1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "bootstrapper.h"
34 #include "compiler.h"
35 #include "debug.h"
36 #include "execution.h"
37 #include "global-handles.h"
38 #include "natives.h"
39 #include "runtime.h"
40 #include "string-search.h"
41 #include "stub-cache.h"
42 #include "vm-state-inl.h"
43
44 namespace v8 {
45 namespace internal {
46
47
NumberOfHandles(Isolate * isolate)48 int HandleScope::NumberOfHandles(Isolate* isolate) {
49 HandleScopeImplementer* impl = isolate->handle_scope_implementer();
50 int n = impl->blocks()->length();
51 if (n == 0) return 0;
52 return ((n - 1) * kHandleBlockSize) + static_cast<int>(
53 (isolate->handle_scope_data()->next - impl->blocks()->last()));
54 }
55
56
Extend(Isolate * isolate)57 Object** HandleScope::Extend(Isolate* isolate) {
58 v8::ImplementationUtilities::HandleScopeData* current =
59 isolate->handle_scope_data();
60
61 Object** result = current->next;
62
63 ASSERT(result == current->limit);
64 // Make sure there's at least one scope on the stack and that the
65 // top of the scope stack isn't a barrier.
66 if (current->level == 0) {
67 Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
68 "Cannot create a handle without a HandleScope");
69 return NULL;
70 }
71 HandleScopeImplementer* impl = isolate->handle_scope_implementer();
72 // If there's more room in the last block, we use that. This is used
73 // for fast creation of scopes after scope barriers.
74 if (!impl->blocks()->is_empty()) {
75 Object** limit = &impl->blocks()->last()[kHandleBlockSize];
76 if (current->limit != limit) {
77 current->limit = limit;
78 ASSERT(limit - current->next < kHandleBlockSize);
79 }
80 }
81
82 // If we still haven't found a slot for the handle, we extend the
83 // current handle scope by allocating a new handle block.
84 if (result == current->limit) {
85 // If there's a spare block, use it for growing the current scope.
86 result = impl->GetSpareOrNewBlock();
87 // Add the extension to the global list of blocks, but count the
88 // extension as part of the current scope.
89 impl->blocks()->Add(result);
90 current->limit = &result[kHandleBlockSize];
91 }
92
93 return result;
94 }
95
96
DeleteExtensions(Isolate * isolate)97 void HandleScope::DeleteExtensions(Isolate* isolate) {
98 v8::ImplementationUtilities::HandleScopeData* current =
99 isolate->handle_scope_data();
100 isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
101 }
102
103
104 #ifdef ENABLE_HANDLE_ZAPPING
ZapRange(Object ** start,Object ** end)105 void HandleScope::ZapRange(Object** start, Object** end) {
106 ASSERT(end - start <= kHandleBlockSize);
107 for (Object** p = start; p != end; p++) {
108 *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
109 }
110 }
111 #endif
112
113
current_level_address(Isolate * isolate)114 Address HandleScope::current_level_address(Isolate* isolate) {
115 return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
116 }
117
118
current_next_address(Isolate * isolate)119 Address HandleScope::current_next_address(Isolate* isolate) {
120 return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
121 }
122
123
current_limit_address(Isolate * isolate)124 Address HandleScope::current_limit_address(Isolate* isolate) {
125 return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
126 }
127
128
AddKeysFromJSArray(Handle<FixedArray> content,Handle<JSArray> array)129 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
130 Handle<JSArray> array) {
131 CALL_HEAP_FUNCTION(content->GetIsolate(),
132 content->AddKeysFromJSArray(*array), FixedArray);
133 }
134
135
UnionOfKeys(Handle<FixedArray> first,Handle<FixedArray> second)136 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
137 Handle<FixedArray> second) {
138 CALL_HEAP_FUNCTION(first->GetIsolate(),
139 first->UnionOfKeys(*second), FixedArray);
140 }
141
142
ReinitializeJSGlobalProxy(Handle<JSFunction> constructor,Handle<JSGlobalProxy> global)143 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
144 Handle<JSFunction> constructor,
145 Handle<JSGlobalProxy> global) {
146 CALL_HEAP_FUNCTION(
147 constructor->GetIsolate(),
148 constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
149 JSGlobalProxy);
150 }
151
152
FlattenString(Handle<String> string)153 void FlattenString(Handle<String> string) {
154 CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
155 }
156
157
FlattenGetString(Handle<String> string)158 Handle<String> FlattenGetString(Handle<String> string) {
159 CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
160 }
161
162
ForceSetProperty(Handle<JSObject> object,Handle<Object> key,Handle<Object> value,PropertyAttributes attributes)163 Handle<Object> ForceSetProperty(Handle<JSObject> object,
164 Handle<Object> key,
165 Handle<Object> value,
166 PropertyAttributes attributes) {
167 return Runtime::ForceSetObjectProperty(object->GetIsolate(), object, key,
168 value, attributes);
169 }
170
171
DeleteProperty(Handle<JSObject> object,Handle<Object> key)172 Handle<Object> DeleteProperty(Handle<JSObject> object, Handle<Object> key) {
173 Isolate* isolate = object->GetIsolate();
174 CALL_HEAP_FUNCTION(isolate,
175 Runtime::DeleteObjectProperty(
176 isolate, object, key, JSReceiver::NORMAL_DELETION),
177 Object);
178 }
179
180
ForceDeleteProperty(Handle<JSObject> object,Handle<Object> key)181 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
182 Handle<Object> key) {
183 Isolate* isolate = object->GetIsolate();
184 CALL_HEAP_FUNCTION(isolate,
185 Runtime::DeleteObjectProperty(
186 isolate, object, key, JSReceiver::FORCE_DELETION),
187 Object);
188 }
189
190
HasProperty(Handle<JSReceiver> obj,Handle<Object> key)191 Handle<Object> HasProperty(Handle<JSReceiver> obj, Handle<Object> key) {
192 Isolate* isolate = obj->GetIsolate();
193 CALL_HEAP_FUNCTION(isolate,
194 Runtime::HasObjectProperty(isolate, obj, key), Object);
195 }
196
197
GetProperty(Handle<JSReceiver> obj,const char * name)198 Handle<Object> GetProperty(Handle<JSReceiver> obj,
199 const char* name) {
200 Isolate* isolate = obj->GetIsolate();
201 Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
202 CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
203 }
204
205
GetProperty(Isolate * isolate,Handle<Object> obj,Handle<Object> key)206 Handle<Object> GetProperty(Isolate* isolate,
207 Handle<Object> obj,
208 Handle<Object> key) {
209 CALL_HEAP_FUNCTION(isolate,
210 Runtime::GetObjectProperty(isolate, obj, key), Object);
211 }
212
213
LookupSingleCharacterStringFromCode(Isolate * isolate,uint32_t index)214 Handle<Object> LookupSingleCharacterStringFromCode(Isolate* isolate,
215 uint32_t index) {
216 CALL_HEAP_FUNCTION(
217 isolate,
218 isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
219 }
220
221
222 // Wrappers for scripts are kept alive and cached in weak global
223 // handles referred from foreign objects held by the scripts as long as
224 // they are used. When they are not used anymore, the garbage
225 // collector will call the weak callback on the global handle
226 // associated with the wrapper and get rid of both the wrapper and the
227 // handle.
ClearWrapperCache(v8::Isolate * v8_isolate,Persistent<v8::Value> * handle,void *)228 static void ClearWrapperCache(v8::Isolate* v8_isolate,
229 Persistent<v8::Value>* handle,
230 void*) {
231 Handle<Object> cache = Utils::OpenPersistent(handle);
232 JSValue* wrapper = JSValue::cast(*cache);
233 Foreign* foreign = Script::cast(wrapper->value())->wrapper();
234 ASSERT(foreign->foreign_address() ==
235 reinterpret_cast<Address>(cache.location()));
236 foreign->set_foreign_address(0);
237 Isolate* isolate = reinterpret_cast<Isolate*>(v8_isolate);
238 isolate->global_handles()->Destroy(cache.location());
239 isolate->counters()->script_wrappers()->Decrement();
240 }
241
242
GetScriptWrapper(Handle<Script> script)243 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
244 if (script->wrapper()->foreign_address() != NULL) {
245 // Return a handle for the existing script wrapper from the cache.
246 return Handle<JSValue>(
247 *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
248 }
249 Isolate* isolate = script->GetIsolate();
250 // Construct a new script wrapper.
251 isolate->counters()->script_wrappers()->Increment();
252 Handle<JSFunction> constructor = isolate->script_function();
253 Handle<JSValue> result =
254 Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
255
256 // The allocation might have triggered a GC, which could have called this
257 // function recursively, and a wrapper has already been created and cached.
258 // In that case, simply return a handle for the cached wrapper.
259 if (script->wrapper()->foreign_address() != NULL) {
260 return Handle<JSValue>(
261 *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
262 }
263
264 result->set_value(*script);
265
266 // Create a new weak global handle and use it to cache the wrapper
267 // for future use. The cache will automatically be cleared by the
268 // garbage collector when it is not used anymore.
269 Handle<Object> handle = isolate->global_handles()->Create(*result);
270 isolate->global_handles()->MakeWeak(handle.location(),
271 NULL,
272 &ClearWrapperCache);
273 script->wrapper()->set_foreign_address(
274 reinterpret_cast<Address>(handle.location()));
275 return result;
276 }
277
278
279 // Init line_ends array with code positions of line ends inside script
280 // source.
InitScriptLineEnds(Handle<Script> script)281 void InitScriptLineEnds(Handle<Script> script) {
282 if (!script->line_ends()->IsUndefined()) return;
283
284 Isolate* isolate = script->GetIsolate();
285
286 if (!script->source()->IsString()) {
287 ASSERT(script->source()->IsUndefined());
288 Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
289 script->set_line_ends(*empty);
290 ASSERT(script->line_ends()->IsFixedArray());
291 return;
292 }
293
294 Handle<String> src(String::cast(script->source()), isolate);
295
296 Handle<FixedArray> array = CalculateLineEnds(src, true);
297
298 if (*array != isolate->heap()->empty_fixed_array()) {
299 array->set_map(isolate->heap()->fixed_cow_array_map());
300 }
301
302 script->set_line_ends(*array);
303 ASSERT(script->line_ends()->IsFixedArray());
304 }
305
306
307 template <typename SourceChar>
CalculateLineEnds(Isolate * isolate,List<int> * line_ends,Vector<const SourceChar> src,bool with_last_line)308 static void CalculateLineEnds(Isolate* isolate,
309 List<int>* line_ends,
310 Vector<const SourceChar> src,
311 bool with_last_line) {
312 const int src_len = src.length();
313 StringSearch<uint8_t, SourceChar> search(isolate, STATIC_ASCII_VECTOR("\n"));
314
315 // Find and record line ends.
316 int position = 0;
317 while (position != -1 && position < src_len) {
318 position = search.Search(src, position);
319 if (position != -1) {
320 line_ends->Add(position);
321 position++;
322 } else if (with_last_line) {
323 // Even if the last line misses a line end, it is counted.
324 line_ends->Add(src_len);
325 return;
326 }
327 }
328 }
329
330
CalculateLineEnds(Handle<String> src,bool with_last_line)331 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
332 bool with_last_line) {
333 src = FlattenGetString(src);
334 // Rough estimate of line count based on a roughly estimated average
335 // length of (unpacked) code.
336 int line_count_estimate = src->length() >> 4;
337 List<int> line_ends(line_count_estimate);
338 Isolate* isolate = src->GetIsolate();
339 {
340 DisallowHeapAllocation no_allocation; // ensure vectors stay valid.
341 // Dispatch on type of strings.
342 String::FlatContent content = src->GetFlatContent();
343 ASSERT(content.IsFlat());
344 if (content.IsAscii()) {
345 CalculateLineEnds(isolate,
346 &line_ends,
347 content.ToOneByteVector(),
348 with_last_line);
349 } else {
350 CalculateLineEnds(isolate,
351 &line_ends,
352 content.ToUC16Vector(),
353 with_last_line);
354 }
355 }
356 int line_count = line_ends.length();
357 Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
358 for (int i = 0; i < line_count; i++) {
359 array->set(i, Smi::FromInt(line_ends[i]));
360 }
361 return array;
362 }
363
364
365 // Convert code position into line number.
GetScriptLineNumber(Handle<Script> script,int code_pos)366 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
367 InitScriptLineEnds(script);
368 DisallowHeapAllocation no_allocation;
369 FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
370 const int line_ends_len = line_ends_array->length();
371
372 if (!line_ends_len) return -1;
373
374 if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
375 return script->line_offset()->value();
376 }
377
378 int left = 0;
379 int right = line_ends_len;
380 while (int half = (right - left) / 2) {
381 if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
382 right -= half;
383 } else {
384 left += half;
385 }
386 }
387 return right + script->line_offset()->value();
388 }
389
390
391 // Convert code position into column number.
GetScriptColumnNumber(Handle<Script> script,int code_pos)392 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
393 int line_number = GetScriptLineNumber(script, code_pos);
394 if (line_number == -1) return -1;
395
396 DisallowHeapAllocation no_allocation;
397 FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
398 line_number = line_number - script->line_offset()->value();
399 if (line_number == 0) return code_pos + script->column_offset()->value();
400 int prev_line_end_pos =
401 Smi::cast(line_ends_array->get(line_number - 1))->value();
402 return code_pos - (prev_line_end_pos + 1);
403 }
404
405
GetScriptLineNumberSafe(Handle<Script> script,int code_pos)406 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
407 DisallowHeapAllocation no_allocation;
408 if (!script->line_ends()->IsUndefined()) {
409 return GetScriptLineNumber(script, code_pos);
410 }
411 // Slow mode: we do not have line_ends. We have to iterate through source.
412 if (!script->source()->IsString()) {
413 return -1;
414 }
415 String* source = String::cast(script->source());
416 int line = 0;
417 int len = source->length();
418 for (int pos = 0; pos < len; pos++) {
419 if (pos == code_pos) {
420 break;
421 }
422 if (source->Get(pos) == '\n') {
423 line++;
424 }
425 }
426 return line;
427 }
428
429
430 // Compute the property keys from the interceptor.
431 // TODO(rossberg): support symbols in API, and filter here if needed.
GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,Handle<JSObject> object)432 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
433 Handle<JSObject> object) {
434 Isolate* isolate = receiver->GetIsolate();
435 Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
436 PropertyCallbackArguments
437 args(isolate, interceptor->data(), *receiver, *object);
438 v8::Handle<v8::Array> result;
439 if (!interceptor->enumerator()->IsUndefined()) {
440 v8::NamedPropertyEnumeratorCallback enum_fun =
441 v8::ToCData<v8::NamedPropertyEnumeratorCallback>(
442 interceptor->enumerator());
443 LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
444 result = args.Call(enum_fun);
445 }
446 #if ENABLE_EXTRA_CHECKS
447 CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
448 #endif
449 return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
450 result);
451 }
452
453
454 // Compute the element keys from the interceptor.
GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,Handle<JSObject> object)455 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
456 Handle<JSObject> object) {
457 Isolate* isolate = receiver->GetIsolate();
458 Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
459 PropertyCallbackArguments
460 args(isolate, interceptor->data(), *receiver, *object);
461 v8::Handle<v8::Array> result;
462 if (!interceptor->enumerator()->IsUndefined()) {
463 v8::IndexedPropertyEnumeratorCallback enum_fun =
464 v8::ToCData<v8::IndexedPropertyEnumeratorCallback>(
465 interceptor->enumerator());
466 LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
467 result = args.Call(enum_fun);
468 #if ENABLE_EXTRA_CHECKS
469 CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
470 #endif
471 }
472 return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
473 result);
474 }
475
476
GetScriptNameOrSourceURL(Handle<Script> script)477 Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script) {
478 Isolate* isolate = script->GetIsolate();
479 Handle<String> name_or_source_url_key =
480 isolate->factory()->InternalizeOneByteString(
481 STATIC_ASCII_VECTOR("nameOrSourceURL"));
482 Handle<JSValue> script_wrapper = GetScriptWrapper(script);
483 Handle<Object> property = GetProperty(isolate,
484 script_wrapper,
485 name_or_source_url_key);
486 ASSERT(property->IsJSFunction());
487 Handle<JSFunction> method = Handle<JSFunction>::cast(property);
488 bool caught_exception;
489 Handle<Object> result = Execution::TryCall(method, script_wrapper, 0,
490 NULL, &caught_exception);
491 if (caught_exception) {
492 result = isolate->factory()->undefined_value();
493 }
494 return result;
495 }
496
497
ContainsOnlyValidKeys(Handle<FixedArray> array)498 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
499 int len = array->length();
500 for (int i = 0; i < len; i++) {
501 Object* e = array->get(i);
502 if (!(e->IsString() || e->IsNumber())) return false;
503 }
504 return true;
505 }
506
507
GetKeysInFixedArrayFor(Handle<JSReceiver> object,KeyCollectionType type,bool * threw)508 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
509 KeyCollectionType type,
510 bool* threw) {
511 USE(ContainsOnlyValidKeys);
512 Isolate* isolate = object->GetIsolate();
513 Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
514 Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
515 isolate->context()->native_context()->arguments_boilerplate(),
516 isolate);
517 Handle<JSFunction> arguments_function = Handle<JSFunction>(
518 JSFunction::cast(arguments_boilerplate->map()->constructor()),
519 isolate);
520
521 // Only collect keys if access is permitted.
522 for (Handle<Object> p = object;
523 *p != isolate->heap()->null_value();
524 p = Handle<Object>(p->GetPrototype(isolate), isolate)) {
525 if (p->IsJSProxy()) {
526 Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
527 Handle<Object> args[] = { proxy };
528 Handle<Object> names = Execution::Call(isolate,
529 isolate->proxy_enumerate(),
530 object,
531 ARRAY_SIZE(args),
532 args,
533 threw);
534 if (*threw) return content;
535 content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
536 break;
537 }
538
539 Handle<JSObject> current(JSObject::cast(*p), isolate);
540
541 // Check access rights if required.
542 if (current->IsAccessCheckNeeded() &&
543 !isolate->MayNamedAccess(*current,
544 isolate->heap()->undefined_value(),
545 v8::ACCESS_KEYS)) {
546 isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
547 if (isolate->has_scheduled_exception()) {
548 isolate->PromoteScheduledException();
549 *threw = true;
550 }
551 break;
552 }
553
554 // Compute the element keys.
555 Handle<FixedArray> element_keys =
556 isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
557 current->GetEnumElementKeys(*element_keys);
558 content = UnionOfKeys(content, element_keys);
559 ASSERT(ContainsOnlyValidKeys(content));
560
561 // Add the element keys from the interceptor.
562 if (current->HasIndexedInterceptor()) {
563 v8::Handle<v8::Array> result =
564 GetKeysForIndexedInterceptor(object, current);
565 if (!result.IsEmpty())
566 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
567 ASSERT(ContainsOnlyValidKeys(content));
568 }
569
570 // We can cache the computed property keys if access checks are
571 // not needed and no interceptors are involved.
572 //
573 // We do not use the cache if the object has elements and
574 // therefore it does not make sense to cache the property names
575 // for arguments objects. Arguments objects will always have
576 // elements.
577 // Wrapped strings have elements, but don't have an elements
578 // array or dictionary. So the fast inline test for whether to
579 // use the cache says yes, so we should not create a cache.
580 bool cache_enum_keys =
581 ((current->map()->constructor() != *arguments_function) &&
582 !current->IsJSValue() &&
583 !current->IsAccessCheckNeeded() &&
584 !current->HasNamedInterceptor() &&
585 !current->HasIndexedInterceptor());
586 // Compute the property keys and cache them if possible.
587 content =
588 UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
589 ASSERT(ContainsOnlyValidKeys(content));
590
591 // Add the property keys from the interceptor.
592 if (current->HasNamedInterceptor()) {
593 v8::Handle<v8::Array> result =
594 GetKeysForNamedInterceptor(object, current);
595 if (!result.IsEmpty())
596 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
597 ASSERT(ContainsOnlyValidKeys(content));
598 }
599
600 // If we only want local properties we bail out after the first
601 // iteration.
602 if (type == LOCAL_ONLY)
603 break;
604 }
605 return content;
606 }
607
608
GetKeysFor(Handle<JSReceiver> object,bool * threw)609 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
610 Isolate* isolate = object->GetIsolate();
611 isolate->counters()->for_in()->Increment();
612 Handle<FixedArray> elements =
613 GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
614 return isolate->factory()->NewJSArrayWithElements(elements);
615 }
616
617
ReduceFixedArrayTo(Handle<FixedArray> array,int length)618 Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
619 ASSERT(array->length() >= length);
620 if (array->length() == length) return array;
621
622 Handle<FixedArray> new_array =
623 array->GetIsolate()->factory()->NewFixedArray(length);
624 for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
625 return new_array;
626 }
627
628
GetEnumPropertyKeys(Handle<JSObject> object,bool cache_result)629 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
630 bool cache_result) {
631 Isolate* isolate = object->GetIsolate();
632 if (object->HasFastProperties()) {
633 if (object->map()->instance_descriptors()->HasEnumCache()) {
634 int own_property_count = object->map()->EnumLength();
635 // If we have an enum cache, but the enum length of the given map is set
636 // to kInvalidEnumCache, this means that the map itself has never used the
637 // present enum cache. The first step to using the cache is to set the
638 // enum length of the map by counting the number of own descriptors that
639 // are not DONT_ENUM or SYMBOLIC.
640 if (own_property_count == kInvalidEnumCacheSentinel) {
641 own_property_count = object->map()->NumberOfDescribedProperties(
642 OWN_DESCRIPTORS, DONT_SHOW);
643
644 if (cache_result) object->map()->SetEnumLength(own_property_count);
645 }
646
647 DescriptorArray* desc = object->map()->instance_descriptors();
648 Handle<FixedArray> keys(desc->GetEnumCache(), isolate);
649
650 // In case the number of properties required in the enum are actually
651 // present, we can reuse the enum cache. Otherwise, this means that the
652 // enum cache was generated for a previous (smaller) version of the
653 // Descriptor Array. In that case we regenerate the enum cache.
654 if (own_property_count <= keys->length()) {
655 isolate->counters()->enum_cache_hits()->Increment();
656 return ReduceFixedArrayTo(keys, own_property_count);
657 }
658 }
659
660 Handle<Map> map(object->map());
661
662 if (map->instance_descriptors()->IsEmpty()) {
663 isolate->counters()->enum_cache_hits()->Increment();
664 if (cache_result) map->SetEnumLength(0);
665 return isolate->factory()->empty_fixed_array();
666 }
667
668 isolate->counters()->enum_cache_misses()->Increment();
669 int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_SHOW);
670
671 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
672 Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);
673
674 Handle<DescriptorArray> descs =
675 Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
676
677 int real_size = map->NumberOfOwnDescriptors();
678 int enum_size = 0;
679 int index = 0;
680
681 for (int i = 0; i < descs->number_of_descriptors(); i++) {
682 PropertyDetails details = descs->GetDetails(i);
683 Object* key = descs->GetKey(i);
684 if (!(details.IsDontEnum() || key->IsSymbol())) {
685 if (i < real_size) ++enum_size;
686 storage->set(index, key);
687 if (!indices.is_null()) {
688 if (details.type() != FIELD) {
689 indices = Handle<FixedArray>();
690 } else {
691 int field_index = descs->GetFieldIndex(i);
692 if (field_index >= map->inobject_properties()) {
693 field_index = -(field_index - map->inobject_properties() + 1);
694 }
695 indices->set(index, Smi::FromInt(field_index));
696 }
697 }
698 index++;
699 }
700 }
701 ASSERT(index == storage->length());
702
703 Handle<FixedArray> bridge_storage =
704 isolate->factory()->NewFixedArray(
705 DescriptorArray::kEnumCacheBridgeLength);
706 DescriptorArray* desc = object->map()->instance_descriptors();
707 desc->SetEnumCache(*bridge_storage,
708 *storage,
709 indices.is_null() ? Object::cast(Smi::FromInt(0))
710 : Object::cast(*indices));
711 if (cache_result) {
712 object->map()->SetEnumLength(enum_size);
713 }
714
715 return ReduceFixedArrayTo(storage, enum_size);
716 } else {
717 Handle<NameDictionary> dictionary(object->property_dictionary());
718
719 int length = dictionary->NumberOfElements();
720 if (length == 0) {
721 return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
722 }
723
724 // The enumeration array is generated by allocating an array big enough to
725 // hold all properties that have been seen, whether they are are deleted or
726 // not. Subsequently all visible properties are added to the array. If some
727 // properties were not visible, the array is trimmed so it only contains
728 // visible properties. This improves over adding elements and sorting by
729 // index by having linear complexity rather than n*log(n).
730
731 // By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
732 // we can predict the number of holes in the final array. If there will be
733 // more than 50% holes, regenerate the enumeration indices to reduce the
734 // number of holes to a minimum. This avoids allocating a large array if
735 // many properties were added but subsequently deleted.
736 int next_enumeration = dictionary->NextEnumerationIndex();
737 if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
738 NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
739 next_enumeration = dictionary->NextEnumerationIndex();
740 }
741
742 Handle<FixedArray> storage =
743 isolate->factory()->NewFixedArray(next_enumeration);
744
745 storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
746 ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_SHOW));
747 return storage;
748 }
749 }
750
751
DeferredHandleScope(Isolate * isolate)752 DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
753 : impl_(isolate->handle_scope_implementer()) {
754 impl_->BeginDeferredScope();
755 v8::ImplementationUtilities::HandleScopeData* data =
756 impl_->isolate()->handle_scope_data();
757 Object** new_next = impl_->GetSpareOrNewBlock();
758 Object** new_limit = &new_next[kHandleBlockSize];
759 ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
760 impl_->blocks()->Add(new_next);
761
762 #ifdef DEBUG
763 prev_level_ = data->level;
764 #endif
765 data->level++;
766 prev_limit_ = data->limit;
767 prev_next_ = data->next;
768 data->next = new_next;
769 data->limit = new_limit;
770 }
771
772
~DeferredHandleScope()773 DeferredHandleScope::~DeferredHandleScope() {
774 impl_->isolate()->handle_scope_data()->level--;
775 ASSERT(handles_detached_);
776 ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
777 }
778
779
Detach()780 DeferredHandles* DeferredHandleScope::Detach() {
781 DeferredHandles* deferred = impl_->Detach(prev_limit_);
782 v8::ImplementationUtilities::HandleScopeData* data =
783 impl_->isolate()->handle_scope_data();
784 data->next = prev_next_;
785 data->limit = prev_limit_;
786 #ifdef DEBUG
787 handles_detached_ = true;
788 #endif
789 return deferred;
790 }
791
792
AddWeakObjectToCodeDependency(Heap * heap,Handle<Object> object,Handle<Code> code)793 void AddWeakObjectToCodeDependency(Heap* heap,
794 Handle<Object> object,
795 Handle<Code> code) {
796 heap->EnsureWeakObjectToCodeTable();
797 Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(*object));
798 dep = DependentCode::Insert(dep, DependentCode::kWeaklyEmbeddedGroup, code);
799 CALL_HEAP_FUNCTION_VOID(heap->isolate(),
800 heap->AddWeakObjectToCodeDependency(*object, *dep));
801 }
802
803
804 } } // namespace v8::internal
805