• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "bootstrapper.h"
34 #include "compiler.h"
35 #include "debug.h"
36 #include "execution.h"
37 #include "global-handles.h"
38 #include "natives.h"
39 #include "runtime.h"
40 #include "string-search.h"
41 #include "stub-cache.h"
42 #include "vm-state-inl.h"
43 
44 namespace v8 {
45 namespace internal {
46 
47 
NumberOfHandles(Isolate * isolate)48 int HandleScope::NumberOfHandles(Isolate* isolate) {
49   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
50   int n = impl->blocks()->length();
51   if (n == 0) return 0;
52   return ((n - 1) * kHandleBlockSize) + static_cast<int>(
53       (isolate->handle_scope_data()->next - impl->blocks()->last()));
54 }
55 
56 
Extend(Isolate * isolate)57 Object** HandleScope::Extend(Isolate* isolate) {
58   v8::ImplementationUtilities::HandleScopeData* current =
59       isolate->handle_scope_data();
60 
61   Object** result = current->next;
62 
63   ASSERT(result == current->limit);
64   // Make sure there's at least one scope on the stack and that the
65   // top of the scope stack isn't a barrier.
66   if (current->level == 0) {
67     Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
68                             "Cannot create a handle without a HandleScope");
69     return NULL;
70   }
71   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
72   // If there's more room in the last block, we use that. This is used
73   // for fast creation of scopes after scope barriers.
74   if (!impl->blocks()->is_empty()) {
75     Object** limit = &impl->blocks()->last()[kHandleBlockSize];
76     if (current->limit != limit) {
77       current->limit = limit;
78       ASSERT(limit - current->next < kHandleBlockSize);
79     }
80   }
81 
82   // If we still haven't found a slot for the handle, we extend the
83   // current handle scope by allocating a new handle block.
84   if (result == current->limit) {
85     // If there's a spare block, use it for growing the current scope.
86     result = impl->GetSpareOrNewBlock();
87     // Add the extension to the global list of blocks, but count the
88     // extension as part of the current scope.
89     impl->blocks()->Add(result);
90     current->limit = &result[kHandleBlockSize];
91   }
92 
93   return result;
94 }
95 
96 
DeleteExtensions(Isolate * isolate)97 void HandleScope::DeleteExtensions(Isolate* isolate) {
98   v8::ImplementationUtilities::HandleScopeData* current =
99       isolate->handle_scope_data();
100   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
101 }
102 
103 
104 #ifdef ENABLE_HANDLE_ZAPPING
ZapRange(Object ** start,Object ** end)105 void HandleScope::ZapRange(Object** start, Object** end) {
106   ASSERT(end - start <= kHandleBlockSize);
107   for (Object** p = start; p != end; p++) {
108     *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
109   }
110 }
111 #endif
112 
113 
current_level_address(Isolate * isolate)114 Address HandleScope::current_level_address(Isolate* isolate) {
115   return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
116 }
117 
118 
current_next_address(Isolate * isolate)119 Address HandleScope::current_next_address(Isolate* isolate) {
120   return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
121 }
122 
123 
current_limit_address(Isolate * isolate)124 Address HandleScope::current_limit_address(Isolate* isolate) {
125   return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
126 }
127 
128 
AddKeysFromJSArray(Handle<FixedArray> content,Handle<JSArray> array)129 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
130                                       Handle<JSArray> array) {
131   CALL_HEAP_FUNCTION(content->GetIsolate(),
132                      content->AddKeysFromJSArray(*array), FixedArray);
133 }
134 
135 
UnionOfKeys(Handle<FixedArray> first,Handle<FixedArray> second)136 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
137                                Handle<FixedArray> second) {
138   CALL_HEAP_FUNCTION(first->GetIsolate(),
139                      first->UnionOfKeys(*second), FixedArray);
140 }
141 
142 
ReinitializeJSGlobalProxy(Handle<JSFunction> constructor,Handle<JSGlobalProxy> global)143 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
144     Handle<JSFunction> constructor,
145     Handle<JSGlobalProxy> global) {
146   CALL_HEAP_FUNCTION(
147       constructor->GetIsolate(),
148       constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
149       JSGlobalProxy);
150 }
151 
152 
FlattenString(Handle<String> string)153 void FlattenString(Handle<String> string) {
154   CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
155 }
156 
157 
FlattenGetString(Handle<String> string)158 Handle<String> FlattenGetString(Handle<String> string) {
159   CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
160 }
161 
162 
ForceSetProperty(Handle<JSObject> object,Handle<Object> key,Handle<Object> value,PropertyAttributes attributes)163 Handle<Object> ForceSetProperty(Handle<JSObject> object,
164                                 Handle<Object> key,
165                                 Handle<Object> value,
166                                 PropertyAttributes attributes) {
167   return Runtime::ForceSetObjectProperty(object->GetIsolate(), object, key,
168                                         value, attributes);
169 }
170 
171 
DeleteProperty(Handle<JSObject> object,Handle<Object> key)172 Handle<Object> DeleteProperty(Handle<JSObject> object, Handle<Object> key) {
173   Isolate* isolate = object->GetIsolate();
174   CALL_HEAP_FUNCTION(isolate,
175                      Runtime::DeleteObjectProperty(
176                          isolate, object, key, JSReceiver::NORMAL_DELETION),
177                      Object);
178 }
179 
180 
ForceDeleteProperty(Handle<JSObject> object,Handle<Object> key)181 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
182                                    Handle<Object> key) {
183   Isolate* isolate = object->GetIsolate();
184   CALL_HEAP_FUNCTION(isolate,
185                      Runtime::DeleteObjectProperty(
186                          isolate, object, key, JSReceiver::FORCE_DELETION),
187                      Object);
188 }
189 
190 
HasProperty(Handle<JSReceiver> obj,Handle<Object> key)191 Handle<Object> HasProperty(Handle<JSReceiver> obj, Handle<Object> key) {
192   Isolate* isolate = obj->GetIsolate();
193   CALL_HEAP_FUNCTION(isolate,
194                      Runtime::HasObjectProperty(isolate, obj, key), Object);
195 }
196 
197 
GetProperty(Handle<JSReceiver> obj,const char * name)198 Handle<Object> GetProperty(Handle<JSReceiver> obj,
199                            const char* name) {
200   Isolate* isolate = obj->GetIsolate();
201   Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
202   CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
203 }
204 
205 
GetProperty(Isolate * isolate,Handle<Object> obj,Handle<Object> key)206 Handle<Object> GetProperty(Isolate* isolate,
207                            Handle<Object> obj,
208                            Handle<Object> key) {
209   CALL_HEAP_FUNCTION(isolate,
210                      Runtime::GetObjectProperty(isolate, obj, key), Object);
211 }
212 
213 
LookupSingleCharacterStringFromCode(Isolate * isolate,uint32_t index)214 Handle<Object> LookupSingleCharacterStringFromCode(Isolate* isolate,
215                                                    uint32_t index) {
216   CALL_HEAP_FUNCTION(
217       isolate,
218       isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
219 }
220 
221 
222 // Wrappers for scripts are kept alive and cached in weak global
223 // handles referred from foreign objects held by the scripts as long as
224 // they are used. When they are not used anymore, the garbage
225 // collector will call the weak callback on the global handle
226 // associated with the wrapper and get rid of both the wrapper and the
227 // handle.
ClearWrapperCache(v8::Isolate * v8_isolate,Persistent<v8::Value> * handle,void *)228 static void ClearWrapperCache(v8::Isolate* v8_isolate,
229                               Persistent<v8::Value>* handle,
230                               void*) {
231   Handle<Object> cache = Utils::OpenPersistent(handle);
232   JSValue* wrapper = JSValue::cast(*cache);
233   Foreign* foreign = Script::cast(wrapper->value())->wrapper();
234   ASSERT(foreign->foreign_address() ==
235          reinterpret_cast<Address>(cache.location()));
236   foreign->set_foreign_address(0);
237   Isolate* isolate = reinterpret_cast<Isolate*>(v8_isolate);
238   isolate->global_handles()->Destroy(cache.location());
239   isolate->counters()->script_wrappers()->Decrement();
240 }
241 
242 
GetScriptWrapper(Handle<Script> script)243 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
244   if (script->wrapper()->foreign_address() != NULL) {
245     // Return a handle for the existing script wrapper from the cache.
246     return Handle<JSValue>(
247         *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
248   }
249   Isolate* isolate = script->GetIsolate();
250   // Construct a new script wrapper.
251   isolate->counters()->script_wrappers()->Increment();
252   Handle<JSFunction> constructor = isolate->script_function();
253   Handle<JSValue> result =
254       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
255 
256   // The allocation might have triggered a GC, which could have called this
257   // function recursively, and a wrapper has already been created and cached.
258   // In that case, simply return a handle for the cached wrapper.
259   if (script->wrapper()->foreign_address() != NULL) {
260     return Handle<JSValue>(
261         *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
262   }
263 
264   result->set_value(*script);
265 
266   // Create a new weak global handle and use it to cache the wrapper
267   // for future use. The cache will automatically be cleared by the
268   // garbage collector when it is not used anymore.
269   Handle<Object> handle = isolate->global_handles()->Create(*result);
270   isolate->global_handles()->MakeWeak(handle.location(),
271                                       NULL,
272                                       &ClearWrapperCache);
273   script->wrapper()->set_foreign_address(
274       reinterpret_cast<Address>(handle.location()));
275   return result;
276 }
277 
278 
279 // Init line_ends array with code positions of line ends inside script
280 // source.
InitScriptLineEnds(Handle<Script> script)281 void InitScriptLineEnds(Handle<Script> script) {
282   if (!script->line_ends()->IsUndefined()) return;
283 
284   Isolate* isolate = script->GetIsolate();
285 
286   if (!script->source()->IsString()) {
287     ASSERT(script->source()->IsUndefined());
288     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
289     script->set_line_ends(*empty);
290     ASSERT(script->line_ends()->IsFixedArray());
291     return;
292   }
293 
294   Handle<String> src(String::cast(script->source()), isolate);
295 
296   Handle<FixedArray> array = CalculateLineEnds(src, true);
297 
298   if (*array != isolate->heap()->empty_fixed_array()) {
299     array->set_map(isolate->heap()->fixed_cow_array_map());
300   }
301 
302   script->set_line_ends(*array);
303   ASSERT(script->line_ends()->IsFixedArray());
304 }
305 
306 
307 template <typename SourceChar>
CalculateLineEnds(Isolate * isolate,List<int> * line_ends,Vector<const SourceChar> src,bool with_last_line)308 static void CalculateLineEnds(Isolate* isolate,
309                               List<int>* line_ends,
310                               Vector<const SourceChar> src,
311                               bool with_last_line) {
312   const int src_len = src.length();
313   StringSearch<uint8_t, SourceChar> search(isolate, STATIC_ASCII_VECTOR("\n"));
314 
315   // Find and record line ends.
316   int position = 0;
317   while (position != -1 && position < src_len) {
318     position = search.Search(src, position);
319     if (position != -1) {
320       line_ends->Add(position);
321       position++;
322     } else if (with_last_line) {
323       // Even if the last line misses a line end, it is counted.
324       line_ends->Add(src_len);
325       return;
326     }
327   }
328 }
329 
330 
CalculateLineEnds(Handle<String> src,bool with_last_line)331 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
332                                      bool with_last_line) {
333   src = FlattenGetString(src);
334   // Rough estimate of line count based on a roughly estimated average
335   // length of (unpacked) code.
336   int line_count_estimate = src->length() >> 4;
337   List<int> line_ends(line_count_estimate);
338   Isolate* isolate = src->GetIsolate();
339   {
340     DisallowHeapAllocation no_allocation;  // ensure vectors stay valid.
341     // Dispatch on type of strings.
342     String::FlatContent content = src->GetFlatContent();
343     ASSERT(content.IsFlat());
344     if (content.IsAscii()) {
345       CalculateLineEnds(isolate,
346                         &line_ends,
347                         content.ToOneByteVector(),
348                         with_last_line);
349     } else {
350       CalculateLineEnds(isolate,
351                         &line_ends,
352                         content.ToUC16Vector(),
353                         with_last_line);
354     }
355   }
356   int line_count = line_ends.length();
357   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
358   for (int i = 0; i < line_count; i++) {
359     array->set(i, Smi::FromInt(line_ends[i]));
360   }
361   return array;
362 }
363 
364 
365 // Convert code position into line number.
GetScriptLineNumber(Handle<Script> script,int code_pos)366 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
367   InitScriptLineEnds(script);
368   DisallowHeapAllocation no_allocation;
369   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
370   const int line_ends_len = line_ends_array->length();
371 
372   if (!line_ends_len) return -1;
373 
374   if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
375     return script->line_offset()->value();
376   }
377 
378   int left = 0;
379   int right = line_ends_len;
380   while (int half = (right - left) / 2) {
381     if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
382       right -= half;
383     } else {
384       left += half;
385     }
386   }
387   return right + script->line_offset()->value();
388 }
389 
390 
391 // Convert code position into column number.
GetScriptColumnNumber(Handle<Script> script,int code_pos)392 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
393   int line_number = GetScriptLineNumber(script, code_pos);
394   if (line_number == -1) return -1;
395 
396   DisallowHeapAllocation no_allocation;
397   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
398   line_number = line_number - script->line_offset()->value();
399   if (line_number == 0) return code_pos + script->column_offset()->value();
400   int prev_line_end_pos =
401       Smi::cast(line_ends_array->get(line_number - 1))->value();
402   return code_pos - (prev_line_end_pos + 1);
403 }
404 
405 
GetScriptLineNumberSafe(Handle<Script> script,int code_pos)406 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
407   DisallowHeapAllocation no_allocation;
408   if (!script->line_ends()->IsUndefined()) {
409     return GetScriptLineNumber(script, code_pos);
410   }
411   // Slow mode: we do not have line_ends. We have to iterate through source.
412   if (!script->source()->IsString()) {
413     return -1;
414   }
415   String* source = String::cast(script->source());
416   int line = 0;
417   int len = source->length();
418   for (int pos = 0; pos < len; pos++) {
419     if (pos == code_pos) {
420       break;
421     }
422     if (source->Get(pos) == '\n') {
423       line++;
424     }
425   }
426   return line;
427 }
428 
429 
430 // Compute the property keys from the interceptor.
431 // TODO(rossberg): support symbols in API, and filter here if needed.
GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,Handle<JSObject> object)432 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
433                                                  Handle<JSObject> object) {
434   Isolate* isolate = receiver->GetIsolate();
435   Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
436   PropertyCallbackArguments
437       args(isolate, interceptor->data(), *receiver, *object);
438   v8::Handle<v8::Array> result;
439   if (!interceptor->enumerator()->IsUndefined()) {
440     v8::NamedPropertyEnumeratorCallback enum_fun =
441         v8::ToCData<v8::NamedPropertyEnumeratorCallback>(
442             interceptor->enumerator());
443     LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
444     result = args.Call(enum_fun);
445   }
446 #if ENABLE_EXTRA_CHECKS
447   CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
448 #endif
449   return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
450                                    result);
451 }
452 
453 
454 // Compute the element keys from the interceptor.
GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,Handle<JSObject> object)455 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
456                                                    Handle<JSObject> object) {
457   Isolate* isolate = receiver->GetIsolate();
458   Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
459   PropertyCallbackArguments
460       args(isolate, interceptor->data(), *receiver, *object);
461   v8::Handle<v8::Array> result;
462   if (!interceptor->enumerator()->IsUndefined()) {
463     v8::IndexedPropertyEnumeratorCallback enum_fun =
464         v8::ToCData<v8::IndexedPropertyEnumeratorCallback>(
465             interceptor->enumerator());
466     LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
467     result = args.Call(enum_fun);
468 #if ENABLE_EXTRA_CHECKS
469     CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
470 #endif
471   }
472   return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
473                                    result);
474 }
475 
476 
GetScriptNameOrSourceURL(Handle<Script> script)477 Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script) {
478   Isolate* isolate = script->GetIsolate();
479   Handle<String> name_or_source_url_key =
480       isolate->factory()->InternalizeOneByteString(
481           STATIC_ASCII_VECTOR("nameOrSourceURL"));
482   Handle<JSValue> script_wrapper = GetScriptWrapper(script);
483   Handle<Object> property = GetProperty(isolate,
484                                         script_wrapper,
485                                         name_or_source_url_key);
486   ASSERT(property->IsJSFunction());
487   Handle<JSFunction> method = Handle<JSFunction>::cast(property);
488   bool caught_exception;
489   Handle<Object> result = Execution::TryCall(method, script_wrapper, 0,
490                                              NULL, &caught_exception);
491   if (caught_exception) {
492     result = isolate->factory()->undefined_value();
493   }
494   return result;
495 }
496 
497 
ContainsOnlyValidKeys(Handle<FixedArray> array)498 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
499   int len = array->length();
500   for (int i = 0; i < len; i++) {
501     Object* e = array->get(i);
502     if (!(e->IsString() || e->IsNumber())) return false;
503   }
504   return true;
505 }
506 
507 
GetKeysInFixedArrayFor(Handle<JSReceiver> object,KeyCollectionType type,bool * threw)508 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
509                                           KeyCollectionType type,
510                                           bool* threw) {
511   USE(ContainsOnlyValidKeys);
512   Isolate* isolate = object->GetIsolate();
513   Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
514   Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
515       isolate->context()->native_context()->arguments_boilerplate(),
516       isolate);
517   Handle<JSFunction> arguments_function = Handle<JSFunction>(
518       JSFunction::cast(arguments_boilerplate->map()->constructor()),
519       isolate);
520 
521   // Only collect keys if access is permitted.
522   for (Handle<Object> p = object;
523        *p != isolate->heap()->null_value();
524        p = Handle<Object>(p->GetPrototype(isolate), isolate)) {
525     if (p->IsJSProxy()) {
526       Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
527       Handle<Object> args[] = { proxy };
528       Handle<Object> names = Execution::Call(isolate,
529                                              isolate->proxy_enumerate(),
530                                              object,
531                                              ARRAY_SIZE(args),
532                                              args,
533                                              threw);
534       if (*threw) return content;
535       content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
536       break;
537     }
538 
539     Handle<JSObject> current(JSObject::cast(*p), isolate);
540 
541     // Check access rights if required.
542     if (current->IsAccessCheckNeeded() &&
543         !isolate->MayNamedAccess(*current,
544                                  isolate->heap()->undefined_value(),
545                                  v8::ACCESS_KEYS)) {
546       isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
547       if (isolate->has_scheduled_exception()) {
548         isolate->PromoteScheduledException();
549         *threw = true;
550       }
551       break;
552     }
553 
554     // Compute the element keys.
555     Handle<FixedArray> element_keys =
556         isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
557     current->GetEnumElementKeys(*element_keys);
558     content = UnionOfKeys(content, element_keys);
559     ASSERT(ContainsOnlyValidKeys(content));
560 
561     // Add the element keys from the interceptor.
562     if (current->HasIndexedInterceptor()) {
563       v8::Handle<v8::Array> result =
564           GetKeysForIndexedInterceptor(object, current);
565       if (!result.IsEmpty())
566         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
567       ASSERT(ContainsOnlyValidKeys(content));
568     }
569 
570     // We can cache the computed property keys if access checks are
571     // not needed and no interceptors are involved.
572     //
573     // We do not use the cache if the object has elements and
574     // therefore it does not make sense to cache the property names
575     // for arguments objects.  Arguments objects will always have
576     // elements.
577     // Wrapped strings have elements, but don't have an elements
578     // array or dictionary.  So the fast inline test for whether to
579     // use the cache says yes, so we should not create a cache.
580     bool cache_enum_keys =
581         ((current->map()->constructor() != *arguments_function) &&
582          !current->IsJSValue() &&
583          !current->IsAccessCheckNeeded() &&
584          !current->HasNamedInterceptor() &&
585          !current->HasIndexedInterceptor());
586     // Compute the property keys and cache them if possible.
587     content =
588         UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
589     ASSERT(ContainsOnlyValidKeys(content));
590 
591     // Add the property keys from the interceptor.
592     if (current->HasNamedInterceptor()) {
593       v8::Handle<v8::Array> result =
594           GetKeysForNamedInterceptor(object, current);
595       if (!result.IsEmpty())
596         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
597       ASSERT(ContainsOnlyValidKeys(content));
598     }
599 
600     // If we only want local properties we bail out after the first
601     // iteration.
602     if (type == LOCAL_ONLY)
603       break;
604   }
605   return content;
606 }
607 
608 
GetKeysFor(Handle<JSReceiver> object,bool * threw)609 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
610   Isolate* isolate = object->GetIsolate();
611   isolate->counters()->for_in()->Increment();
612   Handle<FixedArray> elements =
613       GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
614   return isolate->factory()->NewJSArrayWithElements(elements);
615 }
616 
617 
ReduceFixedArrayTo(Handle<FixedArray> array,int length)618 Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
619   ASSERT(array->length() >= length);
620   if (array->length() == length) return array;
621 
622   Handle<FixedArray> new_array =
623       array->GetIsolate()->factory()->NewFixedArray(length);
624   for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
625   return new_array;
626 }
627 
628 
GetEnumPropertyKeys(Handle<JSObject> object,bool cache_result)629 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
630                                        bool cache_result) {
631   Isolate* isolate = object->GetIsolate();
632   if (object->HasFastProperties()) {
633     if (object->map()->instance_descriptors()->HasEnumCache()) {
634       int own_property_count = object->map()->EnumLength();
635       // If we have an enum cache, but the enum length of the given map is set
636       // to kInvalidEnumCache, this means that the map itself has never used the
637       // present enum cache. The first step to using the cache is to set the
638       // enum length of the map by counting the number of own descriptors that
639       // are not DONT_ENUM or SYMBOLIC.
640       if (own_property_count == kInvalidEnumCacheSentinel) {
641         own_property_count = object->map()->NumberOfDescribedProperties(
642             OWN_DESCRIPTORS, DONT_SHOW);
643 
644         if (cache_result) object->map()->SetEnumLength(own_property_count);
645       }
646 
647       DescriptorArray* desc = object->map()->instance_descriptors();
648       Handle<FixedArray> keys(desc->GetEnumCache(), isolate);
649 
650       // In case the number of properties required in the enum are actually
651       // present, we can reuse the enum cache. Otherwise, this means that the
652       // enum cache was generated for a previous (smaller) version of the
653       // Descriptor Array. In that case we regenerate the enum cache.
654       if (own_property_count <= keys->length()) {
655         isolate->counters()->enum_cache_hits()->Increment();
656         return ReduceFixedArrayTo(keys, own_property_count);
657       }
658     }
659 
660     Handle<Map> map(object->map());
661 
662     if (map->instance_descriptors()->IsEmpty()) {
663       isolate->counters()->enum_cache_hits()->Increment();
664       if (cache_result) map->SetEnumLength(0);
665       return isolate->factory()->empty_fixed_array();
666     }
667 
668     isolate->counters()->enum_cache_misses()->Increment();
669     int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_SHOW);
670 
671     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
672     Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);
673 
674     Handle<DescriptorArray> descs =
675         Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
676 
677     int real_size = map->NumberOfOwnDescriptors();
678     int enum_size = 0;
679     int index = 0;
680 
681     for (int i = 0; i < descs->number_of_descriptors(); i++) {
682       PropertyDetails details = descs->GetDetails(i);
683       Object* key = descs->GetKey(i);
684       if (!(details.IsDontEnum() || key->IsSymbol())) {
685         if (i < real_size) ++enum_size;
686         storage->set(index, key);
687         if (!indices.is_null()) {
688           if (details.type() != FIELD) {
689             indices = Handle<FixedArray>();
690           } else {
691             int field_index = descs->GetFieldIndex(i);
692             if (field_index >= map->inobject_properties()) {
693               field_index = -(field_index - map->inobject_properties() + 1);
694             }
695             indices->set(index, Smi::FromInt(field_index));
696           }
697         }
698         index++;
699       }
700     }
701     ASSERT(index == storage->length());
702 
703     Handle<FixedArray> bridge_storage =
704         isolate->factory()->NewFixedArray(
705             DescriptorArray::kEnumCacheBridgeLength);
706     DescriptorArray* desc = object->map()->instance_descriptors();
707     desc->SetEnumCache(*bridge_storage,
708                        *storage,
709                        indices.is_null() ? Object::cast(Smi::FromInt(0))
710                                          : Object::cast(*indices));
711     if (cache_result) {
712       object->map()->SetEnumLength(enum_size);
713     }
714 
715     return ReduceFixedArrayTo(storage, enum_size);
716   } else {
717     Handle<NameDictionary> dictionary(object->property_dictionary());
718 
719     int length = dictionary->NumberOfElements();
720     if (length == 0) {
721       return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
722     }
723 
724     // The enumeration array is generated by allocating an array big enough to
725     // hold all properties that have been seen, whether they are are deleted or
726     // not. Subsequently all visible properties are added to the array. If some
727     // properties were not visible, the array is trimmed so it only contains
728     // visible properties. This improves over adding elements and sorting by
729     // index by having linear complexity rather than n*log(n).
730 
731     // By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
732     // we can predict the number of holes in the final array. If there will be
733     // more than 50% holes, regenerate the enumeration indices to reduce the
734     // number of holes to a minimum. This avoids allocating a large array if
735     // many properties were added but subsequently deleted.
736     int next_enumeration = dictionary->NextEnumerationIndex();
737     if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
738       NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
739       next_enumeration = dictionary->NextEnumerationIndex();
740     }
741 
742     Handle<FixedArray> storage =
743         isolate->factory()->NewFixedArray(next_enumeration);
744 
745     storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
746     ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_SHOW));
747     return storage;
748   }
749 }
750 
751 
DeferredHandleScope(Isolate * isolate)752 DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
753     : impl_(isolate->handle_scope_implementer()) {
754   impl_->BeginDeferredScope();
755   v8::ImplementationUtilities::HandleScopeData* data =
756       impl_->isolate()->handle_scope_data();
757   Object** new_next = impl_->GetSpareOrNewBlock();
758   Object** new_limit = &new_next[kHandleBlockSize];
759   ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
760   impl_->blocks()->Add(new_next);
761 
762 #ifdef DEBUG
763   prev_level_ = data->level;
764 #endif
765   data->level++;
766   prev_limit_ = data->limit;
767   prev_next_ = data->next;
768   data->next = new_next;
769   data->limit = new_limit;
770 }
771 
772 
~DeferredHandleScope()773 DeferredHandleScope::~DeferredHandleScope() {
774   impl_->isolate()->handle_scope_data()->level--;
775   ASSERT(handles_detached_);
776   ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
777 }
778 
779 
Detach()780 DeferredHandles* DeferredHandleScope::Detach() {
781   DeferredHandles* deferred = impl_->Detach(prev_limit_);
782   v8::ImplementationUtilities::HandleScopeData* data =
783       impl_->isolate()->handle_scope_data();
784   data->next = prev_next_;
785   data->limit = prev_limit_;
786 #ifdef DEBUG
787   handles_detached_ = true;
788 #endif
789   return deferred;
790 }
791 
792 
AddWeakObjectToCodeDependency(Heap * heap,Handle<Object> object,Handle<Code> code)793 void AddWeakObjectToCodeDependency(Heap* heap,
794                                    Handle<Object> object,
795                                    Handle<Code> code) {
796   heap->EnsureWeakObjectToCodeTable();
797   Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(*object));
798   dep = DependentCode::Insert(dep, DependentCode::kWeaklyEmbeddedGroup, code);
799   CALL_HEAP_FUNCTION_VOID(heap->isolate(),
800                           heap->AddWeakObjectToCodeDependency(*object, *dep));
801 }
802 
803 
804 } }  // namespace v8::internal
805