtime);
2694   __ str(r2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
2695   __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2696 }
2697 
2698 
GenerateNewStrict(MacroAssembler * masm)2699 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
2700   // sp[0] : number of parameters
2701   // sp[4] : receiver displacement
2702   // sp[8] : function
2703   // Check if the calling frame is an arguments adaptor frame.
2704   Label adaptor_frame, try_allocate, runtime;
2705   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2706   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
2707   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2708   __ b(eq, &adaptor_frame);
2709 
2710   // Get the length from the frame.
2711   __ ldr(r1, MemOperand(sp, 0));
2712   __ b(&try_allocate);
2713 
2714   // Patch the arguments.length and the parameters pointer.
2715   __ bind(&adaptor_frame);
2716   __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
2717   __ str(r1, MemOperand(sp, 0));
2718   __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
2719   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
2720   __ str(r3, MemOperand(sp, 1 * kPointerSize));
2721 
2722   // Try the new space allocation. Start out with computing the size
2723   // of the arguments object and the elements array in words.
2724   Label add_arguments_object;
2725   __ bind(&try_allocate);
2726   __ SmiUntag(r1, SetCC);
2727   __ b(eq, &add_arguments_object);
2728   __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
2729   __ bind(&add_arguments_object);
2730   __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
2731 
2732   // Do the allocation of both objects in one go.
2733   __ Allocate(r1, r0, r2, r3, &runtime,
2734               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
2735 
2736   // Get the arguments boilerplate from the current native context.
2737   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2738   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
2739   __ ldr(r4, MemOperand(r4, Context::SlotOffset(
2740       Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
2741 
2742   // Copy the JS object part.
2743   __ CopyFields(r0, r4, d0, JSObject::kHeaderSize / kPointerSize);
2744 
2745   // Get the length (smi tagged) and set that as an in-object property too.
2746   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2747   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
2748   __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
2749       Heap::kArgumentsLengthIndex * kPointerSize));
2750 
2751   // If there are no actual arguments, we're done.
2752   Label done;
2753   __ cmp(r1, Operand::Zero());
2754   __ b(eq, &done);
2755 
2756   // Get the parameters pointer from the stack.
2757   __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
2758 
2759   // Set up the elements pointer in the allocated arguments object and
2760   // initialize the header in the elements fixed array.
2761   __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
2762   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
2763   __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
2764   __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
2765   __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
2766   __ SmiUntag(r1);
2767 
2768   // Copy the fixed array slots.
2769   Label loop;
2770   // Set up r4 to point to the first array slot.
2771   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2772   __ bind(&loop);
2773   // Pre-decrement r2 with kPointerSize on each iteration.
2774   // Pre-decrement in order to skip receiver.
2775   __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
2776   // Post-increment r4 with kPointerSize on each iteration.
2777   __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
2778   __ sub(r1, r1, Operand(1));
2779   __ cmp(r1, Operand::Zero());
2780   __ b(ne, &loop);
2781 
2782   // Return and remove the on-stack parameters.
2783   __ bind(&done);
2784   __ add(sp, sp, Operand(3 * kPointerSize));
2785   __ Ret();
2786 
2787   // Do the runtime call to allocate the arguments object.
2788   __ bind(&runtime);
2789   __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
2790 }
2791 
2792 
Generate(MacroAssembler * masm)2793 void RegExpExecStub::Generate(MacroAssembler* masm) {
2794   // Just jump directly to runtime if native RegExp is not selected at compile
2795   // time or if regexp entry in generated code is turned off runtime switch or
2796   // at compilation.
2797 #ifdef V8_INTERPRETED_REGEXP
2798   __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2799 #else  // V8_INTERPRETED_REGEXP
2800 
2801   // Stack frame on entry.
2802   //  sp[0]: last_match_info (expected JSArray)
2803   //  sp[4]: previous index
2804   //  sp[8]: subject string
2805   //  sp[12]: JSRegExp object
2806 
2807   const int kLastMatchInfoOffset = 0 * kPointerSize;
2808   const int kPreviousIndexOffset = 1 * kPointerSize;
2809   const int kSubjectOffset = 2 * kPointerSize;
2810   const int kJSRegExpOffset = 3 * kPointerSize;
2811 
2812   Label runtime;
2813   // Allocation of registers for this function. These are in callee save
2814   // registers and will be preserved by the call to the native RegExp code, as
2815   // this code is called using the normal C calling convention. When calling
2816   // directly from generated code the native RegExp code will not do a GC and
2817   // therefore the content of these registers are safe to use after the call.
2818   Register subject = r4;
2819   Register regexp_data = r5;
2820   Register last_match_info_elements = no_reg;  // will be r6;
2821 
2822   // Ensure that a RegExp stack is allocated.
2823   Isolate* isolate = masm->isolate();
2824   ExternalReference address_of_regexp_stack_memory_address =
2825       ExternalReference::address_of_regexp_stack_memory_address(isolate);
2826   ExternalReference address_of_regexp_stack_memory_size =
2827       ExternalReference::address_of_regexp_stack_memory_size(isolate);
2828   __ mov(r0, Operand(address_of_regexp_stack_memory_size));
2829   __ ldr(r0, MemOperand(r0, 0));
2830   __ cmp(r0, Operand::Zero());
2831   __ b(eq, &runtime);
2832 
2833   // Check that the first argument is a JSRegExp object.
2834   __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
2835   __ JumpIfSmi(r0, &runtime);
2836   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
2837   __ b(ne, &runtime);
2838 
2839   // Check that the RegExp has been compiled (data contains a fixed array).
2840   __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
2841   if (FLAG_debug_code) {
2842     __ SmiTst(regexp_data);
2843     __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2844     __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
2845     __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2846   }
2847 
2848   // regexp_data: RegExp data (FixedArray)
2849   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2850   __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2851   __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2852   __ b(ne, &runtime);
2853 
2854   // regexp_data: RegExp data (FixedArray)
2855   // Check that the number of captures fit in the static offsets vector buffer.
2856   __ ldr(r2,
2857          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2858   // Check (number_of_captures + 1) * 2 <= offsets vector size
2859   // Or          number_of_captures * 2 <= offsets vector size - 2
2860   // Multiplying by 2 comes for free since r2 is smi-tagged.
2861   STATIC_ASSERT(kSmiTag == 0);
2862   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2863   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2864   __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
2865   __ b(hi, &runtime);
2866 
2867   // Reset offset for possibly sliced string.
2868   __ mov(r9, Operand::Zero());
2869   __ ldr(subject, MemOperand(sp, kSubjectOffset));
2870   __ JumpIfSmi(subject, &runtime);
2871   __ mov(r3, subject);  // Make a copy of the original subject string.
2872   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2873   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2874   // subject: subject string
2875   // r3: subject string
2876   // r0: subject string instance type
2877   // regexp_data: RegExp data (FixedArray)
2878   // Handle subject string according to its encoding and representation:
2879   // (1) Sequential string?  If yes, go to (5).
2880   // (2) Anything but sequential or cons?  If yes, go to (6).
2881   // (3) Cons string.  If the string is flat, replace subject with first string.
2882   //     Otherwise bailout.
2883   // (4) Is subject external?  If yes, go to (7).
2884   // (5) Sequential string.  Load regexp code according to encoding.
2885   // (E) Carry on.
2886   /// [...]
2887 
2888   // Deferred code at the end of the stub:
2889   // (6) Not a long external string?  If yes, go to (8).
2890   // (7) External string.  Make it, offset-wise, look like a sequential string.
2891   //     Go to (5).
2892   // (8) Short external string or not a string?  If yes, bail out to runtime.
2893   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2894 
2895   Label seq_string /* 5 */, external_string /* 7 */,
2896         check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
2897         not_long_external /* 8 */;
2898 
2899   // (1) Sequential string?  If yes, go to (5).
2900   __ and_(r1,
2901           r0,
2902           Operand(kIsNotStringMask |
2903                   kStringRepresentationMask |
2904                   kShortExternalStringMask),
2905           SetCC);
2906   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2907   __ b(eq, &seq_string);  // Go to (5).
2908 
2909   // (2) Anything but sequential or cons?  If yes, go to (6).
2910   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2911   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2912   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2913   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2914   __ cmp(r1, Operand(kExternalStringTag));
2915   __ b(ge, &not_seq_nor_cons);  // Go to (6).
2916 
2917   // (3) Cons string.  Check that it's flat.
2918   // Replace subject with first string and reload instance type.
2919   __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
2920   __ CompareRoot(r0, Heap::kempty_stringRootIndex);
2921   __ b(ne, &runtime);
2922   __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2923 
2924   // (4) Is subject external?  If yes, go to (7).
2925   __ bind(&check_underlying);
2926   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2927   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2928   STATIC_ASSERT(kSeqStringTag == 0);
2929   __ tst(r0, Operand(kStringRepresentationMask));
2930   // The underlying external string is never a short external string.
2931   STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
2932   STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2933   __ b(ne, &external_string);  // Go to (7).
2934 
2935   // (5) Sequential string.  Load regexp code according to encoding.
2936   __ bind(&seq_string);
2937   // subject: sequential subject string (or look-alike, external string)
2938   // r3: original subject string
2939   // Load previous index and check range before r3 is overwritten.  We have to
2940   // use r3 instead of subject here because subject might have been only made
2941   // to look like a sequential string when it actually is an external string.
2942   __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
2943   __ JumpIfNotSmi(r1, &runtime);
2944   __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
2945   __ cmp(r3, Operand(r1));
2946   __ b(ls, &runtime);
2947   __ SmiUntag(r1);
2948 
2949   STATIC_ASSERT(4 == kOneByteStringTag);
2950   STATIC_ASSERT(kTwoByteStringTag == 0);
2951   __ and_(r0, r0, Operand(kStringEncodingMask));
2952   __ mov(r3, Operand(r0, ASR, 2), SetCC);
2953   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
2954   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
2955 
2956   // (E) Carry on.  String handling is done.
2957   // r6: irregexp code
2958   // Check that the irregexp code has been generated for the actual string
2959   // encoding. If it has, the field contains a code object otherwise it contains
2960   // a smi (code flushing support).
2961   __ JumpIfSmi(r6, &runtime);
2962 
2963   // r1: previous index
2964   // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
2965   // r6: code
2966   // subject: Subject string
2967   // regexp_data: RegExp data (FixedArray)
2968   // All checks done. Now push arguments for native regexp code.
2969   __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
2970 
2971   // Isolates: note we add an additional parameter here (isolate pointer).
2972   const int kRegExpExecuteArguments = 9;
2973   const int kParameterRegisters = 4;
2974   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2975 
2976   // Stack pointer now points to cell where return address is to be written.
2977   // Arguments are before that on the stack or in registers.
2978 
2979   // Argument 9 (sp[20]): Pass current isolate address.
2980   __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
2981   __ str(r0, MemOperand(sp, 5 * kPointerSize));
2982 
2983   // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
2984   __ mov(r0, Operand(1));
2985   __ str(r0, MemOperand(sp, 4 * kPointerSize));
2986 
2987   // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
2988   __ mov(r0, Operand(address_of_regexp_stack_memory_address));
2989   __ ldr(r0, MemOperand(r0, 0));
2990   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
2991   __ ldr(r2, MemOperand(r2, 0));
2992   __ add(r0, r0, Operand(r2));
2993   __ str(r0, MemOperand(sp, 3 * kPointerSize));
2994 
2995   // Argument 6: Set the number of capture registers to zero to force global
2996   // regexps to behave as non-global.  This does not affect non-global regexps.
2997   __ mov(r0, Operand::Zero());
2998   __ str(r0, MemOperand(sp, 2 * kPointerSize));
2999 
3000   // Argument 5 (sp[4]): static offsets vector buffer.
3001   __ mov(r0,
3002          Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
3003   __ str(r0, MemOperand(sp, 1 * kPointerSize));
3004 
3005   // For arguments 4 and 3 get string length, calculate start of string data and
3006   // calculate the shift of the index (0 for ASCII and 1 for two byte).
3007   __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
3008   __ eor(r3, r3, Operand(1));
3009   // Load the length from the original subject string from the previous stack
3010   // frame. Therefore we have to use fp, which points exactly to two pointer
3011   // sizes below the previous sp. (Because creating a new stack frame pushes
3012   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
3013   __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
3014   // If slice offset is not 0, load the length from the original sliced string.
3015   // Argument 4, r3: End of string data
3016   // Argument 3, r2: Start of string data
3017   // Prepare start and end index of the input.
3018   __ add(r9, r7, Operand(r9, LSL, r3));
3019   __ add(r2, r9, Operand(r1, LSL, r3));
3020 
3021   __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
3022   __ SmiUntag(r7);
3023   __ add(r3, r9, Operand(r7, LSL, r3));
3024 
3025   // Argument 2 (r1): Previous index.
3026   // Already there
3027 
3028   // Argument 1 (r0): Subject string.
3029   __ mov(r0, subject);
3030 
3031   // Locate the code entry and call it.
3032   __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
3033   DirectCEntryStub stub;
3034   stub.GenerateCall(masm, r6);
3035 
3036   __ LeaveExitFrame(false, no_reg, true);
3037 
3038   last_match_info_elements = r6;
3039 
3040   // r0: result
3041   // subject: subject string (callee saved)
3042   // regexp_data: RegExp data (callee saved)
3043   // last_match_info_elements: Last match info elements (callee saved)
3044   // Check the result.
3045   Label success;
3046   __ cmp(r0, Operand(1));
3047   // We expect exactly one result since we force the called regexp to behave
3048   // as non-global.
3049   __ b(eq, &success);
3050   Label failure;
3051   __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
3052   __ b(eq, &failure);
3053   __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
3054   // If not exception it can only be retry. Handle that in the runtime system.
3055   __ b(ne, &runtime);
3056   // Result must now be exception. If there is no pending exception already a
3057   // stack overflow (on the backtrack stack) was detected in RegExp code but
3058   // haven't created the exception yet. Handle that in the runtime system.
3059   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
3060   __ mov(r1, Operand(isolate->factory()->the_hole_value()));
3061   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3062                                        isolate)));
3063   __ ldr(r0, MemOperand(r2, 0));
3064   __ cmp(r0, r1);
3065   __ b(eq, &runtime);
3066 
3067   __ str(r1, MemOperand(r2, 0));  // Clear pending exception.
3068 
3069   // Check if the exception is a termination. If so, throw as uncatchable.
3070   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
3071 
3072   Label termination_exception;
3073   __ b(eq, &termination_exception);
3074 
3075   __ Throw(r0);
3076 
3077   __ bind(&termination_exception);
3078   __ ThrowUncatchable(r0);
3079 
3080   __ bind(&failure);
3081   // For failure and exception return null.
3082   __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
3083   __ add(sp, sp, Operand(4 * kPointerSize));
3084   __ Ret();
3085 
3086   // Process the result from the native regexp code.
3087   __ bind(&success);
3088   __ ldr(r1,
3089          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
3090   // Calculate number of capture registers (number_of_captures + 1) * 2.
3091   // Multiplying by 2 comes for free since r1 is smi-tagged.
3092   STATIC_ASSERT(kSmiTag == 0);
3093   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3094   __ add(r1, r1, Operand(2));  // r1 was a smi.
3095 
3096   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
3097   __ JumpIfSmi(r0, &runtime);
3098   __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
3099   __ b(ne, &runtime);
3100   // Check that the JSArray is in fast case.
3101   __ ldr(last_match_info_elements,
3102          FieldMemOperand(r0, JSArray::kElementsOffset));
3103   __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
3104   __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
3105   __ b(ne, &runtime);
3106   // Check that the last match info has space for the capture registers and the
3107   // additional information.
3108   __ ldr(r0,
3109          FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
3110   __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
3111   __ cmp(r2, Operand::SmiUntag(r0));
3112   __ b(gt, &runtime);
3113 
3114   // r1: number of capture registers
3115   // r4: subject string
3116   // Store the capture count.
3117   __ SmiTag(r2, r1);
3118   __ str(r2, FieldMemOperand(last_match_info_elements,
3119                              RegExpImpl::kLastCaptureCountOffset));
3120   // Store last subject and last input.
3121   __ str(subject,
3122          FieldMemOperand(last_match_info_elements,
3123                          RegExpImpl::kLastSubjectOffset));
3124   __ mov(r2, subject);
3125   __ RecordWriteField(last_match_info_elements,
3126                       RegExpImpl::kLastSubjectOffset,
3127                       subject,
3128                       r3,
3129                       kLRHasNotBeenSaved,
3130                       kDontSaveFPRegs);
3131   __ mov(subject, r2);
3132   __ str(subject,
3133          FieldMemOperand(last_match_info_elements,
3134                          RegExpImpl::kLastInputOffset));
3135   __ RecordWriteField(last_match_info_elements,
3136                       RegExpImpl::kLastInputOffset,
3137                       subject,
3138                       r3,
3139                       kLRHasNotBeenSaved,
3140                       kDontSaveFPRegs);
3141 
3142   // Get the static offsets vector filled by the native regexp code.
3143   ExternalReference address_of_static_offsets_vector =
3144       ExternalReference::address_of_static_offsets_vector(isolate);
3145   __ mov(r2, Operand(address_of_static_offsets_vector));
3146 
3147   // r1: number of capture registers
3148   // r2: offsets vector
3149   Label next_capture, done;
3150   // Capture register counter starts from number of capture registers and
3151   // counts down until wraping after zero.
3152   __ add(r0,
3153          last_match_info_elements,
3154          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
3155   __ bind(&next_capture);
3156   __ sub(r1, r1, Operand(1), SetCC);
3157   __ b(mi, &done);
3158   // Read the value from the static offsets vector buffer.
3159   __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
3160   // Store the smi value in the last match info.
3161   __ SmiTag(r3);
3162   __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
3163   __ jmp(&next_capture);
3164   __ bind(&done);
3165 
3166   // Return last match info.
3167   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
3168   __ add(sp, sp, Operand(4 * kPointerSize));
3169   __ Ret();
3170 
3171   // Do the runtime call to execute the regexp.
3172   __ bind(&runtime);
3173   __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3174 
3175   // Deferred code for string handling.
3176   // (6) Not a long external string?  If yes, go to (8).
3177   __ bind(&not_seq_nor_cons);
3178   // Compare flags are still set.
3179   __ b(gt, &not_long_external);  // Go to (8).
3180 
3181   // (7) External string.  Make it, offset-wise, look like a sequential string.
3182   __ bind(&external_string);
3183   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
3184   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
3185   if (FLAG_debug_code) {
3186     // Assert that we do not have a cons or slice (indirect strings) here.
3187     // Sequential strings have already been ruled out.
3188     __ tst(r0, Operand(kIsIndirectStringMask));
3189     __ Assert(eq, kExternalStringExpectedButNotFound);
3190   }
3191   __ ldr(subject,
3192          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
3193   // Move the pointer so that offset-wise, it looks like a sequential string.
3194   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3195   __ sub(subject,
3196          subject,
3197          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3198   __ jmp(&seq_string);    // Go to (5).
3199 
3200   // (8) Short external string or not a string?  If yes, bail out to runtime.
3201   __ bind(&not_long_external);
3202   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
3203   __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
3204   __ b(ne, &runtime);
3205 
3206   // (9) Sliced string.  Replace subject with parent.  Go to (4).
3207   // Load offset into r9 and replace subject string with parent.
3208   __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
3209   __ SmiUntag(r9);
3210   __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
3211   __ jmp(&check_underlying);  // Go to (4).
3212 #endif  // V8_INTERPRETED_REGEXP
3213 }
3214 
3215 
Generate(MacroAssembler * masm)3216 void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
3217   const int kMaxInlineLength = 100;
3218   Label slowcase;
3219   Label done;
3220   Factory* factory = masm->isolate()->factory();
3221 
3222   __ ldr(r1, MemOperand(sp, kPointerSize * 2));
3223   STATIC_ASSERT(kSmiTag == 0);
3224   STATIC_ASSERT(kSmiTagSize == 1);
3225   __ JumpIfNotSmi(r1, &slowcase);
3226   __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
3227   __ b(hi, &slowcase);
3228   // Smi-tagging is equivalent to multiplying by 2.
3229   // Allocate RegExpResult followed by FixedArray with size in ebx.
3230   // JSArray:   [Map][empty properties][Elements][Length-smi][index][input]
3231   // Elements:  [Map][Length][..elements..]
3232   // Size of JSArray with two in-object properties and the header of a
3233   // FixedArray.
3234   int objects_size =
3235       (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
3236   __ SmiUntag(r5, r1);
3237   __ add(r2, r5, Operand(objects_size));
3238   __ Allocate(
3239       r2,  // In: Size, in words.
3240       r0,  // Out: Start of allocation (tagged).
3241       r3,  // Scratch register.
3242       r4,  // Scratch register.
3243       &slowcase,
3244       static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
3245   // r0: Start of allocated area, object-tagged.
3246   // r1: Number of elements in array, as smi.
3247   // r5: Number of elements, untagged.
3248 
3249   // Set JSArray map to global.regexp_result_map().
3250   // Set empty properties FixedArray.
3251   // Set elements to point to FixedArray allocated right after the JSArray.
3252   // Interleave operations for better latency.
3253   __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3254   __ add(r3, r0, Operand(JSRegExpResult::kSize));
3255   __ mov(r4, Operand(factory->empty_fixed_array()));
3256   __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
3257   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
3258   __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
3259   __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
3260   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
3261 
3262   // Set input, index and length fields from arguments.
3263   __ ldr(r1, MemOperand(sp, kPointerSize * 0));
3264   __ ldr(r2, MemOperand(sp, kPointerSize * 1));
3265   __ ldr(r6, MemOperand(sp, kPointerSize * 2));
3266   __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
3267   __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
3268   __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
3269 
3270   // Fill out the elements FixedArray.
3271   // r0: JSArray, tagged.
3272   // r3: FixedArray, tagged.
3273   // r5: Number of elements in array, untagged.
3274 
3275   // Set map.
3276   __ mov(r2, Operand(factory->fixed_array_map()));
3277   __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
3278   // Set FixedArray length.
3279   __ SmiTag(r6, r5);
3280   __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
3281   // Fill contents of fixed-array with undefined.
3282   __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
3283   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3284   // Fill fixed array elements with undefined.
3285   // r0: JSArray, tagged.
3286   // r2: undefined.
3287   // r3: Start of elements in FixedArray.
3288   // r5: Number of elements to fill.
3289   Label loop;
3290   __ cmp(r5, Operand::Zero());
3291   __ bind(&loop);
3292   __ b(le, &done);  // Jump if r5 is negative or zero.
3293   __ sub(r5, r5, Operand(1), SetCC);
3294   __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
3295   __ jmp(&loop);
3296 
3297   __ bind(&done);
3298   __ add(sp, sp, Operand(3 * kPointerSize));
3299   __ Ret();
3300 
3301   __ bind(&slowcase);
3302   __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
3303 }
3304 
3305 
GenerateRecordCallTarget(MacroAssembler * masm)3306 static void GenerateRecordCallTarget(MacroAssembler* masm) {
3307   // Cache the called function in a global property cell.  Cache states
3308   // are uninitialized, monomorphic (indicated by a JSFunction), and
3309   // megamorphic.
3310   // r0 : number of arguments to the construct function
3311   // r1 : the function to call
3312   // r2 : cache cell for call target
3313   Label initialize, done, miss, megamorphic, not_array_function;
3314 
3315   ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
3316             masm->isolate()->heap()->undefined_value());
3317   ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
3318             masm->isolate()->heap()->the_hole_value());
3319 
3320   // Load the cache state into r3.
3321   __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
3322 
3323   // A monomorphic cache hit or an already megamorphic state: invoke the
3324   // function without changing the state.
3325   __ cmp(r3, r1);
3326   __ b(eq, &done);
3327 
3328   // If we came here, we need to see if we are the array function.
3329   // If we didn't have a matching function, and we didn't find the megamorph
3330   // sentinel, then we have in the cell either some other function or an
3331   // AllocationSite. Do a map check on the object in ecx.
3332   __ ldr(r5, FieldMemOperand(r3, 0));
3333   __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
3334   __ b(ne, &miss);
3335 
3336   // Make sure the function is the Array() function
3337   __ LoadArrayFunction(r3);
3338   __ cmp(r1, r3);
3339   __ b(ne, &megamorphic);
3340   __ jmp(&done);
3341 
3342   __ bind(&miss);
3343 
3344   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
3345   // megamorphic.
3346   __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
3347   __ b(eq, &initialize);
3348   // MegamorphicSentinel is an immortal immovable object (undefined) so no
3349   // write-barrier is needed.
3350   __ bind(&megamorphic);
3351   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
3352   __ str(ip, FieldMemOperand(r2, Cell::kValueOffset));
3353   __ jmp(&done);
3354 
3355   // An uninitialized cache is patched with the function or sentinel to
3356   // indicate the ElementsKind if function is the Array constructor.
3357   __ bind(&initialize);
3358   // Make sure the function is the Array() function
3359   __ LoadArrayFunction(r3);
3360   __ cmp(r1, r3);
3361   __ b(ne, &not_array_function);
3362 
3363   // The target function is the Array constructor,
3364   // Create an AllocationSite if we don't already have it, store it in the cell
3365   {
3366     FrameScope scope(masm, StackFrame::INTERNAL);
3367 
3368     // Arguments register must be smi-tagged to call out.
3369     __ SmiTag(r0);
3370     __ Push(r2, r1, r0);
3371 
3372     CreateAllocationSiteStub create_stub;
3373     __ CallStub(&create_stub);
3374 
3375     __ Pop(r2, r1, r0);
3376     __ SmiUntag(r0);
3377   }
3378   __ b(&done);
3379 
3380   __ bind(&not_array_function);
3381   __ str(r1, FieldMemOperand(r2, Cell::kValueOffset));
3382   // No need for a write barrier here - cells are rescanned.
3383 
3384   __ bind(&done);
3385 }
3386 
3387 
Generate(MacroAssembler * masm)3388 void CallFunctionStub::Generate(MacroAssembler* masm) {
3389   // r1 : the function to call
3390   // r2 : cache cell for call target
3391   Label slow, non_function;
3392 
3393   // The receiver might implicitly be the global object. This is
3394   // indicated by passing the hole as the receiver to the call
3395   // function stub.
3396   if (ReceiverMightBeImplicit()) {
3397     Label call;
3398     // Get the receiver from the stack.
3399     // function, receiver [, arguments]
3400     __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
3401     // Call as function is indicated with the hole.
3402     __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
3403     __ b(ne, &call);
3404     // Patch the receiver on the stack with the global receiver object.
3405     __ ldr(r3,
3406            MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
3407     __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset));
3408     __ str(r3, MemOperand(sp, argc_ * kPointerSize));
3409     __ bind(&call);
3410   }
3411 
3412   // Check that the function is really a JavaScript function.
3413   // r1: pushed function (to be verified)
3414   __ JumpIfSmi(r1, &non_function);
3415   // Get the map of the function object.
3416   __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
3417   __ b(ne, &slow);
3418 
3419   if (RecordCallTarget()) {
3420     GenerateRecordCallTarget(masm);
3421   }
3422 
3423   // Fast-case: Invoke the function now.
3424   // r1: pushed function
3425   ParameterCount actual(argc_);
3426 
3427   if (ReceiverMightBeImplicit()) {
3428     Label call_as_function;
3429     __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
3430     __ b(eq, &call_as_function);
3431     __ InvokeFunction(r1,
3432                       actual,
3433                       JUMP_FUNCTION,
3434                       NullCallWrapper(),
3435                       CALL_AS_METHOD);
3436     __ bind(&call_as_function);
3437   }
3438   __ InvokeFunction(r1,
3439                     actual,
3440                     JUMP_FUNCTION,
3441                     NullCallWrapper(),
3442                     CALL_AS_FUNCTION);
3443 
3444   // Slow-case: Non-function called.
3445   __ bind(&slow);
3446   if (RecordCallTarget()) {
3447     // If there is a call target cache, mark it megamorphic in the
3448     // non-function case.  MegamorphicSentinel is an immortal immovable
3449     // object (undefined) so no write barrier is needed.
3450     ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
3451               masm->isolate()->heap()->undefined_value());
3452     __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
3453     __ str(ip, FieldMemOperand(r2, Cell::kValueOffset));
3454   }
3455   // Check for function proxy.
3456   __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
3457   __ b(ne, &non_function);
3458   __ push(r1);  // put proxy as additional argument
3459   __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE32));
3460   __ mov(r2, Operand::Zero());
3461   __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
3462   __ SetCallKind(r5, CALL_AS_METHOD);
3463   {
3464     Handle<Code> adaptor =
3465       masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
3466     __ Jump(adaptor, RelocInfo::CODE_TARGET);
3467   }
3468 
3469   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
3470   // of the original receiver from the call site).
3471   __ bind(&non_function);
3472   __ str(r1, MemOperand(sp, argc_ * kPointerSize));
3473   __ mov(r0, Operand(argc_));  // Set up the number of arguments.
3474   __ mov(r2, Operand::Zero());
3475   __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
3476   __ SetCallKind(r5, CALL_AS_METHOD);
3477   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
3478           RelocInfo::CODE_TARGET);
3479 }
3480 
3481 
Generate(MacroAssembler * masm)3482 void CallConstructStub::Generate(MacroAssembler* masm) {
3483   // r0 : number of arguments
3484   // r1 : the function to call
3485   // r2 : cache cell for call target
3486   Label slow, non_function_call;
3487 
3488   // Check that the function is not a smi.
3489   __ JumpIfSmi(r1, &non_function_call);
3490   // Check that the function is a JSFunction.
3491   __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
3492   __ b(ne, &slow);
3493 
3494   if (RecordCallTarget()) {
3495     GenerateRecordCallTarget(masm);
3496   }
3497 
3498   // Jump to the function-specific construct stub.
3499   Register jmp_reg = r3;
3500   __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
3501   __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
3502                                   SharedFunctionInfo::kConstructStubOffset));
3503   __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
3504 
3505   // r0: number of arguments
3506   // r1: called object
3507   // r3: object type
3508   Label do_call;
3509   __ bind(&slow);
3510   __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
3511   __ b(ne, &non_function_call);
3512   __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
3513   __ jmp(&do_call);
3514 
3515   __ bind(&non_function_call);
3516   __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
3517   __ bind(&do_call);
3518   // Set expected number of arguments to zero (not changing r0).
3519   __ mov(r2, Operand::Zero());
3520   __ SetCallKind(r5, CALL_AS_METHOD);
3521   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
3522           RelocInfo::CODE_TARGET);
3523 }
3524 
3525 
3526 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)3527 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3528   Label flat_string;
3529   Label ascii_string;
3530   Label got_char_code;
3531   Label sliced_string;
3532 
3533   // If the receiver is a smi trigger the non-string case.
3534   __ JumpIfSmi(object_, receiver_not_string_);
3535 
3536   // Fetch the instance type of the receiver into result register.
3537   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3538   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3539   // If the receiver is not a string trigger the non-string case.
3540   __ tst(result_, Operand(kIsNotStringMask));
3541   __ b(ne, receiver_not_string_);
3542 
3543   // If the index is non-smi trigger the non-smi case.
3544   __ JumpIfNotSmi(index_, &index_not_smi_);
3545   __ bind(&got_smi_index_);
3546 
3547   // Check for index out of range.
3548   __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
3549   __ cmp(ip, Operand(index_));
3550   __ b(ls, index_out_of_range_);
3551 
3552   __ SmiUntag(index_);
3553 
3554   StringCharLoadGenerator::Generate(masm,
3555                                     object_,
3556                                     index_,
3557                                     result_,
3558                                     &call_runtime_);
3559 
3560   __ SmiTag(result_);
3561   __ bind(&exit_);
3562 }
3563 
3564 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3565 void StringCharCodeAtGenerator::GenerateSlow(
3566     MacroAssembler* masm,
3567     const RuntimeCallHelper& call_helper) {
3568   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3569 
3570   // Index is not a smi.
3571   __ bind(&index_not_smi_);
3572   // If index is a heap number, try converting it to an integer.
3573   __ CheckMap(index_,
3574               result_,
3575               Heap::kHeapNumberMapRootIndex,
3576               index_not_number_,
3577               DONT_DO_SMI_CHECK);
3578   call_helper.BeforeCall(masm);
3579   __ push(object_);
3580   __ push(index_);  // Consumed by runtime conversion function.
3581   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3582     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3583   } else {
3584     ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3585     // NumberToSmi discards numbers that are not exact integers.
3586     __ CallRuntime(Runtime::kNumberToSmi, 1);
3587   }
3588   // Save the conversion result before the pop instructions below
3589   // have a chance to overwrite it.
3590   __ Move(index_, r0);
3591   __ pop(object_);
3592   // Reload the instance type.
3593   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3594   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3595   call_helper.AfterCall(masm);
3596   // If index is still not a smi, it must be out of range.
3597   __ JumpIfNotSmi(index_, index_out_of_range_);
3598   // Otherwise, return to the fast path.
3599   __ jmp(&got_smi_index_);
3600 
3601   // Call runtime. We get here when the receiver is a string and the
3602   // index is a number, but the code of getting the actual character
3603   // is too complex (e.g., when the string needs to be flattened).
3604   __ bind(&call_runtime_);
3605   call_helper.BeforeCall(masm);
3606   __ SmiTag(index_);
3607   __ Push(object_, index_);
3608   __ CallRuntime(Runtime::kStringCharCodeAt, 2);
3609   __ Move(result_, r0);
3610   call_helper.AfterCall(masm);
3611   __ jmp(&exit_);
3612 
3613   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3614 }
3615 
3616 
3617 // -------------------------------------------------------------------------
3618 // StringCharFromCodeGenerator
3619 
GenerateFast(MacroAssembler * masm)3620 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3621   // Fast case of Heap::LookupSingleCharacterStringFromCode.
3622   STATIC_ASSERT(kSmiTag == 0);
3623   STATIC_ASSERT(kSmiShiftSize == 0);
3624   ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1));
3625   __ tst(code_,
3626          Operand(kSmiTagMask |
3627                  ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3628   __ b(ne, &slow_case_);
3629 
3630   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3631   // At this point code register contains smi tagged ASCII char code.
3632   __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
3633   __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3634   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
3635   __ b(eq, &slow_case_);
3636   __ bind(&exit_);
3637 }
3638 
3639 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3640 void StringCharFromCodeGenerator::GenerateSlow(
3641     MacroAssembler* masm,
3642     const RuntimeCallHelper& call_helper) {
3643   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3644 
3645   __ bind(&slow_case_);
3646   call_helper.BeforeCall(masm);
3647   __ push(code_);
3648   __ CallRuntime(Runtime::kCharFromCode, 1);
3649   __ Move(result_, r0);
3650   call_helper.AfterCall(masm);
3651   __ jmp(&exit_);
3652 
3653   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3654 }
3655 
3656 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,bool ascii)3657 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3658                                           Register dest,
3659                                           Register src,
3660                                           Register count,
3661                                           Register scratch,
3662                                           bool ascii) {
3663   Label loop;
3664   Label done;
3665   // This loop just copies one character at a time, as it is only used for very
3666   // short strings.
3667   if (!ascii) {
3668     __ add(count, count, Operand(count), SetCC);
3669   } else {
3670     __ cmp(count, Operand::Zero());
3671   }
3672   __ b(eq, &done);
3673 
3674   __ bind(&loop);
3675   __ ldrb(scratch, MemOperand(src, 1, PostIndex));
3676   // Perform sub between load and dependent store to get the load time to
3677   // complete.
3678   __ sub(count, count, Operand(1), SetCC);
3679   __ strb(scratch, MemOperand(dest, 1, PostIndex));
3680   // last iteration.
3681   __ b(gt, &loop);
3682 
3683   __ bind(&done);
3684 }
3685 
3686 
3687 enum CopyCharactersFlags {
3688   COPY_ASCII = 1,
3689   DEST_ALWAYS_ALIGNED = 2
3690 };
3691 
3692 
GenerateCopyCharactersLong(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch1,Register scratch2,Register scratch3,Register scratch4,int flags)3693 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
3694                                               Register dest,
3695                                               Register src,
3696                                               Register count,
3697                                               Register scratch1,
3698                                               Register scratch2,
3699                                               Register scratch3,
3700                                               Register scratch4,
3701                                               int flags) {
3702   bool ascii = (flags & COPY_ASCII) != 0;
3703   bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
3704 
3705   if (dest_always_aligned && FLAG_debug_code) {
3706     // Check that destination is actually word aligned if the flag says
3707     // that it is.
3708     __ tst(dest, Operand(kPointerAlignmentMask));
3709     __ Check(eq, kDestinationOfCopyNotAligned);
3710   }
3711 
3712   const int kReadAlignment = 4;
3713   const int kReadAlignmentMask = kReadAlignment - 1;
3714   // Ensure that reading an entire aligned word containing the last character
3715   // of a string will not read outside the allocated area (because we pad up
3716   // to kObjectAlignment).
3717   STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
3718   // Assumes word reads and writes are little endian.
3719   // Nothing to do for zero characters.
3720   Label done;
3721   if (!ascii) {
3722     __ add(count, count, Operand(count), SetCC);
3723   } else {
3724     __ cmp(count, Operand::Zero());
3725   }
3726   __ b(eq, &done);
3727 
3728   // Assume that you cannot read (or write) unaligned.
3729   Label byte_loop;
3730   // Must copy at least eight bytes, otherwise just do it one byte at a time.
3731   __ cmp(count, Operand(8));
3732   __ add(count, dest, Operand(count));
3733   Register limit = count;  // Read until src equals this.
3734   __ b(lt, &byte_loop);
3735 
3736   if (!dest_always_aligned) {
3737     // Align dest by byte copying. Copies between zero and three bytes.
3738     __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
3739     Label dest_aligned;
3740     __ b(eq, &dest_aligned);
3741     __ cmp(scratch4, Operand(2));
3742     __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
3743     __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
3744     __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
3745     __ strb(scratch1, MemOperand(dest, 1, PostIndex));
3746     __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
3747     __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
3748     __ bind(&dest_aligned);
3749   }
3750 
3751   Label simple_loop;
3752 
3753   __ sub(scratch4, dest, Operand(src));
3754   __ and_(scratch4, scratch4, Operand(0x03), SetCC);
3755   __ b(eq, &simple_loop);
3756   // Shift register is number of bits in a source word that
3757   // must be combined with bits in the next source word in order
3758   // to create a destination word.
3759 
3760   // Complex loop for src/dst that are not aligned the same way.
3761   {
3762     Label loop;
3763     __ mov(scratch4, Operand(scratch4, LSL, 3));
3764     Register left_shift = scratch4;
3765     __ and_(src, src, Operand(~3));  // Round down to load previous word.
3766     __ ldr(scratch1, MemOperand(src, 4, PostIndex));
3767     // Store the "shift" most significant bits of scratch in the least
3768     // signficant bits (i.e., shift down by (32-shift)).
3769     __ rsb(scratch2, left_shift, Operand(32));
3770     Register right_shift = scratch2;
3771     __ mov(scratch1, Operand(scratch1, LSR, right_shift));
3772 
3773     __ bind(&loop);
3774     __ ldr(scratch3, MemOperand(src, 4, PostIndex));
3775     __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
3776     __ str(scratch1, MemOperand(dest, 4, PostIndex));
3777     __ mov(scratch1, Operand(scratch3, LSR, right_shift));
3778     // Loop if four or more bytes left to copy.
3779     __ sub(scratch3, limit, Operand(dest));
3780     __ sub(scratch3, scratch3, Operand(4), SetCC);
3781     __ b(ge, &loop);
3782   }
3783   // There is now between zero and three bytes left to copy (negative that
3784   // number is in scratch3), and between one and three bytes already read into
3785   // scratch1 (eight times that number in scratch4). We may have read past
3786   // the end of the string, but because objects are aligned, we have not read
3787   // past the end of the object.
3788   // Find the minimum of remaining characters to move and preloaded characters
3789   // and write those as bytes.
3790   __ add(scratch3, scratch3, Operand(4), SetCC);
3791   __ b(eq, &done);
3792   __ cmp(scratch4, Operand(scratch3, LSL, 3), ne);
3793   // Move minimum of bytes read and bytes left to copy to scratch4.
3794   __ mov(scratch3, Operand(scratch4, LSR, 3), LeaveCC, lt);
3795   // Between one and three (value in scratch3) characters already read into
3796   // scratch ready to write.
3797   __ cmp(scratch3, Operand(2));
3798   __ strb(scratch1, MemOperand(dest, 1, PostIndex));
3799   __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
3800   __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
3801   __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
3802   __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
3803   // Copy any remaining bytes.
3804   __ b(&byte_loop);
3805 
3806   // Simple loop.
3807   // Copy words from src to dst, until less than four bytes left.
3808   // Both src and dest are word aligned.
3809   __ bind(&simple_loop);
3810   {
3811     Label loop;
3812     __ bind(&loop);
3813     __ ldr(scratch1, MemOperand(src, 4, PostIndex));
3814     __ sub(scratch3, limit, Operand(dest));
3815     __ str(scratch1, MemOperand(dest, 4, PostIndex));
3816     // Compare to 8, not 4, because we do the substraction before increasing
3817     // dest.
3818     __ cmp(scratch3, Operand(8));
3819     __ b(ge, &loop);
3820   }
3821 
3822   // Copy bytes from src to dst until dst hits limit.
3823   __ bind(&byte_loop);
3824   __ cmp(dest, Operand(limit));
3825   __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
3826   __ b(ge, &done);
3827   __ strb(scratch1, MemOperand(dest, 1, PostIndex));
3828   __ b(&byte_loop);
3829 
3830   __ bind(&done);
3831 }
3832 
3833 
GenerateTwoCharacterStringTableProbe(MacroAssembler * masm,Register c1,Register c2,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * not_found)3834 void StringHelper::GenerateTwoCharacterStringTableProbe(MacroAssembler* masm,
3835                                                         Register c1,
3836                                                         Register c2,
3837                                                         Register scratch1,
3838                                                         Register scratch2,
3839                                                         Register scratch3,
3840                                                         Register scratch4,
3841                                                         Register scratch5,
3842                                                         Label* not_found) {
3843   // Register scratch3 is the general scratch register in this function.
3844   Register scratch = scratch3;
3845 
3846   // Make sure that both characters are not digits as such strings has a
3847   // different hash algorithm. Don't try to look for these in the string table.
3848   Label not_array_index;
3849   __ sub(scratch, c1, Operand(static_cast<int>('0')));
3850   __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
3851   __ b(hi, &not_array_index);
3852   __ sub(scratch, c2, Operand(static_cast<int>('0')));
3853   __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
3854 
3855   // If check failed combine both characters into single halfword.
3856   // This is required by the contract of the method: code at the
3857   // not_found branch expects this combination in c1 register
3858   __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
3859   __ b(ls, not_found);
3860 
3861   __ bind(&not_array_index);
3862   // Calculate the two character string hash.
3863   Register hash = scratch1;
3864   StringHelper::GenerateHashInit(masm, hash, c1);
3865   StringHelper::GenerateHashAddCharacter(masm, hash, c2);
3866   StringHelper::GenerateHashGetHash(masm, hash);
3867 
3868   // Collect the two characters in a register.
3869   Register chars = c1;
3870   __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
3871 
3872   // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
3873   // hash:  hash of two character string.
3874 
3875   // Load string table
3876   // Load address of first element of the string table.
3877   Register string_table = c2;
3878   __ LoadRoot(string_table, Heap::kStringTableRootIndex);
3879 
3880   Register undefined = scratch4;
3881   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3882 
3883   // Calculate capacity mask from the string table capacity.
3884   Register mask = scratch2;
3885   __ ldr(mask, FieldMemOperand(string_table, StringTable::kCapacityOffset));
3886   __ mov(mask, Operand(mask, ASR, 1));
3887   __ sub(mask, mask, Operand(1));
3888 
3889   // Calculate untagged address of the first element of the string table.
3890   Register first_string_table_element = string_table;
3891   __ add(first_string_table_element, string_table,
3892          Operand(StringTable::kElementsStartOffset - kHeapObjectTag));
3893 
3894   // Registers
3895   // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
3896   // hash:  hash of two character string
3897   // mask:  capacity mask
3898   // first_string_table_element: address of the first element of
3899   //                             the string table
3900   // undefined: the undefined object
3901   // scratch: -
3902 
3903   // Perform a number of probes in the string table.
3904   const int kProbes = 4;
3905   Label found_in_string_table;
3906   Label next_probe[kProbes];
3907   Register candidate = scratch5;  // Scratch register contains candidate.
3908   for (int i = 0; i < kProbes; i++) {
3909     // Calculate entry in string table.
3910     if (i > 0) {
3911       __ add(candidate, hash, Operand(StringTable::GetProbeOffset(i)));
3912     } else {
3913       __ mov(candidate, hash);
3914     }
3915 
3916     __ and_(candidate, candidate, Operand(mask));
3917 
3918     // Load the entry from the symble table.
3919     STATIC_ASSERT(StringTable::kEntrySize == 1);
3920     __ ldr(candidate,
3921            MemOperand(first_string_table_element,
3922                       candidate,
3923                       LSL,
3924                       kPointerSizeLog2));
3925 
3926     // If entry is undefined no string with this hash can be found.
3927     Label is_string;
3928     __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
3929     __ b(ne, &is_string);
3930 
3931     __ cmp(undefined, candidate);
3932     __ b(eq, not_found);
3933     // Must be the hole (deleted entry).
3934     if (FLAG_debug_code) {
3935       __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
3936       __ cmp(ip, candidate);
3937       __ Assert(eq, kOddballInStringTableIsNotUndefinedOrTheHole);
3938     }
3939     __ jmp(&next_probe[i]);
3940 
3941     __ bind(&is_string);
3942 
3943     // Check that the candidate is a non-external ASCII string.  The instance
3944     // type is still in the scratch register from the CompareObjectType
3945     // operation.
3946     __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
3947 
3948     // If length is not 2 the string is not a candidate.
3949     __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
3950     __ cmp(scratch, Operand(Smi::FromInt(2)));
3951     __ b(ne, &next_probe[i]);
3952 
3953     // Check if the two characters match.
3954     // Assumes that word load is little endian.
3955     __ ldrh(scratch, FieldMemOperand(candidate, SeqOneByteString::kHeaderSize));
3956     __ cmp(chars, scratch);
3957     __ b(eq, &found_in_string_table);
3958     __ bind(&next_probe[i]);
3959   }
3960 
3961   // No matching 2 character string found by probing.
3962   __ jmp(not_found);
3963 
3964   // Scratch register contains result when we fall through to here.
3965   Register result = candidate;
3966   __ bind(&found_in_string_table);
3967   __ Move(r0, result);
3968 }
3969 
3970 
GenerateHashInit(MacroAssembler * masm,Register hash,Register character)3971 void StringHelper::GenerateHashInit(MacroAssembler* masm,
3972                                     Register hash,
3973                                     Register character) {
3974   // hash = character + (character << 10);
3975   __ LoadRoot(hash, Heap::kHashSeedRootIndex);
3976   // Untag smi seed and add the character.
3977   __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
3978   // hash += hash << 10;
3979   __ add(hash, hash, Operand(hash, LSL, 10));
3980   // hash ^= hash >> 6;
3981   __ eor(hash, hash, Operand(hash, LSR, 6));
3982 }
3983 
3984 
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character)3985 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
3986                                             Register hash,
3987                                             Register character) {
3988   // hash += character;
3989   __ add(hash, hash, Operand(character));
3990   // hash += hash << 10;
3991   __ add(hash, hash, Operand(hash, LSL, 10));
3992   // hash ^= hash >> 6;
3993   __ eor(hash, hash, Operand(hash, LSR, 6));
3994 }
3995 
3996 
GenerateHashGetHash(MacroAssembler * masm,Register hash)3997 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
3998                                        Register hash) {
3999   // hash += hash << 3;
4000   __ add(hash, hash, Operand(hash, LSL, 3));
4001   // hash ^= hash >> 11;
4002   __ eor(hash, hash, Operand(hash, LSR, 11));
4003   // hash += hash << 15;
4004   __ add(hash, hash, Operand(hash, LSL, 15));
4005 
4006   __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
4007 
4008   // if (hash == 0) hash = 27;
4009   __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
4010 }
4011 
4012 
Generate(MacroAssembler * masm)4013 void SubStringStub::Generate(MacroAssembler* masm) {
4014   Label runtime;
4015 
4016   // Stack frame on entry.
4017   //  lr: return address
4018   //  sp[0]: to
4019   //  sp[4]: from
4020   //  sp[8]: string
4021 
4022   // This stub is called from the native-call %_SubString(...), so
4023   // nothing can be assumed about the arguments. It is tested that:
4024   //  "string" is a sequential string,
4025   //  both "from" and "to" are smis, and
4026   //  0 <= from <= to <= string.length.
4027   // If any of these assumptions fail, we call the runtime system.
4028 
4029   const int kToOffset = 0 * kPointerSize;
4030   const int kFromOffset = 1 * kPointerSize;
4031   const int kStringOffset = 2 * kPointerSize;
4032 
4033   __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
4034   STATIC_ASSERT(kFromOffset == kToOffset + 4);
4035   STATIC_ASSERT(kSmiTag == 0);
4036   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4037 
4038   // Arithmetic shift right by one un-smi-tags. In this case we rotate right
4039   // instead because we bail out on non-smi values: ROR and ASR are equivalent
4040   // for smis but they set the flags in a way that's easier to optimize.
4041   __ mov(r2, Operand(r2, ROR, 1), SetCC);
4042   __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
4043   // If either to or from had the smi tag bit set, then C is set now, and N
4044   // has the same value: we rotated by 1, so the bottom bit is now the top bit.
4045   // We want to bailout to runtime here if From is negative.  In that case, the
4046   // next instruction is not executed and we fall through to bailing out to
4047   // runtime.
4048   // Executed if both r2 and r3 are untagged integers.
4049   __ sub(r2, r2, Operand(r3), SetCC, cc);
4050   // One of the above un-smis or the above SUB could have set N==1.
4051   __ b(mi, &runtime);  // Either "from" or "to" is not an smi, or from > to.
4052 
4053   // Make sure first argument is a string.
4054   __ ldr(r0, MemOperand(sp, kStringOffset));
4055   // Do a JumpIfSmi, but fold its jump into the subsequent string test.
4056   __ SmiTst(r0);
4057   Condition is_string = masm->IsObjectStringType(r0, r1, ne);
4058   ASSERT(is_string == eq);
4059   __ b(NegateCondition(is_string), &runtime);
4060 
4061   Label single_char;
4062   __ cmp(r2, Operand(1));
4063   __ b(eq, &single_char);
4064 
4065   // Short-cut for the case of trivial substring.
4066   Label return_r0;
4067   // r0: original string
4068   // r2: result string length
4069   __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
4070   __ cmp(r2, Operand(r4, ASR, 1));
4071   // Return original string.
4072   __ b(eq, &return_r0);
4073   // Longer than original string's length or negative: unsafe arguments.
4074   __ b(hi, &runtime);
4075   // Shorter than original string's length: an actual substring.
4076 
4077   // Deal with different string types: update the index if necessary
4078   // and put the underlying string into r5.
4079   // r0: original string
4080   // r1: instance type
4081   // r2: length
4082   // r3: from index (untagged)
4083   Label underlying_unpacked, sliced_string, seq_or_external_string;
4084   // If the string is not indirect, it can only be sequential or external.
4085   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
4086   STATIC_ASSERT(kIsIndirectStringMask != 0);
4087   __ tst(r1, Operand(kIsIndirectStringMask));
4088   __ b(eq, &seq_or_external_string);
4089 
4090   __ tst(r1, Operand(kSlicedNotConsMask));
4091   __ b(ne, &sliced_string);
4092   // Cons string.  Check whether it is flat, then fetch first part.
4093   __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
4094   __ CompareRoot(r5, Heap::kempty_stringRootIndex);
4095   __ b(ne, &runtime);
4096   __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
4097   // Update instance type.
4098   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
4099   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
4100   __ jmp(&underlying_unpacked);
4101 
4102   __ bind(&sliced_string);
4103   // Sliced string.  Fetch parent and correct start index by offset.
4104   __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
4105   __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
4106   __ add(r3, r3, Operand(r4, ASR, 1));  // Add offset to index.
4107   // Update instance type.
4108   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
4109   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
4110   __ jmp(&underlying_unpacked);
4111 
4112   __ bind(&seq_or_external_string);
4113   // Sequential or external string.  Just move string to the expected register.
4114   __ mov(r5, r0);
4115 
4116   __ bind(&underlying_unpacked);
4117 
4118   if (FLAG_string_slices) {
4119     Label copy_routine;
4120     // r5: underlying subject string
4121     // r1: instance type of underlying subject string
4122     // r2: length
4123     // r3: adjusted start index (untagged)
4124     __ cmp(r2, Operand(SlicedString::kMinLength));
4125     // Short slice.  Copy instead of slicing.
4126     __ b(lt, &copy_routine);
4127     // Allocate new sliced string.  At this point we do not reload the instance
4128     // type including the string encoding because we simply rely on the info
4129     // provided by the original string.  It does not matter if the original
4130     // string's encoding is wrong because we always have to recheck encoding of
4131     // the newly created string's parent anyways due to externalized strings.
4132     Label two_byte_slice, set_slice_header;
4133     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
4134     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
4135     __ tst(r1, Operand(kStringEncodingMask));
4136     __ b(eq, &two_byte_slice);
4137     __ AllocateAsciiSlicedString(r0, r2, r6, r4, &runtime);
4138     __ jmp(&set_slice_header);
4139     __ bind(&two_byte_slice);
4140     __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
4141     __ bind(&set_slice_header);
4142     __ mov(r3, Operand(r3, LSL, 1));
4143     __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
4144     __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
4145     __ jmp(&return_r0);
4146 
4147     __ bind(&copy_routine);
4148   }
4149 
4150   // r5: underlying subject string
4151   // r1: instance type of underlying subject string
4152   // r2: length
4153   // r3: adjusted start index (untagged)
4154   Label two_byte_sequential, sequential_string, allocate_result;
4155   STATIC_ASSERT(kExternalStringTag != 0);
4156   STATIC_ASSERT(kSeqStringTag == 0);
4157   __ tst(r1, Operand(kExternalStringTag));
4158   __ b(eq, &sequential_string);
4159 
4160   // Handle external string.
4161   // Rule out short external strings.
4162   STATIC_CHECK(kShortExternalStringTag != 0);
4163   __ tst(r1, Operand(kShortExternalStringTag));
4164   __ b(ne, &runtime);
4165   __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
4166   // r5 already points to the first character of underlying string.
4167   __ jmp(&allocate_result);
4168 
4169   __ bind(&sequential_string);
4170   // Locate first character of underlying subject string.
4171   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
4172   __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4173 
4174   __ bind(&allocate_result);
4175   // Sequential acii string.  Allocate the result.
4176   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
4177   __ tst(r1, Operand(kStringEncodingMask));
4178   __ b(eq, &two_byte_sequential);
4179 
4180   // Allocate and copy the resulting ASCII string.
4181   __ AllocateAsciiString(r0, r2, r4, r6, r1, &runtime);
4182 
4183   // Locate first character of substring to copy.
4184   __ add(r5, r5, r3);
4185   // Locate first character of result.
4186   __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4187 
4188   // r0: result string
4189   // r1: first character of result string
4190   // r2: result string length
4191   // r5: first character of substring to copy
4192   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
4193   StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r9,
4194                                            COPY_ASCII | DEST_ALWAYS_ALIGNED);
4195   __ jmp(&return_r0);
4196 
4197   // Allocate and copy the resulting two-byte string.
4198   __ bind(&two_byte_sequential);
4199   __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
4200 
4201   // Locate first character of substring to copy.
4202   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
4203   __ add(r5, r5, Operand(r3, LSL, 1));
4204   // Locate first character of result.
4205   __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
4206 
4207   // r0: result string.
4208   // r1: first character of result.
4209   // r2: result length.
4210   // r5: first character of substring to copy.
4211   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
4212   StringHelper::GenerateCopyCharactersLong(
4213       masm, r1, r5, r2, r3, r4, r6, r9, DEST_ALWAYS_ALIGNED);
4214 
4215   __ bind(&return_r0);
4216   Counters* counters = masm->isolate()->counters();
4217   __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
4218   __ Drop(3);
4219   __ Ret();
4220 
4221   // Just jump to runtime to create the sub string.
4222   __ bind(&runtime);
4223   __ TailCallRuntime(Runtime::kSubString, 3, 1);
4224 
4225   __ bind(&single_char);
4226   // r0: original string
4227   // r1: instance type
4228   // r2: length
4229   // r3: from index (untagged)
4230   __ SmiTag(r3, r3);
4231   StringCharAtGenerator generator(
4232       r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
4233   generator.GenerateFast(masm);
4234   __ Drop(3);
4235   __ Ret();
4236   generator.SkipSlow(masm, &runtime);
4237 }
4238 
4239 
GenerateFlatAsciiStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)4240 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
4241                                                       Register left,
4242                                                       Register right,
4243                                                       Register scratch1,
4244                                                       Register scratch2,
4245                                                       Register scratch3) {
4246   Register length = scratch1;
4247 
4248   // Compare lengths.
4249   Label strings_not_equal, check_zero_length;
4250   __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
4251   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
4252   __ cmp(length, scratch2);
4253   __ b(eq, &check_zero_length);
4254   __ bind(&strings_not_equal);
4255   __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
4256   __ Ret();
4257 
4258   // Check if the length is zero.
4259   Label compare_chars;
4260   __ bind(&check_zero_length);
4261   STATIC_ASSERT(kSmiTag == 0);
4262   __ cmp(length, Operand::Zero());
4263   __ b(ne, &compare_chars);
4264   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
4265   __ Ret();
4266 
4267   // Compare characters.
4268   __ bind(&compare_chars);
4269   GenerateAsciiCharsCompareLoop(masm,
4270                                 left, right, length, scratch2, scratch3,
4271                                 &strings_not_equal);
4272 
4273   // Characters are equal.
4274   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
4275   __ Ret();
4276 }
4277 
4278 
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)4279 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
4280                                                         Register left,
4281                                                         Register right,
4282                                                         Register scratch1,
4283                                                         Register scratch2,
4284                                                         Register scratch3,
4285                                                         Register scratch4) {
4286   Label result_not_equal, compare_lengths;
4287   // Find minimum length and length difference.
4288   __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
4289   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
4290   __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
4291   Register length_delta = scratch3;
4292   __ mov(scratch1, scratch2, LeaveCC, gt);
4293   Register min_length = scratch1;
4294   STATIC_ASSERT(kSmiTag == 0);
4295   __ cmp(min_length, Operand::Zero());
4296   __ b(eq, &compare_lengths);
4297 
4298   // Compare loop.
4299   GenerateAsciiCharsCompareLoop(masm,
4300                                 left, right, min_length, scratch2, scratch4,
4301                                 &result_not_equal);
4302 
4303   // Compare lengths - strings up to min-length are equal.
4304   __ bind(&compare_lengths);
4305   ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
4306   // Use length_delta as result if it's zero.
4307   __ mov(r0, Operand(length_delta), SetCC);
4308   __ bind(&result_not_equal);
4309   // Conditionally update the result based either on length_delta or
4310   // the last comparion performed in the loop above.
4311   __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
4312   __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
4313   __ Ret();
4314 }
4315 
4316 
GenerateAsciiCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Label * chars_not_equal)4317 void StringCompareStub::GenerateAsciiCharsCompareLoop(
4318     MacroAssembler* masm,
4319     Register left,
4320     Register right,
4321     Register length,
4322     Register scratch1,
4323     Register scratch2,
4324     Label* chars_not_equal) {
4325   // Change index to run from -length to -1 by adding length to string
4326   // start. This means that loop ends when index reaches zero, which
4327   // doesn't need an additional compare.
4328   __ SmiUntag(length);
4329   __ add(scratch1, length,
4330          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4331   __ add(left, left, Operand(scratch1));
4332   __ add(right, right, Operand(scratch1));
4333   __ rsb(length, length, Operand::Zero());
4334   Register index = length;  // index = -length;
4335 
4336   // Compare loop.
4337   Label loop;
4338   __ bind(&loop);
4339   __ ldrb(scratch1, MemOperand(left, index));
4340   __ ldrb(scratch2, MemOperand(right, index));
4341   __ cmp(scratch1, scratch2);
4342   __ b(ne, chars_not_equal);
4343   __ add(index, index, Operand(1), SetCC);
4344   __ b(ne, &loop);
4345 }
4346 
4347 
Generate(MacroAssembler * masm)4348 void StringCompareStub::Generate(MacroAssembler* masm) {
4349   Label runtime;
4350 
4351   Counters* counters = masm->isolate()->counters();
4352 
4353   // Stack frame on entry.
4354   //  sp[0]: right string
4355   //  sp[4]: left string
4356   __ Ldrd(r0 , r1, MemOperand(sp));  // Load right in r0, left in r1.
4357 
4358   Label not_same;
4359   __ cmp(r0, r1);
4360   __ b(ne, &not_same);
4361   STATIC_ASSERT(EQUAL == 0);
4362   STATIC_ASSERT(kSmiTag == 0);
4363   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
4364   __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
4365   __ add(sp, sp, Operand(2 * kPointerSize));
4366   __ Ret();
4367 
4368   __ bind(&not_same);
4369 
4370   // Check that both objects are sequential ASCII strings.
4371   __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
4372 
4373   // Compare flat ASCII strings natively. Remove arguments from stack first.
4374   __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
4375   __ add(sp, sp, Operand(2 * kPointerSize));
4376   GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
4377 
4378   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
4379   // tagged as a small integer.
4380   __ bind(&runtime);
4381   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
4382 }
4383 
4384 
Generate(MacroAssembler * masm)4385 void StringAddStub::Generate(MacroAssembler* masm) {
4386   Label call_runtime, call_builtin;
4387   Builtins::JavaScript builtin_id = Builtins::ADD;
4388 
4389   Counters* counters = masm->isolate()->counters();
4390 
4391   // Stack on entry:
4392   // sp[0]: second argument (right).
4393   // sp[4]: first argument (left).
4394 
4395   // Load the two arguments.
4396   __ ldr(r0, MemOperand(sp, 1 * kPointerSize));  // First argument.
4397   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));  // Second argument.
4398 
4399   // Make sure that both arguments are strings if not known in advance.
4400   // Otherwise, at least one of the arguments is definitely a string,
4401   // and we convert the one that is not known to be a string.
4402   if ((flags_ & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
4403     ASSERT((flags_ & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT);
4404     ASSERT((flags_ & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT);
4405     __ JumpIfEitherSmi(r0, r1, &call_runtime);
4406     // Load instance types.
4407     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4408     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4409     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4410     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4411     STATIC_ASSERT(kStringTag == 0);
4412     // If either is not a string, go to runtime.
4413     __ tst(r4, Operand(kIsNotStringMask));
4414     __ tst(r5, Operand(kIsNotStringMask), eq);
4415     __ b(ne, &call_runtime);
4416   } else if ((flags_ & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT) {
4417     ASSERT((flags_ & STRING_ADD_CHECK_RIGHT) == 0);
4418     GenerateConvertArgument(
4419         masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
4420     builtin_id = Builtins::STRING_ADD_RIGHT;
4421   } else if ((flags_ & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT) {
4422     ASSERT((flags_ & STRING_ADD_CHECK_LEFT) == 0);
4423     GenerateConvertArgument(
4424         masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
4425     builtin_id = Builtins::STRING_ADD_LEFT;
4426   }
4427 
4428   // Both arguments are strings.
4429   // r0: first string
4430   // r1: second string
4431   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4432   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4433   {
4434     Label strings_not_empty;
4435     // Check if either of the strings are empty. In that case return the other.
4436     __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
4437     __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
4438     STATIC_ASSERT(kSmiTag == 0);
4439     __ cmp(r2, Operand(Smi::FromInt(0)));  // Test if first string is empty.
4440     __ mov(r0, Operand(r1), LeaveCC, eq);  // If first is empty, return second.
4441     STATIC_ASSERT(kSmiTag == 0);
4442      // Else test if second string is empty.
4443     __ cmp(r3, Operand(Smi::FromInt(0)), ne);
4444     __ b(ne, &strings_not_empty);  // If either string was empty, return r0.
4445 
4446     __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4447     __ add(sp, sp, Operand(2 * kPointerSize));
4448     __ Ret();
4449 
4450     __ bind(&strings_not_empty);
4451   }
4452 
4453   __ SmiUntag(r2);
4454   __ SmiUntag(r3);
4455   // Both strings are non-empty.
4456   // r0: first string
4457   // r1: second string
4458   // r2: length of first string
4459   // r3: length of second string
4460   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4461   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4462   // Look at the length of the result of adding the two strings.
4463   Label string_add_flat_result, longer_than_two;
4464   // Adding two lengths can't overflow.
4465   STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
4466   __ add(r6, r2, Operand(r3));
4467   // Use the string table when adding two one character strings, as it
4468   // helps later optimizations to return a string here.
4469   __ cmp(r6, Operand(2));
4470   __ b(ne, &longer_than_two);
4471 
4472   // Check that both strings are non-external ASCII strings.
4473   if ((flags_ & STRING_ADD_CHECK_BOTH) != STRING_ADD_CHECK_BOTH) {
4474     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4475     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4476     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4477     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4478   }
4479   __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r3,
4480                                                   &call_runtime);
4481 
4482   // Get the two characters forming the sub string.
4483   __ ldrb(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
4484   __ ldrb(r3, FieldMemOperand(r1, SeqOneByteString::kHeaderSize));
4485 
4486   // Try to lookup two character string in string table. If it is not found
4487   // just allocate a new one.
4488   Label make_two_character_string;
4489   StringHelper::GenerateTwoCharacterStringTableProbe(
4490       masm, r2, r3, r6, r0, r4, r5, r9, &make_two_character_string);
4491   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4492   __ add(sp, sp, Operand(2 * kPointerSize));
4493   __ Ret();
4494 
4495   __ bind(&make_two_character_string);
4496   // Resulting string has length 2 and first chars of two strings
4497   // are combined into single halfword in r2 register.
4498   // So we can fill resulting string without two loops by a single
4499   // halfword store instruction (which assumes that processor is
4500   // in a little endian mode)
4501   __ mov(r6, Operand(2));
4502   __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
4503   __ strh(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
4504   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4505   __ add(sp, sp, Operand(2 * kPointerSize));
4506   __ Ret();
4507 
4508   __ bind(&longer_than_two);
4509   // Check if resulting string will be flat.
4510   __ cmp(r6, Operand(ConsString::kMinLength));
4511   __ b(lt, &string_add_flat_result);
4512   // Handle exceptionally long strings in the runtime system.
4513   STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
4514   ASSERT(IsPowerOf2(String::kMaxLength + 1));
4515   // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
4516   __ cmp(r6, Operand(String::kMaxLength + 1));
4517   __ b(hs, &call_runtime);
4518 
4519   // If result is not supposed to be flat, allocate a cons string object.
4520   // If both strings are ASCII the result is an ASCII cons string.
4521   if ((flags_ & STRING_ADD_CHECK_BOTH) != STRING_ADD_CHECK_BOTH) {
4522     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4523     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4524     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4525     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4526   }
4527   Label non_ascii, allocated, ascii_data;
4528   STATIC_ASSERT(kTwoByteStringTag == 0);
4529   __ tst(r4, Operand(kStringEncodingMask));
4530   __ tst(r5, Operand(kStringEncodingMask), ne);
4531   __ b(eq, &non_ascii);
4532 
4533   // Allocate an ASCII cons string.
4534   __ bind(&ascii_data);
4535   __ AllocateAsciiConsString(r3, r6, r4, r5, &call_runtime);
4536   __ bind(&allocated);
4537   // Fill the fields of the cons string.
4538   Label skip_write_barrier, after_writing;
4539   ExternalReference high_promotion_mode = ExternalReference::
4540       new_space_high_promotion_mode_active_address(masm->isolate());
4541   __ mov(r4, Operand(high_promotion_mode));
4542   __ ldr(r4, MemOperand(r4, 0));
4543   __ cmp(r4, Operand::Zero());
4544   __ b(eq, &skip_write_barrier);
4545 
4546   __ str(r0, FieldMemOperand(r3, ConsString::kFirstOffset));
4547   __ RecordWriteField(r3,
4548                       ConsString::kFirstOffset,
4549                       r0,
4550                       r4,
4551                       kLRHasNotBeenSaved,
4552                       kDontSaveFPRegs);
4553   __ str(r1, FieldMemOperand(r3, ConsString::kSecondOffset));
4554   __ RecordWriteField(r3,
4555                       ConsString::kSecondOffset,
4556                       r1,
4557                       r4,
4558                       kLRHasNotBeenSaved,
4559                       kDontSaveFPRegs);
4560   __ jmp(&after_writing);
4561 
4562   __ bind(&skip_write_barrier);
4563   __ str(r0, FieldMemOperand(r3, ConsString::kFirstOffset));
4564   __ str(r1, FieldMemOperand(r3, ConsString::kSecondOffset));
4565 
4566   __ bind(&after_writing);
4567 
4568   __ mov(r0, Operand(r3));
4569   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4570   __ add(sp, sp, Operand(2 * kPointerSize));
4571   __ Ret();
4572 
4573   __ bind(&non_ascii);
4574   // At least one of the strings is two-byte. Check whether it happens
4575   // to contain only one byte characters.
4576   // r4: first instance type.
4577   // r5: second instance type.
4578   __ tst(r4, Operand(kOneByteDataHintMask));
4579   __ tst(r5, Operand(kOneByteDataHintMask), ne);
4580   __ b(ne, &ascii_data);
4581   __ eor(r4, r4, Operand(r5));
4582   STATIC_ASSERT(kOneByteStringTag != 0 && kOneByteDataHintTag != 0);
4583   __ and_(r4, r4, Operand(kOneByteStringTag | kOneByteDataHintTag));
4584   __ cmp(r4, Operand(kOneByteStringTag | kOneByteDataHintTag));
4585   __ b(eq, &ascii_data);
4586 
4587   // Allocate a two byte cons string.
4588   __ AllocateTwoByteConsString(r3, r6, r4, r5, &call_runtime);
4589   __ jmp(&allocated);
4590 
4591   // We cannot encounter sliced strings or cons strings here since:
4592   STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
4593   // Handle creating a flat result from either external or sequential strings.
4594   // Locate the first characters' locations.
4595   // r0: first string
4596   // r1: second string
4597   // r2: length of first string
4598   // r3: length of second string
4599   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4600   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
4601   // r6: sum of lengths.
4602   Label first_prepared, second_prepared;
4603   __ bind(&string_add_flat_result);
4604   if ((flags_ & STRING_ADD_CHECK_BOTH) != STRING_ADD_CHECK_BOTH) {
4605     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
4606     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
4607     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
4608     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
4609   }
4610 
4611   // Check whether both strings have same encoding
4612   __ eor(ip, r4, Operand(r5));
4613   ASSERT(__ ImmediateFitsAddrMode1Instruction(kStringEncodingMask));
4614   __ tst(ip, Operand(kStringEncodingMask));
4615   __ b(ne, &call_runtime);
4616 
4617   STATIC_ASSERT(kSeqStringTag == 0);
4618   __ tst(r4, Operand(kStringRepresentationMask));
4619   STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4620   __ add(r6,
4621          r0,
4622          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
4623          LeaveCC,
4624          eq);
4625   __ b(eq, &first_prepared);
4626   // External string: rule out short external string and load string resource.
4627   STATIC_ASSERT(kShortExternalStringTag != 0);
4628   __ tst(r4, Operand(kShortExternalStringMask));
4629   __ b(ne, &call_runtime);
4630   __ ldr(r6, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
4631   __ bind(&first_prepared);
4632 
4633   STATIC_ASSERT(kSeqStringTag == 0);
4634   __ tst(r5, Operand(kStringRepresentationMask));
4635   STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4636   __ add(r1,
4637          r1,
4638          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
4639          LeaveCC,
4640          eq);
4641   __ b(eq, &second_prepared);
4642   // External string: rule out short external string and load string resource.
4643   STATIC_ASSERT(kShortExternalStringTag != 0);
4644   __ tst(r5, Operand(kShortExternalStringMask));
4645   __ b(ne, &call_runtime);
4646   __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
4647   __ bind(&second_prepared);
4648 
4649   Label non_ascii_string_add_flat_result;
4650   // r6: first character of first string
4651   // r1: first character of second string
4652   // r2: length of first string.
4653   // r3: length of second string.
4654   // Both strings have the same encoding.
4655   STATIC_ASSERT(kTwoByteStringTag == 0);
4656   __ tst(r5, Operand(kStringEncodingMask));
4657   __ b(eq, &non_ascii_string_add_flat_result);
4658 
4659   __ add(r2, r2, Operand(r3));
4660   __ AllocateAsciiString(r0, r2, r4, r5, r9, &call_runtime);
4661   __ sub(r2, r2, Operand(r3));
4662   __ add(r5, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4663   // r0: result string.
4664   // r6: first character of first string.
4665   // r1: first character of second string.
4666   // r2: length of first string.
4667   // r3: length of second string.
4668   // r5: first character of result.
4669   StringHelper::GenerateCopyCharacters(masm, r5, r6, r2, r4, true);
4670   // r5: next character of result.
4671   StringHelper::GenerateCopyCharacters(masm, r5, r1, r3, r4, true);
4672   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4673   __ add(sp, sp, Operand(2 * kPointerSize));
4674   __ Ret();
4675 
4676   __ bind(&non_ascii_string_add_flat_result);
4677   __ add(r2, r2, Operand(r3));
4678   __ AllocateTwoByteString(r0, r2, r4, r5, r9, &call_runtime);
4679   __ sub(r2, r2, Operand(r3));
4680   __ add(r5, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
4681   // r0: result string.
4682   // r6: first character of first string.
4683   // r1: first character of second string.
4684   // r2: length of first string.
4685   // r3: length of second string.
4686   // r5: first character of result.
4687   StringHelper::GenerateCopyCharacters(masm, r5, r6, r2, r4, false);
4688   // r5: next character of result.
4689   StringHelper::GenerateCopyCharacters(masm, r5, r1, r3, r4, false);
4690   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
4691   __ add(sp, sp, Operand(2 * kPointerSize));
4692   __ Ret();
4693 
4694   // Just jump to runtime to add the two strings.
4695   __ bind(&call_runtime);
4696   __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
4697 
4698   if (call_builtin.is_linked()) {
4699     __ bind(&call_builtin);
4700     __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
4701   }
4702 }
4703 
4704 
GenerateRegisterArgsPush(MacroAssembler * masm)4705 void StringAddStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
4706   __ push(r0);
4707   __ push(r1);
4708 }
4709 
4710 
GenerateRegisterArgsPop(MacroAssembler * masm)4711 void StringAddStub::GenerateRegisterArgsPop(MacroAssembler* masm) {
4712   __ pop(r1);
4713   __ pop(r0);
4714 }
4715 
4716 
GenerateConvertArgument(MacroAssembler * masm,int stack_offset,Register arg,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * slow)4717 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
4718                                             int stack_offset,
4719                                             Register arg,
4720                                             Register scratch1,
4721                                             Register scratch2,
4722                                             Register scratch3,
4723                                             Register scratch4,
4724                                             Label* slow) {
4725   // First check if the argument is already a string.
4726   Label not_string, done;
4727   __ JumpIfSmi(arg, &not_string);
4728   __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
4729   __ b(lt, &done);
4730 
4731   // Check the number to string cache.
4732   __ bind(&not_string);
4733   // Puts the cached result into scratch1.
4734   __ LookupNumberStringCache(arg, scratch1, scratch2, scratch3, scratch4, slow);
4735   __ mov(arg, scratch1);
4736   __ str(arg, MemOperand(sp, stack_offset));
4737   __ bind(&done);
4738 }
4739 
4740 
GenerateSmis(MacroAssembler * masm)4741 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
4742   ASSERT(state_ == CompareIC::SMI);
4743   Label miss;
4744   __ orr(r2, r1, r0);
4745   __ JumpIfNotSmi(r2, &miss);
4746 
4747   if (GetCondition() == eq) {
4748     // For equality we do not care about the sign of the result.
4749     __ sub(r0, r0, r1, SetCC);
4750   } else {
4751     // Untag before subtracting to avoid handling overflow.
4752     __ SmiUntag(r1);
4753     __ sub(r0, r1, Operand::SmiUntag(r0));
4754   }
4755   __ Ret();
4756 
4757   __ bind(&miss);
4758   GenerateMiss(masm);
4759 }
4760 
4761 
GenerateNumbers(MacroAssembler * masm)4762 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
4763   ASSERT(state_ == CompareIC::NUMBER);
4764 
4765   Label generic_stub;
4766   Label unordered, maybe_undefined1, maybe_undefined2;
4767   Label miss;
4768 
4769   if (left_ == CompareIC::SMI) {
4770     __ JumpIfNotSmi(r1, &miss);
4771   }
4772   if (right_ == CompareIC::SMI) {
4773     __ JumpIfNotSmi(r0, &miss);
4774   }
4775 
4776   // Inlining the double comparison and falling back to the general compare
4777   // stub if NaN is involved.
4778   // Load left and right operand.
4779   Label done, left, left_smi, right_smi;
4780   __ JumpIfSmi(r0, &right_smi);
4781   __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
4782               DONT_DO_SMI_CHECK);
4783   __ sub(r2, r0, Operand(kHeapObjectTag));
4784   __ vldr(d1, r2, HeapNumber::kValueOffset);
4785   __ b(&left);
4786   __ bind(&right_smi);
4787   __ SmiToDouble(d1, r0);
4788 
4789   __ bind(&left);
4790   __ JumpIfSmi(r1, &left_smi);
4791   __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
4792               DONT_DO_SMI_CHECK);
4793   __ sub(r2, r1, Operand(kHeapObjectTag));
4794   __ vldr(d0, r2, HeapNumber::kValueOffset);
4795   __ b(&done);
4796   __ bind(&left_smi);
4797   __ SmiToDouble(d0, r1);
4798 
4799   __ bind(&done);
4800   // Compare operands.
4801   __ VFPCompareAndSetFlags(d0, d1);
4802 
4803   // Don't base result on status bits when a NaN is involved.
4804   __ b(vs, &unordered);
4805 
4806   // Return a result of -1, 0, or 1, based on status bits.
4807   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
4808   __ mov(r0, Operand(LESS), LeaveCC, lt);
4809   __ mov(r0, Operand(GREATER), LeaveCC, gt);
4810   __ Ret();
4811 
4812   __ bind(&unordered);
4813   __ bind(&generic_stub);
4814   ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC,
4815                      CompareIC::GENERIC);
4816   __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
4817 
4818   __ bind(&maybe_undefined1);
4819   if (Token::IsOrderedRelationalCompareOp(op_)) {
4820     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
4821     __ b(ne, &miss);
4822     __ JumpIfSmi(r1, &unordered);
4823     __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
4824     __ b(ne, &maybe_undefined2);
4825     __ jmp(&unordered);
4826   }
4827 
4828   __ bind(&maybe_undefined2);
4829   if (Token::IsOrderedRelationalCompareOp(op_)) {
4830     __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
4831     __ b(eq, &unordered);
4832   }
4833 
4834   __ bind(&miss);
4835   GenerateMiss(masm);
4836 }
4837 
4838 
GenerateInternalizedStrings(MacroAssembler * masm)4839 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
4840   ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
4841   Label miss;
4842 
4843   // Registers containing left and right operands respectively.
4844   Register left = r1;
4845   Register right = r0;
4846   Register tmp1 = r2;
4847   Register tmp2 = r3;
4848 
4849   // Check that both operands are heap objects.
4850   __ JumpIfEitherSmi(left, right, &miss);
4851 
4852   // Check that both operands are internalized strings.
4853   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
4854   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
4855   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
4856   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
4857   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
4858   __ orr(tmp1, tmp1, Operand(tmp2));
4859   __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
4860   __ b(ne, &miss);
4861 
4862   // Internalized strings are compared by identity.
4863   __ cmp(left, right);
4864   // Make sure r0 is non-zero. At this point input operands are
4865   // guaranteed to be non-zero.
4866   ASSERT(right.is(r0));
4867   STATIC_ASSERT(EQUAL == 0);
4868   STATIC_ASSERT(kSmiTag == 0);
4869   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
4870   __ Ret();
4871 
4872   __ bind(&miss);
4873   GenerateMiss(masm);
4874 }
4875 
4876 
GenerateUniqueNames(MacroAssembler * masm)4877 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
4878   ASSERT(state_ == CompareIC::UNIQUE_NAME);
4879   ASSERT(GetCondition() == eq);
4880   Label miss;
4881 
4882   // Registers containing left and right operands respectively.
4883   Register left = r1;
4884   Register right = r0;
4885   Register tmp1 = r2;
4886   Register tmp2 = r3;
4887 
4888   // Check that both operands are heap objects.
4889   __ JumpIfEitherSmi(left, right, &miss);
4890 
4891   // Check that both operands are unique names. This leaves the instance
4892   // types loaded in tmp1 and tmp2.
4893   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
4894   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
4895   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
4896   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
4897 
4898   __ JumpIfNotUniqueName(tmp1, &miss);
4899   __ JumpIfNotUniqueName(tmp2, &miss);
4900 
4901   // Unique names are compared by identity.
4902   __ cmp(left, right);
4903   // Make sure r0 is non-zero. At this point input operands are
4904   // guaranteed to be non-zero.
4905   ASSERT(right.is(r0));
4906   STATIC_ASSERT(EQUAL == 0);
4907   STATIC_ASSERT(kSmiTag == 0);
4908   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
4909   __ Ret();
4910 
4911   __ bind(&miss);
4912   GenerateMiss(masm);
4913 }
4914 
4915 
GenerateStrings(MacroAssembler * masm)4916 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
4917   ASSERT(state_ == CompareIC::STRING);
4918   Label miss;
4919 
4920   bool equality = Token::IsEqualityOp(op_);
4921 
4922   // Registers containing left and right operands respectively.
4923   Register left = r1;
4924   Register right = r0;
4925   Register tmp1 = r2;
4926   Register tmp2 = r3;
4927   Register tmp3 = r4;
4928   Register tmp4 = r5;
4929 
4930   // Check that both operands are heap objects.
4931   __ JumpIfEitherSmi(left, right, &miss);
4932 
4933   // Check that both operands are strings. This leaves the instance
4934   // types loaded in tmp1 and tmp2.
4935   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
4936   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
4937   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
4938   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
4939   STATIC_ASSERT(kNotStringTag != 0);
4940   __ orr(tmp3, tmp1, tmp2);
4941   __ tst(tmp3, Operand(kIsNotStringMask));
4942   __ b(ne, &miss);
4943 
4944   // Fast check for identical strings.
4945   __ cmp(left, right);
4946   STATIC_ASSERT(EQUAL == 0);
4947   STATIC_ASSERT(kSmiTag == 0);
4948   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
4949   __ Ret(eq);
4950 
4951   // Handle not identical strings.
4952 
4953   // Check that both strings are internalized strings. If they are, we're done
4954   // because we already know they are not identical. We know they are both
4955   // strings.
4956   if (equality) {
4957     ASSERT(GetCondition() == eq);
4958     STATIC_ASSERT(kInternalizedTag == 0);
4959     __ orr(tmp3, tmp1, Operand(tmp2));
4960     __ tst(tmp3, Operand(kIsNotInternalizedMask));
4961     // Make sure r0 is non-zero. At this point input operands are
4962     // guaranteed to be non-zero.
4963     ASSERT(right.is(r0));
4964     __ Ret(eq);
4965   }
4966 
4967   // Check that both strings are sequential ASCII.
4968   Label runtime;
4969   __ JumpIfBothInstanceTypesAreNotSequentialAscii(
4970       tmp1, tmp2, tmp3, tmp4, &runtime);
4971 
4972   // Compare flat ASCII strings. Returns when done.
4973   if (equality) {
4974     StringCompareStub::GenerateFlatAsciiStringEquals(
4975         masm, left, right, tmp1, tmp2, tmp3);
4976   } else {
4977     StringCompareStub::GenerateCompareFlatAsciiStrings(
4978         masm, left, right, tmp1, tmp2, tmp3, tmp4);
4979   }
4980 
4981   // Handle more complex cases in runtime.
4982   __ bind(&runtime);
4983   __ Push(left, right);
4984   if (equality) {
4985     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
4986   } else {
4987     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
4988   }
4989 
4990   __ bind(&miss);
4991   GenerateMiss(masm);
4992 }
4993 
4994 
GenerateObjects(MacroAssembler * masm)4995 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
4996   ASSERT(state_ == CompareIC::OBJECT);
4997   Label miss;
4998   __ and_(r2, r1, Operand(r0));
4999   __ JumpIfSmi(r2, &miss);
5000 
5001   __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
5002   __ b(ne, &miss);
5003   __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
5004   __ b(ne, &miss);
5005 
5006   ASSERT(GetCondition() == eq);
5007   __ sub(r0, r0, Operand(r1));
5008   __ Ret();
5009 
5010   __ bind(&miss);
5011   GenerateMiss(masm);
5012 }
5013 
5014 
GenerateKnownObjects(MacroAssembler * masm)5015 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
5016   Label miss;
5017   __ and_(r2, r1, Operand(r0));
5018   __ JumpIfSmi(r2, &miss);
5019   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5020   __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
5021   __ cmp(r2, Operand(known_map_));
5022   __ b(ne, &miss);
5023   __ cmp(r3, Operand(known_map_));
5024   __ b(ne, &miss);
5025 
5026   __ sub(r0, r0, Operand(r1));
5027   __ Ret();
5028 
5029   __ bind(&miss);
5030   GenerateMiss(masm);
5031 }
5032 
5033 
5034 
GenerateMiss(MacroAssembler * masm)5035 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
5036   {
5037     // Call the runtime system in a fresh internal frame.
5038     ExternalReference miss =
5039         ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
5040 
5041     FrameScope scope(masm, StackFrame::INTERNAL);
5042     __ Push(r1, r0);
5043     __ Push(lr, r1, r0);
5044     __ mov(ip, Operand(Smi::FromInt(op_)));
5045     __ push(ip);
5046     __ CallExternalReference(miss, 3);
5047     // Compute the entry point of the rewritten stub.
5048     __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
5049     // Restore registers.
5050     __ pop(lr);
5051     __ Pop(r1, r0);
5052   }
5053 
5054   __ Jump(r2);
5055 }
5056 
5057 
Generate(MacroAssembler * masm)5058 void DirectCEntryStub::Generate(MacroAssembler* masm) {
5059   // Place the return address on the stack, making the call
5060   // GC safe. The RegExp backend also relies on this.
5061   __ str(lr, MemOperand(sp, 0));
5062   __ blx(ip);  // Call the C++ function.
5063   __ VFPEnsureFPSCRState(r2);
5064   __ ldr(pc, MemOperand(sp, 0));
5065 }
5066 
5067 
GenerateCall(MacroAssembler * masm,Register target)5068 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
5069                                     Register target) {
5070   intptr_t code =
5071       reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location());
5072   __ Move(ip, target);
5073   __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
5074   __ blx(lr);  // Call the stub.
5075 }
5076 
5077 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)5078 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
5079                                                       Label* miss,
5080                                                       Label* done,
5081                                                       Register receiver,
5082                                                       Register properties,
5083                                                       Handle<Name> name,
5084                                                       Register scratch0) {
5085   ASSERT(name->IsUniqueName());
5086   // If names of slots in range from 1 to kProbes - 1 for the hash value are
5087   // not equal to the name and kProbes-th slot is not used (its name is the
5088   // undefined value), it guarantees the hash table doesn't contain the
5089   // property. It's true even if some slots represent deleted properties
5090   // (their names are the hole value).
5091   for (int i = 0; i < kInlinedProbes; i++) {
5092     // scratch0 points to properties hash.
5093     // Compute the masked index: (hash + i + i * i) & mask.
5094     Register index = scratch0;
5095     // Capacity is smi 2^n.
5096     __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
5097     __ sub(index, index, Operand(1));
5098     __ and_(index, index, Operand(
5099         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
5100 
5101     // Scale the index by multiplying by the entry size.
5102     ASSERT(NameDictionary::kEntrySize == 3);
5103     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
5104 
5105     Register entity_name = scratch0;
5106     // Having undefined at this place means the name is not contained.
5107     ASSERT_EQ(kSmiTagSize, 1);
5108     Register tmp = properties;
5109     __ add(tmp, properties, Operand(index, LSL, 1));
5110     __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
5111 
5112     ASSERT(!tmp.is(entity_name));
5113     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
5114     __ cmp(entity_name, tmp);
5115     __ b(eq, done);
5116 
5117     // Load the hole ready for use below:
5118     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
5119 
5120     // Stop if found the property.
5121     __ cmp(entity_name, Operand(Handle<Name>(name)));
5122     __ b(eq, miss);
5123 
5124     Label good;
5125     __ cmp(entity_name, tmp);
5126     __ b(eq, &good);
5127 
5128     // Check if the entry name is not a unique name.
5129     __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
5130     __ ldrb(entity_name,
5131             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
5132     __ JumpIfNotUniqueName(entity_name, miss);
5133     __ bind(&good);
5134 
5135     // Restore the properties.
5136     __ ldr(properties,
5137            FieldMemOperand(receiver, JSObject::kPropertiesOffset));
5138   }
5139 
5140   const int spill_mask =
5141       (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
5142        r2.bit() | r1.bit() | r0.bit());
5143 
5144   __ stm(db_w, sp, spill_mask);
5145   __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
5146   __ mov(r1, Operand(Handle<Name>(name)));
5147   NameDictionaryLookupStub stub(NEGATIVE_LOOKUP);
5148   __ CallStub(&stub);
5149   __ cmp(r0, Operand::Zero());
5150   __ ldm(ia_w, sp, spill_mask);
5151 
5152   __ b(eq, done);
5153   __ b(ne, miss);
5154 }
5155 
5156 
5157 // Probe the name dictionary in the |elements| register. Jump to the
5158 // |done| label if a property with the given name is found. Jump to
5159 // the |miss| label otherwise.
5160 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)5161 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
5162                                                       Label* miss,
5163                                                       Label* done,
5164                                                       Register elements,
5165                                                       Register name,
5166                                                       Register scratch1,
5167                                                       Register scratch2) {
5168   ASSERT(!elements.is(scratch1));
5169   ASSERT(!elements.is(scratch2));
5170   ASSERT(!name.is(scratch1));
5171   ASSERT(!name.is(scratch2));
5172 
5173   __ AssertName(name);
5174 
5175   // Compute the capacity mask.
5176   __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
5177   __ SmiUntag(scratch1);
5178   __ sub(scratch1, scratch1, Operand(1));
5179 
5180   // Generate an unrolled loop that performs a few probes before
5181   // giving up. Measurements done on Gmail indicate that 2 probes
5182   // cover ~93% of loads from dictionaries.
5183   for (int i = 0; i < kInlinedProbes; i++) {
5184     // Compute the masked index: (hash + i + i * i) & mask.
5185     __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
5186     if (i > 0) {
5187       // Add the probe offset (i + i * i) left shifted to avoid right shifting
5188       // the hash in a separate instruction. The value hash + i + i * i is right
5189       // shifted in the following and instruction.
5190       ASSERT(NameDictionary::GetProbeOffset(i) <
5191              1 << (32 - Name::kHashFieldOffset));
5192       __ add(scratch2, scratch2, Operand(
5193           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
5194     }
5195     __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
5196 
5197     // Scale the index by multiplying by the element size.
5198     ASSERT(NameDictionary::kEntrySize == 3);
5199     // scratch2 = scratch2 * 3.
5200     __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
5201 
5202     // Check if the key is identical to the name.
5203     __ add(scratch2, elements, Operand(scratch2, LSL, 2));
5204     __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
5205     __ cmp(name, Operand(ip));
5206     __ b(eq, done);
5207   }
5208 
5209   const int spill_mask =
5210       (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
5211        r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
5212       ~(scratch1.bit() | scratch2.bit());
5213 
5214   __ stm(db_w, sp, spill_mask);
5215   if (name.is(r0)) {
5216     ASSERT(!elements.is(r1));
5217     __ Move(r1, name);
5218     __ Move(r0, elements);
5219   } else {
5220     __ Move(r0, elements);
5221     __ Move(r1, name);
5222   }
5223   NameDictionaryLookupStub stub(POSITIVE_LOOKUP);
5224   __ CallStub(&stub);
5225   __ cmp(r0, Operand::Zero());
5226   __ mov(scratch2, Operand(r2));
5227   __ ldm(ia_w, sp, spill_mask);
5228 
5229   __ b(ne, done);
5230   __ b(eq, miss);
5231 }
5232 
5233 
Generate(MacroAssembler * masm)5234 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
5235   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
5236   // we cannot call anything that could cause a GC from this stub.
5237   // Registers:
5238   //  result: NameDictionary to probe
5239   //  r1: key
5240   //  dictionary: NameDictionary to probe.
5241   //  index: will hold an index of entry if lookup is successful.
5242   //         might alias with result_.
5243   // Returns:
5244   //  result_ is zero if lookup failed, non zero otherwise.
5245 
5246   Register result = r0;
5247   Register dictionary = r0;
5248   Register key = r1;
5249   Register index = r2;
5250   Register mask = r3;
5251   Register hash = r4;
5252   Register undefined = r5;
5253   Register entry_key = r6;
5254 
5255   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
5256 
5257   __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
5258   __ SmiUntag(mask);
5259   __ sub(mask, mask, Operand(1));
5260 
5261   __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
5262 
5263   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5264 
5265   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
5266     // Compute the masked index: (hash + i + i * i) & mask.
5267     // Capacity is smi 2^n.
5268     if (i > 0) {
5269       // Add the probe offset (i + i * i) left shifted to avoid right shifting
5270       // the hash in a separate instruction. The value hash + i + i * i is right
5271       // shifted in the following and instruction.
5272       ASSERT(NameDictionary::GetProbeOffset(i) <
5273              1 << (32 - Name::kHashFieldOffset));
5274       __ add(index, hash, Operand(
5275           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
5276     } else {
5277       __ mov(index, Operand(hash));
5278     }
5279     __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
5280 
5281     // Scale the index by multiplying by the entry size.
5282     ASSERT(NameDictionary::kEntrySize == 3);
5283     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
5284 
5285     ASSERT_EQ(kSmiTagSize, 1);
5286     __ add(index, dictionary, Operand(index, LSL, 2));
5287     __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
5288 
5289     // Having undefined at this place means the name is not contained.
5290     __ cmp(entry_key, Operand(undefined));
5291     __ b(eq, &not_in_dictionary);
5292 
5293     // Stop if found the property.
5294     __ cmp(entry_key, Operand(key));
5295     __ b(eq, &in_dictionary);
5296 
5297     if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
5298       // Check if the entry name is not a unique name.
5299       __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
5300       __ ldrb(entry_key,
5301               FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
5302       __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
5303     }
5304   }
5305 
5306   __ bind(&maybe_in_dictionary);
5307   // If we are doing negative lookup then probing failure should be
5308   // treated as a lookup success. For positive lookup probing failure
5309   // should be treated as lookup failure.
5310   if (mode_ == POSITIVE_LOOKUP) {
5311     __ mov(result, Operand::Zero());
5312     __ Ret();
5313   }
5314 
5315   __ bind(&in_dictionary);
5316   __ mov(result, Operand(1));
5317   __ Ret();
5318 
5319   __ bind(&not_in_dictionary);
5320   __ mov(result, Operand::Zero());
5321   __ Ret();
5322 }
5323 
5324 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)5325 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
5326     Isolate* isolate) {
5327   StoreBufferOverflowStub stub1(kDontSaveFPRegs);
5328   stub1.GetCode(isolate);
5329   // Hydrogen code stubs need stub2 at snapshot time.
5330   StoreBufferOverflowStub stub2(kSaveFPRegs);
5331   stub2.GetCode(isolate);
5332 }
5333 
5334 
CanUseFPRegisters()5335 bool CodeStub::CanUseFPRegisters() {
5336   return true;  // VFP2 is a base requirement for V8
5337 }
5338 
5339 
5340 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
5341 // the value has just been written into the object, now this stub makes sure
5342 // we keep the GC informed.  The word in the object where the value has been
5343 // written is in the address register.
Generate(MacroAssembler * masm)5344 void RecordWriteStub::Generate(MacroAssembler* masm) {
5345   Label skip_to_incremental_noncompacting;
5346   Label skip_to_incremental_compacting;
5347 
5348   // The first two instructions are generated with labels so as to get the
5349   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
5350   // forth between a compare instructions (a nop in this position) and the
5351   // real branch when we start and stop incremental heap marking.
5352   // See RecordWriteStub::Patch for details.
5353   {
5354     // Block literal pool emission, as the position of these two instructions
5355     // is assumed by the patching code.
5356     Assembler::BlockConstPoolScope block_const_pool(masm);
5357     __ b(&skip_to_incremental_noncompacting);
5358     __ b(&skip_to_incremental_compacting);
5359   }
5360 
5361   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
5362     __ RememberedSetHelper(object_,
5363                            address_,
5364                            value_,
5365                            save_fp_regs_mode_,
5366                            MacroAssembler::kReturnAtEnd);
5367   }
5368   __ Ret();
5369 
5370   __ bind(&skip_to_incremental_noncompacting);
5371   GenerateIncremental(masm, INCREMENTAL);
5372 
5373   __ bind(&skip_to_incremental_compacting);
5374   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
5375 
5376   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
5377   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
5378   ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
5379   ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
5380   PatchBranchIntoNop(masm, 0);
5381   PatchBranchIntoNop(masm, Assembler::kInstrSize);
5382 }
5383 
5384 
GenerateIncremental(MacroAssembler * masm,Mode mode)5385 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
5386   regs_.Save(masm);
5387 
5388   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
5389     Label dont_need_remembered_set;
5390 
5391     __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
5392     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
5393                            regs_.scratch0(),
5394                            &dont_need_remembered_set);
5395 
5396     __ CheckPageFlag(regs_.object(),
5397                      regs_.scratch0(),
5398                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
5399                      ne,
5400                      &dont_need_remembered_set);
5401 
5402     // First notify the incremental marker if necessary, then update the
5403     // remembered set.
5404     CheckNeedsToInformIncrementalMarker(
5405         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
5406     InformIncrementalMarker(masm, mode);
5407     regs_.Restore(masm);
5408     __ RememberedSetHelper(object_,
5409                            address_,
5410                            value_,
5411                            save_fp_regs_mode_,
5412                            MacroAssembler::kReturnAtEnd);
5413 
5414     __ bind(&dont_need_remembered_set);
5415   }
5416 
5417   CheckNeedsToInformIncrementalMarker(
5418       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
5419   InformIncrementalMarker(masm, mode);
5420   regs_.Restore(masm);
5421   __ Ret();
5422 }
5423 
5424 
InformIncrementalMarker(MacroAssembler * masm,Mode mode)5425 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
5426   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
5427   int argument_count = 3;
5428   __ PrepareCallCFunction(argument_count, regs_.scratch0());
5429   Register address =
5430       r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
5431   ASSERT(!address.is(regs_.object()));
5432   ASSERT(!address.is(r0));
5433   __ Move(address, regs_.address());
5434   __ Move(r0, regs_.object());
5435   __ Move(r1, address);
5436   __ mov(r2, Operand(ExternalReference::isolate_address(masm->isolate())));
5437 
5438   AllowExternalCallThatCantCauseGC scope(masm);
5439   if (mode == INCREMENTAL_COMPACTION) {
5440     __ CallCFunction(
5441         ExternalReference::incremental_evacuation_record_write_function(
5442             masm->isolate()),
5443         argument_count);
5444   } else {
5445     ASSERT(mode == INCREMENTAL);
5446     __ CallCFunction(
5447         ExternalReference::incremental_marking_record_write_function(
5448             masm->isolate()),
5449         argument_count);
5450   }
5451   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
5452 }
5453 
5454 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)5455 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
5456     MacroAssembler* masm,
5457     OnNoNeedToInformIncrementalMarker on_no_need,
5458     Mode mode) {
5459   Label on_black;
5460   Label need_incremental;
5461   Label need_incremental_pop_scratch;
5462 
5463   __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
5464   __ ldr(regs_.scratch1(),
5465          MemOperand(regs_.scratch0(),
5466                     MemoryChunk::kWriteBarrierCounterOffset));
5467   __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
5468   __ str(regs_.scratch1(),
5469          MemOperand(regs_.scratch0(),
5470                     MemoryChunk::kWriteBarrierCounterOffset));
5471   __ b(mi, &need_incremental);
5472 
5473   // Let's look at the color of the object:  If it is not black we don't have
5474   // to inform the incremental marker.
5475   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
5476 
5477   regs_.Restore(masm);
5478   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
5479     __ RememberedSetHelper(object_,
5480                            address_,
5481                            value_,
5482                            save_fp_regs_mode_,
5483                            MacroAssembler::kReturnAtEnd);
5484   } else {
5485     __ Ret();
5486   }
5487 
5488   __ bind(&on_black);
5489 
5490   // Get the value from the slot.
5491   __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
5492 
5493   if (mode == INCREMENTAL_COMPACTION) {
5494     Label ensure_not_white;
5495 
5496     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
5497                      regs_.scratch1(),  // Scratch.
5498                      MemoryChunk::kEvacuationCandidateMask,
5499                      eq,
5500                      &ensure_not_white);
5501 
5502     __ CheckPageFlag(regs_.object(),
5503                      regs_.scratch1(),  // Scratch.
5504                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
5505                      eq,
5506                      &need_incremental);
5507 
5508     __ bind(&ensure_not_white);
5509   }
5510 
5511   // We need extra registers for this, so we push the object and the address
5512   // register temporarily.
5513   __ Push(regs_.object(), regs_.address());
5514   __ EnsureNotWhite(regs_.scratch0(),  // The value.
5515                     regs_.scratch1(),  // Scratch.
5516                     regs_.object(),  // Scratch.
5517                     regs_.address(),  // Scratch.
5518                     &need_incremental_pop_scratch);
5519   __ Pop(regs_.object(), regs_.address());
5520 
5521   regs_.Restore(masm);
5522   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
5523     __ RememberedSetHelper(object_,
5524                            address_,
5525                            value_,
5526                            save_fp_regs_mode_,
5527                            MacroAssembler::kReturnAtEnd);
5528   } else {
5529     __ Ret();
5530   }
5531 
5532   __ bind(&need_incremental_pop_scratch);
5533   __ Pop(regs_.object(), regs_.address());
5534 
5535   __ bind(&need_incremental);
5536 
5537   // Fall through when we need to inform the incremental marker.
5538 }
5539 
5540 
Generate(MacroAssembler * masm)5541 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
5542   // ----------- S t a t e -------------
5543   //  -- r0    : element value to store
5544   //  -- r3    : element index as smi
5545   //  -- sp[0] : array literal index in function as smi
5546   //  -- sp[4] : array literal
5547   // clobbers r1, r2, r4
5548   // -----------------------------------
5549 
5550   Label element_done;
5551   Label double_elements;
5552   Label smi_element;
5553   Label slow_elements;
5554   Label fast_elements;
5555 
5556   // Get array literal index, array literal and its map.
5557   __ ldr(r4, MemOperand(sp, 0 * kPointerSize));
5558   __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
5559   __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
5560 
5561   __ CheckFastElements(r2, r5, &double_elements);
5562   // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
5563   __ JumpIfSmi(r0, &smi_element);
5564   __ CheckFastSmiElements(r2, r5, &fast_elements);
5565 
5566   // Store into the array literal requires a elements transition. Call into
5567   // the runtime.
5568   __ bind(&slow_elements);
5569   // call.
5570   __ Push(r1, r3, r0);
5571   __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5572   __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
5573   __ Push(r5, r4);
5574   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
5575 
5576   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
5577   __ bind(&fast_elements);
5578   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
5579   __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
5580   __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5581   __ str(r0, MemOperand(r6, 0));
5582   // Update the write barrier for the array store.
5583   __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
5584                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
5585   __ Ret();
5586 
5587   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
5588   // and value is Smi.
5589   __ bind(&smi_element);
5590   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
5591   __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
5592   __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
5593   __ Ret();
5594 
5595   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
5596   __ bind(&double_elements);
5597   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
5598   __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
5599   __ Ret();
5600 }
5601 
5602 
Generate(MacroAssembler * masm)5603 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
5604   CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs);
5605   __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
5606   int parameter_count_offset =
5607       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
5608   __ ldr(r1, MemOperand(fp, parameter_count_offset));
5609   if (function_mode_ == JS_FUNCTION_STUB_MODE) {
5610     __ add(r1, r1, Operand(1));
5611   }
5612   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
5613   __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
5614   __ add(sp, sp, r1);
5615   __ Ret();
5616 }
5617 
5618 
Generate(MacroAssembler * masm)5619 void StubFailureTailCallTrampolineStub::Generate(MacroAssembler* masm) {
5620   CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs);
5621   __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
5622   __ mov(r1, r0);
5623   int parameter_count_offset =
5624       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
5625   __ ldr(r0, MemOperand(fp, parameter_count_offset));
5626   // The parameter count above includes the receiver for the arguments passed to
5627   // the deoptimization handler. Subtract the receiver for the parameter count
5628   // for the call.
5629   __ sub(r0, r0, Operand(1));
5630   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
5631   ParameterCount argument_count(r0);
5632   __ InvokeFunction(
5633       r1, argument_count, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
5634 }
5635 
5636 
MaybeCallEntryHook(MacroAssembler * masm)5637 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
5638   if (masm->isolate()->function_entry_hook() != NULL) {
5639     PredictableCodeSizeScope predictable(masm, 4 * Assembler::kInstrSize);
5640     ProfileEntryHookStub stub;
5641     __ push(lr);
5642     __ CallStub(&stub);
5643     __ pop(lr);
5644   }
5645 }
5646 
5647 
Generate(MacroAssembler * masm)5648 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
5649   // The entry hook is a "push lr" instruction, followed by a call.
5650   const int32_t kReturnAddressDistanceFromFunctionStart =
5651       3 * Assembler::kInstrSize;
5652 
5653   // This should contain all kCallerSaved registers.
5654   const RegList kSavedRegs =
5655       1 <<  0 |  // r0
5656       1 <<  1 |  // r1
5657       1 <<  2 |  // r2
5658       1 <<  3 |  // r3
5659       1 <<  5 |  // r5
5660       1 <<  9;   // r9
5661   // We also save lr, so the count here is one higher than the mask indicates.
5662   const int32_t kNumSavedRegs = 7;
5663 
5664   ASSERT((kCallerSaved & kSavedRegs) == kCallerSaved);
5665 
5666   // Save all caller-save registers as this may be called from anywhere.
5667   __ stm(db_w, sp, kSavedRegs | lr.bit());
5668 
5669   // Compute the function's address for the first argument.
5670   __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
5671 
5672   // The caller's return address is above the saved temporaries.
5673   // Grab that for the second argument to the hook.
5674   __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
5675 
5676   // Align the stack if necessary.
5677   int frame_alignment = masm->ActivationFrameAlignment();
5678   if (frame_alignment > kPointerSize) {
5679     __ mov(r5, sp);
5680     ASSERT(IsPowerOf2(frame_alignment));
5681     __ and_(sp, sp, Operand(-frame_alignment));
5682   }
5683 
5684 #if V8_HOST_ARCH_ARM
5685   int32_t entry_hook =
5686       reinterpret_cast<int32_t>(masm->isolate()->function_entry_hook());
5687   __ mov(ip, Operand(entry_hook));
5688 #else
5689   // Under the simulator we need to indirect the entry hook through a
5690   // trampoline function at a known address.
5691   // It additionally takes an isolate as a third parameter
5692   __ mov(r2, Operand(ExternalReference::isolate_address(masm->isolate())));
5693 
5694   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
5695   __ mov(ip, Operand(ExternalReference(&dispatcher,
5696                                        ExternalReference::BUILTIN_CALL,
5697                                        masm->isolate())));
5698 #endif
5699   __ Call(ip);
5700 
5701   // Restore the stack pointer if needed.
5702   if (frame_alignment > kPointerSize) {
5703     __ mov(sp, r5);
5704   }
5705 
5706   // Also pop pc to get Ret(0).
5707   __ ldm(ia_w, sp, kSavedRegs | pc.bit());
5708 }
5709 
5710 
5711 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)5712 static void CreateArrayDispatch(MacroAssembler* masm,
5713                                 AllocationSiteOverrideMode mode) {
5714   if (mode == DISABLE_ALLOCATION_SITES) {
5715     T stub(GetInitialFastElementsKind(),
5716            CONTEXT_CHECK_REQUIRED,
5717            mode);
5718     __ TailCallStub(&stub);
5719   } else if (mode == DONT_OVERRIDE) {
5720     int last_index = GetSequenceIndexFromFastElementsKind(
5721         TERMINAL_FAST_ELEMENTS_KIND);
5722     for (int i = 0; i <= last_index; ++i) {
5723       Label next;
5724       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5725       __ cmp(r3, Operand(kind));
5726       __ b(ne, &next);
5727       T stub(kind);
5728       __ TailCallStub(&stub);
5729       __ bind(&next);
5730     }
5731 
5732     // If we reached this point there is a problem.
5733     __ Abort(kUnexpectedElementsKindInArrayConstructor);
5734   } else {
5735     UNREACHABLE();
5736   }
5737 }
5738 
5739 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)5740 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
5741                                            AllocationSiteOverrideMode mode) {
5742   // r2 - type info cell (if mode != DISABLE_ALLOCATION_SITES)
5743   // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
5744   // r0 - number of arguments
5745   // r1 - constructor?
5746   // sp[0] - last argument
5747   Label normal_sequence;
5748   if (mode == DONT_OVERRIDE) {
5749     ASSERT(FAST_SMI_ELEMENTS == 0);
5750     ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
5751     ASSERT(FAST_ELEMENTS == 2);
5752     ASSERT(FAST_HOLEY_ELEMENTS == 3);
5753     ASSERT(FAST_DOUBLE_ELEMENTS == 4);
5754     ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
5755 
5756     // is the low bit set? If so, we are holey and that is good.
5757     __ tst(r3, Operand(1));
5758     __ b(ne, &normal_sequence);
5759   }
5760 
5761   // look at the first argument
5762   __ ldr(r5, MemOperand(sp, 0));
5763   __ cmp(r5, Operand::Zero());
5764   __ b(eq, &normal_sequence);
5765 
5766   if (mode == DISABLE_ALLOCATION_SITES) {
5767     ElementsKind initial = GetInitialFastElementsKind();
5768     ElementsKind holey_initial = GetHoleyElementsKind(initial);
5769 
5770     ArraySingleArgumentConstructorStub stub_holey(holey_initial,
5771                                                   CONTEXT_CHECK_REQUIRED,
5772                                                   DISABLE_ALLOCATION_SITES);
5773     __ TailCallStub(&stub_holey);
5774 
5775     __ bind(&normal_sequence);
5776     ArraySingleArgumentConstructorStub stub(initial,
5777                                             CONTEXT_CHECK_REQUIRED,
5778                                             DISABLE_ALLOCATION_SITES);
5779     __ TailCallStub(&stub);
5780   } else if (mode == DONT_OVERRIDE) {
5781     // We are going to create a holey array, but our kind is non-holey.
5782     // Fix kind and retry (only if we have an allocation site in the cell).
5783     __ add(r3, r3, Operand(1));
5784     __ ldr(r5, FieldMemOperand(r2, Cell::kValueOffset));
5785 
5786     if (FLAG_debug_code) {
5787       __ ldr(r5, FieldMemOperand(r5, 0));
5788       __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
5789       __ Assert(eq, kExpectedAllocationSiteInCell);
5790       __ ldr(r5, FieldMemOperand(r2, Cell::kValueOffset));
5791     }
5792 
5793     // Save the resulting elements kind in type info. We can't just store r3
5794     // in the AllocationSite::transition_info field because elements kind is
5795     // restricted to a portion of the field...upper bits need to be left alone.
5796     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5797     __ ldr(r4, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
5798     __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
5799     __ str(r4, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
5800 
5801     __ bind(&normal_sequence);
5802     int last_index = GetSequenceIndexFromFastElementsKind(
5803         TERMINAL_FAST_ELEMENTS_KIND);
5804     for (int i = 0; i <= last_index; ++i) {
5805       Label next;
5806       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5807       __ cmp(r3, Operand(kind));
5808       __ b(ne, &next);
5809       ArraySingleArgumentConstructorStub stub(kind);
5810       __ TailCallStub(&stub);
5811       __ bind(&next);
5812     }
5813 
5814     // If we reached this point there is a problem.
5815     __ Abort(kUnexpectedElementsKindInArrayConstructor);
5816   } else {
5817     UNREACHABLE();
5818   }
5819 }
5820 
5821 
5822 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)5823 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
5824   ElementsKind initial_kind = GetInitialFastElementsKind();
5825   ElementsKind initial_holey_kind = GetHoleyElementsKind(initial_kind);
5826 
5827   int to_index = GetSequenceIndexFromFastElementsKind(
5828       TERMINAL_FAST_ELEMENTS_KIND);
5829   for (int i = 0; i <= to_index; ++i) {
5830     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5831     T stub(kind);
5832     stub.GetCode(isolate);
5833     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE ||
5834         (!FLAG_track_allocation_sites &&
5835          (kind == initial_kind || kind == initial_holey_kind))) {
5836       T stub1(kind, CONTEXT_CHECK_REQUIRED, DISABLE_ALLOCATION_SITES);
5837       stub1.GetCode(isolate);
5838     }
5839   }
5840 }
5841 
5842 
GenerateStubsAheadOfTime(Isolate * isolate)5843 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
5844   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
5845       isolate);
5846   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
5847       isolate);
5848   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
5849       isolate);
5850 }
5851 
5852 
GenerateStubsAheadOfTime(Isolate * isolate)5853 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
5854     Isolate* isolate) {
5855   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
5856   for (int i = 0; i < 2; i++) {
5857     // For internal arrays we only need a few things
5858     InternalArrayNoArgumentConstructorStub stubh1(kinds[i]);
5859     stubh1.GetCode(isolate);
5860     InternalArraySingleArgumentConstructorStub stubh2(kinds[i]);
5861     stubh2.GetCode(isolate);
5862     InternalArrayNArgumentsConstructorStub stubh3(kinds[i]);
5863     stubh3.GetCode(isolate);
5864   }
5865 }
5866 
5867 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)5868 void ArrayConstructorStub::GenerateDispatchToArrayStub(
5869     MacroAssembler* masm,
5870     AllocationSiteOverrideMode mode) {
5871   if (argument_count_ == ANY) {
5872     Label not_zero_case, not_one_case;
5873     __ tst(r0, r0);
5874     __ b(ne, &not_zero_case);
5875     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5876 
5877     __ bind(&not_zero_case);
5878     __ cmp(r0, Operand(1));
5879     __ b(gt, &not_one_case);
5880     CreateArrayDispatchOneArgument(masm, mode);
5881 
5882     __ bind(&not_one_case);
5883     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5884   } else if (argument_count_ == NONE) {
5885     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5886   } else if (argument_count_ == ONE) {
5887     CreateArrayDispatchOneArgument(masm, mode);
5888   } else if (argument_count_ == MORE_THAN_ONE) {
5889     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5890   } else {
5891     UNREACHABLE();
5892   }
5893 }
5894 
5895 
Generate(MacroAssembler * masm)5896 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5897   // ----------- S t a t e -------------
5898   //  -- r0 : argc (only if argument_count_ == ANY)
5899   //  -- r1 : constructor
5900   //  -- r2 : type info cell
5901   //  -- sp[0] : return address
5902   //  -- sp[4] : last argument
5903   // -----------------------------------
5904   if (FLAG_debug_code) {
5905     // The array construct code is only set for the global and natives
5906     // builtin Array functions which always have maps.
5907 
5908     // Initial map for the builtin Array function should be a map.
5909     __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
5910     // Will both indicate a NULL and a Smi.
5911     __ tst(r3, Operand(kSmiTagMask));
5912     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
5913     __ CompareObjectType(r3, r3, r4, MAP_TYPE);
5914     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
5915 
5916     // We should either have undefined in ebx or a valid cell
5917     Label okay_here;
5918     Handle<Map> cell_map = masm->isolate()->factory()->cell_map();
5919     __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
5920     __ b(eq, &okay_here);
5921     __ ldr(r3, FieldMemOperand(r2, 0));
5922     __ cmp(r3, Operand(cell_map));
5923     __ Assert(eq, kExpectedPropertyCellInRegisterEbx);
5924     __ bind(&okay_here);
5925   }
5926 
5927   Label no_info;
5928   // Get the elements kind and case on that.
5929   __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
5930   __ b(eq, &no_info);
5931   __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
5932 
5933   // If the type cell is undefined, or contains anything other than an
5934   // AllocationSite, call an array constructor that doesn't use AllocationSites.
5935   __ ldr(r4, FieldMemOperand(r3, 0));
5936   __ CompareRoot(r4, Heap::kAllocationSiteMapRootIndex);
5937   __ b(ne, &no_info);
5938 
5939   __ ldr(r3, FieldMemOperand(r3, AllocationSite::kTransitionInfoOffset));
5940   __ SmiUntag(r3);
5941   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5942   __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
5943   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5944 
5945   __ bind(&no_info);
5946   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
5947 }
5948 
5949 
GenerateCase(MacroAssembler * masm,ElementsKind kind)5950 void InternalArrayConstructorStub::GenerateCase(
5951     MacroAssembler* masm, ElementsKind kind) {
5952   Label not_zero_case, not_one_case;
5953   Label normal_sequence;
5954 
5955   __ tst(r0, r0);
5956   __ b(ne, &not_zero_case);
5957   InternalArrayNoArgumentConstructorStub stub0(kind);
5958   __ TailCallStub(&stub0);
5959 
5960   __ bind(&not_zero_case);
5961   __ cmp(r0, Operand(1));
5962   __ b(gt, &not_one_case);
5963 
5964   if (IsFastPackedElementsKind(kind)) {
5965     // We might need to create a holey array
5966     // look at the first argument
5967     __ ldr(r3, MemOperand(sp, 0));
5968     __ cmp(r3, Operand::Zero());
5969     __ b(eq, &normal_sequence);
5970 
5971     InternalArraySingleArgumentConstructorStub
5972         stub1_holey(GetHoleyElementsKind(kind));
5973     __ TailCallStub(&stub1_holey);
5974   }
5975 
5976   __ bind(&normal_sequence);
5977   InternalArraySingleArgumentConstructorStub stub1(kind);
5978   __ TailCallStub(&stub1);
5979 
5980   __ bind(&not_one_case);
5981   InternalArrayNArgumentsConstructorStub stubN(kind);
5982   __ TailCallStub(&stubN);
5983 }
5984 
5985 
Generate(MacroAssembler * masm)5986 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5987   // ----------- S t a t e -------------
5988   //  -- r0 : argc
5989   //  -- r1 : constructor
5990   //  -- sp[0] : return address
5991   //  -- sp[4] : last argument
5992   // -----------------------------------
5993 
5994   if (FLAG_debug_code) {
5995     // The array construct code is only set for the global and natives
5996     // builtin Array functions which always have maps.
5997 
5998     // Initial map for the builtin Array function should be a map.
5999     __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
6000     // Will both indicate a NULL and a Smi.
6001     __ tst(r3, Operand(kSmiTagMask));
6002     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
6003     __ CompareObjectType(r3, r3, r4, MAP_TYPE);
6004     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
6005   }
6006 
6007   // Figure out the right elements kind
6008   __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
6009   // Load the map's "bit field 2" into |result|. We only need the first byte,
6010   // but the following bit field extraction takes care of that anyway.
6011   __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
6012   // Retrieve elements_kind from bit field 2.
6013   __ Ubfx(r3, r3, Map::kElementsKindShift, Map::kElementsKindBitCount);
6014 
6015   if (FLAG_debug_code) {
6016     Label done;
6017     __ cmp(r3, Operand(FAST_ELEMENTS));
6018     __ b(eq, &done);
6019     __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
6020     __ Assert(eq,
6021               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
6022     __ bind(&done);
6023   }
6024 
6025   Label fast_elements_case;
6026   __ cmp(r3, Operand(FAST_ELEMENTS));
6027   __ b(eq, &fast_elements_case);
6028   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
6029 
6030   __ bind(&fast_elements_case);
6031   GenerateCase(masm, FAST_ELEMENTS);
6032 }
6033 
6034 
6035 #undef __
6036 
6037 } }  // namespace v8::internal
6038 
6039 #endif  // V8_TARGET_ARCH_ARM
6040