• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37 
38 #include "v8.h"
39 
40 #include "allocation.h"
41 #include "builtins.h"
42 #include "gdb-jit.h"
43 #include "isolate.h"
44 #include "runtime.h"
45 #include "token.h"
46 
47 namespace v8 {
48 
49 class ApiFunction;
50 
51 namespace internal {
52 
53 class StatsCounter;
54 // -----------------------------------------------------------------------------
55 // Platform independent assembler base class.
56 
57 class AssemblerBase: public Malloced {
58  public:
59   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
60   virtual ~AssemblerBase();
61 
isolate()62   Isolate* isolate() const { return isolate_; }
jit_cookie()63   int jit_cookie() const { return jit_cookie_; }
64 
emit_debug_code()65   bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)66   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
67 
predictable_code_size()68   bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)69   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
70 
enabled_cpu_features()71   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)72   void set_enabled_cpu_features(uint64_t features) {
73     enabled_cpu_features_ = features;
74   }
IsEnabled(CpuFeature f)75   bool IsEnabled(CpuFeature f) {
76     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
77   }
78 
79   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
80   // cross-snapshotting.
QuietNaN(HeapObject * nan)81   static void QuietNaN(HeapObject* nan) { }
82 
pc_offset()83   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
84 
85   static const int kMinimalBufferSize = 4*KB;
86 
87  protected:
88   // The buffer into which code and relocation info are generated. It could
89   // either be owned by the assembler or be provided externally.
90   byte* buffer_;
91   int buffer_size_;
92   bool own_buffer_;
93 
94   // The program counter, which points into the buffer above and moves forward.
95   byte* pc_;
96 
97  private:
98   Isolate* isolate_;
99   int jit_cookie_;
100   uint64_t enabled_cpu_features_;
101   bool emit_debug_code_;
102   bool predictable_code_size_;
103 };
104 
105 
106 // Avoids using instructions that vary in size in unpredictable ways between the
107 // snapshot and the running VM.
108 class PredictableCodeSizeScope {
109  public:
110   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
111   ~PredictableCodeSizeScope();
112 
113  private:
114   AssemblerBase* assembler_;
115   int expected_size_;
116   int start_offset_;
117   bool old_value_;
118 };
119 
120 
121 // Enable a specified feature within a scope.
122 class CpuFeatureScope BASE_EMBEDDED {
123  public:
124 #ifdef DEBUG
125   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
126   ~CpuFeatureScope();
127 
128  private:
129   AssemblerBase* assembler_;
130   uint64_t old_enabled_;
131 #else
132   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
133 #endif
134 };
135 
136 
137 // Enable a unsupported feature within a scope for cross-compiling for a
138 // different CPU.
139 class PlatformFeatureScope BASE_EMBEDDED {
140  public:
141   explicit PlatformFeatureScope(CpuFeature f);
142   ~PlatformFeatureScope();
143 
144  private:
145   uint64_t old_cross_compile_;
146 };
147 
148 
149 // -----------------------------------------------------------------------------
150 // Labels represent pc locations; they are typically jump or call targets.
151 // After declaration, a label can be freely used to denote known or (yet)
152 // unknown pc location. Assembler::bind() is used to bind a label to the
153 // current pc. A label can be bound only once.
154 
155 class Label BASE_EMBEDDED {
156  public:
157   enum Distance {
158     kNear, kFar
159   };
160 
INLINE(Label ())161   INLINE(Label()) {
162     Unuse();
163     UnuseNear();
164   }
165 
INLINE(~Label ())166   INLINE(~Label()) {
167     ASSERT(!is_linked());
168     ASSERT(!is_near_linked());
169   }
170 
INLINE(void Unuse ())171   INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())172   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
173 
INLINE(bool is_bound ()const)174   INLINE(bool is_bound() const) { return pos_ <  0; }
INLINE(bool is_unused ()const)175   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)176   INLINE(bool is_linked() const) { return pos_ >  0; }
INLINE(bool is_near_linked ()const)177   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
178 
179   // Returns the position of bound or linked labels. Cannot be used
180   // for unused labels.
181   int pos() const;
near_link_pos()182   int near_link_pos() const { return near_link_pos_ - 1; }
183 
184  private:
185   // pos_ encodes both the binding state (via its sign)
186   // and the binding position (via its value) of a label.
187   //
188   // pos_ <  0  bound label, pos() returns the jump target position
189   // pos_ == 0  unused label
190   // pos_ >  0  linked label, pos() returns the last reference position
191   int pos_;
192 
193   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
194   int near_link_pos_;
195 
bind_to(int pos)196   void bind_to(int pos)  {
197     pos_ = -pos - 1;
198     ASSERT(is_bound());
199   }
200   void link_to(int pos, Distance distance = kFar) {
201     if (distance == kNear) {
202       near_link_pos_ = pos + 1;
203       ASSERT(is_near_linked());
204     } else {
205       pos_ = pos + 1;
206       ASSERT(is_linked());
207     }
208   }
209 
210   friend class Assembler;
211   friend class Displacement;
212   friend class RegExpMacroAssemblerIrregexp;
213 };
214 
215 
216 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
217 
218 
219 // -----------------------------------------------------------------------------
220 // Relocation information
221 
222 
223 // Relocation information consists of the address (pc) of the datum
224 // to which the relocation information applies, the relocation mode
225 // (rmode), and an optional data field. The relocation mode may be
226 // "descriptive" and not indicate a need for relocation, but simply
227 // describe a property of the datum. Such rmodes are useful for GC
228 // and nice disassembly output.
229 
230 class RelocInfo BASE_EMBEDDED {
231  public:
232   // The constant kNoPosition is used with the collecting of source positions
233   // in the relocation information. Two types of source positions are collected
234   // "position" (RelocMode position) and "statement position" (RelocMode
235   // statement_position). The "position" is collected at places in the source
236   // code which are of interest when making stack traces to pin-point the source
237   // location of a stack frame as close as possible. The "statement position" is
238   // collected at the beginning at each statement, and is used to indicate
239   // possible break locations. kNoPosition is used to indicate an
240   // invalid/uninitialized position value.
241   static const int kNoPosition = -1;
242 
243   // This string is used to add padding comments to the reloc info in cases
244   // where we are not sure to have enough space for patching in during
245   // lazy deoptimization. This is the case if we have indirect calls for which
246   // we do not normally record relocation info.
247   static const char* const kFillerCommentString;
248 
249   // The minimum size of a comment is equal to three bytes for the extra tagged
250   // pc + the tag for the data, and kPointerSize for the actual pointer to the
251   // comment.
252   static const int kMinRelocCommentSize = 3 + kPointerSize;
253 
254   // The maximum size for a call instruction including pc-jump.
255   static const int kMaxCallSize = 6;
256 
257   // The maximum pc delta that will use the short encoding.
258   static const int kMaxSmallPCDelta;
259 
260   enum Mode {
261     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
262     CODE_TARGET,  // Code target which is not any of the above.
263     CODE_TARGET_WITH_ID,
264     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
265     CODE_TARGET_CONTEXT,  // Code target used for contextual loads and stores.
266     DEBUG_BREAK,  // Code target for the debugger statement.
267     EMBEDDED_OBJECT,
268     CELL,
269 
270     // Everything after runtime_entry (inclusive) is not GC'ed.
271     RUNTIME_ENTRY,
272     JS_RETURN,  // Marks start of the ExitJSFrame code.
273     COMMENT,
274     POSITION,  // See comment for kNoPosition above.
275     STATEMENT_POSITION,  // See comment for kNoPosition above.
276     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
277     EXTERNAL_REFERENCE,  // The address of an external C++ function.
278     INTERNAL_REFERENCE,  // An address inside the same function.
279 
280     // Marks a constant pool. Only used on ARM.
281     // It uses a custom noncompact encoding.
282     CONST_POOL,
283 
284     // add more as needed
285     // Pseudo-types
286     NUMBER_OF_MODES,  // There are at most 15 modes with noncompact encoding.
287     NONE32,  // never recorded 32-bit value
288     NONE64,  // never recorded 64-bit value
289     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
290                         // code aging.
291     FIRST_REAL_RELOC_MODE = CODE_TARGET,
292     LAST_REAL_RELOC_MODE = CONST_POOL,
293     FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
294     LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
295     LAST_CODE_ENUM = DEBUG_BREAK,
296     LAST_GCED_ENUM = CELL,
297     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
298     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
299     LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
300   };
301 
302 
RelocInfo()303   RelocInfo() {}
304 
RelocInfo(byte * pc,Mode rmode,intptr_t data,Code * host)305   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
306       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
307   }
RelocInfo(byte * pc,double data64)308   RelocInfo(byte* pc, double data64)
309       : pc_(pc), rmode_(NONE64), data64_(data64), host_(NULL) {
310   }
311 
IsRealRelocMode(Mode mode)312   static inline bool IsRealRelocMode(Mode mode) {
313     return mode >= FIRST_REAL_RELOC_MODE &&
314         mode <= LAST_REAL_RELOC_MODE;
315   }
IsPseudoRelocMode(Mode mode)316   static inline bool IsPseudoRelocMode(Mode mode) {
317     ASSERT(!IsRealRelocMode(mode));
318     return mode >= FIRST_PSEUDO_RELOC_MODE &&
319         mode <= LAST_PSEUDO_RELOC_MODE;
320   }
IsConstructCall(Mode mode)321   static inline bool IsConstructCall(Mode mode) {
322     return mode == CONSTRUCT_CALL;
323   }
IsCodeTarget(Mode mode)324   static inline bool IsCodeTarget(Mode mode) {
325     return mode <= LAST_CODE_ENUM;
326   }
IsEmbeddedObject(Mode mode)327   static inline bool IsEmbeddedObject(Mode mode) {
328     return mode == EMBEDDED_OBJECT;
329   }
IsRuntimeEntry(Mode mode)330   static inline bool IsRuntimeEntry(Mode mode) {
331     return mode == RUNTIME_ENTRY;
332   }
333   // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)334   static inline bool IsGCRelocMode(Mode mode) {
335     return mode <= LAST_GCED_ENUM;
336   }
IsJSReturn(Mode mode)337   static inline bool IsJSReturn(Mode mode) {
338     return mode == JS_RETURN;
339   }
IsComment(Mode mode)340   static inline bool IsComment(Mode mode) {
341     return mode == COMMENT;
342   }
IsConstPool(Mode mode)343   static inline bool IsConstPool(Mode mode) {
344     return mode == CONST_POOL;
345   }
IsPosition(Mode mode)346   static inline bool IsPosition(Mode mode) {
347     return mode == POSITION || mode == STATEMENT_POSITION;
348   }
IsStatementPosition(Mode mode)349   static inline bool IsStatementPosition(Mode mode) {
350     return mode == STATEMENT_POSITION;
351   }
IsExternalReference(Mode mode)352   static inline bool IsExternalReference(Mode mode) {
353     return mode == EXTERNAL_REFERENCE;
354   }
IsInternalReference(Mode mode)355   static inline bool IsInternalReference(Mode mode) {
356     return mode == INTERNAL_REFERENCE;
357   }
IsDebugBreakSlot(Mode mode)358   static inline bool IsDebugBreakSlot(Mode mode) {
359     return mode == DEBUG_BREAK_SLOT;
360   }
IsNone(Mode mode)361   static inline bool IsNone(Mode mode) {
362     return mode == NONE32 || mode == NONE64;
363   }
IsCodeAgeSequence(Mode mode)364   static inline bool IsCodeAgeSequence(Mode mode) {
365     return mode == CODE_AGE_SEQUENCE;
366   }
ModeMask(Mode mode)367   static inline int ModeMask(Mode mode) { return 1 << mode; }
368 
369   // Accessors
pc()370   byte* pc() const { return pc_; }
set_pc(byte * pc)371   void set_pc(byte* pc) { pc_ = pc; }
rmode()372   Mode rmode() const {  return rmode_; }
data()373   intptr_t data() const { return data_; }
data64()374   double data64() const { return data64_; }
raw_data64()375   uint64_t raw_data64() {
376     return BitCast<uint64_t>(data64_);
377   }
host()378   Code* host() const { return host_; }
379 
380   // Apply a relocation by delta bytes
381   INLINE(void apply(intptr_t delta));
382 
383   // Is the pointer this relocation info refers to coded like a plain pointer
384   // or is it strange in some way (e.g. relative or patched into a series of
385   // instructions).
386   bool IsCodedSpecially();
387 
388   // Read/modify the code target in the branch/call instruction
389   // this relocation applies to;
390   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
391   INLINE(Address target_address());
392   INLINE(void set_target_address(Address target,
393                                  WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
394   INLINE(Object* target_object());
395   INLINE(Handle<Object> target_object_handle(Assembler* origin));
396   INLINE(void set_target_object(Object* target,
397                                 WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
398   INLINE(Address target_runtime_entry(Assembler* origin));
399   INLINE(void set_target_runtime_entry(Address target,
400                                        WriteBarrierMode mode =
401                                            UPDATE_WRITE_BARRIER));
402   INLINE(Cell* target_cell());
403   INLINE(Handle<Cell> target_cell_handle());
404   INLINE(void set_target_cell(Cell* cell,
405                               WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
406   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
407   INLINE(Code* code_age_stub());
408   INLINE(void set_code_age_stub(Code* stub));
409 
410   // Read the address of the word containing the target_address in an
411   // instruction stream.  What this means exactly is architecture-independent.
412   // The only architecture-independent user of this function is the serializer.
413   // The serializer uses it to find out how many raw bytes of instruction to
414   // output before the next target.  Architecture-independent code shouldn't
415   // dereference the pointer it gets back from this.
416   INLINE(Address target_address_address());
417   // This indicates how much space a target takes up when deserializing a code
418   // stream.  For most architectures this is just the size of a pointer.  For
419   // an instruction like movw/movt where the target bits are mixed into the
420   // instruction bits the size of the target will be zero, indicating that the
421   // serializer should not step forwards in memory after a target is resolved
422   // and written.  In this case the target_address_address function above
423   // should return the end of the instructions to be patched, allowing the
424   // deserializer to deserialize the instructions as raw bytes and put them in
425   // place, ready to be patched with the target.
426   INLINE(int target_address_size());
427 
428   // Read/modify the reference in the instruction this relocation
429   // applies to; can only be called if rmode_ is external_reference
430   INLINE(Address target_reference());
431 
432   // Read/modify the address of a call instruction. This is used to relocate
433   // the break points where straight-line code is patched with a call
434   // instruction.
435   INLINE(Address call_address());
436   INLINE(void set_call_address(Address target));
437   INLINE(Object* call_object());
438   INLINE(void set_call_object(Object* target));
439   INLINE(Object** call_object_address());
440 
441   // Wipe out a relocation to a fixed value, used for making snapshots
442   // reproducible.
443   INLINE(void WipeOut());
444 
445   template<typename StaticVisitor> inline void Visit(Heap* heap);
446   inline void Visit(Isolate* isolate, ObjectVisitor* v);
447 
448   // Patch the code with some other code.
449   void PatchCode(byte* instructions, int instruction_count);
450 
451   // Patch the code with a call.
452   void PatchCodeWithCall(Address target, int guard_bytes);
453 
454   // Check whether this return sequence has been patched
455   // with a call to the debugger.
456   INLINE(bool IsPatchedReturnSequence());
457 
458   // Check whether this debug break slot has been patched with a call to the
459   // debugger.
460   INLINE(bool IsPatchedDebugBreakSlotSequence());
461 
462 #ifdef DEBUG
463   // Check whether the given code contains relocation information that
464   // either is position-relative or movable by the garbage collector.
465   static bool RequiresRelocation(const CodeDesc& desc);
466 #endif
467 
468 #ifdef ENABLE_DISASSEMBLER
469   // Printing
470   static const char* RelocModeName(Mode rmode);
471   void Print(Isolate* isolate, FILE* out);
472 #endif  // ENABLE_DISASSEMBLER
473 #ifdef VERIFY_HEAP
474   void Verify();
475 #endif
476 
477   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
478   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
479   static const int kDataMask =
480       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
481   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
482 
483  private:
484   // On ARM, note that pc_ is the address of the constant pool entry
485   // to be relocated and not the address of the instruction
486   // referencing the constant pool entry (except when rmode_ ==
487   // comment).
488   byte* pc_;
489   Mode rmode_;
490   union {
491     intptr_t data_;
492     double data64_;
493   };
494   Code* host_;
495   // External-reference pointers are also split across instruction-pairs
496   // on some platforms, but are accessed via indirect pointers. This location
497   // provides a place for that pointer to exist naturally. Its address
498   // is returned by RelocInfo::target_reference_address().
499   Address reconstructed_adr_ptr_;
500   friend class RelocIterator;
501 };
502 
503 
504 // RelocInfoWriter serializes a stream of relocation info. It writes towards
505 // lower addresses.
506 class RelocInfoWriter BASE_EMBEDDED {
507  public:
RelocInfoWriter()508   RelocInfoWriter() : pos_(NULL),
509                       last_pc_(NULL),
510                       last_id_(0),
511                       last_position_(0) {}
RelocInfoWriter(byte * pos,byte * pc)512   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
513                                          last_pc_(pc),
514                                          last_id_(0),
515                                          last_position_(0) {}
516 
pos()517   byte* pos() const { return pos_; }
last_pc()518   byte* last_pc() const { return last_pc_; }
519 
520   void Write(const RelocInfo* rinfo);
521 
522   // Update the state of the stream after reloc info buffer
523   // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)524   void Reposition(byte* pos, byte* pc) {
525     pos_ = pos;
526     last_pc_ = pc;
527   }
528 
529   // Max size (bytes) of a written RelocInfo. Longest encoding is
530   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
531   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
532   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
533   // Here we use the maximum of the two.
534   static const int kMaxSize = 16;
535 
536  private:
537   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
538   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
539   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
540   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
541   inline void WriteExtraTaggedConstPoolData(int data);
542   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
543   inline void WriteTaggedData(intptr_t data_delta, int tag);
544   inline void WriteExtraTag(int extra_tag, int top_tag);
545 
546   byte* pos_;
547   byte* last_pc_;
548   int last_id_;
549   int last_position_;
550   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
551 };
552 
553 
554 // A RelocIterator iterates over relocation information.
555 // Typical use:
556 //
557 //   for (RelocIterator it(code); !it.done(); it.next()) {
558 //     // do something with it.rinfo() here
559 //   }
560 //
561 // A mask can be specified to skip unwanted modes.
562 class RelocIterator: public Malloced {
563  public:
564   // Create a new iterator positioned at
565   // the beginning of the reloc info.
566   // Relocation information with mode k is included in the
567   // iteration iff bit k of mode_mask is set.
568   explicit RelocIterator(Code* code, int mode_mask = -1);
569   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
570 
571   // Iteration
done()572   bool done() const { return done_; }
573   void next();
574 
575   // Return pointer valid until next next().
rinfo()576   RelocInfo* rinfo() {
577     ASSERT(!done());
578     return &rinfo_;
579   }
580 
581  private:
582   // Advance* moves the position before/after reading.
583   // *Read* reads from current byte(s) into rinfo_.
584   // *Get* just reads and returns info on current byte.
585   void Advance(int bytes = 1) { pos_ -= bytes; }
586   int AdvanceGetTag();
587   int GetExtraTag();
588   int GetTopTag();
589   void ReadTaggedPC();
590   void AdvanceReadPC();
591   void AdvanceReadId();
592   void AdvanceReadConstPoolData();
593   void AdvanceReadPosition();
594   void AdvanceReadData();
595   void AdvanceReadVariableLengthPCJump();
596   int GetLocatableTypeTag();
597   void ReadTaggedId();
598   void ReadTaggedPosition();
599 
600   // If the given mode is wanted, set it in rinfo_ and return true.
601   // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)602   bool SetMode(RelocInfo::Mode mode) {
603     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
604   }
605 
606   byte* pos_;
607   byte* end_;
608   byte* code_age_sequence_;
609   RelocInfo rinfo_;
610   bool done_;
611   int mode_mask_;
612   int last_id_;
613   int last_position_;
614   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
615 };
616 
617 
618 //------------------------------------------------------------------------------
619 // External function
620 
621 //----------------------------------------------------------------------------
622 class IC_Utility;
623 class SCTableReference;
624 #ifdef ENABLE_DEBUGGER_SUPPORT
625 class Debug_Address;
626 #endif
627 
628 
629 // An ExternalReference represents a C++ address used in the generated
630 // code. All references to C++ functions and variables must be encapsulated in
631 // an ExternalReference instance. This is done in order to track the origin of
632 // all external references in the code so that they can be bound to the correct
633 // addresses when deserializing a heap.
634 class ExternalReference BASE_EMBEDDED {
635  public:
636   // Used in the simulator to support different native api calls.
637   enum Type {
638     // Builtin call.
639     // MaybeObject* f(v8::internal::Arguments).
640     BUILTIN_CALL,  // default
641 
642     // Builtin that takes float arguments and returns an int.
643     // int f(double, double).
644     BUILTIN_COMPARE_CALL,
645 
646     // Builtin call that returns floating point.
647     // double f(double, double).
648     BUILTIN_FP_FP_CALL,
649 
650     // Builtin call that returns floating point.
651     // double f(double).
652     BUILTIN_FP_CALL,
653 
654     // Builtin call that returns floating point.
655     // double f(double, int).
656     BUILTIN_FP_INT_CALL,
657 
658     // Direct call to API function callback.
659     // void f(v8::FunctionCallbackInfo&)
660     DIRECT_API_CALL,
661 
662     // Call to function callback via InvokeFunctionCallback.
663     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
664     PROFILING_API_CALL,
665 
666     // Direct call to accessor getter callback.
667     // void f(Local<String> property, PropertyCallbackInfo& info)
668     DIRECT_GETTER_CALL,
669 
670     // Call to accessor getter callback via InvokeAccessorGetterCallback.
671     // void f(Local<String> property, PropertyCallbackInfo& info,
672     //     AccessorGetterCallback callback)
673     PROFILING_GETTER_CALL
674   };
675 
676   static void SetUp();
677   static void InitializeMathExpData();
678   static void TearDownMathExpData();
679 
680   typedef void* ExternalReferenceRedirector(void* original, Type type);
681 
ExternalReference()682   ExternalReference() : address_(NULL) {}
683 
684   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
685 
686   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
687 
688   ExternalReference(Builtins::Name name, Isolate* isolate);
689 
690   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
691 
692   ExternalReference(const Runtime::Function* f, Isolate* isolate);
693 
694   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
695 
696 #ifdef ENABLE_DEBUGGER_SUPPORT
697   ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
698 #endif
699 
700   explicit ExternalReference(StatsCounter* counter);
701 
702   ExternalReference(Isolate::AddressId id, Isolate* isolate);
703 
704   explicit ExternalReference(const SCTableReference& table_ref);
705 
706   // Isolate as an external reference.
707   static ExternalReference isolate_address(Isolate* isolate);
708 
709   // One-of-a-kind references. These references are not part of a general
710   // pattern. This means that they have to be added to the
711   // ExternalReferenceTable in serialize.cc manually.
712 
713   static ExternalReference incremental_marking_record_write_function(
714       Isolate* isolate);
715   static ExternalReference incremental_evacuation_record_write_function(
716       Isolate* isolate);
717   static ExternalReference store_buffer_overflow_function(
718       Isolate* isolate);
719   static ExternalReference flush_icache_function(Isolate* isolate);
720   static ExternalReference perform_gc_function(Isolate* isolate);
721   static ExternalReference transcendental_cache_array_address(Isolate* isolate);
722   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
723 
724   static ExternalReference get_date_field_function(Isolate* isolate);
725   static ExternalReference date_cache_stamp(Isolate* isolate);
726 
727   static ExternalReference get_make_code_young_function(Isolate* isolate);
728   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
729 
730   // Deoptimization support.
731   static ExternalReference new_deoptimizer_function(Isolate* isolate);
732   static ExternalReference compute_output_frames_function(Isolate* isolate);
733 
734   // Log support.
735   static ExternalReference log_enter_external_function(Isolate* isolate);
736   static ExternalReference log_leave_external_function(Isolate* isolate);
737 
738   // Static data in the keyed lookup cache.
739   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
740   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
741 
742   // Static variable Heap::roots_array_start()
743   static ExternalReference roots_array_start(Isolate* isolate);
744 
745   // Static variable Heap::allocation_sites_list_address()
746   static ExternalReference allocation_sites_list_address(Isolate* isolate);
747 
748   // Static variable StackGuard::address_of_jslimit()
749   static ExternalReference address_of_stack_limit(Isolate* isolate);
750 
751   // Static variable StackGuard::address_of_real_jslimit()
752   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
753 
754   // Static variable RegExpStack::limit_address()
755   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
756 
757   // Static variables for RegExp.
758   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
759   static ExternalReference address_of_regexp_stack_memory_address(
760       Isolate* isolate);
761   static ExternalReference address_of_regexp_stack_memory_size(
762       Isolate* isolate);
763 
764   // Static variable Heap::NewSpaceStart()
765   static ExternalReference new_space_start(Isolate* isolate);
766   static ExternalReference new_space_mask(Isolate* isolate);
767   static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
768   static ExternalReference new_space_mark_bits(Isolate* isolate);
769 
770   // Write barrier.
771   static ExternalReference store_buffer_top(Isolate* isolate);
772 
773   // Used for fast allocation in generated code.
774   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
775   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
776   static ExternalReference old_pointer_space_allocation_top_address(
777       Isolate* isolate);
778   static ExternalReference old_pointer_space_allocation_limit_address(
779       Isolate* isolate);
780   static ExternalReference old_data_space_allocation_top_address(
781       Isolate* isolate);
782   static ExternalReference old_data_space_allocation_limit_address(
783       Isolate* isolate);
784   static ExternalReference new_space_high_promotion_mode_active_address(
785       Isolate* isolate);
786 
787   static ExternalReference double_fp_operation(Token::Value operation,
788                                                Isolate* isolate);
789   static ExternalReference compare_doubles(Isolate* isolate);
790   static ExternalReference power_double_double_function(Isolate* isolate);
791   static ExternalReference power_double_int_function(Isolate* isolate);
792 
793   static ExternalReference handle_scope_next_address(Isolate* isolate);
794   static ExternalReference handle_scope_limit_address(Isolate* isolate);
795   static ExternalReference handle_scope_level_address(Isolate* isolate);
796 
797   static ExternalReference scheduled_exception_address(Isolate* isolate);
798   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
799   static ExternalReference address_of_has_pending_message(Isolate* isolate);
800   static ExternalReference address_of_pending_message_script(Isolate* isolate);
801 
802   // Static variables containing common double constants.
803   static ExternalReference address_of_min_int();
804   static ExternalReference address_of_one_half();
805   static ExternalReference address_of_minus_one_half();
806   static ExternalReference address_of_minus_zero();
807   static ExternalReference address_of_zero();
808   static ExternalReference address_of_uint8_max_value();
809   static ExternalReference address_of_negative_infinity();
810   static ExternalReference address_of_canonical_non_hole_nan();
811   static ExternalReference address_of_the_hole_nan();
812   static ExternalReference address_of_uint32_bias();
813 
814   static ExternalReference math_sin_double_function(Isolate* isolate);
815   static ExternalReference math_cos_double_function(Isolate* isolate);
816   static ExternalReference math_tan_double_function(Isolate* isolate);
817   static ExternalReference math_log_double_function(Isolate* isolate);
818 
819   static ExternalReference math_exp_constants(int constant_index);
820   static ExternalReference math_exp_log_table();
821 
822   static ExternalReference page_flags(Page* page);
823 
824   static ExternalReference ForDeoptEntry(Address entry);
825 
826   static ExternalReference cpu_features();
827 
address()828   Address address() const { return reinterpret_cast<Address>(address_); }
829 
830 #ifdef ENABLE_DEBUGGER_SUPPORT
831   // Function Debug::Break()
832   static ExternalReference debug_break(Isolate* isolate);
833 
834   // Used to check if single stepping is enabled in generated code.
835   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
836 #endif
837 
838 #ifndef V8_INTERPRETED_REGEXP
839   // C functions called from RegExp generated code.
840 
841   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
842   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
843 
844   // Function RegExpMacroAssembler*::CheckStackGuardState()
845   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
846 
847   // Function NativeRegExpMacroAssembler::GrowStack()
848   static ExternalReference re_grow_stack(Isolate* isolate);
849 
850   // byte NativeRegExpMacroAssembler::word_character_bitmap
851   static ExternalReference re_word_character_map();
852 
853 #endif
854 
855   // This lets you register a function that rewrites all external references.
856   // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)857   static void set_redirector(Isolate* isolate,
858                              ExternalReferenceRedirector* redirector) {
859     // We can't stack them.
860     ASSERT(isolate->external_reference_redirector() == NULL);
861     isolate->set_external_reference_redirector(
862         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
863   }
864 
865   static ExternalReference stress_deopt_count(Isolate* isolate);
866 
867   bool operator==(const ExternalReference& other) const {
868     return address_ == other.address_;
869   }
870 
871   bool operator!=(const ExternalReference& other) const {
872     return !(*this == other);
873   }
874 
875  private:
ExternalReference(void * address)876   explicit ExternalReference(void* address)
877       : address_(address) {}
878 
879   static void* Redirect(Isolate* isolate,
880                         void* address,
881                         Type type = ExternalReference::BUILTIN_CALL) {
882     ExternalReferenceRedirector* redirector =
883         reinterpret_cast<ExternalReferenceRedirector*>(
884             isolate->external_reference_redirector());
885     if (redirector == NULL) return address;
886     void* answer = (*redirector)(address, type);
887     return answer;
888   }
889 
890   static void* Redirect(Isolate* isolate,
891                         Address address_arg,
892                         Type type = ExternalReference::BUILTIN_CALL) {
893     ExternalReferenceRedirector* redirector =
894         reinterpret_cast<ExternalReferenceRedirector*>(
895             isolate->external_reference_redirector());
896     void* address = reinterpret_cast<void*>(address_arg);
897     void* answer = (redirector == NULL) ?
898                    address :
899                    (*redirector)(address, type);
900     return answer;
901   }
902 
903   void* address_;
904 };
905 
906 
907 // -----------------------------------------------------------------------------
908 // Position recording support
909 
910 struct PositionState {
PositionStatePositionState911   PositionState() : current_position(RelocInfo::kNoPosition),
912                     written_position(RelocInfo::kNoPosition),
913                     current_statement_position(RelocInfo::kNoPosition),
914                     written_statement_position(RelocInfo::kNoPosition) {}
915 
916   int current_position;
917   int written_position;
918 
919   int current_statement_position;
920   int written_statement_position;
921 };
922 
923 
924 class PositionsRecorder BASE_EMBEDDED {
925  public:
PositionsRecorder(Assembler * assembler)926   explicit PositionsRecorder(Assembler* assembler)
927       : assembler_(assembler) {
928 #ifdef ENABLE_GDB_JIT_INTERFACE
929     gdbjit_lineinfo_ = NULL;
930 #endif
931     jit_handler_data_ = NULL;
932   }
933 
934 #ifdef ENABLE_GDB_JIT_INTERFACE
~PositionsRecorder()935   ~PositionsRecorder() {
936     delete gdbjit_lineinfo_;
937   }
938 
StartGDBJITLineInfoRecording()939   void StartGDBJITLineInfoRecording() {
940     if (FLAG_gdbjit) {
941       gdbjit_lineinfo_ = new GDBJITLineInfo();
942     }
943   }
944 
DetachGDBJITLineInfo()945   GDBJITLineInfo* DetachGDBJITLineInfo() {
946     GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
947     gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
948     return lineinfo;
949   }
950 #endif
AttachJITHandlerData(void * user_data)951   void AttachJITHandlerData(void* user_data) {
952     jit_handler_data_ = user_data;
953   }
954 
DetachJITHandlerData()955   void* DetachJITHandlerData() {
956     void* old_data = jit_handler_data_;
957     jit_handler_data_ = NULL;
958     return old_data;
959   }
960   // Set current position to pos.
961   void RecordPosition(int pos);
962 
963   // Set current statement position to pos.
964   void RecordStatementPosition(int pos);
965 
966   // Write recorded positions to relocation information.
967   bool WriteRecordedPositions();
968 
current_position()969   int current_position() const { return state_.current_position; }
970 
current_statement_position()971   int current_statement_position() const {
972     return state_.current_statement_position;
973   }
974 
975  private:
976   Assembler* assembler_;
977   PositionState state_;
978 #ifdef ENABLE_GDB_JIT_INTERFACE
979   GDBJITLineInfo* gdbjit_lineinfo_;
980 #endif
981 
982   // Currently jit_handler_data_ is used to store JITHandler-specific data
983   // over the lifetime of a PositionsRecorder
984   void* jit_handler_data_;
985   friend class PreservePositionScope;
986 
987   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
988 };
989 
990 
991 class PreservePositionScope BASE_EMBEDDED {
992  public:
PreservePositionScope(PositionsRecorder * positions_recorder)993   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
994       : positions_recorder_(positions_recorder),
995         saved_state_(positions_recorder->state_) {}
996 
~PreservePositionScope()997   ~PreservePositionScope() {
998     positions_recorder_->state_ = saved_state_;
999   }
1000 
1001  private:
1002   PositionsRecorder* positions_recorder_;
1003   const PositionState saved_state_;
1004 
1005   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
1006 };
1007 
1008 
1009 // -----------------------------------------------------------------------------
1010 // Utility functions
1011 
is_intn(int x,int n)1012 inline bool is_intn(int x, int n)  {
1013   return -(1 << (n-1)) <= x && x < (1 << (n-1));
1014 }
1015 
is_int8(int x)1016 inline bool is_int8(int x)  { return is_intn(x, 8); }
is_int16(int x)1017 inline bool is_int16(int x)  { return is_intn(x, 16); }
is_int18(int x)1018 inline bool is_int18(int x)  { return is_intn(x, 18); }
is_int24(int x)1019 inline bool is_int24(int x)  { return is_intn(x, 24); }
1020 
is_uintn(int x,int n)1021 inline bool is_uintn(int x, int n) {
1022   return (x & -(1 << n)) == 0;
1023 }
1024 
is_uint2(int x)1025 inline bool is_uint2(int x)  { return is_uintn(x, 2); }
is_uint3(int x)1026 inline bool is_uint3(int x)  { return is_uintn(x, 3); }
is_uint4(int x)1027 inline bool is_uint4(int x)  { return is_uintn(x, 4); }
is_uint5(int x)1028 inline bool is_uint5(int x)  { return is_uintn(x, 5); }
is_uint6(int x)1029 inline bool is_uint6(int x)  { return is_uintn(x, 6); }
is_uint8(int x)1030 inline bool is_uint8(int x)  { return is_uintn(x, 8); }
is_uint10(int x)1031 inline bool is_uint10(int x)  { return is_uintn(x, 10); }
is_uint12(int x)1032 inline bool is_uint12(int x)  { return is_uintn(x, 12); }
is_uint16(int x)1033 inline bool is_uint16(int x)  { return is_uintn(x, 16); }
is_uint24(int x)1034 inline bool is_uint24(int x)  { return is_uintn(x, 24); }
is_uint26(int x)1035 inline bool is_uint26(int x)  { return is_uintn(x, 26); }
is_uint28(int x)1036 inline bool is_uint28(int x)  { return is_uintn(x, 28); }
1037 
NumberOfBitsSet(uint32_t x)1038 inline int NumberOfBitsSet(uint32_t x) {
1039   unsigned int num_bits_set;
1040   for (num_bits_set = 0; x; x >>= 1) {
1041     num_bits_set += x & 1;
1042   }
1043   return num_bits_set;
1044 }
1045 
1046 bool EvalComparison(Token::Value op, double op1, double op2);
1047 
1048 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1049 double power_helper(double x, double y);
1050 double power_double_int(double x, int y);
1051 double power_double_double(double x, double y);
1052 
1053 // Helper class for generating code or data associated with the code
1054 // right after a call instruction. As an example this can be used to
1055 // generate safepoint data after calls for crankshaft.
1056 class CallWrapper {
1057  public:
CallWrapper()1058   CallWrapper() { }
~CallWrapper()1059   virtual ~CallWrapper() { }
1060   // Called just before emitting a call. Argument is the size of the generated
1061   // call code.
1062   virtual void BeforeCall(int call_size) const = 0;
1063   // Called just after emitting a call, i.e., at the return site for the call.
1064   virtual void AfterCall() const = 0;
1065 };
1066 
1067 class NullCallWrapper : public CallWrapper {
1068  public:
NullCallWrapper()1069   NullCallWrapper() { }
~NullCallWrapper()1070   virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1071   virtual void BeforeCall(int call_size) const { }
AfterCall()1072   virtual void AfterCall() const { }
1073 };
1074 
1075 } }  // namespace v8::internal
1076 
1077 #endif  // V8_ASSEMBLER_H_
1078