1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "codegen.h"
32 #include "deoptimizer.h"
33 #include "disasm.h"
34 #include "full-codegen.h"
35 #include "global-handles.h"
36 #include "macro-assembler.h"
37 #include "prettyprinter.h"
38
39
40 namespace v8 {
41 namespace internal {
42
AllocateCodeChunk(MemoryAllocator * allocator)43 static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
44 return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
45 OS::CommitPageSize(),
46 #if defined(__native_client__)
47 // The Native Client port of V8 uses an interpreter,
48 // so code pages don't need PROT_EXEC.
49 NOT_EXECUTABLE,
50 #else
51 EXECUTABLE,
52 #endif
53 NULL);
54 }
55
56
DeoptimizerData(MemoryAllocator * allocator)57 DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
58 : allocator_(allocator),
59 #ifdef ENABLE_DEBUGGER_SUPPORT
60 deoptimized_frame_info_(NULL),
61 #endif
62 current_(NULL) {
63 for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
64 deopt_entry_code_entries_[i] = -1;
65 deopt_entry_code_[i] = AllocateCodeChunk(allocator);
66 }
67 }
68
69
~DeoptimizerData()70 DeoptimizerData::~DeoptimizerData() {
71 for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
72 allocator_->Free(deopt_entry_code_[i]);
73 deopt_entry_code_[i] = NULL;
74 }
75 }
76
77
78 #ifdef ENABLE_DEBUGGER_SUPPORT
Iterate(ObjectVisitor * v)79 void DeoptimizerData::Iterate(ObjectVisitor* v) {
80 if (deoptimized_frame_info_ != NULL) {
81 deoptimized_frame_info_->Iterate(v);
82 }
83 }
84 #endif
85
86
FindDeoptimizingCode(Address addr)87 Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
88 if (function_->IsHeapObject()) {
89 // Search all deoptimizing code in the native context of the function.
90 Context* native_context = function_->context()->native_context();
91 Object* element = native_context->DeoptimizedCodeListHead();
92 while (!element->IsUndefined()) {
93 Code* code = Code::cast(element);
94 ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
95 if (code->contains(addr)) return code;
96 element = code->next_code_link();
97 }
98 }
99 return NULL;
100 }
101
102
103 // We rely on this function not causing a GC. It is called from generated code
104 // without having a real stack frame in place.
New(JSFunction * function,BailoutType type,unsigned bailout_id,Address from,int fp_to_sp_delta,Isolate * isolate)105 Deoptimizer* Deoptimizer::New(JSFunction* function,
106 BailoutType type,
107 unsigned bailout_id,
108 Address from,
109 int fp_to_sp_delta,
110 Isolate* isolate) {
111 Deoptimizer* deoptimizer = new Deoptimizer(isolate,
112 function,
113 type,
114 bailout_id,
115 from,
116 fp_to_sp_delta,
117 NULL);
118 ASSERT(isolate->deoptimizer_data()->current_ == NULL);
119 isolate->deoptimizer_data()->current_ = deoptimizer;
120 return deoptimizer;
121 }
122
123
124 // No larger than 2K on all platforms
125 static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
126
127
GetMaxDeoptTableSize()128 size_t Deoptimizer::GetMaxDeoptTableSize() {
129 int entries_size =
130 Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
131 int commit_page_size = static_cast<int>(OS::CommitPageSize());
132 int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
133 commit_page_size) + 1;
134 return static_cast<size_t>(commit_page_size * page_count);
135 }
136
137
Grab(Isolate * isolate)138 Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
139 Deoptimizer* result = isolate->deoptimizer_data()->current_;
140 ASSERT(result != NULL);
141 result->DeleteFrameDescriptions();
142 isolate->deoptimizer_data()->current_ = NULL;
143 return result;
144 }
145
146
ConvertJSFrameIndexToFrameIndex(int jsframe_index)147 int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
148 if (jsframe_index == 0) return 0;
149
150 int frame_index = 0;
151 while (jsframe_index >= 0) {
152 FrameDescription* frame = output_[frame_index];
153 if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
154 jsframe_index--;
155 }
156 frame_index++;
157 }
158
159 return frame_index - 1;
160 }
161
162
163 #ifdef ENABLE_DEBUGGER_SUPPORT
DebuggerInspectableFrame(JavaScriptFrame * frame,int jsframe_index,Isolate * isolate)164 DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
165 JavaScriptFrame* frame,
166 int jsframe_index,
167 Isolate* isolate) {
168 ASSERT(frame->is_optimized());
169 ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
170
171 // Get the function and code from the frame.
172 JSFunction* function = frame->function();
173 Code* code = frame->LookupCode();
174
175 // Locate the deoptimization point in the code. As we are at a call the
176 // return address must be at a place in the code with deoptimization support.
177 SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
178 int deoptimization_index = safepoint_entry.deoptimization_index();
179 ASSERT(deoptimization_index != Safepoint::kNoDeoptimizationIndex);
180
181 // Always use the actual stack slots when calculating the fp to sp
182 // delta adding two for the function and context.
183 unsigned stack_slots = code->stack_slots();
184 unsigned fp_to_sp_delta = (stack_slots * kPointerSize) +
185 StandardFrameConstants::kFixedFrameSizeFromFp;
186
187 Deoptimizer* deoptimizer = new Deoptimizer(isolate,
188 function,
189 Deoptimizer::DEBUGGER,
190 deoptimization_index,
191 frame->pc(),
192 fp_to_sp_delta,
193 code);
194 Address tos = frame->fp() - fp_to_sp_delta;
195 deoptimizer->FillInputFrame(tos, frame);
196
197 // Calculate the output frames.
198 Deoptimizer::ComputeOutputFrames(deoptimizer);
199
200 // Create the GC safe output frame information and register it for GC
201 // handling.
202 ASSERT_LT(jsframe_index, deoptimizer->jsframe_count());
203
204 // Convert JS frame index into frame index.
205 int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
206
207 bool has_arguments_adaptor =
208 frame_index > 0 &&
209 deoptimizer->output_[frame_index - 1]->GetFrameType() ==
210 StackFrame::ARGUMENTS_ADAPTOR;
211
212 int construct_offset = has_arguments_adaptor ? 2 : 1;
213 bool has_construct_stub =
214 frame_index >= construct_offset &&
215 deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
216 StackFrame::CONSTRUCT;
217
218 DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
219 frame_index,
220 has_arguments_adaptor,
221 has_construct_stub);
222 isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
223
224 // Get the "simulated" top and size for the requested frame.
225 FrameDescription* parameters_frame =
226 deoptimizer->output_[
227 has_arguments_adaptor ? (frame_index - 1) : frame_index];
228
229 uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize;
230 Address parameters_top = reinterpret_cast<Address>(
231 parameters_frame->GetTop() + (parameters_frame->GetFrameSize() -
232 parameters_size));
233
234 uint32_t expressions_size = info->expression_count() * kPointerSize;
235 Address expressions_top = reinterpret_cast<Address>(
236 deoptimizer->output_[frame_index]->GetTop());
237
238 // Done with the GC-unsafe frame descriptions. This re-enables allocation.
239 deoptimizer->DeleteFrameDescriptions();
240
241 // Allocate a heap number for the doubles belonging to this frame.
242 deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
243 parameters_top, parameters_size, expressions_top, expressions_size, info);
244
245 // Finished using the deoptimizer instance.
246 delete deoptimizer;
247
248 return info;
249 }
250
251
DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo * info,Isolate * isolate)252 void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
253 Isolate* isolate) {
254 ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == info);
255 delete info;
256 isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
257 }
258 #endif
259
GenerateDeoptimizationEntries(MacroAssembler * masm,int count,BailoutType type)260 void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
261 int count,
262 BailoutType type) {
263 TableEntryGenerator generator(masm, type, count);
264 generator.Generate();
265 }
266
267
VisitAllOptimizedFunctionsForContext(Context * context,OptimizedFunctionVisitor * visitor)268 void Deoptimizer::VisitAllOptimizedFunctionsForContext(
269 Context* context, OptimizedFunctionVisitor* visitor) {
270 DisallowHeapAllocation no_allocation;
271
272 ASSERT(context->IsNativeContext());
273
274 visitor->EnterContext(context);
275
276 // Visit the list of optimized functions, removing elements that
277 // no longer refer to optimized code.
278 JSFunction* prev = NULL;
279 Object* element = context->OptimizedFunctionsListHead();
280 while (!element->IsUndefined()) {
281 JSFunction* function = JSFunction::cast(element);
282 Object* next = function->next_function_link();
283 if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
284 (visitor->VisitFunction(function),
285 function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
286 // The function no longer refers to optimized code, or the visitor
287 // changed the code to which it refers to no longer be optimized code.
288 // Remove the function from this list.
289 if (prev != NULL) {
290 prev->set_next_function_link(next);
291 } else {
292 context->SetOptimizedFunctionsListHead(next);
293 }
294 // The visitor should not alter the link directly.
295 ASSERT(function->next_function_link() == next);
296 // Set the next function link to undefined to indicate it is no longer
297 // in the optimized functions list.
298 function->set_next_function_link(context->GetHeap()->undefined_value());
299 } else {
300 // The visitor should not alter the link directly.
301 ASSERT(function->next_function_link() == next);
302 // preserve this element.
303 prev = function;
304 }
305 element = next;
306 }
307
308 visitor->LeaveContext(context);
309 }
310
311
VisitAllOptimizedFunctions(Isolate * isolate,OptimizedFunctionVisitor * visitor)312 void Deoptimizer::VisitAllOptimizedFunctions(
313 Isolate* isolate,
314 OptimizedFunctionVisitor* visitor) {
315 DisallowHeapAllocation no_allocation;
316
317 // Run through the list of all native contexts.
318 Object* context = isolate->heap()->native_contexts_list();
319 while (!context->IsUndefined()) {
320 VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
321 context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
322 }
323 }
324
325
326 // Unlink functions referring to code marked for deoptimization, then move
327 // marked code from the optimized code list to the deoptimized code list,
328 // and patch code for lazy deopt.
DeoptimizeMarkedCodeForContext(Context * context)329 void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
330 DisallowHeapAllocation no_allocation;
331
332 // A "closure" that unlinks optimized code that is going to be
333 // deoptimized from the functions that refer to it.
334 class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
335 public:
336 virtual void EnterContext(Context* context) { } // Don't care.
337 virtual void LeaveContext(Context* context) { } // Don't care.
338 virtual void VisitFunction(JSFunction* function) {
339 Code* code = function->code();
340 if (!code->marked_for_deoptimization()) return;
341
342 // Unlink this function and evict from optimized code map.
343 SharedFunctionInfo* shared = function->shared();
344 function->set_code(shared->code());
345 shared->EvictFromOptimizedCodeMap(code, "deoptimized function");
346
347 if (FLAG_trace_deopt) {
348 CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
349 PrintF(scope.file(), "[deoptimizer unlinked: ");
350 function->PrintName(scope.file());
351 PrintF(scope.file(),
352 " / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
353 }
354 }
355 };
356
357 // Unlink all functions that refer to marked code.
358 SelectedCodeUnlinker unlinker;
359 VisitAllOptimizedFunctionsForContext(context, &unlinker);
360
361 // Move marked code from the optimized code list to the deoptimized
362 // code list, collecting them into a ZoneList.
363 Isolate* isolate = context->GetHeap()->isolate();
364 Zone zone(isolate);
365 ZoneList<Code*> codes(10, &zone);
366
367 // Walk over all optimized code objects in this native context.
368 Code* prev = NULL;
369 Object* element = context->OptimizedCodeListHead();
370 while (!element->IsUndefined()) {
371 Code* code = Code::cast(element);
372 ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
373 Object* next = code->next_code_link();
374 if (code->marked_for_deoptimization()) {
375 // Put the code into the list for later patching.
376 codes.Add(code, &zone);
377
378 if (prev != NULL) {
379 // Skip this code in the optimized code list.
380 prev->set_next_code_link(next);
381 } else {
382 // There was no previous node, the next node is the new head.
383 context->SetOptimizedCodeListHead(next);
384 }
385
386 // Move the code to the _deoptimized_ code list.
387 code->set_next_code_link(context->DeoptimizedCodeListHead());
388 context->SetDeoptimizedCodeListHead(code);
389 } else {
390 // Not marked; preserve this element.
391 prev = code;
392 }
393 element = next;
394 }
395
396 // TODO(titzer): we need a handle scope only because of the macro assembler,
397 // which is only used in EnsureCodeForDeoptimizationEntry.
398 HandleScope scope(isolate);
399 // Now patch all the codes for deoptimization.
400 for (int i = 0; i < codes.length(); i++) {
401 // It is finally time to die, code object.
402 // Do platform-specific patching to force any activations to lazy deopt.
403 PatchCodeForDeoptimization(isolate, codes[i]);
404
405 // We might be in the middle of incremental marking with compaction.
406 // Tell collector to treat this code object in a special way and
407 // ignore all slots that might have been recorded on it.
408 isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
409 }
410 }
411
412
DeoptimizeAll(Isolate * isolate)413 void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
414 if (FLAG_trace_deopt) {
415 CodeTracer::Scope scope(isolate->GetCodeTracer());
416 PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
417 }
418 DisallowHeapAllocation no_allocation;
419 // For all contexts, mark all code, then deoptimize.
420 Object* context = isolate->heap()->native_contexts_list();
421 while (!context->IsUndefined()) {
422 Context* native_context = Context::cast(context);
423 MarkAllCodeForContext(native_context);
424 DeoptimizeMarkedCodeForContext(native_context);
425 context = native_context->get(Context::NEXT_CONTEXT_LINK);
426 }
427 }
428
429
DeoptimizeMarkedCode(Isolate * isolate)430 void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
431 if (FLAG_trace_deopt) {
432 CodeTracer::Scope scope(isolate->GetCodeTracer());
433 PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
434 }
435 DisallowHeapAllocation no_allocation;
436 // For all contexts, deoptimize code already marked.
437 Object* context = isolate->heap()->native_contexts_list();
438 while (!context->IsUndefined()) {
439 Context* native_context = Context::cast(context);
440 DeoptimizeMarkedCodeForContext(native_context);
441 context = native_context->get(Context::NEXT_CONTEXT_LINK);
442 }
443 }
444
445
DeoptimizeGlobalObject(JSObject * object)446 void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) {
447 if (FLAG_trace_deopt) {
448 CodeTracer::Scope scope(object->GetHeap()->isolate()->GetCodeTracer());
449 PrintF(scope.file(), "[deoptimize global object @ 0x%08" V8PRIxPTR "]\n",
450 reinterpret_cast<intptr_t>(object));
451 }
452 if (object->IsJSGlobalProxy()) {
453 Object* proto = object->GetPrototype();
454 ASSERT(proto->IsJSGlobalObject());
455 Context* native_context = GlobalObject::cast(proto)->native_context();
456 MarkAllCodeForContext(native_context);
457 DeoptimizeMarkedCodeForContext(native_context);
458 } else if (object->IsGlobalObject()) {
459 Context* native_context = GlobalObject::cast(object)->native_context();
460 MarkAllCodeForContext(native_context);
461 DeoptimizeMarkedCodeForContext(native_context);
462 }
463 }
464
465
MarkAllCodeForContext(Context * context)466 void Deoptimizer::MarkAllCodeForContext(Context* context) {
467 Object* element = context->OptimizedCodeListHead();
468 while (!element->IsUndefined()) {
469 Code* code = Code::cast(element);
470 ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
471 code->set_marked_for_deoptimization(true);
472 element = code->next_code_link();
473 }
474 }
475
476
DeoptimizeFunction(JSFunction * function)477 void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
478 Code* code = function->code();
479 if (code->kind() == Code::OPTIMIZED_FUNCTION) {
480 // Mark the code for deoptimization and unlink any functions that also
481 // refer to that code. The code cannot be shared across native contexts,
482 // so we only need to search one.
483 code->set_marked_for_deoptimization(true);
484 DeoptimizeMarkedCodeForContext(function->context()->native_context());
485 }
486 }
487
488
ComputeOutputFrames(Deoptimizer * deoptimizer)489 void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
490 deoptimizer->DoComputeOutputFrames();
491 }
492
493
TraceEnabledFor(BailoutType deopt_type,StackFrame::Type frame_type)494 bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
495 StackFrame::Type frame_type) {
496 switch (deopt_type) {
497 case EAGER:
498 case SOFT:
499 case LAZY:
500 case DEBUGGER:
501 return (frame_type == StackFrame::STUB)
502 ? FLAG_trace_stub_failures
503 : FLAG_trace_deopt;
504 }
505 UNREACHABLE();
506 return false;
507 }
508
509
MessageFor(BailoutType type)510 const char* Deoptimizer::MessageFor(BailoutType type) {
511 switch (type) {
512 case EAGER: return "eager";
513 case SOFT: return "soft";
514 case LAZY: return "lazy";
515 case DEBUGGER: return "debugger";
516 }
517 UNREACHABLE();
518 return NULL;
519 }
520
521
Deoptimizer(Isolate * isolate,JSFunction * function,BailoutType type,unsigned bailout_id,Address from,int fp_to_sp_delta,Code * optimized_code)522 Deoptimizer::Deoptimizer(Isolate* isolate,
523 JSFunction* function,
524 BailoutType type,
525 unsigned bailout_id,
526 Address from,
527 int fp_to_sp_delta,
528 Code* optimized_code)
529 : isolate_(isolate),
530 function_(function),
531 bailout_id_(bailout_id),
532 bailout_type_(type),
533 from_(from),
534 fp_to_sp_delta_(fp_to_sp_delta),
535 has_alignment_padding_(0),
536 input_(NULL),
537 output_count_(0),
538 jsframe_count_(0),
539 output_(NULL),
540 deferred_objects_tagged_values_(0),
541 deferred_objects_double_values_(0),
542 deferred_objects_(0),
543 deferred_heap_numbers_(0),
544 jsframe_functions_(0),
545 jsframe_has_adapted_arguments_(0),
546 materialized_values_(NULL),
547 materialized_objects_(NULL),
548 materialization_value_index_(0),
549 materialization_object_index_(0),
550 trace_scope_(NULL) {
551 // For COMPILED_STUBs called from builtins, the function pointer is a SMI
552 // indicating an internal frame.
553 if (function->IsSmi()) {
554 function = NULL;
555 }
556 ASSERT(from != NULL);
557 if (function != NULL && function->IsOptimized()) {
558 function->shared()->increment_deopt_count();
559 if (bailout_type_ == Deoptimizer::SOFT) {
560 isolate->counters()->soft_deopts_executed()->Increment();
561 // Soft deopts shouldn't count against the overall re-optimization count
562 // that can eventually lead to disabling optimization for a function.
563 int opt_count = function->shared()->opt_count();
564 if (opt_count > 0) opt_count--;
565 function->shared()->set_opt_count(opt_count);
566 }
567 }
568 compiled_code_ = FindOptimizedCode(function, optimized_code);
569
570 #if DEBUG
571 ASSERT(compiled_code_ != NULL);
572 if (type == EAGER || type == SOFT || type == LAZY) {
573 ASSERT(compiled_code_->kind() != Code::FUNCTION);
574 }
575 #endif
576
577 StackFrame::Type frame_type = function == NULL
578 ? StackFrame::STUB
579 : StackFrame::JAVA_SCRIPT;
580 trace_scope_ = TraceEnabledFor(type, frame_type) ?
581 new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
582 #ifdef DEBUG
583 CHECK(AllowHeapAllocation::IsAllowed());
584 disallow_heap_allocation_ = new DisallowHeapAllocation();
585 #endif // DEBUG
586 unsigned size = ComputeInputFrameSize();
587 input_ = new(size) FrameDescription(size, function);
588 input_->SetFrameType(frame_type);
589 }
590
591
FindOptimizedCode(JSFunction * function,Code * optimized_code)592 Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
593 Code* optimized_code) {
594 switch (bailout_type_) {
595 case Deoptimizer::SOFT:
596 case Deoptimizer::EAGER:
597 case Deoptimizer::LAZY: {
598 Code* compiled_code = FindDeoptimizingCode(from_);
599 return (compiled_code == NULL)
600 ? static_cast<Code*>(isolate_->FindCodeObject(from_))
601 : compiled_code;
602 }
603 case Deoptimizer::DEBUGGER:
604 ASSERT(optimized_code->contains(from_));
605 return optimized_code;
606 }
607 UNREACHABLE();
608 return NULL;
609 }
610
611
PrintFunctionName()612 void Deoptimizer::PrintFunctionName() {
613 if (function_->IsJSFunction()) {
614 function_->PrintName(trace_scope_->file());
615 } else {
616 PrintF(trace_scope_->file(),
617 "%s", Code::Kind2String(compiled_code_->kind()));
618 }
619 }
620
621
~Deoptimizer()622 Deoptimizer::~Deoptimizer() {
623 ASSERT(input_ == NULL && output_ == NULL);
624 ASSERT(disallow_heap_allocation_ == NULL);
625 delete trace_scope_;
626 }
627
628
DeleteFrameDescriptions()629 void Deoptimizer::DeleteFrameDescriptions() {
630 delete input_;
631 for (int i = 0; i < output_count_; ++i) {
632 if (output_[i] != input_) delete output_[i];
633 }
634 delete[] output_;
635 input_ = NULL;
636 output_ = NULL;
637 #ifdef DEBUG
638 CHECK(!AllowHeapAllocation::IsAllowed());
639 CHECK(disallow_heap_allocation_ != NULL);
640 delete disallow_heap_allocation_;
641 disallow_heap_allocation_ = NULL;
642 #endif // DEBUG
643 }
644
645
GetDeoptimizationEntry(Isolate * isolate,int id,BailoutType type,GetEntryMode mode)646 Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
647 int id,
648 BailoutType type,
649 GetEntryMode mode) {
650 ASSERT(id >= 0);
651 if (id >= kMaxNumberOfEntries) return NULL;
652 if (mode == ENSURE_ENTRY_CODE) {
653 EnsureCodeForDeoptimizationEntry(isolate, type, id);
654 } else {
655 ASSERT(mode == CALCULATE_ENTRY_ADDRESS);
656 }
657 DeoptimizerData* data = isolate->deoptimizer_data();
658 ASSERT(type < kBailoutTypesWithCodeEntry);
659 MemoryChunk* base = data->deopt_entry_code_[type];
660 return base->area_start() + (id * table_entry_size_);
661 }
662
663
GetDeoptimizationId(Isolate * isolate,Address addr,BailoutType type)664 int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
665 Address addr,
666 BailoutType type) {
667 DeoptimizerData* data = isolate->deoptimizer_data();
668 MemoryChunk* base = data->deopt_entry_code_[type];
669 Address start = base->area_start();
670 if (base == NULL ||
671 addr < start ||
672 addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
673 return kNotDeoptimizationEntry;
674 }
675 ASSERT_EQ(0,
676 static_cast<int>(addr - start) % table_entry_size_);
677 return static_cast<int>(addr - start) / table_entry_size_;
678 }
679
680
GetOutputInfo(DeoptimizationOutputData * data,BailoutId id,SharedFunctionInfo * shared)681 int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
682 BailoutId id,
683 SharedFunctionInfo* shared) {
684 // TODO(kasperl): For now, we do a simple linear search for the PC
685 // offset associated with the given node id. This should probably be
686 // changed to a binary search.
687 int length = data->DeoptPoints();
688 for (int i = 0; i < length; i++) {
689 if (data->AstId(i) == id) {
690 return data->PcAndState(i)->value();
691 }
692 }
693 PrintF(stderr, "[couldn't find pc offset for node=%d]\n", id.ToInt());
694 PrintF(stderr, "[method: %s]\n", *shared->DebugName()->ToCString());
695 // Print the source code if available.
696 HeapStringAllocator string_allocator;
697 StringStream stream(&string_allocator);
698 shared->SourceCodePrint(&stream, -1);
699 PrintF(stderr, "[source:\n%s\n]", *stream.ToCString());
700
701 FATAL("unable to find pc offset during deoptimization");
702 return -1;
703 }
704
705
GetDeoptimizedCodeCount(Isolate * isolate)706 int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
707 int length = 0;
708 // Count all entries in the deoptimizing code list of every context.
709 Object* context = isolate->heap()->native_contexts_list();
710 while (!context->IsUndefined()) {
711 Context* native_context = Context::cast(context);
712 Object* element = native_context->DeoptimizedCodeListHead();
713 while (!element->IsUndefined()) {
714 Code* code = Code::cast(element);
715 ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
716 length++;
717 element = code->next_code_link();
718 }
719 context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
720 }
721 return length;
722 }
723
724
725 // We rely on this function not causing a GC. It is called from generated code
726 // without having a real stack frame in place.
DoComputeOutputFrames()727 void Deoptimizer::DoComputeOutputFrames() {
728 // Print some helpful diagnostic information.
729 if (FLAG_log_timer_events &&
730 compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
731 LOG(isolate(), CodeDeoptEvent(compiled_code_));
732 }
733 ElapsedTimer timer;
734 if (trace_scope_ != NULL) {
735 timer.Start();
736 PrintF(trace_scope_->file(),
737 "[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ",
738 MessageFor(bailout_type_),
739 reinterpret_cast<intptr_t>(function_));
740 PrintFunctionName();
741 PrintF(trace_scope_->file(),
742 " @%d, FP to SP delta: %d]\n",
743 bailout_id_,
744 fp_to_sp_delta_);
745 if (bailout_type_ == EAGER || bailout_type_ == SOFT) {
746 compiled_code_->PrintDeoptLocation(trace_scope_->file(), bailout_id_);
747 }
748 }
749
750 // Determine basic deoptimization information. The optimized frame is
751 // described by the input data.
752 DeoptimizationInputData* input_data =
753 DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
754 BailoutId node_id = input_data->AstId(bailout_id_);
755 ByteArray* translations = input_data->TranslationByteArray();
756 unsigned translation_index =
757 input_data->TranslationIndex(bailout_id_)->value();
758
759 // Do the input frame to output frame(s) translation.
760 TranslationIterator iterator(translations, translation_index);
761 Translation::Opcode opcode =
762 static_cast<Translation::Opcode>(iterator.Next());
763 ASSERT(Translation::BEGIN == opcode);
764 USE(opcode);
765 // Read the number of output frames and allocate an array for their
766 // descriptions.
767 int count = iterator.Next();
768 iterator.Next(); // Drop JS frames count.
769 ASSERT(output_ == NULL);
770 output_ = new FrameDescription*[count];
771 for (int i = 0; i < count; ++i) {
772 output_[i] = NULL;
773 }
774 output_count_ = count;
775
776 // Translate each output frame.
777 for (int i = 0; i < count; ++i) {
778 // Read the ast node id, function, and frame height for this output frame.
779 Translation::Opcode opcode =
780 static_cast<Translation::Opcode>(iterator.Next());
781 switch (opcode) {
782 case Translation::JS_FRAME:
783 DoComputeJSFrame(&iterator, i);
784 jsframe_count_++;
785 break;
786 case Translation::ARGUMENTS_ADAPTOR_FRAME:
787 DoComputeArgumentsAdaptorFrame(&iterator, i);
788 break;
789 case Translation::CONSTRUCT_STUB_FRAME:
790 DoComputeConstructStubFrame(&iterator, i);
791 break;
792 case Translation::GETTER_STUB_FRAME:
793 DoComputeAccessorStubFrame(&iterator, i, false);
794 break;
795 case Translation::SETTER_STUB_FRAME:
796 DoComputeAccessorStubFrame(&iterator, i, true);
797 break;
798 case Translation::COMPILED_STUB_FRAME:
799 DoComputeCompiledStubFrame(&iterator, i);
800 break;
801 case Translation::BEGIN:
802 case Translation::REGISTER:
803 case Translation::INT32_REGISTER:
804 case Translation::UINT32_REGISTER:
805 case Translation::DOUBLE_REGISTER:
806 case Translation::STACK_SLOT:
807 case Translation::INT32_STACK_SLOT:
808 case Translation::UINT32_STACK_SLOT:
809 case Translation::DOUBLE_STACK_SLOT:
810 case Translation::LITERAL:
811 case Translation::ARGUMENTS_OBJECT:
812 default:
813 UNREACHABLE();
814 break;
815 }
816 }
817
818 // Print some helpful diagnostic information.
819 if (trace_scope_ != NULL) {
820 double ms = timer.Elapsed().InMillisecondsF();
821 int index = output_count_ - 1; // Index of the topmost frame.
822 JSFunction* function = output_[index]->GetFunction();
823 PrintF(trace_scope_->file(),
824 "[deoptimizing (%s): end 0x%08" V8PRIxPTR " ",
825 MessageFor(bailout_type_),
826 reinterpret_cast<intptr_t>(function));
827 PrintFunctionName();
828 PrintF(trace_scope_->file(),
829 " @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
830 " took %0.3f ms]\n",
831 bailout_id_,
832 node_id.ToInt(),
833 output_[index]->GetPc(),
834 FullCodeGenerator::State2String(
835 static_cast<FullCodeGenerator::State>(
836 output_[index]->GetState()->value())),
837 has_alignment_padding_ ? "with padding" : "no padding",
838 ms);
839 }
840 }
841
842
DoComputeJSFrame(TranslationIterator * iterator,int frame_index)843 void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
844 int frame_index) {
845 BailoutId node_id = BailoutId(iterator->Next());
846 JSFunction* function;
847 if (frame_index != 0) {
848 function = JSFunction::cast(ComputeLiteral(iterator->Next()));
849 } else {
850 int closure_id = iterator->Next();
851 USE(closure_id);
852 ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
853 function = function_;
854 }
855 unsigned height = iterator->Next();
856 unsigned height_in_bytes = height * kPointerSize;
857 if (trace_scope_ != NULL) {
858 PrintF(trace_scope_->file(), " translating ");
859 function->PrintName(trace_scope_->file());
860 PrintF(trace_scope_->file(),
861 " => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
862 }
863
864 // The 'fixed' part of the frame consists of the incoming parameters and
865 // the part described by JavaScriptFrameConstants.
866 unsigned fixed_frame_size = ComputeFixedSize(function);
867 unsigned input_frame_size = input_->GetFrameSize();
868 unsigned output_frame_size = height_in_bytes + fixed_frame_size;
869
870 // Allocate and store the output frame description.
871 FrameDescription* output_frame =
872 new(output_frame_size) FrameDescription(output_frame_size, function);
873 output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
874
875 bool is_bottommost = (0 == frame_index);
876 bool is_topmost = (output_count_ - 1 == frame_index);
877 ASSERT(frame_index >= 0 && frame_index < output_count_);
878 ASSERT(output_[frame_index] == NULL);
879 output_[frame_index] = output_frame;
880
881 // The top address for the bottommost output frame can be computed from
882 // the input frame pointer and the output frame's height. For all
883 // subsequent output frames, it can be computed from the previous one's
884 // top address and the current frame's size.
885 Register fp_reg = JavaScriptFrame::fp_register();
886 intptr_t top_address;
887 if (is_bottommost) {
888 // Determine whether the input frame contains alignment padding.
889 has_alignment_padding_ = HasAlignmentPadding(function) ? 1 : 0;
890 // 2 = context and function in the frame.
891 // If the optimized frame had alignment padding, adjust the frame pointer
892 // to point to the new position of the old frame pointer after padding
893 // is removed. Subtract 2 * kPointerSize for the context and function slots.
894 top_address = input_->GetRegister(fp_reg.code()) -
895 StandardFrameConstants::kFixedFrameSizeFromFp -
896 height_in_bytes + has_alignment_padding_ * kPointerSize;
897 } else {
898 top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
899 }
900 output_frame->SetTop(top_address);
901
902 // Compute the incoming parameter translation.
903 int parameter_count = function->shared()->formal_parameter_count() + 1;
904 unsigned output_offset = output_frame_size;
905 unsigned input_offset = input_frame_size;
906 for (int i = 0; i < parameter_count; ++i) {
907 output_offset -= kPointerSize;
908 DoTranslateCommand(iterator, frame_index, output_offset);
909 }
910 input_offset -= (parameter_count * kPointerSize);
911
912 // There are no translation commands for the caller's pc and fp, the
913 // context, and the function. Synthesize their values and set them up
914 // explicitly.
915 //
916 // The caller's pc for the bottommost output frame is the same as in the
917 // input frame. For all subsequent output frames, it can be read from the
918 // previous one. This frame's pc can be computed from the non-optimized
919 // function code and AST id of the bailout.
920 output_offset -= kPCOnStackSize;
921 input_offset -= kPCOnStackSize;
922 intptr_t value;
923 if (is_bottommost) {
924 value = input_->GetFrameSlot(input_offset);
925 } else {
926 value = output_[frame_index - 1]->GetPc();
927 }
928 output_frame->SetCallerPc(output_offset, value);
929 if (trace_scope_ != NULL) {
930 PrintF(trace_scope_->file(),
931 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
932 V8PRIxPTR " ; caller's pc\n",
933 top_address + output_offset, output_offset, value);
934 }
935
936 // The caller's frame pointer for the bottommost output frame is the same
937 // as in the input frame. For all subsequent output frames, it can be
938 // read from the previous one. Also compute and set this frame's frame
939 // pointer.
940 output_offset -= kFPOnStackSize;
941 input_offset -= kFPOnStackSize;
942 if (is_bottommost) {
943 value = input_->GetFrameSlot(input_offset);
944 } else {
945 value = output_[frame_index - 1]->GetFp();
946 }
947 output_frame->SetCallerFp(output_offset, value);
948 intptr_t fp_value = top_address + output_offset;
949 ASSERT(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
950 has_alignment_padding_ * kPointerSize) == fp_value);
951 output_frame->SetFp(fp_value);
952 if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
953 if (trace_scope_ != NULL) {
954 PrintF(trace_scope_->file(),
955 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
956 V8PRIxPTR " ; caller's fp\n",
957 fp_value, output_offset, value);
958 }
959 ASSERT(!is_bottommost || !has_alignment_padding_ ||
960 (fp_value & kPointerSize) != 0);
961
962 // For the bottommost output frame the context can be gotten from the input
963 // frame. For all subsequent output frames it can be gotten from the function
964 // so long as we don't inline functions that need local contexts.
965 Register context_reg = JavaScriptFrame::context_register();
966 output_offset -= kPointerSize;
967 input_offset -= kPointerSize;
968 if (is_bottommost) {
969 value = input_->GetFrameSlot(input_offset);
970 } else {
971 value = reinterpret_cast<intptr_t>(function->context());
972 }
973 output_frame->SetFrameSlot(output_offset, value);
974 output_frame->SetContext(value);
975 if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
976 if (trace_scope_ != NULL) {
977 PrintF(trace_scope_->file(),
978 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
979 V8PRIxPTR "; context\n",
980 top_address + output_offset, output_offset, value);
981 }
982
983 // The function was mentioned explicitly in the BEGIN_FRAME.
984 output_offset -= kPointerSize;
985 input_offset -= kPointerSize;
986 value = reinterpret_cast<intptr_t>(function);
987 // The function for the bottommost output frame should also agree with the
988 // input frame.
989 ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
990 output_frame->SetFrameSlot(output_offset, value);
991 if (trace_scope_ != NULL) {
992 PrintF(trace_scope_->file(),
993 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
994 V8PRIxPTR "; function\n",
995 top_address + output_offset, output_offset, value);
996 }
997
998 // Translate the rest of the frame.
999 for (unsigned i = 0; i < height; ++i) {
1000 output_offset -= kPointerSize;
1001 DoTranslateCommand(iterator, frame_index, output_offset);
1002 }
1003 ASSERT(0 == output_offset);
1004
1005 // Compute this frame's PC, state, and continuation.
1006 Code* non_optimized_code = function->shared()->code();
1007 FixedArray* raw_data = non_optimized_code->deoptimization_data();
1008 DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
1009 Address start = non_optimized_code->instruction_start();
1010 unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
1011 unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
1012 intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
1013 output_frame->SetPc(pc_value);
1014
1015 FullCodeGenerator::State state =
1016 FullCodeGenerator::StateField::decode(pc_and_state);
1017 output_frame->SetState(Smi::FromInt(state));
1018
1019 // Set the continuation for the topmost frame.
1020 if (is_topmost && bailout_type_ != DEBUGGER) {
1021 Builtins* builtins = isolate_->builtins();
1022 Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
1023 if (bailout_type_ == LAZY) {
1024 continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
1025 } else if (bailout_type_ == SOFT) {
1026 continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
1027 } else {
1028 ASSERT(bailout_type_ == EAGER);
1029 }
1030 output_frame->SetContinuation(
1031 reinterpret_cast<intptr_t>(continuation->entry()));
1032 }
1033 }
1034
1035
DoComputeArgumentsAdaptorFrame(TranslationIterator * iterator,int frame_index)1036 void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
1037 int frame_index) {
1038 JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
1039 unsigned height = iterator->Next();
1040 unsigned height_in_bytes = height * kPointerSize;
1041 if (trace_scope_ != NULL) {
1042 PrintF(trace_scope_->file(),
1043 " translating arguments adaptor => height=%d\n", height_in_bytes);
1044 }
1045
1046 unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
1047 unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1048
1049 // Allocate and store the output frame description.
1050 FrameDescription* output_frame =
1051 new(output_frame_size) FrameDescription(output_frame_size, function);
1052 output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
1053
1054 // Arguments adaptor can not be topmost or bottommost.
1055 ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
1056 ASSERT(output_[frame_index] == NULL);
1057 output_[frame_index] = output_frame;
1058
1059 // The top address of the frame is computed from the previous
1060 // frame's top and this frame's size.
1061 intptr_t top_address;
1062 top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1063 output_frame->SetTop(top_address);
1064
1065 // Compute the incoming parameter translation.
1066 int parameter_count = height;
1067 unsigned output_offset = output_frame_size;
1068 for (int i = 0; i < parameter_count; ++i) {
1069 output_offset -= kPointerSize;
1070 DoTranslateCommand(iterator, frame_index, output_offset);
1071 }
1072
1073 // Read caller's PC from the previous frame.
1074 output_offset -= kPCOnStackSize;
1075 intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1076 output_frame->SetCallerPc(output_offset, callers_pc);
1077 if (trace_scope_ != NULL) {
1078 PrintF(trace_scope_->file(),
1079 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1080 V8PRIxPTR " ; caller's pc\n",
1081 top_address + output_offset, output_offset, callers_pc);
1082 }
1083
1084 // Read caller's FP from the previous frame, and set this frame's FP.
1085 output_offset -= kFPOnStackSize;
1086 intptr_t value = output_[frame_index - 1]->GetFp();
1087 output_frame->SetCallerFp(output_offset, value);
1088 intptr_t fp_value = top_address + output_offset;
1089 output_frame->SetFp(fp_value);
1090 if (trace_scope_ != NULL) {
1091 PrintF(trace_scope_->file(),
1092 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1093 V8PRIxPTR " ; caller's fp\n",
1094 fp_value, output_offset, value);
1095 }
1096
1097 // A marker value is used in place of the context.
1098 output_offset -= kPointerSize;
1099 intptr_t context = reinterpret_cast<intptr_t>(
1100 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1101 output_frame->SetFrameSlot(output_offset, context);
1102 if (trace_scope_ != NULL) {
1103 PrintF(trace_scope_->file(),
1104 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1105 V8PRIxPTR " ; context (adaptor sentinel)\n",
1106 top_address + output_offset, output_offset, context);
1107 }
1108
1109 // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
1110 output_offset -= kPointerSize;
1111 value = reinterpret_cast<intptr_t>(function);
1112 output_frame->SetFrameSlot(output_offset, value);
1113 if (trace_scope_ != NULL) {
1114 PrintF(trace_scope_->file(),
1115 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1116 V8PRIxPTR " ; function\n",
1117 top_address + output_offset, output_offset, value);
1118 }
1119
1120 // Number of incoming arguments.
1121 output_offset -= kPointerSize;
1122 value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
1123 output_frame->SetFrameSlot(output_offset, value);
1124 if (trace_scope_ != NULL) {
1125 PrintF(trace_scope_->file(),
1126 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1127 V8PRIxPTR " ; argc (%d)\n",
1128 top_address + output_offset, output_offset, value, height - 1);
1129 }
1130
1131 ASSERT(0 == output_offset);
1132
1133 Builtins* builtins = isolate_->builtins();
1134 Code* adaptor_trampoline =
1135 builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
1136 intptr_t pc_value = reinterpret_cast<intptr_t>(
1137 adaptor_trampoline->instruction_start() +
1138 isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
1139 output_frame->SetPc(pc_value);
1140 }
1141
1142
DoComputeConstructStubFrame(TranslationIterator * iterator,int frame_index)1143 void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
1144 int frame_index) {
1145 Builtins* builtins = isolate_->builtins();
1146 Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
1147 JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
1148 unsigned height = iterator->Next();
1149 unsigned height_in_bytes = height * kPointerSize;
1150 if (trace_scope_ != NULL) {
1151 PrintF(trace_scope_->file(),
1152 " translating construct stub => height=%d\n", height_in_bytes);
1153 }
1154
1155 unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
1156 unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1157
1158 // Allocate and store the output frame description.
1159 FrameDescription* output_frame =
1160 new(output_frame_size) FrameDescription(output_frame_size, function);
1161 output_frame->SetFrameType(StackFrame::CONSTRUCT);
1162
1163 // Construct stub can not be topmost or bottommost.
1164 ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
1165 ASSERT(output_[frame_index] == NULL);
1166 output_[frame_index] = output_frame;
1167
1168 // The top address of the frame is computed from the previous
1169 // frame's top and this frame's size.
1170 intptr_t top_address;
1171 top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1172 output_frame->SetTop(top_address);
1173
1174 // Compute the incoming parameter translation.
1175 int parameter_count = height;
1176 unsigned output_offset = output_frame_size;
1177 for (int i = 0; i < parameter_count; ++i) {
1178 output_offset -= kPointerSize;
1179 int deferred_object_index = deferred_objects_.length();
1180 DoTranslateCommand(iterator, frame_index, output_offset);
1181 // The allocated receiver of a construct stub frame is passed as the
1182 // receiver parameter through the translation. It might be encoding
1183 // a captured object, patch the slot address for a captured object.
1184 if (i == 0 && deferred_objects_.length() > deferred_object_index) {
1185 ASSERT(!deferred_objects_[deferred_object_index].is_arguments());
1186 deferred_objects_[deferred_object_index].patch_slot_address(top_address);
1187 }
1188 }
1189
1190 // Read caller's PC from the previous frame.
1191 output_offset -= kPCOnStackSize;
1192 intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1193 output_frame->SetCallerPc(output_offset, callers_pc);
1194 if (trace_scope_ != NULL) {
1195 PrintF(trace_scope_->file(),
1196 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1197 V8PRIxPTR " ; caller's pc\n",
1198 top_address + output_offset, output_offset, callers_pc);
1199 }
1200
1201 // Read caller's FP from the previous frame, and set this frame's FP.
1202 output_offset -= kFPOnStackSize;
1203 intptr_t value = output_[frame_index - 1]->GetFp();
1204 output_frame->SetCallerFp(output_offset, value);
1205 intptr_t fp_value = top_address + output_offset;
1206 output_frame->SetFp(fp_value);
1207 if (trace_scope_ != NULL) {
1208 PrintF(trace_scope_->file(),
1209 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1210 V8PRIxPTR " ; caller's fp\n",
1211 fp_value, output_offset, value);
1212 }
1213
1214 // The context can be gotten from the previous frame.
1215 output_offset -= kPointerSize;
1216 value = output_[frame_index - 1]->GetContext();
1217 output_frame->SetFrameSlot(output_offset, value);
1218 if (trace_scope_ != NULL) {
1219 PrintF(trace_scope_->file(),
1220 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1221 V8PRIxPTR " ; context\n",
1222 top_address + output_offset, output_offset, value);
1223 }
1224
1225 // A marker value is used in place of the function.
1226 output_offset -= kPointerSize;
1227 value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
1228 output_frame->SetFrameSlot(output_offset, value);
1229 if (trace_scope_ != NULL) {
1230 PrintF(trace_scope_->file(),
1231 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1232 V8PRIxPTR " ; function (construct sentinel)\n",
1233 top_address + output_offset, output_offset, value);
1234 }
1235
1236 // The output frame reflects a JSConstructStubGeneric frame.
1237 output_offset -= kPointerSize;
1238 value = reinterpret_cast<intptr_t>(construct_stub);
1239 output_frame->SetFrameSlot(output_offset, value);
1240 if (trace_scope_ != NULL) {
1241 PrintF(trace_scope_->file(),
1242 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1243 V8PRIxPTR " ; code object\n",
1244 top_address + output_offset, output_offset, value);
1245 }
1246
1247 // Number of incoming arguments.
1248 output_offset -= kPointerSize;
1249 value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
1250 output_frame->SetFrameSlot(output_offset, value);
1251 if (trace_scope_ != NULL) {
1252 PrintF(trace_scope_->file(),
1253 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1254 V8PRIxPTR " ; argc (%d)\n",
1255 top_address + output_offset, output_offset, value, height - 1);
1256 }
1257
1258 // Constructor function being invoked by the stub (only present on some
1259 // architectures, indicated by kConstructorOffset).
1260 if (ConstructFrameConstants::kConstructorOffset != kMinInt) {
1261 output_offset -= kPointerSize;
1262 value = reinterpret_cast<intptr_t>(function);
1263 output_frame->SetFrameSlot(output_offset, value);
1264 if (trace_scope_ != NULL) {
1265 PrintF(trace_scope_->file(),
1266 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1267 V8PRIxPTR " ; constructor function\n",
1268 top_address + output_offset, output_offset, value);
1269 }
1270 }
1271
1272 // The newly allocated object was passed as receiver in the artificial
1273 // constructor stub environment created by HEnvironment::CopyForInlining().
1274 output_offset -= kPointerSize;
1275 value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
1276 output_frame->SetFrameSlot(output_offset, value);
1277 if (trace_scope_ != NULL) {
1278 PrintF(trace_scope_->file(),
1279 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1280 V8PRIxPTR " ; allocated receiver\n",
1281 top_address + output_offset, output_offset, value);
1282 }
1283
1284 ASSERT(0 == output_offset);
1285
1286 intptr_t pc = reinterpret_cast<intptr_t>(
1287 construct_stub->instruction_start() +
1288 isolate_->heap()->construct_stub_deopt_pc_offset()->value());
1289 output_frame->SetPc(pc);
1290 }
1291
1292
DoComputeAccessorStubFrame(TranslationIterator * iterator,int frame_index,bool is_setter_stub_frame)1293 void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator,
1294 int frame_index,
1295 bool is_setter_stub_frame) {
1296 JSFunction* accessor = JSFunction::cast(ComputeLiteral(iterator->Next()));
1297 // The receiver (and the implicit return value, if any) are expected in
1298 // registers by the LoadIC/StoreIC, so they don't belong to the output stack
1299 // frame. This means that we have to use a height of 0.
1300 unsigned height = 0;
1301 unsigned height_in_bytes = height * kPointerSize;
1302 const char* kind = is_setter_stub_frame ? "setter" : "getter";
1303 if (trace_scope_ != NULL) {
1304 PrintF(trace_scope_->file(),
1305 " translating %s stub => height=%u\n", kind, height_in_bytes);
1306 }
1307
1308 // We need 1 stack entry for the return address and enough entries for the
1309 // StackFrame::INTERNAL (FP, context, frame type and code object - see
1310 // MacroAssembler::EnterFrame). For a setter stub frame we need one additional
1311 // entry for the implicit return value, see
1312 // StoreStubCompiler::CompileStoreViaSetter.
1313 unsigned fixed_frame_entries =
1314 (StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
1315 (is_setter_stub_frame ? 1 : 0);
1316 unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
1317 unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1318
1319 // Allocate and store the output frame description.
1320 FrameDescription* output_frame =
1321 new(output_frame_size) FrameDescription(output_frame_size, accessor);
1322 output_frame->SetFrameType(StackFrame::INTERNAL);
1323
1324 // A frame for an accessor stub can not be the topmost or bottommost one.
1325 ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
1326 ASSERT(output_[frame_index] == NULL);
1327 output_[frame_index] = output_frame;
1328
1329 // The top address of the frame is computed from the previous frame's top and
1330 // this frame's size.
1331 intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1332 output_frame->SetTop(top_address);
1333
1334 unsigned output_offset = output_frame_size;
1335
1336 // Read caller's PC from the previous frame.
1337 output_offset -= kPCOnStackSize;
1338 intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1339 output_frame->SetCallerPc(output_offset, callers_pc);
1340 if (trace_scope_ != NULL) {
1341 PrintF(trace_scope_->file(),
1342 " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1343 " ; caller's pc\n",
1344 top_address + output_offset, output_offset, callers_pc);
1345 }
1346
1347 // Read caller's FP from the previous frame, and set this frame's FP.
1348 output_offset -= kFPOnStackSize;
1349 intptr_t value = output_[frame_index - 1]->GetFp();
1350 output_frame->SetCallerFp(output_offset, value);
1351 intptr_t fp_value = top_address + output_offset;
1352 output_frame->SetFp(fp_value);
1353 if (trace_scope_ != NULL) {
1354 PrintF(trace_scope_->file(),
1355 " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1356 " ; caller's fp\n",
1357 fp_value, output_offset, value);
1358 }
1359
1360 // The context can be gotten from the previous frame.
1361 output_offset -= kPointerSize;
1362 value = output_[frame_index - 1]->GetContext();
1363 output_frame->SetFrameSlot(output_offset, value);
1364 if (trace_scope_ != NULL) {
1365 PrintF(trace_scope_->file(),
1366 " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1367 " ; context\n",
1368 top_address + output_offset, output_offset, value);
1369 }
1370
1371 // A marker value is used in place of the function.
1372 output_offset -= kPointerSize;
1373 value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
1374 output_frame->SetFrameSlot(output_offset, value);
1375 if (trace_scope_ != NULL) {
1376 PrintF(trace_scope_->file(),
1377 " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1378 " ; function (%s sentinel)\n",
1379 top_address + output_offset, output_offset, value, kind);
1380 }
1381
1382 // Get Code object from accessor stub.
1383 output_offset -= kPointerSize;
1384 Builtins::Name name = is_setter_stub_frame ?
1385 Builtins::kStoreIC_Setter_ForDeopt :
1386 Builtins::kLoadIC_Getter_ForDeopt;
1387 Code* accessor_stub = isolate_->builtins()->builtin(name);
1388 value = reinterpret_cast<intptr_t>(accessor_stub);
1389 output_frame->SetFrameSlot(output_offset, value);
1390 if (trace_scope_ != NULL) {
1391 PrintF(trace_scope_->file(),
1392 " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1393 " ; code object\n",
1394 top_address + output_offset, output_offset, value);
1395 }
1396
1397 // Skip receiver.
1398 Translation::Opcode opcode =
1399 static_cast<Translation::Opcode>(iterator->Next());
1400 iterator->Skip(Translation::NumberOfOperandsFor(opcode));
1401
1402 if (is_setter_stub_frame) {
1403 // The implicit return value was part of the artificial setter stub
1404 // environment.
1405 output_offset -= kPointerSize;
1406 DoTranslateCommand(iterator, frame_index, output_offset);
1407 }
1408
1409 ASSERT(0 == output_offset);
1410
1411 Smi* offset = is_setter_stub_frame ?
1412 isolate_->heap()->setter_stub_deopt_pc_offset() :
1413 isolate_->heap()->getter_stub_deopt_pc_offset();
1414 intptr_t pc = reinterpret_cast<intptr_t>(
1415 accessor_stub->instruction_start() + offset->value());
1416 output_frame->SetPc(pc);
1417 }
1418
1419
DoComputeCompiledStubFrame(TranslationIterator * iterator,int frame_index)1420 void Deoptimizer::DoComputeCompiledStubFrame(TranslationIterator* iterator,
1421 int frame_index) {
1422 //
1423 // FROM TO
1424 // | .... | | .... |
1425 // +-------------------------+ +-------------------------+
1426 // | JSFunction continuation | | JSFunction continuation |
1427 // +-------------------------+ +-------------------------+
1428 // | | saved frame (FP) | | saved frame (FP) |
1429 // | +=========================+<-fpreg +=========================+<-fpreg
1430 // | | JSFunction context | | JSFunction context |
1431 // v +-------------------------+ +-------------------------|
1432 // | COMPILED_STUB marker | | STUB_FAILURE marker |
1433 // +-------------------------+ +-------------------------+
1434 // | | | caller args.arguments_ |
1435 // | ... | +-------------------------+
1436 // | | | caller args.length_ |
1437 // |-------------------------|<-spreg +-------------------------+
1438 // | caller args pointer |
1439 // +-------------------------+
1440 // | caller stack param 1 |
1441 // parameters in registers +-------------------------+
1442 // and spilled to stack | .... |
1443 // +-------------------------+
1444 // | caller stack param n |
1445 // +-------------------------+<-spreg
1446 // reg = number of parameters
1447 // reg = failure handler address
1448 // reg = saved frame
1449 // reg = JSFunction context
1450 //
1451
1452 ASSERT(compiled_code_->is_crankshafted() &&
1453 compiled_code_->kind() != Code::OPTIMIZED_FUNCTION);
1454 int major_key = compiled_code_->major_key();
1455 CodeStubInterfaceDescriptor* descriptor =
1456 isolate_->code_stub_interface_descriptor(major_key);
1457
1458 // The output frame must have room for all pushed register parameters
1459 // and the standard stack frame slots. Include space for an argument
1460 // object to the callee and optionally the space to pass the argument
1461 // object to the stub failure handler.
1462 ASSERT(descriptor->register_param_count_ >= 0);
1463 int height_in_bytes = kPointerSize * descriptor->register_param_count_ +
1464 sizeof(Arguments) + kPointerSize;
1465 int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
1466 int input_frame_size = input_->GetFrameSize();
1467 int output_frame_size = height_in_bytes + fixed_frame_size;
1468 if (trace_scope_ != NULL) {
1469 PrintF(trace_scope_->file(),
1470 " translating %s => StubFailure%sTrampolineStub, height=%d\n",
1471 CodeStub::MajorName(static_cast<CodeStub::Major>(major_key), false),
1472 descriptor->HasTailCallContinuation() ? "TailCall" : "",
1473 height_in_bytes);
1474 }
1475
1476 // The stub failure trampoline is a single frame.
1477 FrameDescription* output_frame =
1478 new(output_frame_size) FrameDescription(output_frame_size, NULL);
1479 output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
1480 ASSERT(frame_index == 0);
1481 output_[frame_index] = output_frame;
1482
1483 // The top address for the output frame can be computed from the input
1484 // frame pointer and the output frame's height. Subtract space for the
1485 // context and function slots.
1486 Register fp_reg = StubFailureTrampolineFrame::fp_register();
1487 intptr_t top_address = input_->GetRegister(fp_reg.code()) -
1488 StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes;
1489 output_frame->SetTop(top_address);
1490
1491 // Read caller's PC (JSFunction continuation) from the input frame.
1492 unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
1493 unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
1494 intptr_t value = input_->GetFrameSlot(input_frame_offset);
1495 output_frame->SetCallerPc(output_frame_offset, value);
1496 if (trace_scope_ != NULL) {
1497 PrintF(trace_scope_->file(),
1498 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1499 V8PRIxPTR " ; caller's pc\n",
1500 top_address + output_frame_offset, output_frame_offset, value);
1501 }
1502
1503 // Read caller's FP from the input frame, and set this frame's FP.
1504 input_frame_offset -= kFPOnStackSize;
1505 value = input_->GetFrameSlot(input_frame_offset);
1506 output_frame_offset -= kFPOnStackSize;
1507 output_frame->SetCallerFp(output_frame_offset, value);
1508 intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
1509 output_frame->SetRegister(fp_reg.code(), frame_ptr);
1510 output_frame->SetFp(frame_ptr);
1511 if (trace_scope_ != NULL) {
1512 PrintF(trace_scope_->file(),
1513 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1514 V8PRIxPTR " ; caller's fp\n",
1515 top_address + output_frame_offset, output_frame_offset, value);
1516 }
1517
1518 // The context can be gotten from the input frame.
1519 Register context_reg = StubFailureTrampolineFrame::context_register();
1520 input_frame_offset -= kPointerSize;
1521 value = input_->GetFrameSlot(input_frame_offset);
1522 output_frame->SetRegister(context_reg.code(), value);
1523 output_frame_offset -= kPointerSize;
1524 output_frame->SetFrameSlot(output_frame_offset, value);
1525 ASSERT(reinterpret_cast<Object*>(value)->IsContext());
1526 if (trace_scope_ != NULL) {
1527 PrintF(trace_scope_->file(),
1528 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1529 V8PRIxPTR " ; context\n",
1530 top_address + output_frame_offset, output_frame_offset, value);
1531 }
1532
1533 // A marker value is used in place of the function.
1534 output_frame_offset -= kPointerSize;
1535 value = reinterpret_cast<intptr_t>(
1536 Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
1537 output_frame->SetFrameSlot(output_frame_offset, value);
1538 if (trace_scope_ != NULL) {
1539 PrintF(trace_scope_->file(),
1540 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1541 V8PRIxPTR " ; function (stub failure sentinel)\n",
1542 top_address + output_frame_offset, output_frame_offset, value);
1543 }
1544
1545 intptr_t caller_arg_count = descriptor->HasTailCallContinuation()
1546 ? compiled_code_->arguments_count() + 1 : 0;
1547 bool arg_count_known = !descriptor->stack_parameter_count_.is_valid();
1548
1549 // Build the Arguments object for the caller's parameters and a pointer to it.
1550 output_frame_offset -= kPointerSize;
1551 int args_arguments_offset = output_frame_offset;
1552 intptr_t the_hole = reinterpret_cast<intptr_t>(
1553 isolate_->heap()->the_hole_value());
1554 if (arg_count_known) {
1555 value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
1556 (caller_arg_count - 1) * kPointerSize;
1557 } else {
1558 value = the_hole;
1559 }
1560
1561 output_frame->SetFrameSlot(args_arguments_offset, value);
1562 if (trace_scope_ != NULL) {
1563 PrintF(trace_scope_->file(),
1564 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1565 V8PRIxPTR " ; args.arguments %s\n",
1566 top_address + args_arguments_offset, args_arguments_offset, value,
1567 arg_count_known ? "" : "(the hole)");
1568 }
1569
1570 output_frame_offset -= kPointerSize;
1571 int length_frame_offset = output_frame_offset;
1572 value = arg_count_known ? caller_arg_count : the_hole;
1573 output_frame->SetFrameSlot(length_frame_offset, value);
1574 if (trace_scope_ != NULL) {
1575 PrintF(trace_scope_->file(),
1576 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1577 V8PRIxPTR " ; args.length %s\n",
1578 top_address + length_frame_offset, length_frame_offset, value,
1579 arg_count_known ? "" : "(the hole)");
1580 }
1581
1582 output_frame_offset -= kPointerSize;
1583 value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
1584 (output_frame_size - output_frame_offset) + kPointerSize;
1585 output_frame->SetFrameSlot(output_frame_offset, value);
1586 if (trace_scope_ != NULL) {
1587 PrintF(trace_scope_->file(),
1588 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1589 V8PRIxPTR " ; args*\n",
1590 top_address + output_frame_offset, output_frame_offset, value);
1591 }
1592
1593 // Copy the register parameters to the failure frame.
1594 int arguments_length_offset = -1;
1595 for (int i = 0; i < descriptor->register_param_count_; ++i) {
1596 output_frame_offset -= kPointerSize;
1597 DoTranslateCommand(iterator, 0, output_frame_offset);
1598
1599 if (!arg_count_known && descriptor->IsParameterCountRegister(i)) {
1600 arguments_length_offset = output_frame_offset;
1601 }
1602 }
1603
1604 ASSERT(0 == output_frame_offset);
1605
1606 if (!arg_count_known) {
1607 ASSERT(arguments_length_offset >= 0);
1608 // We know it's a smi because 1) the code stub guarantees the stack
1609 // parameter count is in smi range, and 2) the DoTranslateCommand in the
1610 // parameter loop above translated that to a tagged value.
1611 Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
1612 output_frame->GetFrameSlot(arguments_length_offset));
1613 caller_arg_count = smi_caller_arg_count->value();
1614 output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
1615 if (trace_scope_ != NULL) {
1616 PrintF(trace_scope_->file(),
1617 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1618 V8PRIxPTR " ; args.length\n",
1619 top_address + length_frame_offset, length_frame_offset,
1620 caller_arg_count);
1621 }
1622 value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
1623 (caller_arg_count - 1) * kPointerSize;
1624 output_frame->SetFrameSlot(args_arguments_offset, value);
1625 if (trace_scope_ != NULL) {
1626 PrintF(trace_scope_->file(),
1627 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1628 V8PRIxPTR " ; args.arguments\n",
1629 top_address + args_arguments_offset, args_arguments_offset,
1630 value);
1631 }
1632 }
1633
1634 // Copy the double registers from the input into the output frame.
1635 CopyDoubleRegisters(output_frame);
1636
1637 // Fill registers containing handler and number of parameters.
1638 SetPlatformCompiledStubRegisters(output_frame, descriptor);
1639
1640 // Compute this frame's PC, state, and continuation.
1641 Code* trampoline = NULL;
1642 if (descriptor->HasTailCallContinuation()) {
1643 StubFailureTailCallTrampolineStub().FindCodeInCache(&trampoline, isolate_);
1644 } else {
1645 StubFunctionMode function_mode = descriptor->function_mode_;
1646 StubFailureTrampolineStub(function_mode).FindCodeInCache(&trampoline,
1647 isolate_);
1648 }
1649 ASSERT(trampoline != NULL);
1650 output_frame->SetPc(reinterpret_cast<intptr_t>(
1651 trampoline->instruction_start()));
1652 output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
1653 Code* notify_failure = NotifyStubFailureBuiltin();
1654 output_frame->SetContinuation(
1655 reinterpret_cast<intptr_t>(notify_failure->entry()));
1656 }
1657
1658
MaterializeNextHeapObject()1659 Handle<Object> Deoptimizer::MaterializeNextHeapObject() {
1660 int object_index = materialization_object_index_++;
1661 ObjectMaterializationDescriptor desc = deferred_objects_[object_index];
1662 const int length = desc.object_length();
1663
1664 if (desc.duplicate_object() >= 0) {
1665 // Found a previously materialized object by de-duplication.
1666 object_index = desc.duplicate_object();
1667 materialized_objects_->Add(Handle<Object>());
1668 } else if (desc.is_arguments() && ArgumentsObjectIsAdapted(object_index)) {
1669 // Use the arguments adapter frame we just built to materialize the
1670 // arguments object. FunctionGetArguments can't throw an exception.
1671 Handle<JSFunction> function = ArgumentsObjectFunction(object_index);
1672 Handle<JSObject> arguments = Handle<JSObject>::cast(
1673 Accessors::FunctionGetArguments(function));
1674 materialized_objects_->Add(arguments);
1675 materialization_value_index_ += length;
1676 } else if (desc.is_arguments()) {
1677 // Construct an arguments object and copy the parameters to a newly
1678 // allocated arguments object backing store.
1679 Handle<JSFunction> function = ArgumentsObjectFunction(object_index);
1680 Handle<JSObject> arguments =
1681 isolate_->factory()->NewArgumentsObject(function, length);
1682 Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
1683 ASSERT(array->length() == length);
1684 arguments->set_elements(*array);
1685 materialized_objects_->Add(arguments);
1686 for (int i = 0; i < length; ++i) {
1687 Handle<Object> value = MaterializeNextValue();
1688 array->set(i, *value);
1689 }
1690 } else {
1691 // Dispatch on the instance type of the object to be materialized.
1692 // We also need to make sure that the representation of all fields
1693 // in the given object are general enough to hold a tagged value.
1694 Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
1695 Handle<Map>::cast(MaterializeNextValue()), Representation::Tagged());
1696 switch (map->instance_type()) {
1697 case HEAP_NUMBER_TYPE: {
1698 // Reuse the HeapNumber value directly as it is already properly
1699 // tagged and skip materializing the HeapNumber explicitly.
1700 Handle<Object> object = MaterializeNextValue();
1701 materialized_objects_->Add(object);
1702 materialization_value_index_ += kDoubleSize / kPointerSize - 1;
1703 break;
1704 }
1705 case JS_OBJECT_TYPE: {
1706 Handle<JSObject> object =
1707 isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
1708 materialized_objects_->Add(object);
1709 Handle<Object> properties = MaterializeNextValue();
1710 Handle<Object> elements = MaterializeNextValue();
1711 object->set_properties(FixedArray::cast(*properties));
1712 object->set_elements(FixedArrayBase::cast(*elements));
1713 for (int i = 0; i < length - 3; ++i) {
1714 Handle<Object> value = MaterializeNextValue();
1715 object->FastPropertyAtPut(i, *value);
1716 }
1717 break;
1718 }
1719 case JS_ARRAY_TYPE: {
1720 Handle<JSArray> object =
1721 isolate_->factory()->NewJSArray(0, map->elements_kind());
1722 materialized_objects_->Add(object);
1723 Handle<Object> properties = MaterializeNextValue();
1724 Handle<Object> elements = MaterializeNextValue();
1725 Handle<Object> length = MaterializeNextValue();
1726 object->set_properties(FixedArray::cast(*properties));
1727 object->set_elements(FixedArrayBase::cast(*elements));
1728 object->set_length(*length);
1729 break;
1730 }
1731 default:
1732 PrintF(stderr,
1733 "[couldn't handle instance type %d]\n", map->instance_type());
1734 UNREACHABLE();
1735 }
1736 }
1737
1738 return materialized_objects_->at(object_index);
1739 }
1740
1741
MaterializeNextValue()1742 Handle<Object> Deoptimizer::MaterializeNextValue() {
1743 int value_index = materialization_value_index_++;
1744 Handle<Object> value = materialized_values_->at(value_index);
1745 if (*value == isolate_->heap()->arguments_marker()) {
1746 value = MaterializeNextHeapObject();
1747 }
1748 return value;
1749 }
1750
1751
MaterializeHeapObjects(JavaScriptFrameIterator * it)1752 void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
1753 ASSERT_NE(DEBUGGER, bailout_type_);
1754
1755 // Walk all JavaScript output frames with the given frame iterator.
1756 for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
1757 if (frame_index != 0) it->Advance();
1758 JavaScriptFrame* frame = it->frame();
1759 jsframe_functions_.Add(handle(frame->function(), isolate_));
1760 jsframe_has_adapted_arguments_.Add(frame->has_adapted_arguments());
1761 }
1762
1763 // Handlify all tagged object values before triggering any allocation.
1764 List<Handle<Object> > values(deferred_objects_tagged_values_.length());
1765 for (int i = 0; i < deferred_objects_tagged_values_.length(); ++i) {
1766 values.Add(Handle<Object>(deferred_objects_tagged_values_[i], isolate_));
1767 }
1768
1769 // Play it safe and clear all unhandlified values before we continue.
1770 deferred_objects_tagged_values_.Clear();
1771
1772 // Materialize all heap numbers before looking at arguments because when the
1773 // output frames are used to materialize arguments objects later on they need
1774 // to already contain valid heap numbers.
1775 for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
1776 HeapNumberMaterializationDescriptor<Address> d = deferred_heap_numbers_[i];
1777 Handle<Object> num = isolate_->factory()->NewNumber(d.value());
1778 if (trace_scope_ != NULL) {
1779 PrintF(trace_scope_->file(),
1780 "Materialized a new heap number %p [%e] in slot %p\n",
1781 reinterpret_cast<void*>(*num),
1782 d.value(),
1783 d.destination());
1784 }
1785 Memory::Object_at(d.destination()) = *num;
1786 }
1787
1788 // Materialize all heap numbers required for arguments/captured objects.
1789 for (int i = 0; i < deferred_objects_double_values_.length(); i++) {
1790 HeapNumberMaterializationDescriptor<int> d =
1791 deferred_objects_double_values_[i];
1792 Handle<Object> num = isolate_->factory()->NewNumber(d.value());
1793 if (trace_scope_ != NULL) {
1794 PrintF(trace_scope_->file(),
1795 "Materialized a new heap number %p [%e] for object at %d\n",
1796 reinterpret_cast<void*>(*num),
1797 d.value(),
1798 d.destination());
1799 }
1800 ASSERT(values.at(d.destination())->IsTheHole());
1801 values.Set(d.destination(), num);
1802 }
1803
1804 // Play it safe and clear all object double values before we continue.
1805 deferred_objects_double_values_.Clear();
1806
1807 // Materialize arguments/captured objects.
1808 if (!deferred_objects_.is_empty()) {
1809 List<Handle<Object> > materialized_objects(deferred_objects_.length());
1810 materialized_objects_ = &materialized_objects;
1811 materialized_values_ = &values;
1812
1813 while (materialization_object_index_ < deferred_objects_.length()) {
1814 int object_index = materialization_object_index_;
1815 ObjectMaterializationDescriptor descriptor =
1816 deferred_objects_.at(object_index);
1817
1818 // Find a previously materialized object by de-duplication or
1819 // materialize a new instance of the object if necessary. Store
1820 // the materialized object into the frame slot.
1821 Handle<Object> object = MaterializeNextHeapObject();
1822 Memory::Object_at(descriptor.slot_address()) = *object;
1823 if (trace_scope_ != NULL) {
1824 if (descriptor.is_arguments()) {
1825 PrintF(trace_scope_->file(),
1826 "Materialized %sarguments object of length %d for %p: ",
1827 ArgumentsObjectIsAdapted(object_index) ? "(adapted) " : "",
1828 Handle<JSObject>::cast(object)->elements()->length(),
1829 reinterpret_cast<void*>(descriptor.slot_address()));
1830 } else {
1831 PrintF(trace_scope_->file(),
1832 "Materialized captured object of size %d for %p: ",
1833 Handle<HeapObject>::cast(object)->Size(),
1834 reinterpret_cast<void*>(descriptor.slot_address()));
1835 }
1836 object->ShortPrint(trace_scope_->file());
1837 PrintF(trace_scope_->file(), "\n");
1838 }
1839 }
1840
1841 ASSERT(materialization_object_index_ == materialized_objects_->length());
1842 ASSERT(materialization_value_index_ == materialized_values_->length());
1843 }
1844 }
1845
1846
1847 #ifdef ENABLE_DEBUGGER_SUPPORT
MaterializeHeapNumbersForDebuggerInspectableFrame(Address parameters_top,uint32_t parameters_size,Address expressions_top,uint32_t expressions_size,DeoptimizedFrameInfo * info)1848 void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
1849 Address parameters_top,
1850 uint32_t parameters_size,
1851 Address expressions_top,
1852 uint32_t expressions_size,
1853 DeoptimizedFrameInfo* info) {
1854 ASSERT_EQ(DEBUGGER, bailout_type_);
1855 Address parameters_bottom = parameters_top + parameters_size;
1856 Address expressions_bottom = expressions_top + expressions_size;
1857 for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
1858 HeapNumberMaterializationDescriptor<Address> d = deferred_heap_numbers_[i];
1859
1860 // Check of the heap number to materialize actually belong to the frame
1861 // being extracted.
1862 Address slot = d.destination();
1863 if (parameters_top <= slot && slot < parameters_bottom) {
1864 Handle<Object> num = isolate_->factory()->NewNumber(d.value());
1865
1866 int index = (info->parameters_count() - 1) -
1867 static_cast<int>(slot - parameters_top) / kPointerSize;
1868
1869 if (trace_scope_ != NULL) {
1870 PrintF(trace_scope_->file(),
1871 "Materializing a new heap number %p [%e] in slot %p"
1872 "for parameter slot #%d\n",
1873 reinterpret_cast<void*>(*num),
1874 d.value(),
1875 d.destination(),
1876 index);
1877 }
1878
1879 info->SetParameter(index, *num);
1880 } else if (expressions_top <= slot && slot < expressions_bottom) {
1881 Handle<Object> num = isolate_->factory()->NewNumber(d.value());
1882
1883 int index = info->expression_count() - 1 -
1884 static_cast<int>(slot - expressions_top) / kPointerSize;
1885
1886 if (trace_scope_ != NULL) {
1887 PrintF(trace_scope_->file(),
1888 "Materializing a new heap number %p [%e] in slot %p"
1889 "for expression slot #%d\n",
1890 reinterpret_cast<void*>(*num),
1891 d.value(),
1892 d.destination(),
1893 index);
1894 }
1895
1896 info->SetExpression(index, *num);
1897 }
1898 }
1899 }
1900 #endif
1901
1902
TraceValueType(bool is_smi)1903 static const char* TraceValueType(bool is_smi) {
1904 if (is_smi) {
1905 return "smi";
1906 }
1907
1908 return "heap number";
1909 }
1910
1911
DoTranslateObject(TranslationIterator * iterator,int object_index,int field_index)1912 void Deoptimizer::DoTranslateObject(TranslationIterator* iterator,
1913 int object_index,
1914 int field_index) {
1915 disasm::NameConverter converter;
1916 Address object_slot = deferred_objects_[object_index].slot_address();
1917
1918 Translation::Opcode opcode =
1919 static_cast<Translation::Opcode>(iterator->Next());
1920
1921 switch (opcode) {
1922 case Translation::BEGIN:
1923 case Translation::JS_FRAME:
1924 case Translation::ARGUMENTS_ADAPTOR_FRAME:
1925 case Translation::CONSTRUCT_STUB_FRAME:
1926 case Translation::GETTER_STUB_FRAME:
1927 case Translation::SETTER_STUB_FRAME:
1928 case Translation::COMPILED_STUB_FRAME:
1929 UNREACHABLE();
1930 return;
1931
1932 case Translation::REGISTER: {
1933 int input_reg = iterator->Next();
1934 intptr_t input_value = input_->GetRegister(input_reg);
1935 if (trace_scope_ != NULL) {
1936 PrintF(trace_scope_->file(),
1937 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
1938 reinterpret_cast<intptr_t>(object_slot),
1939 field_index);
1940 PrintF(trace_scope_->file(),
1941 "0x%08" V8PRIxPTR " ; %s ", input_value,
1942 converter.NameOfCPURegister(input_reg));
1943 reinterpret_cast<Object*>(input_value)->ShortPrint(
1944 trace_scope_->file());
1945 PrintF(trace_scope_->file(),
1946 "\n");
1947 }
1948 AddObjectTaggedValue(input_value);
1949 return;
1950 }
1951
1952 case Translation::INT32_REGISTER: {
1953 int input_reg = iterator->Next();
1954 intptr_t value = input_->GetRegister(input_reg);
1955 bool is_smi = Smi::IsValid(value);
1956 if (trace_scope_ != NULL) {
1957 PrintF(trace_scope_->file(),
1958 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
1959 reinterpret_cast<intptr_t>(object_slot),
1960 field_index);
1961 PrintF(trace_scope_->file(),
1962 "%" V8PRIdPTR " ; %s (%s)\n", value,
1963 converter.NameOfCPURegister(input_reg),
1964 TraceValueType(is_smi));
1965 }
1966 if (is_smi) {
1967 intptr_t tagged_value =
1968 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
1969 AddObjectTaggedValue(tagged_value);
1970 } else {
1971 double double_value = static_cast<double>(static_cast<int32_t>(value));
1972 AddObjectDoubleValue(double_value);
1973 }
1974 return;
1975 }
1976
1977 case Translation::UINT32_REGISTER: {
1978 int input_reg = iterator->Next();
1979 uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
1980 bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
1981 if (trace_scope_ != NULL) {
1982 PrintF(trace_scope_->file(),
1983 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
1984 reinterpret_cast<intptr_t>(object_slot),
1985 field_index);
1986 PrintF(trace_scope_->file(),
1987 "%" V8PRIdPTR " ; uint %s (%s)\n", value,
1988 converter.NameOfCPURegister(input_reg),
1989 TraceValueType(is_smi));
1990 }
1991 if (is_smi) {
1992 intptr_t tagged_value =
1993 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
1994 AddObjectTaggedValue(tagged_value);
1995 } else {
1996 double double_value = static_cast<double>(static_cast<uint32_t>(value));
1997 AddObjectDoubleValue(double_value);
1998 }
1999 return;
2000 }
2001
2002 case Translation::DOUBLE_REGISTER: {
2003 int input_reg = iterator->Next();
2004 double value = input_->GetDoubleRegister(input_reg);
2005 if (trace_scope_ != NULL) {
2006 PrintF(trace_scope_->file(),
2007 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2008 reinterpret_cast<intptr_t>(object_slot),
2009 field_index);
2010 PrintF(trace_scope_->file(),
2011 "%e ; %s\n", value,
2012 DoubleRegister::AllocationIndexToString(input_reg));
2013 }
2014 AddObjectDoubleValue(value);
2015 return;
2016 }
2017
2018 case Translation::STACK_SLOT: {
2019 int input_slot_index = iterator->Next();
2020 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2021 intptr_t input_value = input_->GetFrameSlot(input_offset);
2022 if (trace_scope_ != NULL) {
2023 PrintF(trace_scope_->file(),
2024 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2025 reinterpret_cast<intptr_t>(object_slot),
2026 field_index);
2027 PrintF(trace_scope_->file(),
2028 "0x%08" V8PRIxPTR " ; [sp + %d] ", input_value, input_offset);
2029 reinterpret_cast<Object*>(input_value)->ShortPrint(
2030 trace_scope_->file());
2031 PrintF(trace_scope_->file(),
2032 "\n");
2033 }
2034 AddObjectTaggedValue(input_value);
2035 return;
2036 }
2037
2038 case Translation::INT32_STACK_SLOT: {
2039 int input_slot_index = iterator->Next();
2040 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2041 intptr_t value = input_->GetFrameSlot(input_offset);
2042 bool is_smi = Smi::IsValid(value);
2043 if (trace_scope_ != NULL) {
2044 PrintF(trace_scope_->file(),
2045 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2046 reinterpret_cast<intptr_t>(object_slot),
2047 field_index);
2048 PrintF(trace_scope_->file(),
2049 "%" V8PRIdPTR " ; [sp + %d] (%s)\n",
2050 value, input_offset, TraceValueType(is_smi));
2051 }
2052 if (is_smi) {
2053 intptr_t tagged_value =
2054 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2055 AddObjectTaggedValue(tagged_value);
2056 } else {
2057 double double_value = static_cast<double>(static_cast<int32_t>(value));
2058 AddObjectDoubleValue(double_value);
2059 }
2060 return;
2061 }
2062
2063 case Translation::UINT32_STACK_SLOT: {
2064 int input_slot_index = iterator->Next();
2065 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2066 uintptr_t value =
2067 static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
2068 bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
2069 if (trace_scope_ != NULL) {
2070 PrintF(trace_scope_->file(),
2071 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2072 reinterpret_cast<intptr_t>(object_slot),
2073 field_index);
2074 PrintF(trace_scope_->file(),
2075 "%" V8PRIdPTR " ; [sp + %d] (uint %s)\n",
2076 value, input_offset, TraceValueType(is_smi));
2077 }
2078 if (is_smi) {
2079 intptr_t tagged_value =
2080 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2081 AddObjectTaggedValue(tagged_value);
2082 } else {
2083 double double_value = static_cast<double>(static_cast<uint32_t>(value));
2084 AddObjectDoubleValue(double_value);
2085 }
2086 return;
2087 }
2088
2089 case Translation::DOUBLE_STACK_SLOT: {
2090 int input_slot_index = iterator->Next();
2091 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2092 double value = input_->GetDoubleFrameSlot(input_offset);
2093 if (trace_scope_ != NULL) {
2094 PrintF(trace_scope_->file(),
2095 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2096 reinterpret_cast<intptr_t>(object_slot),
2097 field_index);
2098 PrintF(trace_scope_->file(),
2099 "%e ; [sp + %d]\n", value, input_offset);
2100 }
2101 AddObjectDoubleValue(value);
2102 return;
2103 }
2104
2105 case Translation::LITERAL: {
2106 Object* literal = ComputeLiteral(iterator->Next());
2107 if (trace_scope_ != NULL) {
2108 PrintF(trace_scope_->file(),
2109 " object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2110 reinterpret_cast<intptr_t>(object_slot),
2111 field_index);
2112 literal->ShortPrint(trace_scope_->file());
2113 PrintF(trace_scope_->file(),
2114 " ; literal\n");
2115 }
2116 intptr_t value = reinterpret_cast<intptr_t>(literal);
2117 AddObjectTaggedValue(value);
2118 return;
2119 }
2120
2121 case Translation::DUPLICATED_OBJECT: {
2122 int object_index = iterator->Next();
2123 if (trace_scope_ != NULL) {
2124 PrintF(trace_scope_->file(),
2125 " nested @0x%08" V8PRIxPTR ": [field #%d] <- ",
2126 reinterpret_cast<intptr_t>(object_slot),
2127 field_index);
2128 isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2129 PrintF(trace_scope_->file(),
2130 " ; duplicate of object #%d\n", object_index);
2131 }
2132 // Use the materialization marker value as a sentinel and fill in
2133 // the object after the deoptimized frame is built.
2134 intptr_t value = reinterpret_cast<intptr_t>(
2135 isolate_->heap()->arguments_marker());
2136 AddObjectDuplication(0, object_index);
2137 AddObjectTaggedValue(value);
2138 return;
2139 }
2140
2141 case Translation::ARGUMENTS_OBJECT:
2142 case Translation::CAPTURED_OBJECT: {
2143 int length = iterator->Next();
2144 bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
2145 if (trace_scope_ != NULL) {
2146 PrintF(trace_scope_->file(),
2147 " nested @0x%08" V8PRIxPTR ": [field #%d] <- ",
2148 reinterpret_cast<intptr_t>(object_slot),
2149 field_index);
2150 isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2151 PrintF(trace_scope_->file(),
2152 " ; object (length = %d, is_args = %d)\n", length, is_args);
2153 }
2154 // Use the materialization marker value as a sentinel and fill in
2155 // the object after the deoptimized frame is built.
2156 intptr_t value = reinterpret_cast<intptr_t>(
2157 isolate_->heap()->arguments_marker());
2158 AddObjectStart(0, length, is_args);
2159 AddObjectTaggedValue(value);
2160 // We save the object values on the side and materialize the actual
2161 // object after the deoptimized frame is built.
2162 int object_index = deferred_objects_.length() - 1;
2163 for (int i = 0; i < length; i++) {
2164 DoTranslateObject(iterator, object_index, i);
2165 }
2166 return;
2167 }
2168 }
2169 }
2170
2171
DoTranslateCommand(TranslationIterator * iterator,int frame_index,unsigned output_offset)2172 void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator,
2173 int frame_index,
2174 unsigned output_offset) {
2175 disasm::NameConverter converter;
2176 // A GC-safe temporary placeholder that we can put in the output frame.
2177 const intptr_t kPlaceholder = reinterpret_cast<intptr_t>(Smi::FromInt(0));
2178
2179 Translation::Opcode opcode =
2180 static_cast<Translation::Opcode>(iterator->Next());
2181
2182 switch (opcode) {
2183 case Translation::BEGIN:
2184 case Translation::JS_FRAME:
2185 case Translation::ARGUMENTS_ADAPTOR_FRAME:
2186 case Translation::CONSTRUCT_STUB_FRAME:
2187 case Translation::GETTER_STUB_FRAME:
2188 case Translation::SETTER_STUB_FRAME:
2189 case Translation::COMPILED_STUB_FRAME:
2190 UNREACHABLE();
2191 return;
2192
2193 case Translation::REGISTER: {
2194 int input_reg = iterator->Next();
2195 intptr_t input_value = input_->GetRegister(input_reg);
2196 if (trace_scope_ != NULL) {
2197 PrintF(
2198 trace_scope_->file(),
2199 " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ",
2200 output_[frame_index]->GetTop() + output_offset,
2201 output_offset,
2202 input_value,
2203 converter.NameOfCPURegister(input_reg));
2204 reinterpret_cast<Object*>(input_value)->ShortPrint(
2205 trace_scope_->file());
2206 PrintF(trace_scope_->file(), "\n");
2207 }
2208 output_[frame_index]->SetFrameSlot(output_offset, input_value);
2209 return;
2210 }
2211
2212 case Translation::INT32_REGISTER: {
2213 int input_reg = iterator->Next();
2214 intptr_t value = input_->GetRegister(input_reg);
2215 bool is_smi = Smi::IsValid(value);
2216 if (trace_scope_ != NULL) {
2217 PrintF(
2218 trace_scope_->file(),
2219 " 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n",
2220 output_[frame_index]->GetTop() + output_offset,
2221 output_offset,
2222 value,
2223 converter.NameOfCPURegister(input_reg),
2224 TraceValueType(is_smi));
2225 }
2226 if (is_smi) {
2227 intptr_t tagged_value =
2228 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2229 output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2230 } else {
2231 // We save the untagged value on the side and store a GC-safe
2232 // temporary placeholder in the frame.
2233 AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2234 static_cast<double>(static_cast<int32_t>(value)));
2235 output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2236 }
2237 return;
2238 }
2239
2240 case Translation::UINT32_REGISTER: {
2241 int input_reg = iterator->Next();
2242 uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
2243 bool is_smi = value <= static_cast<uintptr_t>(Smi::kMaxValue);
2244 if (trace_scope_ != NULL) {
2245 PrintF(
2246 trace_scope_->file(),
2247 " 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIuPTR
2248 " ; uint %s (%s)\n",
2249 output_[frame_index]->GetTop() + output_offset,
2250 output_offset,
2251 value,
2252 converter.NameOfCPURegister(input_reg),
2253 TraceValueType(is_smi));
2254 }
2255 if (is_smi) {
2256 intptr_t tagged_value =
2257 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2258 output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2259 } else {
2260 // We save the untagged value on the side and store a GC-safe
2261 // temporary placeholder in the frame.
2262 AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2263 static_cast<double>(static_cast<uint32_t>(value)));
2264 output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2265 }
2266 return;
2267 }
2268
2269 case Translation::DOUBLE_REGISTER: {
2270 int input_reg = iterator->Next();
2271 double value = input_->GetDoubleRegister(input_reg);
2272 if (trace_scope_ != NULL) {
2273 PrintF(trace_scope_->file(),
2274 " 0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n",
2275 output_[frame_index]->GetTop() + output_offset,
2276 output_offset,
2277 value,
2278 DoubleRegister::AllocationIndexToString(input_reg));
2279 }
2280 // We save the untagged value on the side and store a GC-safe
2281 // temporary placeholder in the frame.
2282 AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
2283 output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2284 return;
2285 }
2286
2287 case Translation::STACK_SLOT: {
2288 int input_slot_index = iterator->Next();
2289 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2290 intptr_t input_value = input_->GetFrameSlot(input_offset);
2291 if (trace_scope_ != NULL) {
2292 PrintF(trace_scope_->file(),
2293 " 0x%08" V8PRIxPTR ": ",
2294 output_[frame_index]->GetTop() + output_offset);
2295 PrintF(trace_scope_->file(),
2296 "[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
2297 output_offset,
2298 input_value,
2299 input_offset);
2300 reinterpret_cast<Object*>(input_value)->ShortPrint(
2301 trace_scope_->file());
2302 PrintF(trace_scope_->file(), "\n");
2303 }
2304 output_[frame_index]->SetFrameSlot(output_offset, input_value);
2305 return;
2306 }
2307
2308 case Translation::INT32_STACK_SLOT: {
2309 int input_slot_index = iterator->Next();
2310 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2311 intptr_t value = input_->GetFrameSlot(input_offset);
2312 bool is_smi = Smi::IsValid(value);
2313 if (trace_scope_ != NULL) {
2314 PrintF(trace_scope_->file(),
2315 " 0x%08" V8PRIxPTR ": ",
2316 output_[frame_index]->GetTop() + output_offset);
2317 PrintF(trace_scope_->file(),
2318 "[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n",
2319 output_offset,
2320 value,
2321 input_offset,
2322 TraceValueType(is_smi));
2323 }
2324 if (is_smi) {
2325 intptr_t tagged_value =
2326 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2327 output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2328 } else {
2329 // We save the untagged value on the side and store a GC-safe
2330 // temporary placeholder in the frame.
2331 AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2332 static_cast<double>(static_cast<int32_t>(value)));
2333 output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2334 }
2335 return;
2336 }
2337
2338 case Translation::UINT32_STACK_SLOT: {
2339 int input_slot_index = iterator->Next();
2340 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2341 uintptr_t value =
2342 static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
2343 bool is_smi = value <= static_cast<uintptr_t>(Smi::kMaxValue);
2344 if (trace_scope_ != NULL) {
2345 PrintF(trace_scope_->file(),
2346 " 0x%08" V8PRIxPTR ": ",
2347 output_[frame_index]->GetTop() + output_offset);
2348 PrintF(trace_scope_->file(),
2349 "[top + %d] <- %" V8PRIuPTR " ; [sp + %d] (uint32 %s)\n",
2350 output_offset,
2351 value,
2352 input_offset,
2353 TraceValueType(is_smi));
2354 }
2355 if (is_smi) {
2356 intptr_t tagged_value =
2357 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2358 output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2359 } else {
2360 // We save the untagged value on the side and store a GC-safe
2361 // temporary placeholder in the frame.
2362 AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2363 static_cast<double>(static_cast<uint32_t>(value)));
2364 output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2365 }
2366 return;
2367 }
2368
2369 case Translation::DOUBLE_STACK_SLOT: {
2370 int input_slot_index = iterator->Next();
2371 unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2372 double value = input_->GetDoubleFrameSlot(input_offset);
2373 if (trace_scope_ != NULL) {
2374 PrintF(trace_scope_->file(),
2375 " 0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n",
2376 output_[frame_index]->GetTop() + output_offset,
2377 output_offset,
2378 value,
2379 input_offset);
2380 }
2381 // We save the untagged value on the side and store a GC-safe
2382 // temporary placeholder in the frame.
2383 AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
2384 output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2385 return;
2386 }
2387
2388 case Translation::LITERAL: {
2389 Object* literal = ComputeLiteral(iterator->Next());
2390 if (trace_scope_ != NULL) {
2391 PrintF(trace_scope_->file(),
2392 " 0x%08" V8PRIxPTR ": [top + %d] <- ",
2393 output_[frame_index]->GetTop() + output_offset,
2394 output_offset);
2395 literal->ShortPrint(trace_scope_->file());
2396 PrintF(trace_scope_->file(), " ; literal\n");
2397 }
2398 intptr_t value = reinterpret_cast<intptr_t>(literal);
2399 output_[frame_index]->SetFrameSlot(output_offset, value);
2400 return;
2401 }
2402
2403 case Translation::DUPLICATED_OBJECT: {
2404 int object_index = iterator->Next();
2405 if (trace_scope_ != NULL) {
2406 PrintF(trace_scope_->file(),
2407 " 0x%08" V8PRIxPTR ": [top + %d] <- ",
2408 output_[frame_index]->GetTop() + output_offset,
2409 output_offset);
2410 isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2411 PrintF(trace_scope_->file(),
2412 " ; duplicate of object #%d\n", object_index);
2413 }
2414 // Use the materialization marker value as a sentinel and fill in
2415 // the object after the deoptimized frame is built.
2416 intptr_t value = reinterpret_cast<intptr_t>(
2417 isolate_->heap()->arguments_marker());
2418 AddObjectDuplication(output_[frame_index]->GetTop() + output_offset,
2419 object_index);
2420 output_[frame_index]->SetFrameSlot(output_offset, value);
2421 return;
2422 }
2423
2424 case Translation::ARGUMENTS_OBJECT:
2425 case Translation::CAPTURED_OBJECT: {
2426 int length = iterator->Next();
2427 bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
2428 if (trace_scope_ != NULL) {
2429 PrintF(trace_scope_->file(),
2430 " 0x%08" V8PRIxPTR ": [top + %d] <- ",
2431 output_[frame_index]->GetTop() + output_offset,
2432 output_offset);
2433 isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2434 PrintF(trace_scope_->file(),
2435 " ; object (length = %d, is_args = %d)\n", length, is_args);
2436 }
2437 // Use the materialization marker value as a sentinel and fill in
2438 // the object after the deoptimized frame is built.
2439 intptr_t value = reinterpret_cast<intptr_t>(
2440 isolate_->heap()->arguments_marker());
2441 AddObjectStart(output_[frame_index]->GetTop() + output_offset,
2442 length, is_args);
2443 output_[frame_index]->SetFrameSlot(output_offset, value);
2444 // We save the object values on the side and materialize the actual
2445 // object after the deoptimized frame is built.
2446 int object_index = deferred_objects_.length() - 1;
2447 for (int i = 0; i < length; i++) {
2448 DoTranslateObject(iterator, object_index, i);
2449 }
2450 return;
2451 }
2452 }
2453 }
2454
2455
ComputeInputFrameSize() const2456 unsigned Deoptimizer::ComputeInputFrameSize() const {
2457 unsigned fixed_size = ComputeFixedSize(function_);
2458 // The fp-to-sp delta already takes the context and the function
2459 // into account so we have to avoid double counting them.
2460 unsigned result = fixed_size + fp_to_sp_delta_ -
2461 StandardFrameConstants::kFixedFrameSizeFromFp;
2462 #ifdef DEBUG
2463 if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
2464 unsigned stack_slots = compiled_code_->stack_slots();
2465 unsigned outgoing_size = ComputeOutgoingArgumentSize();
2466 ASSERT(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
2467 }
2468 #endif
2469 return result;
2470 }
2471
2472
ComputeFixedSize(JSFunction * function) const2473 unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
2474 // The fixed part of the frame consists of the return address, frame
2475 // pointer, function, context, and all the incoming arguments.
2476 return ComputeIncomingArgumentSize(function) +
2477 StandardFrameConstants::kFixedFrameSize;
2478 }
2479
2480
ComputeIncomingArgumentSize(JSFunction * function) const2481 unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
2482 // The incoming arguments is the values for formal parameters and
2483 // the receiver. Every slot contains a pointer.
2484 if (function->IsSmi()) {
2485 ASSERT(Smi::cast(function) == Smi::FromInt(StackFrame::STUB));
2486 return 0;
2487 }
2488 unsigned arguments = function->shared()->formal_parameter_count() + 1;
2489 return arguments * kPointerSize;
2490 }
2491
2492
ComputeOutgoingArgumentSize() const2493 unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
2494 DeoptimizationInputData* data = DeoptimizationInputData::cast(
2495 compiled_code_->deoptimization_data());
2496 unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
2497 return height * kPointerSize;
2498 }
2499
2500
ComputeLiteral(int index) const2501 Object* Deoptimizer::ComputeLiteral(int index) const {
2502 DeoptimizationInputData* data = DeoptimizationInputData::cast(
2503 compiled_code_->deoptimization_data());
2504 FixedArray* literals = data->LiteralArray();
2505 return literals->get(index);
2506 }
2507
2508
AddObjectStart(intptr_t slot,int length,bool is_args)2509 void Deoptimizer::AddObjectStart(intptr_t slot, int length, bool is_args) {
2510 ObjectMaterializationDescriptor object_desc(
2511 reinterpret_cast<Address>(slot), jsframe_count_, length, -1, is_args);
2512 deferred_objects_.Add(object_desc);
2513 }
2514
2515
AddObjectDuplication(intptr_t slot,int object_index)2516 void Deoptimizer::AddObjectDuplication(intptr_t slot, int object_index) {
2517 ObjectMaterializationDescriptor object_desc(
2518 reinterpret_cast<Address>(slot), jsframe_count_, -1, object_index, false);
2519 deferred_objects_.Add(object_desc);
2520 }
2521
2522
AddObjectTaggedValue(intptr_t value)2523 void Deoptimizer::AddObjectTaggedValue(intptr_t value) {
2524 deferred_objects_tagged_values_.Add(reinterpret_cast<Object*>(value));
2525 }
2526
2527
AddObjectDoubleValue(double value)2528 void Deoptimizer::AddObjectDoubleValue(double value) {
2529 deferred_objects_tagged_values_.Add(isolate()->heap()->the_hole_value());
2530 HeapNumberMaterializationDescriptor<int> value_desc(
2531 deferred_objects_tagged_values_.length() - 1, value);
2532 deferred_objects_double_values_.Add(value_desc);
2533 }
2534
2535
AddDoubleValue(intptr_t slot_address,double value)2536 void Deoptimizer::AddDoubleValue(intptr_t slot_address, double value) {
2537 HeapNumberMaterializationDescriptor<Address> value_desc(
2538 reinterpret_cast<Address>(slot_address), value);
2539 deferred_heap_numbers_.Add(value_desc);
2540 }
2541
2542
EnsureCodeForDeoptimizationEntry(Isolate * isolate,BailoutType type,int max_entry_id)2543 void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
2544 BailoutType type,
2545 int max_entry_id) {
2546 // We cannot run this if the serializer is enabled because this will
2547 // cause us to emit relocation information for the external
2548 // references. This is fine because the deoptimizer's code section
2549 // isn't meant to be serialized at all.
2550 ASSERT(type == EAGER || type == SOFT || type == LAZY);
2551 DeoptimizerData* data = isolate->deoptimizer_data();
2552 int entry_count = data->deopt_entry_code_entries_[type];
2553 if (max_entry_id < entry_count) return;
2554 entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
2555 while (max_entry_id >= entry_count) entry_count *= 2;
2556 ASSERT(entry_count <= Deoptimizer::kMaxNumberOfEntries);
2557
2558 MacroAssembler masm(isolate, NULL, 16 * KB);
2559 masm.set_emit_debug_code(false);
2560 GenerateDeoptimizationEntries(&masm, entry_count, type);
2561 CodeDesc desc;
2562 masm.GetCode(&desc);
2563 ASSERT(!RelocInfo::RequiresRelocation(desc));
2564
2565 MemoryChunk* chunk = data->deopt_entry_code_[type];
2566 ASSERT(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
2567 desc.instr_size);
2568 chunk->CommitArea(desc.instr_size);
2569 CopyBytes(chunk->area_start(), desc.buffer,
2570 static_cast<size_t>(desc.instr_size));
2571 CPU::FlushICache(chunk->area_start(), desc.instr_size);
2572
2573 data->deopt_entry_code_entries_[type] = entry_count;
2574 }
2575
2576
FrameDescription(uint32_t frame_size,JSFunction * function)2577 FrameDescription::FrameDescription(uint32_t frame_size,
2578 JSFunction* function)
2579 : frame_size_(frame_size),
2580 function_(function),
2581 top_(kZapUint32),
2582 pc_(kZapUint32),
2583 fp_(kZapUint32),
2584 context_(kZapUint32) {
2585 // Zap all the registers.
2586 for (int r = 0; r < Register::kNumRegisters; r++) {
2587 SetRegister(r, kZapUint32);
2588 }
2589
2590 // Zap all the slots.
2591 for (unsigned o = 0; o < frame_size; o += kPointerSize) {
2592 SetFrameSlot(o, kZapUint32);
2593 }
2594 }
2595
2596
ComputeFixedSize()2597 int FrameDescription::ComputeFixedSize() {
2598 return StandardFrameConstants::kFixedFrameSize +
2599 (ComputeParametersCount() + 1) * kPointerSize;
2600 }
2601
2602
GetOffsetFromSlotIndex(int slot_index)2603 unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
2604 if (slot_index >= 0) {
2605 // Local or spill slots. Skip the fixed part of the frame
2606 // including all arguments.
2607 unsigned base = GetFrameSize() - ComputeFixedSize();
2608 return base - ((slot_index + 1) * kPointerSize);
2609 } else {
2610 // Incoming parameter.
2611 int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
2612 unsigned base = GetFrameSize() - arg_size;
2613 return base - ((slot_index + 1) * kPointerSize);
2614 }
2615 }
2616
2617
ComputeParametersCount()2618 int FrameDescription::ComputeParametersCount() {
2619 switch (type_) {
2620 case StackFrame::JAVA_SCRIPT:
2621 return function_->shared()->formal_parameter_count();
2622 case StackFrame::ARGUMENTS_ADAPTOR: {
2623 // Last slot contains number of incomming arguments as a smi.
2624 // Can't use GetExpression(0) because it would cause infinite recursion.
2625 return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
2626 }
2627 case StackFrame::STUB:
2628 return -1; // Minus receiver.
2629 default:
2630 UNREACHABLE();
2631 return 0;
2632 }
2633 }
2634
2635
GetParameter(int index)2636 Object* FrameDescription::GetParameter(int index) {
2637 ASSERT(index >= 0);
2638 ASSERT(index < ComputeParametersCount());
2639 // The slot indexes for incoming arguments are negative.
2640 unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
2641 return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
2642 }
2643
2644
GetExpressionCount()2645 unsigned FrameDescription::GetExpressionCount() {
2646 ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
2647 unsigned size = GetFrameSize() - ComputeFixedSize();
2648 return size / kPointerSize;
2649 }
2650
2651
GetExpression(int index)2652 Object* FrameDescription::GetExpression(int index) {
2653 ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
2654 unsigned offset = GetOffsetFromSlotIndex(index);
2655 return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
2656 }
2657
2658
Add(int32_t value,Zone * zone)2659 void TranslationBuffer::Add(int32_t value, Zone* zone) {
2660 // Encode the sign bit in the least significant bit.
2661 bool is_negative = (value < 0);
2662 uint32_t bits = ((is_negative ? -value : value) << 1) |
2663 static_cast<int32_t>(is_negative);
2664 // Encode the individual bytes using the least significant bit of
2665 // each byte to indicate whether or not more bytes follow.
2666 do {
2667 uint32_t next = bits >> 7;
2668 contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
2669 bits = next;
2670 } while (bits != 0);
2671 }
2672
2673
Next()2674 int32_t TranslationIterator::Next() {
2675 // Run through the bytes until we reach one with a least significant
2676 // bit of zero (marks the end).
2677 uint32_t bits = 0;
2678 for (int i = 0; true; i += 7) {
2679 ASSERT(HasNext());
2680 uint8_t next = buffer_->get(index_++);
2681 bits |= (next >> 1) << i;
2682 if ((next & 1) == 0) break;
2683 }
2684 // The bits encode the sign in the least significant bit.
2685 bool is_negative = (bits & 1) == 1;
2686 int32_t result = bits >> 1;
2687 return is_negative ? -result : result;
2688 }
2689
2690
CreateByteArray(Factory * factory)2691 Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
2692 int length = contents_.length();
2693 Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
2694 OS::MemCopy(
2695 result->GetDataStartAddress(), contents_.ToVector().start(), length);
2696 return result;
2697 }
2698
2699
BeginConstructStubFrame(int literal_id,unsigned height)2700 void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
2701 buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
2702 buffer_->Add(literal_id, zone());
2703 buffer_->Add(height, zone());
2704 }
2705
2706
BeginGetterStubFrame(int literal_id)2707 void Translation::BeginGetterStubFrame(int literal_id) {
2708 buffer_->Add(GETTER_STUB_FRAME, zone());
2709 buffer_->Add(literal_id, zone());
2710 }
2711
2712
BeginSetterStubFrame(int literal_id)2713 void Translation::BeginSetterStubFrame(int literal_id) {
2714 buffer_->Add(SETTER_STUB_FRAME, zone());
2715 buffer_->Add(literal_id, zone());
2716 }
2717
2718
BeginArgumentsAdaptorFrame(int literal_id,unsigned height)2719 void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
2720 buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
2721 buffer_->Add(literal_id, zone());
2722 buffer_->Add(height, zone());
2723 }
2724
2725
BeginJSFrame(BailoutId node_id,int literal_id,unsigned height)2726 void Translation::BeginJSFrame(BailoutId node_id,
2727 int literal_id,
2728 unsigned height) {
2729 buffer_->Add(JS_FRAME, zone());
2730 buffer_->Add(node_id.ToInt(), zone());
2731 buffer_->Add(literal_id, zone());
2732 buffer_->Add(height, zone());
2733 }
2734
2735
BeginCompiledStubFrame()2736 void Translation::BeginCompiledStubFrame() {
2737 buffer_->Add(COMPILED_STUB_FRAME, zone());
2738 }
2739
2740
BeginArgumentsObject(int args_length)2741 void Translation::BeginArgumentsObject(int args_length) {
2742 buffer_->Add(ARGUMENTS_OBJECT, zone());
2743 buffer_->Add(args_length, zone());
2744 }
2745
2746
BeginCapturedObject(int length)2747 void Translation::BeginCapturedObject(int length) {
2748 buffer_->Add(CAPTURED_OBJECT, zone());
2749 buffer_->Add(length, zone());
2750 }
2751
2752
DuplicateObject(int object_index)2753 void Translation::DuplicateObject(int object_index) {
2754 buffer_->Add(DUPLICATED_OBJECT, zone());
2755 buffer_->Add(object_index, zone());
2756 }
2757
2758
StoreRegister(Register reg)2759 void Translation::StoreRegister(Register reg) {
2760 buffer_->Add(REGISTER, zone());
2761 buffer_->Add(reg.code(), zone());
2762 }
2763
2764
StoreInt32Register(Register reg)2765 void Translation::StoreInt32Register(Register reg) {
2766 buffer_->Add(INT32_REGISTER, zone());
2767 buffer_->Add(reg.code(), zone());
2768 }
2769
2770
StoreUint32Register(Register reg)2771 void Translation::StoreUint32Register(Register reg) {
2772 buffer_->Add(UINT32_REGISTER, zone());
2773 buffer_->Add(reg.code(), zone());
2774 }
2775
2776
StoreDoubleRegister(DoubleRegister reg)2777 void Translation::StoreDoubleRegister(DoubleRegister reg) {
2778 buffer_->Add(DOUBLE_REGISTER, zone());
2779 buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
2780 }
2781
2782
StoreStackSlot(int index)2783 void Translation::StoreStackSlot(int index) {
2784 buffer_->Add(STACK_SLOT, zone());
2785 buffer_->Add(index, zone());
2786 }
2787
2788
StoreInt32StackSlot(int index)2789 void Translation::StoreInt32StackSlot(int index) {
2790 buffer_->Add(INT32_STACK_SLOT, zone());
2791 buffer_->Add(index, zone());
2792 }
2793
2794
StoreUint32StackSlot(int index)2795 void Translation::StoreUint32StackSlot(int index) {
2796 buffer_->Add(UINT32_STACK_SLOT, zone());
2797 buffer_->Add(index, zone());
2798 }
2799
2800
StoreDoubleStackSlot(int index)2801 void Translation::StoreDoubleStackSlot(int index) {
2802 buffer_->Add(DOUBLE_STACK_SLOT, zone());
2803 buffer_->Add(index, zone());
2804 }
2805
2806
StoreLiteral(int literal_id)2807 void Translation::StoreLiteral(int literal_id) {
2808 buffer_->Add(LITERAL, zone());
2809 buffer_->Add(literal_id, zone());
2810 }
2811
2812
StoreArgumentsObject(bool args_known,int args_index,int args_length)2813 void Translation::StoreArgumentsObject(bool args_known,
2814 int args_index,
2815 int args_length) {
2816 buffer_->Add(ARGUMENTS_OBJECT, zone());
2817 buffer_->Add(args_known, zone());
2818 buffer_->Add(args_index, zone());
2819 buffer_->Add(args_length, zone());
2820 }
2821
2822
NumberOfOperandsFor(Opcode opcode)2823 int Translation::NumberOfOperandsFor(Opcode opcode) {
2824 switch (opcode) {
2825 case GETTER_STUB_FRAME:
2826 case SETTER_STUB_FRAME:
2827 case DUPLICATED_OBJECT:
2828 case ARGUMENTS_OBJECT:
2829 case CAPTURED_OBJECT:
2830 case REGISTER:
2831 case INT32_REGISTER:
2832 case UINT32_REGISTER:
2833 case DOUBLE_REGISTER:
2834 case STACK_SLOT:
2835 case INT32_STACK_SLOT:
2836 case UINT32_STACK_SLOT:
2837 case DOUBLE_STACK_SLOT:
2838 case LITERAL:
2839 case COMPILED_STUB_FRAME:
2840 return 1;
2841 case BEGIN:
2842 case ARGUMENTS_ADAPTOR_FRAME:
2843 case CONSTRUCT_STUB_FRAME:
2844 return 2;
2845 case JS_FRAME:
2846 return 3;
2847 }
2848 UNREACHABLE();
2849 return -1;
2850 }
2851
2852
2853 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
2854
StringFor(Opcode opcode)2855 const char* Translation::StringFor(Opcode opcode) {
2856 #define TRANSLATION_OPCODE_CASE(item) case item: return #item;
2857 switch (opcode) {
2858 TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
2859 }
2860 #undef TRANSLATION_OPCODE_CASE
2861 UNREACHABLE();
2862 return "";
2863 }
2864
2865 #endif
2866
2867
2868 // We can't intermix stack decoding and allocations because
2869 // deoptimization infrastracture is not GC safe.
2870 // Thus we build a temporary structure in malloced space.
ComputeSlotForNextArgument(TranslationIterator * iterator,DeoptimizationInputData * data,JavaScriptFrame * frame)2871 SlotRef SlotRef::ComputeSlotForNextArgument(TranslationIterator* iterator,
2872 DeoptimizationInputData* data,
2873 JavaScriptFrame* frame) {
2874 Translation::Opcode opcode =
2875 static_cast<Translation::Opcode>(iterator->Next());
2876
2877 switch (opcode) {
2878 case Translation::BEGIN:
2879 case Translation::JS_FRAME:
2880 case Translation::ARGUMENTS_ADAPTOR_FRAME:
2881 case Translation::CONSTRUCT_STUB_FRAME:
2882 case Translation::GETTER_STUB_FRAME:
2883 case Translation::SETTER_STUB_FRAME:
2884 // Peeled off before getting here.
2885 break;
2886
2887 case Translation::DUPLICATED_OBJECT:
2888 case Translation::ARGUMENTS_OBJECT:
2889 case Translation::CAPTURED_OBJECT:
2890 // This can be only emitted for local slots not for argument slots.
2891 break;
2892
2893 case Translation::REGISTER:
2894 case Translation::INT32_REGISTER:
2895 case Translation::UINT32_REGISTER:
2896 case Translation::DOUBLE_REGISTER:
2897 // We are at safepoint which corresponds to call. All registers are
2898 // saved by caller so there would be no live registers at this
2899 // point. Thus these translation commands should not be used.
2900 break;
2901
2902 case Translation::STACK_SLOT: {
2903 int slot_index = iterator->Next();
2904 Address slot_addr = SlotAddress(frame, slot_index);
2905 return SlotRef(slot_addr, SlotRef::TAGGED);
2906 }
2907
2908 case Translation::INT32_STACK_SLOT: {
2909 int slot_index = iterator->Next();
2910 Address slot_addr = SlotAddress(frame, slot_index);
2911 return SlotRef(slot_addr, SlotRef::INT32);
2912 }
2913
2914 case Translation::UINT32_STACK_SLOT: {
2915 int slot_index = iterator->Next();
2916 Address slot_addr = SlotAddress(frame, slot_index);
2917 return SlotRef(slot_addr, SlotRef::UINT32);
2918 }
2919
2920 case Translation::DOUBLE_STACK_SLOT: {
2921 int slot_index = iterator->Next();
2922 Address slot_addr = SlotAddress(frame, slot_index);
2923 return SlotRef(slot_addr, SlotRef::DOUBLE);
2924 }
2925
2926 case Translation::LITERAL: {
2927 int literal_index = iterator->Next();
2928 return SlotRef(data->GetIsolate(),
2929 data->LiteralArray()->get(literal_index));
2930 }
2931
2932 case Translation::COMPILED_STUB_FRAME:
2933 UNREACHABLE();
2934 break;
2935 }
2936
2937 UNREACHABLE();
2938 return SlotRef();
2939 }
2940
2941
ComputeSlotsForArguments(Vector<SlotRef> * args_slots,TranslationIterator * it,DeoptimizationInputData * data,JavaScriptFrame * frame)2942 void SlotRef::ComputeSlotsForArguments(Vector<SlotRef>* args_slots,
2943 TranslationIterator* it,
2944 DeoptimizationInputData* data,
2945 JavaScriptFrame* frame) {
2946 // Process the translation commands for the arguments.
2947
2948 // Skip the translation command for the receiver.
2949 it->Skip(Translation::NumberOfOperandsFor(
2950 static_cast<Translation::Opcode>(it->Next())));
2951
2952 // Compute slots for arguments.
2953 for (int i = 0; i < args_slots->length(); ++i) {
2954 (*args_slots)[i] = ComputeSlotForNextArgument(it, data, frame);
2955 }
2956 }
2957
2958
ComputeSlotMappingForArguments(JavaScriptFrame * frame,int inlined_jsframe_index,int formal_parameter_count)2959 Vector<SlotRef> SlotRef::ComputeSlotMappingForArguments(
2960 JavaScriptFrame* frame,
2961 int inlined_jsframe_index,
2962 int formal_parameter_count) {
2963 DisallowHeapAllocation no_gc;
2964 int deopt_index = Safepoint::kNoDeoptimizationIndex;
2965 DeoptimizationInputData* data =
2966 static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
2967 TranslationIterator it(data->TranslationByteArray(),
2968 data->TranslationIndex(deopt_index)->value());
2969 Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
2970 ASSERT(opcode == Translation::BEGIN);
2971 it.Next(); // Drop frame count.
2972 int jsframe_count = it.Next();
2973 USE(jsframe_count);
2974 ASSERT(jsframe_count > inlined_jsframe_index);
2975 int jsframes_to_skip = inlined_jsframe_index;
2976 while (true) {
2977 opcode = static_cast<Translation::Opcode>(it.Next());
2978 if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
2979 if (jsframes_to_skip == 0) {
2980 ASSERT(Translation::NumberOfOperandsFor(opcode) == 2);
2981
2982 it.Skip(1); // literal id
2983 int height = it.Next();
2984
2985 // We reached the arguments adaptor frame corresponding to the
2986 // inlined function in question. Number of arguments is height - 1.
2987 Vector<SlotRef> args_slots =
2988 Vector<SlotRef>::New(height - 1); // Minus receiver.
2989 ComputeSlotsForArguments(&args_slots, &it, data, frame);
2990 return args_slots;
2991 }
2992 } else if (opcode == Translation::JS_FRAME) {
2993 if (jsframes_to_skip == 0) {
2994 // Skip over operands to advance to the next opcode.
2995 it.Skip(Translation::NumberOfOperandsFor(opcode));
2996
2997 // We reached the frame corresponding to the inlined function
2998 // in question. Process the translation commands for the
2999 // arguments. Number of arguments is equal to the number of
3000 // format parameter count.
3001 Vector<SlotRef> args_slots =
3002 Vector<SlotRef>::New(formal_parameter_count);
3003 ComputeSlotsForArguments(&args_slots, &it, data, frame);
3004 return args_slots;
3005 }
3006 jsframes_to_skip--;
3007 }
3008
3009 // Skip over operands to advance to the next opcode.
3010 it.Skip(Translation::NumberOfOperandsFor(opcode));
3011 }
3012
3013 UNREACHABLE();
3014 return Vector<SlotRef>();
3015 }
3016
3017 #ifdef ENABLE_DEBUGGER_SUPPORT
3018
DeoptimizedFrameInfo(Deoptimizer * deoptimizer,int frame_index,bool has_arguments_adaptor,bool has_construct_stub)3019 DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
3020 int frame_index,
3021 bool has_arguments_adaptor,
3022 bool has_construct_stub) {
3023 FrameDescription* output_frame = deoptimizer->output_[frame_index];
3024 function_ = output_frame->GetFunction();
3025 has_construct_stub_ = has_construct_stub;
3026 expression_count_ = output_frame->GetExpressionCount();
3027 expression_stack_ = new Object*[expression_count_];
3028 // Get the source position using the unoptimized code.
3029 Address pc = reinterpret_cast<Address>(output_frame->GetPc());
3030 Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc));
3031 source_position_ = code->SourcePosition(pc);
3032
3033 for (int i = 0; i < expression_count_; i++) {
3034 SetExpression(i, output_frame->GetExpression(i));
3035 }
3036
3037 if (has_arguments_adaptor) {
3038 output_frame = deoptimizer->output_[frame_index - 1];
3039 ASSERT(output_frame->GetFrameType() == StackFrame::ARGUMENTS_ADAPTOR);
3040 }
3041
3042 parameters_count_ = output_frame->ComputeParametersCount();
3043 parameters_ = new Object*[parameters_count_];
3044 for (int i = 0; i < parameters_count_; i++) {
3045 SetParameter(i, output_frame->GetParameter(i));
3046 }
3047 }
3048
3049
~DeoptimizedFrameInfo()3050 DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
3051 delete[] expression_stack_;
3052 delete[] parameters_;
3053 }
3054
3055
Iterate(ObjectVisitor * v)3056 void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
3057 v->VisitPointer(BitCast<Object**>(&function_));
3058 v->VisitPointers(parameters_, parameters_ + parameters_count_);
3059 v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
3060 }
3061
3062 #endif // ENABLE_DEBUGGER_SUPPORT
3063
3064 } } // namespace v8::internal
3065