1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if V8_TARGET_ARCH_IA32
31
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "cpu-profiler.h"
35 #include "debug.h"
36 #include "isolate-inl.h"
37 #include "runtime.h"
38 #include "serialize.h"
39
40 namespace v8 {
41 namespace internal {
42
43 // -------------------------------------------------------------------------
44 // MacroAssembler implementation.
45
MacroAssembler(Isolate * arg_isolate,void * buffer,int size)46 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
47 : Assembler(arg_isolate, buffer, size),
48 generating_stub_(false),
49 has_frame_(false) {
50 if (isolate() != NULL) {
51 // TODO(titzer): should we just use a null handle here instead?
52 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
53 isolate());
54 }
55 }
56
57
Load(Register dst,const Operand & src,Representation r)58 void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
59 ASSERT(!r.IsDouble());
60 if (r.IsInteger8()) {
61 movsx_b(dst, src);
62 } else if (r.IsUInteger8()) {
63 movzx_b(dst, src);
64 } else if (r.IsInteger16()) {
65 movsx_w(dst, src);
66 } else if (r.IsUInteger16()) {
67 movzx_w(dst, src);
68 } else {
69 mov(dst, src);
70 }
71 }
72
73
Store(Register src,const Operand & dst,Representation r)74 void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
75 ASSERT(!r.IsDouble());
76 if (r.IsInteger8() || r.IsUInteger8()) {
77 mov_b(dst, src);
78 } else if (r.IsInteger16() || r.IsUInteger16()) {
79 mov_w(dst, src);
80 } else {
81 mov(dst, src);
82 }
83 }
84
85
LoadRoot(Register destination,Heap::RootListIndex index)86 void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
87 if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
88 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
89 mov(destination, value);
90 return;
91 }
92 ExternalReference roots_array_start =
93 ExternalReference::roots_array_start(isolate());
94 mov(destination, Immediate(index));
95 mov(destination, Operand::StaticArray(destination,
96 times_pointer_size,
97 roots_array_start));
98 }
99
100
StoreRoot(Register source,Register scratch,Heap::RootListIndex index)101 void MacroAssembler::StoreRoot(Register source,
102 Register scratch,
103 Heap::RootListIndex index) {
104 ASSERT(Heap::RootCanBeWrittenAfterInitialization(index));
105 ExternalReference roots_array_start =
106 ExternalReference::roots_array_start(isolate());
107 mov(scratch, Immediate(index));
108 mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
109 source);
110 }
111
112
CompareRoot(Register with,Register scratch,Heap::RootListIndex index)113 void MacroAssembler::CompareRoot(Register with,
114 Register scratch,
115 Heap::RootListIndex index) {
116 ExternalReference roots_array_start =
117 ExternalReference::roots_array_start(isolate());
118 mov(scratch, Immediate(index));
119 cmp(with, Operand::StaticArray(scratch,
120 times_pointer_size,
121 roots_array_start));
122 }
123
124
CompareRoot(Register with,Heap::RootListIndex index)125 void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
126 ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
127 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
128 cmp(with, value);
129 }
130
131
CompareRoot(const Operand & with,Heap::RootListIndex index)132 void MacroAssembler::CompareRoot(const Operand& with,
133 Heap::RootListIndex index) {
134 ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
135 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
136 cmp(with, value);
137 }
138
139
InNewSpace(Register object,Register scratch,Condition cc,Label * condition_met,Label::Distance condition_met_distance)140 void MacroAssembler::InNewSpace(
141 Register object,
142 Register scratch,
143 Condition cc,
144 Label* condition_met,
145 Label::Distance condition_met_distance) {
146 ASSERT(cc == equal || cc == not_equal);
147 if (scratch.is(object)) {
148 and_(scratch, Immediate(~Page::kPageAlignmentMask));
149 } else {
150 mov(scratch, Immediate(~Page::kPageAlignmentMask));
151 and_(scratch, object);
152 }
153 // Check that we can use a test_b.
154 ASSERT(MemoryChunk::IN_FROM_SPACE < 8);
155 ASSERT(MemoryChunk::IN_TO_SPACE < 8);
156 int mask = (1 << MemoryChunk::IN_FROM_SPACE)
157 | (1 << MemoryChunk::IN_TO_SPACE);
158 // If non-zero, the page belongs to new-space.
159 test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
160 static_cast<uint8_t>(mask));
161 j(cc, condition_met, condition_met_distance);
162 }
163
164
RememberedSetHelper(Register object,Register addr,Register scratch,SaveFPRegsMode save_fp,MacroAssembler::RememberedSetFinalAction and_then)165 void MacroAssembler::RememberedSetHelper(
166 Register object, // Only used for debug checks.
167 Register addr,
168 Register scratch,
169 SaveFPRegsMode save_fp,
170 MacroAssembler::RememberedSetFinalAction and_then) {
171 Label done;
172 if (emit_debug_code()) {
173 Label ok;
174 JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
175 int3();
176 bind(&ok);
177 }
178 // Load store buffer top.
179 ExternalReference store_buffer =
180 ExternalReference::store_buffer_top(isolate());
181 mov(scratch, Operand::StaticVariable(store_buffer));
182 // Store pointer to buffer.
183 mov(Operand(scratch, 0), addr);
184 // Increment buffer top.
185 add(scratch, Immediate(kPointerSize));
186 // Write back new top of buffer.
187 mov(Operand::StaticVariable(store_buffer), scratch);
188 // Call stub on end of buffer.
189 // Check for end of buffer.
190 test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
191 if (and_then == kReturnAtEnd) {
192 Label buffer_overflowed;
193 j(not_equal, &buffer_overflowed, Label::kNear);
194 ret(0);
195 bind(&buffer_overflowed);
196 } else {
197 ASSERT(and_then == kFallThroughAtEnd);
198 j(equal, &done, Label::kNear);
199 }
200 StoreBufferOverflowStub store_buffer_overflow =
201 StoreBufferOverflowStub(save_fp);
202 CallStub(&store_buffer_overflow);
203 if (and_then == kReturnAtEnd) {
204 ret(0);
205 } else {
206 ASSERT(and_then == kFallThroughAtEnd);
207 bind(&done);
208 }
209 }
210
211
ClampDoubleToUint8(XMMRegister input_reg,XMMRegister scratch_reg,Register result_reg)212 void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
213 XMMRegister scratch_reg,
214 Register result_reg) {
215 Label done;
216 Label conv_failure;
217 pxor(scratch_reg, scratch_reg);
218 cvtsd2si(result_reg, input_reg);
219 test(result_reg, Immediate(0xFFFFFF00));
220 j(zero, &done, Label::kNear);
221 cmp(result_reg, Immediate(0x80000000));
222 j(equal, &conv_failure, Label::kNear);
223 mov(result_reg, Immediate(0));
224 setcc(above, result_reg);
225 sub(result_reg, Immediate(1));
226 and_(result_reg, Immediate(255));
227 jmp(&done, Label::kNear);
228 bind(&conv_failure);
229 Set(result_reg, Immediate(0));
230 ucomisd(input_reg, scratch_reg);
231 j(below, &done, Label::kNear);
232 Set(result_reg, Immediate(255));
233 bind(&done);
234 }
235
236
ClampUint8(Register reg)237 void MacroAssembler::ClampUint8(Register reg) {
238 Label done;
239 test(reg, Immediate(0xFFFFFF00));
240 j(zero, &done, Label::kNear);
241 setcc(negative, reg); // 1 if negative, 0 if positive.
242 dec_b(reg); // 0 if negative, 255 if positive.
243 bind(&done);
244 }
245
246
SlowTruncateToI(Register result_reg,Register input_reg,int offset)247 void MacroAssembler::SlowTruncateToI(Register result_reg,
248 Register input_reg,
249 int offset) {
250 DoubleToIStub stub(input_reg, result_reg, offset, true);
251 call(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
252 }
253
254
TruncateDoubleToI(Register result_reg,XMMRegister input_reg)255 void MacroAssembler::TruncateDoubleToI(Register result_reg,
256 XMMRegister input_reg) {
257 Label done;
258 cvttsd2si(result_reg, Operand(input_reg));
259 cmp(result_reg, 0x80000000u);
260 j(not_equal, &done, Label::kNear);
261
262 sub(esp, Immediate(kDoubleSize));
263 movsd(MemOperand(esp, 0), input_reg);
264 SlowTruncateToI(result_reg, esp, 0);
265 add(esp, Immediate(kDoubleSize));
266 bind(&done);
267 }
268
269
TruncateX87TOSToI(Register result_reg)270 void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
271 sub(esp, Immediate(kDoubleSize));
272 fst_d(MemOperand(esp, 0));
273 SlowTruncateToI(result_reg, esp, 0);
274 add(esp, Immediate(kDoubleSize));
275 }
276
277
X87TOSToI(Register result_reg,MinusZeroMode minus_zero_mode,Label * conversion_failed,Label::Distance dst)278 void MacroAssembler::X87TOSToI(Register result_reg,
279 MinusZeroMode minus_zero_mode,
280 Label* conversion_failed,
281 Label::Distance dst) {
282 Label done;
283 sub(esp, Immediate(kPointerSize));
284 fld(0);
285 fist_s(MemOperand(esp, 0));
286 fild_s(MemOperand(esp, 0));
287 pop(result_reg);
288 FCmp();
289 j(not_equal, conversion_failed, dst);
290 j(parity_even, conversion_failed, dst);
291 if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
292 test(result_reg, Operand(result_reg));
293 j(not_zero, &done, Label::kNear);
294 // To check for minus zero, we load the value again as float, and check
295 // if that is still 0.
296 sub(esp, Immediate(kPointerSize));
297 fst_s(MemOperand(esp, 0));
298 pop(result_reg);
299 test(result_reg, Operand(result_reg));
300 j(not_zero, conversion_failed, dst);
301 }
302 bind(&done);
303 }
304
305
DoubleToI(Register result_reg,XMMRegister input_reg,XMMRegister scratch,MinusZeroMode minus_zero_mode,Label * conversion_failed,Label::Distance dst)306 void MacroAssembler::DoubleToI(Register result_reg,
307 XMMRegister input_reg,
308 XMMRegister scratch,
309 MinusZeroMode minus_zero_mode,
310 Label* conversion_failed,
311 Label::Distance dst) {
312 ASSERT(!input_reg.is(scratch));
313 cvttsd2si(result_reg, Operand(input_reg));
314 Cvtsi2sd(scratch, Operand(result_reg));
315 ucomisd(scratch, input_reg);
316 j(not_equal, conversion_failed, dst);
317 j(parity_even, conversion_failed, dst); // NaN.
318 if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
319 Label done;
320 // The integer converted back is equal to the original. We
321 // only have to test if we got -0 as an input.
322 test(result_reg, Operand(result_reg));
323 j(not_zero, &done, Label::kNear);
324 movmskpd(result_reg, input_reg);
325 // Bit 0 contains the sign of the double in input_reg.
326 // If input was positive, we are ok and return 0, otherwise
327 // jump to conversion_failed.
328 and_(result_reg, 1);
329 j(not_zero, conversion_failed, dst);
330 bind(&done);
331 }
332 }
333
334
TruncateHeapNumberToI(Register result_reg,Register input_reg)335 void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
336 Register input_reg) {
337 Label done, slow_case;
338
339 if (CpuFeatures::IsSupported(SSE3)) {
340 CpuFeatureScope scope(this, SSE3);
341 Label convert;
342 // Use more powerful conversion when sse3 is available.
343 // Load x87 register with heap number.
344 fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
345 // Get exponent alone and check for too-big exponent.
346 mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
347 and_(result_reg, HeapNumber::kExponentMask);
348 const uint32_t kTooBigExponent =
349 (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
350 cmp(Operand(result_reg), Immediate(kTooBigExponent));
351 j(greater_equal, &slow_case, Label::kNear);
352
353 // Reserve space for 64 bit answer.
354 sub(Operand(esp), Immediate(kDoubleSize));
355 // Do conversion, which cannot fail because we checked the exponent.
356 fisttp_d(Operand(esp, 0));
357 mov(result_reg, Operand(esp, 0)); // Low word of answer is the result.
358 add(Operand(esp), Immediate(kDoubleSize));
359 jmp(&done, Label::kNear);
360
361 // Slow case.
362 bind(&slow_case);
363 if (input_reg.is(result_reg)) {
364 // Input is clobbered. Restore number from fpu stack
365 sub(Operand(esp), Immediate(kDoubleSize));
366 fstp_d(Operand(esp, 0));
367 SlowTruncateToI(result_reg, esp, 0);
368 add(esp, Immediate(kDoubleSize));
369 } else {
370 fstp(0);
371 SlowTruncateToI(result_reg, input_reg);
372 }
373 } else if (CpuFeatures::IsSupported(SSE2)) {
374 CpuFeatureScope scope(this, SSE2);
375 movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
376 cvttsd2si(result_reg, Operand(xmm0));
377 cmp(result_reg, 0x80000000u);
378 j(not_equal, &done, Label::kNear);
379 // Check if the input was 0x8000000 (kMinInt).
380 // If no, then we got an overflow and we deoptimize.
381 ExternalReference min_int = ExternalReference::address_of_min_int();
382 ucomisd(xmm0, Operand::StaticVariable(min_int));
383 j(not_equal, &slow_case, Label::kNear);
384 j(parity_even, &slow_case, Label::kNear); // NaN.
385 jmp(&done, Label::kNear);
386
387 // Slow case.
388 bind(&slow_case);
389 if (input_reg.is(result_reg)) {
390 // Input is clobbered. Restore number from double scratch.
391 sub(esp, Immediate(kDoubleSize));
392 movsd(MemOperand(esp, 0), xmm0);
393 SlowTruncateToI(result_reg, esp, 0);
394 add(esp, Immediate(kDoubleSize));
395 } else {
396 SlowTruncateToI(result_reg, input_reg);
397 }
398 } else {
399 SlowTruncateToI(result_reg, input_reg);
400 }
401 bind(&done);
402 }
403
404
TaggedToI(Register result_reg,Register input_reg,XMMRegister temp,MinusZeroMode minus_zero_mode,Label * lost_precision)405 void MacroAssembler::TaggedToI(Register result_reg,
406 Register input_reg,
407 XMMRegister temp,
408 MinusZeroMode minus_zero_mode,
409 Label* lost_precision) {
410 Label done;
411 ASSERT(!temp.is(xmm0));
412
413 cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
414 isolate()->factory()->heap_number_map());
415 j(not_equal, lost_precision, Label::kNear);
416
417 if (CpuFeatures::IsSafeForSnapshot(SSE2)) {
418 ASSERT(!temp.is(no_xmm_reg));
419 CpuFeatureScope scope(this, SSE2);
420
421 movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
422 cvttsd2si(result_reg, Operand(xmm0));
423 Cvtsi2sd(temp, Operand(result_reg));
424 ucomisd(xmm0, temp);
425 RecordComment("Deferred TaggedToI: lost precision");
426 j(not_equal, lost_precision, Label::kNear);
427 RecordComment("Deferred TaggedToI: NaN");
428 j(parity_even, lost_precision, Label::kNear);
429 if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
430 test(result_reg, Operand(result_reg));
431 j(not_zero, &done, Label::kNear);
432 movmskpd(result_reg, xmm0);
433 and_(result_reg, 1);
434 RecordComment("Deferred TaggedToI: minus zero");
435 j(not_zero, lost_precision, Label::kNear);
436 }
437 } else {
438 // TODO(olivf) Converting a number on the fpu is actually quite slow. We
439 // should first try a fast conversion and then bailout to this slow case.
440 Label lost_precision_pop, zero_check;
441 Label* lost_precision_int = (minus_zero_mode == FAIL_ON_MINUS_ZERO)
442 ? &lost_precision_pop : lost_precision;
443 sub(esp, Immediate(kPointerSize));
444 fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
445 if (minus_zero_mode == FAIL_ON_MINUS_ZERO) fld(0);
446 fist_s(MemOperand(esp, 0));
447 fild_s(MemOperand(esp, 0));
448 FCmp();
449 pop(result_reg);
450 j(not_equal, lost_precision_int, Label::kNear);
451 j(parity_even, lost_precision_int, Label::kNear); // NaN.
452 if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
453 test(result_reg, Operand(result_reg));
454 j(zero, &zero_check, Label::kNear);
455 fstp(0);
456 jmp(&done, Label::kNear);
457 bind(&zero_check);
458 // To check for minus zero, we load the value again as float, and check
459 // if that is still 0.
460 sub(esp, Immediate(kPointerSize));
461 fstp_s(Operand(esp, 0));
462 pop(result_reg);
463 test(result_reg, Operand(result_reg));
464 j(zero, &done, Label::kNear);
465 jmp(lost_precision, Label::kNear);
466
467 bind(&lost_precision_pop);
468 fstp(0);
469 jmp(lost_precision, Label::kNear);
470 }
471 }
472 bind(&done);
473 }
474
475
LoadUint32(XMMRegister dst,Register src,XMMRegister scratch)476 void MacroAssembler::LoadUint32(XMMRegister dst,
477 Register src,
478 XMMRegister scratch) {
479 Label done;
480 cmp(src, Immediate(0));
481 ExternalReference uint32_bias =
482 ExternalReference::address_of_uint32_bias();
483 movsd(scratch, Operand::StaticVariable(uint32_bias));
484 Cvtsi2sd(dst, src);
485 j(not_sign, &done, Label::kNear);
486 addsd(dst, scratch);
487 bind(&done);
488 }
489
490
LoadUint32NoSSE2(Register src)491 void MacroAssembler::LoadUint32NoSSE2(Register src) {
492 Label done;
493 push(src);
494 fild_s(Operand(esp, 0));
495 cmp(src, Immediate(0));
496 j(not_sign, &done, Label::kNear);
497 ExternalReference uint32_bias =
498 ExternalReference::address_of_uint32_bias();
499 fld_d(Operand::StaticVariable(uint32_bias));
500 faddp(1);
501 bind(&done);
502 add(esp, Immediate(kPointerSize));
503 }
504
505
RecordWriteArray(Register object,Register value,Register index,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)506 void MacroAssembler::RecordWriteArray(Register object,
507 Register value,
508 Register index,
509 SaveFPRegsMode save_fp,
510 RememberedSetAction remembered_set_action,
511 SmiCheck smi_check) {
512 // First, check if a write barrier is even needed. The tests below
513 // catch stores of Smis.
514 Label done;
515
516 // Skip barrier if writing a smi.
517 if (smi_check == INLINE_SMI_CHECK) {
518 ASSERT_EQ(0, kSmiTag);
519 test(value, Immediate(kSmiTagMask));
520 j(zero, &done);
521 }
522
523 // Array access: calculate the destination address in the same manner as
524 // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
525 // into an array of words.
526 Register dst = index;
527 lea(dst, Operand(object, index, times_half_pointer_size,
528 FixedArray::kHeaderSize - kHeapObjectTag));
529
530 RecordWrite(
531 object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
532
533 bind(&done);
534
535 // Clobber clobbered input registers when running with the debug-code flag
536 // turned on to provoke errors.
537 if (emit_debug_code()) {
538 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
539 mov(index, Immediate(BitCast<int32_t>(kZapValue)));
540 }
541 }
542
543
RecordWriteField(Register object,int offset,Register value,Register dst,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)544 void MacroAssembler::RecordWriteField(
545 Register object,
546 int offset,
547 Register value,
548 Register dst,
549 SaveFPRegsMode save_fp,
550 RememberedSetAction remembered_set_action,
551 SmiCheck smi_check) {
552 // First, check if a write barrier is even needed. The tests below
553 // catch stores of Smis.
554 Label done;
555
556 // Skip barrier if writing a smi.
557 if (smi_check == INLINE_SMI_CHECK) {
558 JumpIfSmi(value, &done, Label::kNear);
559 }
560
561 // Although the object register is tagged, the offset is relative to the start
562 // of the object, so so offset must be a multiple of kPointerSize.
563 ASSERT(IsAligned(offset, kPointerSize));
564
565 lea(dst, FieldOperand(object, offset));
566 if (emit_debug_code()) {
567 Label ok;
568 test_b(dst, (1 << kPointerSizeLog2) - 1);
569 j(zero, &ok, Label::kNear);
570 int3();
571 bind(&ok);
572 }
573
574 RecordWrite(
575 object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
576
577 bind(&done);
578
579 // Clobber clobbered input registers when running with the debug-code flag
580 // turned on to provoke errors.
581 if (emit_debug_code()) {
582 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
583 mov(dst, Immediate(BitCast<int32_t>(kZapValue)));
584 }
585 }
586
587
RecordWriteForMap(Register object,Handle<Map> map,Register scratch1,Register scratch2,SaveFPRegsMode save_fp)588 void MacroAssembler::RecordWriteForMap(
589 Register object,
590 Handle<Map> map,
591 Register scratch1,
592 Register scratch2,
593 SaveFPRegsMode save_fp) {
594 Label done;
595
596 Register address = scratch1;
597 Register value = scratch2;
598 if (emit_debug_code()) {
599 Label ok;
600 lea(address, FieldOperand(object, HeapObject::kMapOffset));
601 test_b(address, (1 << kPointerSizeLog2) - 1);
602 j(zero, &ok, Label::kNear);
603 int3();
604 bind(&ok);
605 }
606
607 ASSERT(!object.is(value));
608 ASSERT(!object.is(address));
609 ASSERT(!value.is(address));
610 AssertNotSmi(object);
611
612 if (!FLAG_incremental_marking) {
613 return;
614 }
615
616 // Count number of write barriers in generated code.
617 isolate()->counters()->write_barriers_static()->Increment();
618 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
619
620 // A single check of the map's pages interesting flag suffices, since it is
621 // only set during incremental collection, and then it's also guaranteed that
622 // the from object's page's interesting flag is also set. This optimization
623 // relies on the fact that maps can never be in new space.
624 ASSERT(!isolate()->heap()->InNewSpace(*map));
625 CheckPageFlagForMap(map,
626 MemoryChunk::kPointersToHereAreInterestingMask,
627 zero,
628 &done,
629 Label::kNear);
630
631 // Delay the initialization of |address| and |value| for the stub until it's
632 // known that the will be needed. Up until this point their values are not
633 // needed since they are embedded in the operands of instructions that need
634 // them.
635 lea(address, FieldOperand(object, HeapObject::kMapOffset));
636 mov(value, Immediate(map));
637 RecordWriteStub stub(object, value, address, OMIT_REMEMBERED_SET, save_fp);
638 CallStub(&stub);
639
640 bind(&done);
641
642 // Clobber clobbered input registers when running with the debug-code flag
643 // turned on to provoke errors.
644 if (emit_debug_code()) {
645 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
646 mov(scratch1, Immediate(BitCast<int32_t>(kZapValue)));
647 mov(scratch2, Immediate(BitCast<int32_t>(kZapValue)));
648 }
649 }
650
651
RecordWrite(Register object,Register address,Register value,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check)652 void MacroAssembler::RecordWrite(Register object,
653 Register address,
654 Register value,
655 SaveFPRegsMode fp_mode,
656 RememberedSetAction remembered_set_action,
657 SmiCheck smi_check) {
658 ASSERT(!object.is(value));
659 ASSERT(!object.is(address));
660 ASSERT(!value.is(address));
661 AssertNotSmi(object);
662
663 if (remembered_set_action == OMIT_REMEMBERED_SET &&
664 !FLAG_incremental_marking) {
665 return;
666 }
667
668 if (emit_debug_code()) {
669 Label ok;
670 cmp(value, Operand(address, 0));
671 j(equal, &ok, Label::kNear);
672 int3();
673 bind(&ok);
674 }
675
676 // Count number of write barriers in generated code.
677 isolate()->counters()->write_barriers_static()->Increment();
678 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
679
680 // First, check if a write barrier is even needed. The tests below
681 // catch stores of Smis and stores into young gen.
682 Label done;
683
684 if (smi_check == INLINE_SMI_CHECK) {
685 // Skip barrier if writing a smi.
686 JumpIfSmi(value, &done, Label::kNear);
687 }
688
689 CheckPageFlag(value,
690 value, // Used as scratch.
691 MemoryChunk::kPointersToHereAreInterestingMask,
692 zero,
693 &done,
694 Label::kNear);
695 CheckPageFlag(object,
696 value, // Used as scratch.
697 MemoryChunk::kPointersFromHereAreInterestingMask,
698 zero,
699 &done,
700 Label::kNear);
701
702 RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
703 CallStub(&stub);
704
705 bind(&done);
706
707 // Clobber clobbered registers when running with the debug-code flag
708 // turned on to provoke errors.
709 if (emit_debug_code()) {
710 mov(address, Immediate(BitCast<int32_t>(kZapValue)));
711 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
712 }
713 }
714
715
716 #ifdef ENABLE_DEBUGGER_SUPPORT
DebugBreak()717 void MacroAssembler::DebugBreak() {
718 Set(eax, Immediate(0));
719 mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
720 CEntryStub ces(1);
721 call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
722 }
723 #endif
724
725
Cvtsi2sd(XMMRegister dst,const Operand & src)726 void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
727 xorps(dst, dst);
728 cvtsi2sd(dst, src);
729 }
730
731
Set(Register dst,const Immediate & x)732 void MacroAssembler::Set(Register dst, const Immediate& x) {
733 if (x.is_zero()) {
734 xor_(dst, dst); // Shorter than mov.
735 } else {
736 mov(dst, x);
737 }
738 }
739
740
Set(const Operand & dst,const Immediate & x)741 void MacroAssembler::Set(const Operand& dst, const Immediate& x) {
742 mov(dst, x);
743 }
744
745
IsUnsafeImmediate(const Immediate & x)746 bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
747 static const int kMaxImmediateBits = 17;
748 if (!RelocInfo::IsNone(x.rmode_)) return false;
749 return !is_intn(x.x_, kMaxImmediateBits);
750 }
751
752
SafeSet(Register dst,const Immediate & x)753 void MacroAssembler::SafeSet(Register dst, const Immediate& x) {
754 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
755 Set(dst, Immediate(x.x_ ^ jit_cookie()));
756 xor_(dst, jit_cookie());
757 } else {
758 Set(dst, x);
759 }
760 }
761
762
SafePush(const Immediate & x)763 void MacroAssembler::SafePush(const Immediate& x) {
764 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
765 push(Immediate(x.x_ ^ jit_cookie()));
766 xor_(Operand(esp, 0), Immediate(jit_cookie()));
767 } else {
768 push(x);
769 }
770 }
771
772
CmpObjectType(Register heap_object,InstanceType type,Register map)773 void MacroAssembler::CmpObjectType(Register heap_object,
774 InstanceType type,
775 Register map) {
776 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
777 CmpInstanceType(map, type);
778 }
779
780
CmpInstanceType(Register map,InstanceType type)781 void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
782 cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
783 static_cast<int8_t>(type));
784 }
785
786
CheckFastElements(Register map,Label * fail,Label::Distance distance)787 void MacroAssembler::CheckFastElements(Register map,
788 Label* fail,
789 Label::Distance distance) {
790 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
791 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
792 STATIC_ASSERT(FAST_ELEMENTS == 2);
793 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
794 cmpb(FieldOperand(map, Map::kBitField2Offset),
795 Map::kMaximumBitField2FastHoleyElementValue);
796 j(above, fail, distance);
797 }
798
799
CheckFastObjectElements(Register map,Label * fail,Label::Distance distance)800 void MacroAssembler::CheckFastObjectElements(Register map,
801 Label* fail,
802 Label::Distance distance) {
803 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
804 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
805 STATIC_ASSERT(FAST_ELEMENTS == 2);
806 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
807 cmpb(FieldOperand(map, Map::kBitField2Offset),
808 Map::kMaximumBitField2FastHoleySmiElementValue);
809 j(below_equal, fail, distance);
810 cmpb(FieldOperand(map, Map::kBitField2Offset),
811 Map::kMaximumBitField2FastHoleyElementValue);
812 j(above, fail, distance);
813 }
814
815
CheckFastSmiElements(Register map,Label * fail,Label::Distance distance)816 void MacroAssembler::CheckFastSmiElements(Register map,
817 Label* fail,
818 Label::Distance distance) {
819 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
820 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
821 cmpb(FieldOperand(map, Map::kBitField2Offset),
822 Map::kMaximumBitField2FastHoleySmiElementValue);
823 j(above, fail, distance);
824 }
825
826
StoreNumberToDoubleElements(Register maybe_number,Register elements,Register key,Register scratch1,XMMRegister scratch2,Label * fail,bool specialize_for_processor,int elements_offset)827 void MacroAssembler::StoreNumberToDoubleElements(
828 Register maybe_number,
829 Register elements,
830 Register key,
831 Register scratch1,
832 XMMRegister scratch2,
833 Label* fail,
834 bool specialize_for_processor,
835 int elements_offset) {
836 Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
837 JumpIfSmi(maybe_number, &smi_value, Label::kNear);
838
839 CheckMap(maybe_number,
840 isolate()->factory()->heap_number_map(),
841 fail,
842 DONT_DO_SMI_CHECK);
843
844 // Double value, canonicalize NaN.
845 uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
846 cmp(FieldOperand(maybe_number, offset),
847 Immediate(kNaNOrInfinityLowerBoundUpper32));
848 j(greater_equal, &maybe_nan, Label::kNear);
849
850 bind(¬_nan);
851 ExternalReference canonical_nan_reference =
852 ExternalReference::address_of_canonical_non_hole_nan();
853 if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
854 CpuFeatureScope use_sse2(this, SSE2);
855 movsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
856 bind(&have_double_value);
857 movsd(FieldOperand(elements, key, times_4,
858 FixedDoubleArray::kHeaderSize - elements_offset),
859 scratch2);
860 } else {
861 fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
862 bind(&have_double_value);
863 fstp_d(FieldOperand(elements, key, times_4,
864 FixedDoubleArray::kHeaderSize - elements_offset));
865 }
866 jmp(&done);
867
868 bind(&maybe_nan);
869 // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
870 // it's an Infinity, and the non-NaN code path applies.
871 j(greater, &is_nan, Label::kNear);
872 cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
873 j(zero, ¬_nan);
874 bind(&is_nan);
875 if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
876 CpuFeatureScope use_sse2(this, SSE2);
877 movsd(scratch2, Operand::StaticVariable(canonical_nan_reference));
878 } else {
879 fld_d(Operand::StaticVariable(canonical_nan_reference));
880 }
881 jmp(&have_double_value, Label::kNear);
882
883 bind(&smi_value);
884 // Value is a smi. Convert to a double and store.
885 // Preserve original value.
886 mov(scratch1, maybe_number);
887 SmiUntag(scratch1);
888 if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
889 CpuFeatureScope fscope(this, SSE2);
890 Cvtsi2sd(scratch2, scratch1);
891 movsd(FieldOperand(elements, key, times_4,
892 FixedDoubleArray::kHeaderSize - elements_offset),
893 scratch2);
894 } else {
895 push(scratch1);
896 fild_s(Operand(esp, 0));
897 pop(scratch1);
898 fstp_d(FieldOperand(elements, key, times_4,
899 FixedDoubleArray::kHeaderSize - elements_offset));
900 }
901 bind(&done);
902 }
903
904
CompareMap(Register obj,Handle<Map> map)905 void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
906 cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
907 }
908
909
CheckMap(Register obj,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)910 void MacroAssembler::CheckMap(Register obj,
911 Handle<Map> map,
912 Label* fail,
913 SmiCheckType smi_check_type) {
914 if (smi_check_type == DO_SMI_CHECK) {
915 JumpIfSmi(obj, fail);
916 }
917
918 CompareMap(obj, map);
919 j(not_equal, fail);
920 }
921
922
DispatchMap(Register obj,Register unused,Handle<Map> map,Handle<Code> success,SmiCheckType smi_check_type)923 void MacroAssembler::DispatchMap(Register obj,
924 Register unused,
925 Handle<Map> map,
926 Handle<Code> success,
927 SmiCheckType smi_check_type) {
928 Label fail;
929 if (smi_check_type == DO_SMI_CHECK) {
930 JumpIfSmi(obj, &fail);
931 }
932 cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
933 j(equal, success);
934
935 bind(&fail);
936 }
937
938
IsObjectStringType(Register heap_object,Register map,Register instance_type)939 Condition MacroAssembler::IsObjectStringType(Register heap_object,
940 Register map,
941 Register instance_type) {
942 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
943 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
944 STATIC_ASSERT(kNotStringTag != 0);
945 test(instance_type, Immediate(kIsNotStringMask));
946 return zero;
947 }
948
949
IsObjectNameType(Register heap_object,Register map,Register instance_type)950 Condition MacroAssembler::IsObjectNameType(Register heap_object,
951 Register map,
952 Register instance_type) {
953 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
954 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
955 cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
956 return below_equal;
957 }
958
959
IsObjectJSObjectType(Register heap_object,Register map,Register scratch,Label * fail)960 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
961 Register map,
962 Register scratch,
963 Label* fail) {
964 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
965 IsInstanceJSObjectType(map, scratch, fail);
966 }
967
968
IsInstanceJSObjectType(Register map,Register scratch,Label * fail)969 void MacroAssembler::IsInstanceJSObjectType(Register map,
970 Register scratch,
971 Label* fail) {
972 movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
973 sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
974 cmp(scratch,
975 LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
976 j(above, fail);
977 }
978
979
FCmp()980 void MacroAssembler::FCmp() {
981 if (CpuFeatures::IsSupported(CMOV)) {
982 fucomip();
983 fstp(0);
984 } else {
985 fucompp();
986 push(eax);
987 fnstsw_ax();
988 sahf();
989 pop(eax);
990 }
991 }
992
993
AssertNumber(Register object)994 void MacroAssembler::AssertNumber(Register object) {
995 if (emit_debug_code()) {
996 Label ok;
997 JumpIfSmi(object, &ok);
998 cmp(FieldOperand(object, HeapObject::kMapOffset),
999 isolate()->factory()->heap_number_map());
1000 Check(equal, kOperandNotANumber);
1001 bind(&ok);
1002 }
1003 }
1004
1005
AssertSmi(Register object)1006 void MacroAssembler::AssertSmi(Register object) {
1007 if (emit_debug_code()) {
1008 test(object, Immediate(kSmiTagMask));
1009 Check(equal, kOperandIsNotASmi);
1010 }
1011 }
1012
1013
AssertString(Register object)1014 void MacroAssembler::AssertString(Register object) {
1015 if (emit_debug_code()) {
1016 test(object, Immediate(kSmiTagMask));
1017 Check(not_equal, kOperandIsASmiAndNotAString);
1018 push(object);
1019 mov(object, FieldOperand(object, HeapObject::kMapOffset));
1020 CmpInstanceType(object, FIRST_NONSTRING_TYPE);
1021 pop(object);
1022 Check(below, kOperandIsNotAString);
1023 }
1024 }
1025
1026
AssertName(Register object)1027 void MacroAssembler::AssertName(Register object) {
1028 if (emit_debug_code()) {
1029 test(object, Immediate(kSmiTagMask));
1030 Check(not_equal, kOperandIsASmiAndNotAName);
1031 push(object);
1032 mov(object, FieldOperand(object, HeapObject::kMapOffset));
1033 CmpInstanceType(object, LAST_NAME_TYPE);
1034 pop(object);
1035 Check(below_equal, kOperandIsNotAName);
1036 }
1037 }
1038
1039
AssertNotSmi(Register object)1040 void MacroAssembler::AssertNotSmi(Register object) {
1041 if (emit_debug_code()) {
1042 test(object, Immediate(kSmiTagMask));
1043 Check(not_equal, kOperandIsASmi);
1044 }
1045 }
1046
1047
Prologue(PrologueFrameMode frame_mode)1048 void MacroAssembler::Prologue(PrologueFrameMode frame_mode) {
1049 if (frame_mode == BUILD_STUB_FRAME) {
1050 push(ebp); // Caller's frame pointer.
1051 mov(ebp, esp);
1052 push(esi); // Callee's context.
1053 push(Immediate(Smi::FromInt(StackFrame::STUB)));
1054 } else {
1055 PredictableCodeSizeScope predictible_code_size_scope(this,
1056 kNoCodeAgeSequenceLength);
1057 if (isolate()->IsCodePreAgingActive()) {
1058 // Pre-age the code.
1059 call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
1060 RelocInfo::CODE_AGE_SEQUENCE);
1061 Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
1062 } else {
1063 push(ebp); // Caller's frame pointer.
1064 mov(ebp, esp);
1065 push(esi); // Callee's context.
1066 push(edi); // Callee's JS function.
1067 }
1068 }
1069 }
1070
1071
EnterFrame(StackFrame::Type type)1072 void MacroAssembler::EnterFrame(StackFrame::Type type) {
1073 push(ebp);
1074 mov(ebp, esp);
1075 push(esi);
1076 push(Immediate(Smi::FromInt(type)));
1077 push(Immediate(CodeObject()));
1078 if (emit_debug_code()) {
1079 cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
1080 Check(not_equal, kCodeObjectNotProperlyPatched);
1081 }
1082 }
1083
1084
LeaveFrame(StackFrame::Type type)1085 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
1086 if (emit_debug_code()) {
1087 cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
1088 Immediate(Smi::FromInt(type)));
1089 Check(equal, kStackFrameTypesMustMatch);
1090 }
1091 leave();
1092 }
1093
1094
EnterExitFramePrologue()1095 void MacroAssembler::EnterExitFramePrologue() {
1096 // Set up the frame structure on the stack.
1097 ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
1098 ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
1099 ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
1100 push(ebp);
1101 mov(ebp, esp);
1102
1103 // Reserve room for entry stack pointer and push the code object.
1104 ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
1105 push(Immediate(0)); // Saved entry sp, patched before call.
1106 push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
1107
1108 // Save the frame pointer and the context in top.
1109 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
1110 ExternalReference context_address(Isolate::kContextAddress, isolate());
1111 mov(Operand::StaticVariable(c_entry_fp_address), ebp);
1112 mov(Operand::StaticVariable(context_address), esi);
1113 }
1114
1115
EnterExitFrameEpilogue(int argc,bool save_doubles)1116 void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
1117 // Optionally save all XMM registers.
1118 if (save_doubles) {
1119 CpuFeatureScope scope(this, SSE2);
1120 int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize;
1121 sub(esp, Immediate(space));
1122 const int offset = -2 * kPointerSize;
1123 for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
1124 XMMRegister reg = XMMRegister::from_code(i);
1125 movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
1126 }
1127 } else {
1128 sub(esp, Immediate(argc * kPointerSize));
1129 }
1130
1131 // Get the required frame alignment for the OS.
1132 const int kFrameAlignment = OS::ActivationFrameAlignment();
1133 if (kFrameAlignment > 0) {
1134 ASSERT(IsPowerOf2(kFrameAlignment));
1135 and_(esp, -kFrameAlignment);
1136 }
1137
1138 // Patch the saved entry sp.
1139 mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
1140 }
1141
1142
EnterExitFrame(bool save_doubles)1143 void MacroAssembler::EnterExitFrame(bool save_doubles) {
1144 EnterExitFramePrologue();
1145
1146 // Set up argc and argv in callee-saved registers.
1147 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
1148 mov(edi, eax);
1149 lea(esi, Operand(ebp, eax, times_4, offset));
1150
1151 // Reserve space for argc, argv and isolate.
1152 EnterExitFrameEpilogue(3, save_doubles);
1153 }
1154
1155
EnterApiExitFrame(int argc)1156 void MacroAssembler::EnterApiExitFrame(int argc) {
1157 EnterExitFramePrologue();
1158 EnterExitFrameEpilogue(argc, false);
1159 }
1160
1161
LeaveExitFrame(bool save_doubles)1162 void MacroAssembler::LeaveExitFrame(bool save_doubles) {
1163 // Optionally restore all XMM registers.
1164 if (save_doubles) {
1165 CpuFeatureScope scope(this, SSE2);
1166 const int offset = -2 * kPointerSize;
1167 for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
1168 XMMRegister reg = XMMRegister::from_code(i);
1169 movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
1170 }
1171 }
1172
1173 // Get the return address from the stack and restore the frame pointer.
1174 mov(ecx, Operand(ebp, 1 * kPointerSize));
1175 mov(ebp, Operand(ebp, 0 * kPointerSize));
1176
1177 // Pop the arguments and the receiver from the caller stack.
1178 lea(esp, Operand(esi, 1 * kPointerSize));
1179
1180 // Push the return address to get ready to return.
1181 push(ecx);
1182
1183 LeaveExitFrameEpilogue(true);
1184 }
1185
1186
LeaveExitFrameEpilogue(bool restore_context)1187 void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
1188 // Restore current context from top and clear it in debug mode.
1189 ExternalReference context_address(Isolate::kContextAddress, isolate());
1190 if (restore_context) {
1191 mov(esi, Operand::StaticVariable(context_address));
1192 }
1193 #ifdef DEBUG
1194 mov(Operand::StaticVariable(context_address), Immediate(0));
1195 #endif
1196
1197 // Clear the top frame.
1198 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
1199 isolate());
1200 mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
1201 }
1202
1203
LeaveApiExitFrame(bool restore_context)1204 void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
1205 mov(esp, ebp);
1206 pop(ebp);
1207
1208 LeaveExitFrameEpilogue(restore_context);
1209 }
1210
1211
PushTryHandler(StackHandler::Kind kind,int handler_index)1212 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1213 int handler_index) {
1214 // Adjust this code if not the case.
1215 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1216 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1217 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1218 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1219 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1220 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1221
1222 // We will build up the handler from the bottom by pushing on the stack.
1223 // First push the frame pointer and context.
1224 if (kind == StackHandler::JS_ENTRY) {
1225 // The frame pointer does not point to a JS frame so we save NULL for
1226 // ebp. We expect the code throwing an exception to check ebp before
1227 // dereferencing it to restore the context.
1228 push(Immediate(0)); // NULL frame pointer.
1229 push(Immediate(Smi::FromInt(0))); // No context.
1230 } else {
1231 push(ebp);
1232 push(esi);
1233 }
1234 // Push the state and the code object.
1235 unsigned state =
1236 StackHandler::IndexField::encode(handler_index) |
1237 StackHandler::KindField::encode(kind);
1238 push(Immediate(state));
1239 Push(CodeObject());
1240
1241 // Link the current handler as the next handler.
1242 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1243 push(Operand::StaticVariable(handler_address));
1244 // Set this new handler as the current one.
1245 mov(Operand::StaticVariable(handler_address), esp);
1246 }
1247
1248
PopTryHandler()1249 void MacroAssembler::PopTryHandler() {
1250 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1251 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1252 pop(Operand::StaticVariable(handler_address));
1253 add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1254 }
1255
1256
JumpToHandlerEntry()1257 void MacroAssembler::JumpToHandlerEntry() {
1258 // Compute the handler entry address and jump to it. The handler table is
1259 // a fixed array of (smi-tagged) code offsets.
1260 // eax = exception, edi = code object, edx = state.
1261 mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
1262 shr(edx, StackHandler::kKindWidth);
1263 mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
1264 SmiUntag(edx);
1265 lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1266 jmp(edi);
1267 }
1268
1269
Throw(Register value)1270 void MacroAssembler::Throw(Register value) {
1271 // Adjust this code if not the case.
1272 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1273 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1274 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1275 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1276 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1277 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1278
1279 // The exception is expected in eax.
1280 if (!value.is(eax)) {
1281 mov(eax, value);
1282 }
1283 // Drop the stack pointer to the top of the top handler.
1284 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1285 mov(esp, Operand::StaticVariable(handler_address));
1286 // Restore the next handler.
1287 pop(Operand::StaticVariable(handler_address));
1288
1289 // Remove the code object and state, compute the handler address in edi.
1290 pop(edi); // Code object.
1291 pop(edx); // Index and state.
1292
1293 // Restore the context and frame pointer.
1294 pop(esi); // Context.
1295 pop(ebp); // Frame pointer.
1296
1297 // If the handler is a JS frame, restore the context to the frame.
1298 // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
1299 // ebp or esi.
1300 Label skip;
1301 test(esi, esi);
1302 j(zero, &skip, Label::kNear);
1303 mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1304 bind(&skip);
1305
1306 JumpToHandlerEntry();
1307 }
1308
1309
ThrowUncatchable(Register value)1310 void MacroAssembler::ThrowUncatchable(Register value) {
1311 // Adjust this code if not the case.
1312 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1313 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1314 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1315 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1316 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1317 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1318
1319 // The exception is expected in eax.
1320 if (!value.is(eax)) {
1321 mov(eax, value);
1322 }
1323 // Drop the stack pointer to the top of the top stack handler.
1324 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1325 mov(esp, Operand::StaticVariable(handler_address));
1326
1327 // Unwind the handlers until the top ENTRY handler is found.
1328 Label fetch_next, check_kind;
1329 jmp(&check_kind, Label::kNear);
1330 bind(&fetch_next);
1331 mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
1332
1333 bind(&check_kind);
1334 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1335 test(Operand(esp, StackHandlerConstants::kStateOffset),
1336 Immediate(StackHandler::KindField::kMask));
1337 j(not_zero, &fetch_next);
1338
1339 // Set the top handler address to next handler past the top ENTRY handler.
1340 pop(Operand::StaticVariable(handler_address));
1341
1342 // Remove the code object and state, compute the handler address in edi.
1343 pop(edi); // Code object.
1344 pop(edx); // Index and state.
1345
1346 // Clear the context pointer and frame pointer (0 was saved in the handler).
1347 pop(esi);
1348 pop(ebp);
1349
1350 JumpToHandlerEntry();
1351 }
1352
1353
CheckAccessGlobalProxy(Register holder_reg,Register scratch1,Register scratch2,Label * miss)1354 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1355 Register scratch1,
1356 Register scratch2,
1357 Label* miss) {
1358 Label same_contexts;
1359
1360 ASSERT(!holder_reg.is(scratch1));
1361 ASSERT(!holder_reg.is(scratch2));
1362 ASSERT(!scratch1.is(scratch2));
1363
1364 // Load current lexical context from the stack frame.
1365 mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
1366
1367 // When generating debug code, make sure the lexical context is set.
1368 if (emit_debug_code()) {
1369 cmp(scratch1, Immediate(0));
1370 Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
1371 }
1372 // Load the native context of the current context.
1373 int offset =
1374 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1375 mov(scratch1, FieldOperand(scratch1, offset));
1376 mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
1377
1378 // Check the context is a native context.
1379 if (emit_debug_code()) {
1380 // Read the first word and compare to native_context_map.
1381 cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
1382 isolate()->factory()->native_context_map());
1383 Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1384 }
1385
1386 // Check if both contexts are the same.
1387 cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1388 j(equal, &same_contexts);
1389
1390 // Compare security tokens, save holder_reg on the stack so we can use it
1391 // as a temporary register.
1392 //
1393 // Check that the security token in the calling global object is
1394 // compatible with the security token in the receiving global
1395 // object.
1396 mov(scratch2,
1397 FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1398
1399 // Check the context is a native context.
1400 if (emit_debug_code()) {
1401 cmp(scratch2, isolate()->factory()->null_value());
1402 Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
1403
1404 // Read the first word and compare to native_context_map(),
1405 cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
1406 isolate()->factory()->native_context_map());
1407 Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1408 }
1409
1410 int token_offset = Context::kHeaderSize +
1411 Context::SECURITY_TOKEN_INDEX * kPointerSize;
1412 mov(scratch1, FieldOperand(scratch1, token_offset));
1413 cmp(scratch1, FieldOperand(scratch2, token_offset));
1414 j(not_equal, miss);
1415
1416 bind(&same_contexts);
1417 }
1418
1419
1420 // Compute the hash code from the untagged key. This must be kept in sync with
1421 // ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
1422 // code-stub-hydrogen.cc
1423 //
1424 // Note: r0 will contain hash code
GetNumberHash(Register r0,Register scratch)1425 void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
1426 // Xor original key with a seed.
1427 if (Serializer::enabled()) {
1428 ExternalReference roots_array_start =
1429 ExternalReference::roots_array_start(isolate());
1430 mov(scratch, Immediate(Heap::kHashSeedRootIndex));
1431 mov(scratch,
1432 Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
1433 SmiUntag(scratch);
1434 xor_(r0, scratch);
1435 } else {
1436 int32_t seed = isolate()->heap()->HashSeed();
1437 xor_(r0, Immediate(seed));
1438 }
1439
1440 // hash = ~hash + (hash << 15);
1441 mov(scratch, r0);
1442 not_(r0);
1443 shl(scratch, 15);
1444 add(r0, scratch);
1445 // hash = hash ^ (hash >> 12);
1446 mov(scratch, r0);
1447 shr(scratch, 12);
1448 xor_(r0, scratch);
1449 // hash = hash + (hash << 2);
1450 lea(r0, Operand(r0, r0, times_4, 0));
1451 // hash = hash ^ (hash >> 4);
1452 mov(scratch, r0);
1453 shr(scratch, 4);
1454 xor_(r0, scratch);
1455 // hash = hash * 2057;
1456 imul(r0, r0, 2057);
1457 // hash = hash ^ (hash >> 16);
1458 mov(scratch, r0);
1459 shr(scratch, 16);
1460 xor_(r0, scratch);
1461 }
1462
1463
1464
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register r0,Register r1,Register r2,Register result)1465 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1466 Register elements,
1467 Register key,
1468 Register r0,
1469 Register r1,
1470 Register r2,
1471 Register result) {
1472 // Register use:
1473 //
1474 // elements - holds the slow-case elements of the receiver and is unchanged.
1475 //
1476 // key - holds the smi key on entry and is unchanged.
1477 //
1478 // Scratch registers:
1479 //
1480 // r0 - holds the untagged key on entry and holds the hash once computed.
1481 //
1482 // r1 - used to hold the capacity mask of the dictionary
1483 //
1484 // r2 - used for the index into the dictionary.
1485 //
1486 // result - holds the result on exit if the load succeeds and we fall through.
1487
1488 Label done;
1489
1490 GetNumberHash(r0, r1);
1491
1492 // Compute capacity mask.
1493 mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1494 shr(r1, kSmiTagSize); // convert smi to int
1495 dec(r1);
1496
1497 // Generate an unrolled loop that performs a few probes before giving up.
1498 for (int i = 0; i < kNumberDictionaryProbes; i++) {
1499 // Use r2 for index calculations and keep the hash intact in r0.
1500 mov(r2, r0);
1501 // Compute the masked index: (hash + i + i * i) & mask.
1502 if (i > 0) {
1503 add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1504 }
1505 and_(r2, r1);
1506
1507 // Scale the index by multiplying by the entry size.
1508 ASSERT(SeededNumberDictionary::kEntrySize == 3);
1509 lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
1510
1511 // Check if the key matches.
1512 cmp(key, FieldOperand(elements,
1513 r2,
1514 times_pointer_size,
1515 SeededNumberDictionary::kElementsStartOffset));
1516 if (i != (kNumberDictionaryProbes - 1)) {
1517 j(equal, &done);
1518 } else {
1519 j(not_equal, miss);
1520 }
1521 }
1522
1523 bind(&done);
1524 // Check that the value is a normal propety.
1525 const int kDetailsOffset =
1526 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1527 ASSERT_EQ(NORMAL, 0);
1528 test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1529 Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1530 j(not_zero, miss);
1531
1532 // Get the value at the masked, scaled index.
1533 const int kValueOffset =
1534 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1535 mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
1536 }
1537
1538
LoadAllocationTopHelper(Register result,Register scratch,AllocationFlags flags)1539 void MacroAssembler::LoadAllocationTopHelper(Register result,
1540 Register scratch,
1541 AllocationFlags flags) {
1542 ExternalReference allocation_top =
1543 AllocationUtils::GetAllocationTopReference(isolate(), flags);
1544
1545 // Just return if allocation top is already known.
1546 if ((flags & RESULT_CONTAINS_TOP) != 0) {
1547 // No use of scratch if allocation top is provided.
1548 ASSERT(scratch.is(no_reg));
1549 #ifdef DEBUG
1550 // Assert that result actually contains top on entry.
1551 cmp(result, Operand::StaticVariable(allocation_top));
1552 Check(equal, kUnexpectedAllocationTop);
1553 #endif
1554 return;
1555 }
1556
1557 // Move address of new object to result. Use scratch register if available.
1558 if (scratch.is(no_reg)) {
1559 mov(result, Operand::StaticVariable(allocation_top));
1560 } else {
1561 mov(scratch, Immediate(allocation_top));
1562 mov(result, Operand(scratch, 0));
1563 }
1564 }
1565
1566
UpdateAllocationTopHelper(Register result_end,Register scratch,AllocationFlags flags)1567 void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1568 Register scratch,
1569 AllocationFlags flags) {
1570 if (emit_debug_code()) {
1571 test(result_end, Immediate(kObjectAlignmentMask));
1572 Check(zero, kUnalignedAllocationInNewSpace);
1573 }
1574
1575 ExternalReference allocation_top =
1576 AllocationUtils::GetAllocationTopReference(isolate(), flags);
1577
1578 // Update new top. Use scratch if available.
1579 if (scratch.is(no_reg)) {
1580 mov(Operand::StaticVariable(allocation_top), result_end);
1581 } else {
1582 mov(Operand(scratch, 0), result_end);
1583 }
1584 }
1585
1586
Allocate(int object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)1587 void MacroAssembler::Allocate(int object_size,
1588 Register result,
1589 Register result_end,
1590 Register scratch,
1591 Label* gc_required,
1592 AllocationFlags flags) {
1593 ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1594 ASSERT(object_size <= Page::kMaxNonCodeHeapObjectSize);
1595 if (!FLAG_inline_new) {
1596 if (emit_debug_code()) {
1597 // Trash the registers to simulate an allocation failure.
1598 mov(result, Immediate(0x7091));
1599 if (result_end.is_valid()) {
1600 mov(result_end, Immediate(0x7191));
1601 }
1602 if (scratch.is_valid()) {
1603 mov(scratch, Immediate(0x7291));
1604 }
1605 }
1606 jmp(gc_required);
1607 return;
1608 }
1609 ASSERT(!result.is(result_end));
1610
1611 // Load address of new object into result.
1612 LoadAllocationTopHelper(result, scratch, flags);
1613
1614 ExternalReference allocation_limit =
1615 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1616
1617 // Align the next allocation. Storing the filler map without checking top is
1618 // safe in new-space because the limit of the heap is aligned there.
1619 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1620 ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1621 ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1622 Label aligned;
1623 test(result, Immediate(kDoubleAlignmentMask));
1624 j(zero, &aligned, Label::kNear);
1625 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1626 cmp(result, Operand::StaticVariable(allocation_limit));
1627 j(above_equal, gc_required);
1628 }
1629 mov(Operand(result, 0),
1630 Immediate(isolate()->factory()->one_pointer_filler_map()));
1631 add(result, Immediate(kDoubleSize / 2));
1632 bind(&aligned);
1633 }
1634
1635 // Calculate new top and bail out if space is exhausted.
1636 Register top_reg = result_end.is_valid() ? result_end : result;
1637 if (!top_reg.is(result)) {
1638 mov(top_reg, result);
1639 }
1640 add(top_reg, Immediate(object_size));
1641 j(carry, gc_required);
1642 cmp(top_reg, Operand::StaticVariable(allocation_limit));
1643 j(above, gc_required);
1644
1645 // Update allocation top.
1646 UpdateAllocationTopHelper(top_reg, scratch, flags);
1647
1648 // Tag result if requested.
1649 bool tag_result = (flags & TAG_OBJECT) != 0;
1650 if (top_reg.is(result)) {
1651 if (tag_result) {
1652 sub(result, Immediate(object_size - kHeapObjectTag));
1653 } else {
1654 sub(result, Immediate(object_size));
1655 }
1656 } else if (tag_result) {
1657 ASSERT(kHeapObjectTag == 1);
1658 inc(result);
1659 }
1660 }
1661
1662
Allocate(int header_size,ScaleFactor element_size,Register element_count,RegisterValueType element_count_type,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)1663 void MacroAssembler::Allocate(int header_size,
1664 ScaleFactor element_size,
1665 Register element_count,
1666 RegisterValueType element_count_type,
1667 Register result,
1668 Register result_end,
1669 Register scratch,
1670 Label* gc_required,
1671 AllocationFlags flags) {
1672 ASSERT((flags & SIZE_IN_WORDS) == 0);
1673 if (!FLAG_inline_new) {
1674 if (emit_debug_code()) {
1675 // Trash the registers to simulate an allocation failure.
1676 mov(result, Immediate(0x7091));
1677 mov(result_end, Immediate(0x7191));
1678 if (scratch.is_valid()) {
1679 mov(scratch, Immediate(0x7291));
1680 }
1681 // Register element_count is not modified by the function.
1682 }
1683 jmp(gc_required);
1684 return;
1685 }
1686 ASSERT(!result.is(result_end));
1687
1688 // Load address of new object into result.
1689 LoadAllocationTopHelper(result, scratch, flags);
1690
1691 ExternalReference allocation_limit =
1692 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1693
1694 // Align the next allocation. Storing the filler map without checking top is
1695 // safe in new-space because the limit of the heap is aligned there.
1696 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1697 ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1698 ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1699 Label aligned;
1700 test(result, Immediate(kDoubleAlignmentMask));
1701 j(zero, &aligned, Label::kNear);
1702 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1703 cmp(result, Operand::StaticVariable(allocation_limit));
1704 j(above_equal, gc_required);
1705 }
1706 mov(Operand(result, 0),
1707 Immediate(isolate()->factory()->one_pointer_filler_map()));
1708 add(result, Immediate(kDoubleSize / 2));
1709 bind(&aligned);
1710 }
1711
1712 // Calculate new top and bail out if space is exhausted.
1713 // We assume that element_count*element_size + header_size does not
1714 // overflow.
1715 if (element_count_type == REGISTER_VALUE_IS_SMI) {
1716 STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
1717 STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
1718 STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
1719 ASSERT(element_size >= times_2);
1720 ASSERT(kSmiTagSize == 1);
1721 element_size = static_cast<ScaleFactor>(element_size - 1);
1722 } else {
1723 ASSERT(element_count_type == REGISTER_VALUE_IS_INT32);
1724 }
1725 lea(result_end, Operand(element_count, element_size, header_size));
1726 add(result_end, result);
1727 j(carry, gc_required);
1728 cmp(result_end, Operand::StaticVariable(allocation_limit));
1729 j(above, gc_required);
1730
1731 if ((flags & TAG_OBJECT) != 0) {
1732 ASSERT(kHeapObjectTag == 1);
1733 inc(result);
1734 }
1735
1736 // Update allocation top.
1737 UpdateAllocationTopHelper(result_end, scratch, flags);
1738 }
1739
1740
Allocate(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)1741 void MacroAssembler::Allocate(Register object_size,
1742 Register result,
1743 Register result_end,
1744 Register scratch,
1745 Label* gc_required,
1746 AllocationFlags flags) {
1747 ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1748 if (!FLAG_inline_new) {
1749 if (emit_debug_code()) {
1750 // Trash the registers to simulate an allocation failure.
1751 mov(result, Immediate(0x7091));
1752 mov(result_end, Immediate(0x7191));
1753 if (scratch.is_valid()) {
1754 mov(scratch, Immediate(0x7291));
1755 }
1756 // object_size is left unchanged by this function.
1757 }
1758 jmp(gc_required);
1759 return;
1760 }
1761 ASSERT(!result.is(result_end));
1762
1763 // Load address of new object into result.
1764 LoadAllocationTopHelper(result, scratch, flags);
1765
1766 ExternalReference allocation_limit =
1767 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1768
1769 // Align the next allocation. Storing the filler map without checking top is
1770 // safe in new-space because the limit of the heap is aligned there.
1771 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1772 ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1773 ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1774 Label aligned;
1775 test(result, Immediate(kDoubleAlignmentMask));
1776 j(zero, &aligned, Label::kNear);
1777 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1778 cmp(result, Operand::StaticVariable(allocation_limit));
1779 j(above_equal, gc_required);
1780 }
1781 mov(Operand(result, 0),
1782 Immediate(isolate()->factory()->one_pointer_filler_map()));
1783 add(result, Immediate(kDoubleSize / 2));
1784 bind(&aligned);
1785 }
1786
1787 // Calculate new top and bail out if space is exhausted.
1788 if (!object_size.is(result_end)) {
1789 mov(result_end, object_size);
1790 }
1791 add(result_end, result);
1792 j(carry, gc_required);
1793 cmp(result_end, Operand::StaticVariable(allocation_limit));
1794 j(above, gc_required);
1795
1796 // Tag result if requested.
1797 if ((flags & TAG_OBJECT) != 0) {
1798 ASSERT(kHeapObjectTag == 1);
1799 inc(result);
1800 }
1801
1802 // Update allocation top.
1803 UpdateAllocationTopHelper(result_end, scratch, flags);
1804 }
1805
1806
UndoAllocationInNewSpace(Register object)1807 void MacroAssembler::UndoAllocationInNewSpace(Register object) {
1808 ExternalReference new_space_allocation_top =
1809 ExternalReference::new_space_allocation_top_address(isolate());
1810
1811 // Make sure the object has no tag before resetting top.
1812 and_(object, Immediate(~kHeapObjectTagMask));
1813 #ifdef DEBUG
1814 cmp(object, Operand::StaticVariable(new_space_allocation_top));
1815 Check(below, kUndoAllocationOfNonAllocatedMemory);
1816 #endif
1817 mov(Operand::StaticVariable(new_space_allocation_top), object);
1818 }
1819
1820
AllocateHeapNumber(Register result,Register scratch1,Register scratch2,Label * gc_required)1821 void MacroAssembler::AllocateHeapNumber(Register result,
1822 Register scratch1,
1823 Register scratch2,
1824 Label* gc_required) {
1825 // Allocate heap number in new space.
1826 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
1827 TAG_OBJECT);
1828
1829 // Set the map.
1830 mov(FieldOperand(result, HeapObject::kMapOffset),
1831 Immediate(isolate()->factory()->heap_number_map()));
1832 }
1833
1834
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)1835 void MacroAssembler::AllocateTwoByteString(Register result,
1836 Register length,
1837 Register scratch1,
1838 Register scratch2,
1839 Register scratch3,
1840 Label* gc_required) {
1841 // Calculate the number of bytes needed for the characters in the string while
1842 // observing object alignment.
1843 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1844 ASSERT(kShortSize == 2);
1845 // scratch1 = length * 2 + kObjectAlignmentMask.
1846 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1847 and_(scratch1, Immediate(~kObjectAlignmentMask));
1848
1849 // Allocate two byte string in new space.
1850 Allocate(SeqTwoByteString::kHeaderSize,
1851 times_1,
1852 scratch1,
1853 REGISTER_VALUE_IS_INT32,
1854 result,
1855 scratch2,
1856 scratch3,
1857 gc_required,
1858 TAG_OBJECT);
1859
1860 // Set the map, length and hash field.
1861 mov(FieldOperand(result, HeapObject::kMapOffset),
1862 Immediate(isolate()->factory()->string_map()));
1863 mov(scratch1, length);
1864 SmiTag(scratch1);
1865 mov(FieldOperand(result, String::kLengthOffset), scratch1);
1866 mov(FieldOperand(result, String::kHashFieldOffset),
1867 Immediate(String::kEmptyHashField));
1868 }
1869
1870
AllocateAsciiString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)1871 void MacroAssembler::AllocateAsciiString(Register result,
1872 Register length,
1873 Register scratch1,
1874 Register scratch2,
1875 Register scratch3,
1876 Label* gc_required) {
1877 // Calculate the number of bytes needed for the characters in the string while
1878 // observing object alignment.
1879 ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1880 mov(scratch1, length);
1881 ASSERT(kCharSize == 1);
1882 add(scratch1, Immediate(kObjectAlignmentMask));
1883 and_(scratch1, Immediate(~kObjectAlignmentMask));
1884
1885 // Allocate ASCII string in new space.
1886 Allocate(SeqOneByteString::kHeaderSize,
1887 times_1,
1888 scratch1,
1889 REGISTER_VALUE_IS_INT32,
1890 result,
1891 scratch2,
1892 scratch3,
1893 gc_required,
1894 TAG_OBJECT);
1895
1896 // Set the map, length and hash field.
1897 mov(FieldOperand(result, HeapObject::kMapOffset),
1898 Immediate(isolate()->factory()->ascii_string_map()));
1899 mov(scratch1, length);
1900 SmiTag(scratch1);
1901 mov(FieldOperand(result, String::kLengthOffset), scratch1);
1902 mov(FieldOperand(result, String::kHashFieldOffset),
1903 Immediate(String::kEmptyHashField));
1904 }
1905
1906
AllocateAsciiString(Register result,int length,Register scratch1,Register scratch2,Label * gc_required)1907 void MacroAssembler::AllocateAsciiString(Register result,
1908 int length,
1909 Register scratch1,
1910 Register scratch2,
1911 Label* gc_required) {
1912 ASSERT(length > 0);
1913
1914 // Allocate ASCII string in new space.
1915 Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
1916 gc_required, TAG_OBJECT);
1917
1918 // Set the map, length and hash field.
1919 mov(FieldOperand(result, HeapObject::kMapOffset),
1920 Immediate(isolate()->factory()->ascii_string_map()));
1921 mov(FieldOperand(result, String::kLengthOffset),
1922 Immediate(Smi::FromInt(length)));
1923 mov(FieldOperand(result, String::kHashFieldOffset),
1924 Immediate(String::kEmptyHashField));
1925 }
1926
1927
AllocateTwoByteConsString(Register result,Register scratch1,Register scratch2,Label * gc_required)1928 void MacroAssembler::AllocateTwoByteConsString(Register result,
1929 Register scratch1,
1930 Register scratch2,
1931 Label* gc_required) {
1932 // Allocate heap number in new space.
1933 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1934 TAG_OBJECT);
1935
1936 // Set the map. The other fields are left uninitialized.
1937 mov(FieldOperand(result, HeapObject::kMapOffset),
1938 Immediate(isolate()->factory()->cons_string_map()));
1939 }
1940
1941
AllocateAsciiConsString(Register result,Register scratch1,Register scratch2,Label * gc_required)1942 void MacroAssembler::AllocateAsciiConsString(Register result,
1943 Register scratch1,
1944 Register scratch2,
1945 Label* gc_required) {
1946 Label allocate_new_space, install_map;
1947 AllocationFlags flags = TAG_OBJECT;
1948
1949 ExternalReference high_promotion_mode = ExternalReference::
1950 new_space_high_promotion_mode_active_address(isolate());
1951
1952 test(Operand::StaticVariable(high_promotion_mode), Immediate(1));
1953 j(zero, &allocate_new_space);
1954
1955 Allocate(ConsString::kSize,
1956 result,
1957 scratch1,
1958 scratch2,
1959 gc_required,
1960 static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
1961 jmp(&install_map);
1962
1963 bind(&allocate_new_space);
1964 Allocate(ConsString::kSize,
1965 result,
1966 scratch1,
1967 scratch2,
1968 gc_required,
1969 flags);
1970
1971 bind(&install_map);
1972 // Set the map. The other fields are left uninitialized.
1973 mov(FieldOperand(result, HeapObject::kMapOffset),
1974 Immediate(isolate()->factory()->cons_ascii_string_map()));
1975 }
1976
1977
AllocateTwoByteSlicedString(Register result,Register scratch1,Register scratch2,Label * gc_required)1978 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1979 Register scratch1,
1980 Register scratch2,
1981 Label* gc_required) {
1982 // Allocate heap number in new space.
1983 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1984 TAG_OBJECT);
1985
1986 // Set the map. The other fields are left uninitialized.
1987 mov(FieldOperand(result, HeapObject::kMapOffset),
1988 Immediate(isolate()->factory()->sliced_string_map()));
1989 }
1990
1991
AllocateAsciiSlicedString(Register result,Register scratch1,Register scratch2,Label * gc_required)1992 void MacroAssembler::AllocateAsciiSlicedString(Register result,
1993 Register scratch1,
1994 Register scratch2,
1995 Label* gc_required) {
1996 // Allocate heap number in new space.
1997 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1998 TAG_OBJECT);
1999
2000 // Set the map. The other fields are left uninitialized.
2001 mov(FieldOperand(result, HeapObject::kMapOffset),
2002 Immediate(isolate()->factory()->sliced_ascii_string_map()));
2003 }
2004
2005
2006 // Copy memory, byte-by-byte, from source to destination. Not optimized for
2007 // long or aligned copies. The contents of scratch and length are destroyed.
2008 // Source and destination are incremented by length.
2009 // Many variants of movsb, loop unrolling, word moves, and indexed operands
2010 // have been tried here already, and this is fastest.
2011 // A simpler loop is faster on small copies, but 30% slower on large ones.
2012 // The cld() instruction must have been emitted, to set the direction flag(),
2013 // before calling this function.
CopyBytes(Register source,Register destination,Register length,Register scratch)2014 void MacroAssembler::CopyBytes(Register source,
2015 Register destination,
2016 Register length,
2017 Register scratch) {
2018 Label short_loop, len4, len8, len12, done, short_string;
2019 ASSERT(source.is(esi));
2020 ASSERT(destination.is(edi));
2021 ASSERT(length.is(ecx));
2022 cmp(length, Immediate(4));
2023 j(below, &short_string, Label::kNear);
2024
2025 // Because source is 4-byte aligned in our uses of this function,
2026 // we keep source aligned for the rep_movs call by copying the odd bytes
2027 // at the end of the ranges.
2028 mov(scratch, Operand(source, length, times_1, -4));
2029 mov(Operand(destination, length, times_1, -4), scratch);
2030
2031 cmp(length, Immediate(8));
2032 j(below_equal, &len4, Label::kNear);
2033 cmp(length, Immediate(12));
2034 j(below_equal, &len8, Label::kNear);
2035 cmp(length, Immediate(16));
2036 j(below_equal, &len12, Label::kNear);
2037
2038 mov(scratch, ecx);
2039 shr(ecx, 2);
2040 rep_movs();
2041 and_(scratch, Immediate(0x3));
2042 add(destination, scratch);
2043 jmp(&done, Label::kNear);
2044
2045 bind(&len12);
2046 mov(scratch, Operand(source, 8));
2047 mov(Operand(destination, 8), scratch);
2048 bind(&len8);
2049 mov(scratch, Operand(source, 4));
2050 mov(Operand(destination, 4), scratch);
2051 bind(&len4);
2052 mov(scratch, Operand(source, 0));
2053 mov(Operand(destination, 0), scratch);
2054 add(destination, length);
2055 jmp(&done, Label::kNear);
2056
2057 bind(&short_string);
2058 test(length, length);
2059 j(zero, &done, Label::kNear);
2060
2061 bind(&short_loop);
2062 mov_b(scratch, Operand(source, 0));
2063 mov_b(Operand(destination, 0), scratch);
2064 inc(source);
2065 inc(destination);
2066 dec(length);
2067 j(not_zero, &short_loop);
2068
2069 bind(&done);
2070 }
2071
2072
InitializeFieldsWithFiller(Register start_offset,Register end_offset,Register filler)2073 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
2074 Register end_offset,
2075 Register filler) {
2076 Label loop, entry;
2077 jmp(&entry);
2078 bind(&loop);
2079 mov(Operand(start_offset, 0), filler);
2080 add(start_offset, Immediate(kPointerSize));
2081 bind(&entry);
2082 cmp(start_offset, end_offset);
2083 j(less, &loop);
2084 }
2085
2086
BooleanBitTest(Register object,int field_offset,int bit_index)2087 void MacroAssembler::BooleanBitTest(Register object,
2088 int field_offset,
2089 int bit_index) {
2090 bit_index += kSmiTagSize + kSmiShiftSize;
2091 ASSERT(IsPowerOf2(kBitsPerByte));
2092 int byte_index = bit_index / kBitsPerByte;
2093 int byte_bit_index = bit_index & (kBitsPerByte - 1);
2094 test_b(FieldOperand(object, field_offset + byte_index),
2095 static_cast<byte>(1 << byte_bit_index));
2096 }
2097
2098
2099
NegativeZeroTest(Register result,Register op,Label * then_label)2100 void MacroAssembler::NegativeZeroTest(Register result,
2101 Register op,
2102 Label* then_label) {
2103 Label ok;
2104 test(result, result);
2105 j(not_zero, &ok);
2106 test(op, op);
2107 j(sign, then_label);
2108 bind(&ok);
2109 }
2110
2111
NegativeZeroTest(Register result,Register op1,Register op2,Register scratch,Label * then_label)2112 void MacroAssembler::NegativeZeroTest(Register result,
2113 Register op1,
2114 Register op2,
2115 Register scratch,
2116 Label* then_label) {
2117 Label ok;
2118 test(result, result);
2119 j(not_zero, &ok);
2120 mov(scratch, op1);
2121 or_(scratch, op2);
2122 j(sign, then_label);
2123 bind(&ok);
2124 }
2125
2126
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss,bool miss_on_bound_function)2127 void MacroAssembler::TryGetFunctionPrototype(Register function,
2128 Register result,
2129 Register scratch,
2130 Label* miss,
2131 bool miss_on_bound_function) {
2132 // Check that the receiver isn't a smi.
2133 JumpIfSmi(function, miss);
2134
2135 // Check that the function really is a function.
2136 CmpObjectType(function, JS_FUNCTION_TYPE, result);
2137 j(not_equal, miss);
2138
2139 if (miss_on_bound_function) {
2140 // If a bound function, go to miss label.
2141 mov(scratch,
2142 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2143 BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
2144 SharedFunctionInfo::kBoundFunction);
2145 j(not_zero, miss);
2146 }
2147
2148 // Make sure that the function has an instance prototype.
2149 Label non_instance;
2150 movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
2151 test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
2152 j(not_zero, &non_instance);
2153
2154 // Get the prototype or initial map from the function.
2155 mov(result,
2156 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2157
2158 // If the prototype or initial map is the hole, don't return it and
2159 // simply miss the cache instead. This will allow us to allocate a
2160 // prototype object on-demand in the runtime system.
2161 cmp(result, Immediate(isolate()->factory()->the_hole_value()));
2162 j(equal, miss);
2163
2164 // If the function does not have an initial map, we're done.
2165 Label done;
2166 CmpObjectType(result, MAP_TYPE, scratch);
2167 j(not_equal, &done);
2168
2169 // Get the prototype from the initial map.
2170 mov(result, FieldOperand(result, Map::kPrototypeOffset));
2171 jmp(&done);
2172
2173 // Non-instance prototype: Fetch prototype from constructor field
2174 // in initial map.
2175 bind(&non_instance);
2176 mov(result, FieldOperand(result, Map::kConstructorOffset));
2177
2178 // All done.
2179 bind(&done);
2180 }
2181
2182
CallStub(CodeStub * stub,TypeFeedbackId ast_id)2183 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
2184 ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
2185 call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id);
2186 }
2187
2188
TailCallStub(CodeStub * stub)2189 void MacroAssembler::TailCallStub(CodeStub* stub) {
2190 jmp(stub->GetCode(isolate()), RelocInfo::CODE_TARGET);
2191 }
2192
2193
StubReturn(int argc)2194 void MacroAssembler::StubReturn(int argc) {
2195 ASSERT(argc >= 1 && generating_stub());
2196 ret((argc - 1) * kPointerSize);
2197 }
2198
2199
AllowThisStubCall(CodeStub * stub)2200 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2201 return has_frame_ || !stub->SometimesSetsUpAFrame();
2202 }
2203
2204
IllegalOperation(int num_arguments)2205 void MacroAssembler::IllegalOperation(int num_arguments) {
2206 if (num_arguments > 0) {
2207 add(esp, Immediate(num_arguments * kPointerSize));
2208 }
2209 mov(eax, Immediate(isolate()->factory()->undefined_value()));
2210 }
2211
2212
IndexFromHash(Register hash,Register index)2213 void MacroAssembler::IndexFromHash(Register hash, Register index) {
2214 // The assert checks that the constants for the maximum number of digits
2215 // for an array index cached in the hash field and the number of bits
2216 // reserved for it does not conflict.
2217 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
2218 (1 << String::kArrayIndexValueBits));
2219 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
2220 // the low kHashShift bits.
2221 and_(hash, String::kArrayIndexValueMask);
2222 STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0);
2223 if (String::kHashShift > kSmiTagSize) {
2224 shr(hash, String::kHashShift - kSmiTagSize);
2225 }
2226 if (!index.is(hash)) {
2227 mov(index, hash);
2228 }
2229 }
2230
2231
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)2232 void MacroAssembler::CallRuntime(const Runtime::Function* f,
2233 int num_arguments,
2234 SaveFPRegsMode save_doubles) {
2235 // If the expected number of arguments of the runtime function is
2236 // constant, we check that the actual number of arguments match the
2237 // expectation.
2238 if (f->nargs >= 0 && f->nargs != num_arguments) {
2239 IllegalOperation(num_arguments);
2240 return;
2241 }
2242
2243 // TODO(1236192): Most runtime routines don't need the number of
2244 // arguments passed in because it is constant. At some point we
2245 // should remove this need and make the runtime routine entry code
2246 // smarter.
2247 Set(eax, Immediate(num_arguments));
2248 mov(ebx, Immediate(ExternalReference(f, isolate())));
2249 CEntryStub ces(1, CpuFeatures::IsSupported(SSE2) ? save_doubles
2250 : kDontSaveFPRegs);
2251 CallStub(&ces);
2252 }
2253
2254
CallExternalReference(ExternalReference ref,int num_arguments)2255 void MacroAssembler::CallExternalReference(ExternalReference ref,
2256 int num_arguments) {
2257 mov(eax, Immediate(num_arguments));
2258 mov(ebx, Immediate(ref));
2259
2260 CEntryStub stub(1);
2261 CallStub(&stub);
2262 }
2263
2264
TailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)2265 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2266 int num_arguments,
2267 int result_size) {
2268 // TODO(1236192): Most runtime routines don't need the number of
2269 // arguments passed in because it is constant. At some point we
2270 // should remove this need and make the runtime routine entry code
2271 // smarter.
2272 Set(eax, Immediate(num_arguments));
2273 JumpToExternalReference(ext);
2274 }
2275
2276
TailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)2277 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2278 int num_arguments,
2279 int result_size) {
2280 TailCallExternalReference(ExternalReference(fid, isolate()),
2281 num_arguments,
2282 result_size);
2283 }
2284
2285
ApiParameterOperand(int index)2286 Operand ApiParameterOperand(int index) {
2287 return Operand(esp, index * kPointerSize);
2288 }
2289
2290
PrepareCallApiFunction(int argc)2291 void MacroAssembler::PrepareCallApiFunction(int argc) {
2292 EnterApiExitFrame(argc);
2293 if (emit_debug_code()) {
2294 mov(esi, Immediate(BitCast<int32_t>(kZapValue)));
2295 }
2296 }
2297
2298
CallApiFunctionAndReturn(Address function_address,Address thunk_address,Operand thunk_last_arg,int stack_space,Operand return_value_operand,Operand * context_restore_operand)2299 void MacroAssembler::CallApiFunctionAndReturn(
2300 Address function_address,
2301 Address thunk_address,
2302 Operand thunk_last_arg,
2303 int stack_space,
2304 Operand return_value_operand,
2305 Operand* context_restore_operand) {
2306 ExternalReference next_address =
2307 ExternalReference::handle_scope_next_address(isolate());
2308 ExternalReference limit_address =
2309 ExternalReference::handle_scope_limit_address(isolate());
2310 ExternalReference level_address =
2311 ExternalReference::handle_scope_level_address(isolate());
2312
2313 // Allocate HandleScope in callee-save registers.
2314 mov(ebx, Operand::StaticVariable(next_address));
2315 mov(edi, Operand::StaticVariable(limit_address));
2316 add(Operand::StaticVariable(level_address), Immediate(1));
2317
2318 if (FLAG_log_timer_events) {
2319 FrameScope frame(this, StackFrame::MANUAL);
2320 PushSafepointRegisters();
2321 PrepareCallCFunction(1, eax);
2322 mov(Operand(esp, 0),
2323 Immediate(ExternalReference::isolate_address(isolate())));
2324 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2325 PopSafepointRegisters();
2326 }
2327
2328
2329 Label profiler_disabled;
2330 Label end_profiler_check;
2331 bool* is_profiling_flag =
2332 isolate()->cpu_profiler()->is_profiling_address();
2333 STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
2334 mov(eax, Immediate(reinterpret_cast<Address>(is_profiling_flag)));
2335 cmpb(Operand(eax, 0), 0);
2336 j(zero, &profiler_disabled);
2337
2338 // Additional parameter is the address of the actual getter function.
2339 mov(thunk_last_arg, Immediate(function_address));
2340 // Call the api function.
2341 call(thunk_address, RelocInfo::RUNTIME_ENTRY);
2342 jmp(&end_profiler_check);
2343
2344 bind(&profiler_disabled);
2345 // Call the api function.
2346 call(function_address, RelocInfo::RUNTIME_ENTRY);
2347 bind(&end_profiler_check);
2348
2349 if (FLAG_log_timer_events) {
2350 FrameScope frame(this, StackFrame::MANUAL);
2351 PushSafepointRegisters();
2352 PrepareCallCFunction(1, eax);
2353 mov(Operand(esp, 0),
2354 Immediate(ExternalReference::isolate_address(isolate())));
2355 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2356 PopSafepointRegisters();
2357 }
2358
2359 Label prologue;
2360 // Load the value from ReturnValue
2361 mov(eax, return_value_operand);
2362
2363 Label promote_scheduled_exception;
2364 Label exception_handled;
2365 Label delete_allocated_handles;
2366 Label leave_exit_frame;
2367
2368 bind(&prologue);
2369 // No more valid handles (the result handle was the last one). Restore
2370 // previous handle scope.
2371 mov(Operand::StaticVariable(next_address), ebx);
2372 sub(Operand::StaticVariable(level_address), Immediate(1));
2373 Assert(above_equal, kInvalidHandleScopeLevel);
2374 cmp(edi, Operand::StaticVariable(limit_address));
2375 j(not_equal, &delete_allocated_handles);
2376 bind(&leave_exit_frame);
2377
2378 // Check if the function scheduled an exception.
2379 ExternalReference scheduled_exception_address =
2380 ExternalReference::scheduled_exception_address(isolate());
2381 cmp(Operand::StaticVariable(scheduled_exception_address),
2382 Immediate(isolate()->factory()->the_hole_value()));
2383 j(not_equal, &promote_scheduled_exception);
2384 bind(&exception_handled);
2385
2386 #if ENABLE_EXTRA_CHECKS
2387 // Check if the function returned a valid JavaScript value.
2388 Label ok;
2389 Register return_value = eax;
2390 Register map = ecx;
2391
2392 JumpIfSmi(return_value, &ok, Label::kNear);
2393 mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
2394
2395 CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2396 j(below, &ok, Label::kNear);
2397
2398 CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2399 j(above_equal, &ok, Label::kNear);
2400
2401 cmp(map, isolate()->factory()->heap_number_map());
2402 j(equal, &ok, Label::kNear);
2403
2404 cmp(return_value, isolate()->factory()->undefined_value());
2405 j(equal, &ok, Label::kNear);
2406
2407 cmp(return_value, isolate()->factory()->true_value());
2408 j(equal, &ok, Label::kNear);
2409
2410 cmp(return_value, isolate()->factory()->false_value());
2411 j(equal, &ok, Label::kNear);
2412
2413 cmp(return_value, isolate()->factory()->null_value());
2414 j(equal, &ok, Label::kNear);
2415
2416 Abort(kAPICallReturnedInvalidObject);
2417
2418 bind(&ok);
2419 #endif
2420
2421 bool restore_context = context_restore_operand != NULL;
2422 if (restore_context) {
2423 mov(esi, *context_restore_operand);
2424 }
2425 LeaveApiExitFrame(!restore_context);
2426 ret(stack_space * kPointerSize);
2427
2428 bind(&promote_scheduled_exception);
2429 {
2430 FrameScope frame(this, StackFrame::INTERNAL);
2431 CallRuntime(Runtime::kPromoteScheduledException, 0);
2432 }
2433 jmp(&exception_handled);
2434
2435 // HandleScope limit has changed. Delete allocated extensions.
2436 ExternalReference delete_extensions =
2437 ExternalReference::delete_handle_scope_extensions(isolate());
2438 bind(&delete_allocated_handles);
2439 mov(Operand::StaticVariable(limit_address), edi);
2440 mov(edi, eax);
2441 mov(Operand(esp, 0),
2442 Immediate(ExternalReference::isolate_address(isolate())));
2443 mov(eax, Immediate(delete_extensions));
2444 call(eax);
2445 mov(eax, edi);
2446 jmp(&leave_exit_frame);
2447 }
2448
2449
JumpToExternalReference(const ExternalReference & ext)2450 void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
2451 // Set the entry point and jump to the C entry runtime stub.
2452 mov(ebx, Immediate(ext));
2453 CEntryStub ces(1);
2454 jmp(ces.GetCode(isolate()), RelocInfo::CODE_TARGET);
2455 }
2456
2457
SetCallKind(Register dst,CallKind call_kind)2458 void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
2459 // This macro takes the dst register to make the code more readable
2460 // at the call sites. However, the dst register has to be ecx to
2461 // follow the calling convention which requires the call type to be
2462 // in ecx.
2463 ASSERT(dst.is(ecx));
2464 if (call_kind == CALL_AS_FUNCTION) {
2465 // Set to some non-zero smi by updating the least significant
2466 // byte.
2467 mov_b(dst, 1 << kSmiTagSize);
2468 } else {
2469 // Set to smi zero by clearing the register.
2470 xor_(dst, dst);
2471 }
2472 }
2473
2474
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Handle<Code> code_constant,const Operand & code_operand,Label * done,bool * definitely_mismatches,InvokeFlag flag,Label::Distance done_near,const CallWrapper & call_wrapper,CallKind call_kind)2475 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2476 const ParameterCount& actual,
2477 Handle<Code> code_constant,
2478 const Operand& code_operand,
2479 Label* done,
2480 bool* definitely_mismatches,
2481 InvokeFlag flag,
2482 Label::Distance done_near,
2483 const CallWrapper& call_wrapper,
2484 CallKind call_kind) {
2485 bool definitely_matches = false;
2486 *definitely_mismatches = false;
2487 Label invoke;
2488 if (expected.is_immediate()) {
2489 ASSERT(actual.is_immediate());
2490 if (expected.immediate() == actual.immediate()) {
2491 definitely_matches = true;
2492 } else {
2493 mov(eax, actual.immediate());
2494 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2495 if (expected.immediate() == sentinel) {
2496 // Don't worry about adapting arguments for builtins that
2497 // don't want that done. Skip adaption code by making it look
2498 // like we have a match between expected and actual number of
2499 // arguments.
2500 definitely_matches = true;
2501 } else {
2502 *definitely_mismatches = true;
2503 mov(ebx, expected.immediate());
2504 }
2505 }
2506 } else {
2507 if (actual.is_immediate()) {
2508 // Expected is in register, actual is immediate. This is the
2509 // case when we invoke function values without going through the
2510 // IC mechanism.
2511 cmp(expected.reg(), actual.immediate());
2512 j(equal, &invoke);
2513 ASSERT(expected.reg().is(ebx));
2514 mov(eax, actual.immediate());
2515 } else if (!expected.reg().is(actual.reg())) {
2516 // Both expected and actual are in (different) registers. This
2517 // is the case when we invoke functions using call and apply.
2518 cmp(expected.reg(), actual.reg());
2519 j(equal, &invoke);
2520 ASSERT(actual.reg().is(eax));
2521 ASSERT(expected.reg().is(ebx));
2522 }
2523 }
2524
2525 if (!definitely_matches) {
2526 Handle<Code> adaptor =
2527 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2528 if (!code_constant.is_null()) {
2529 mov(edx, Immediate(code_constant));
2530 add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2531 } else if (!code_operand.is_reg(edx)) {
2532 mov(edx, code_operand);
2533 }
2534
2535 if (flag == CALL_FUNCTION) {
2536 call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
2537 SetCallKind(ecx, call_kind);
2538 call(adaptor, RelocInfo::CODE_TARGET);
2539 call_wrapper.AfterCall();
2540 if (!*definitely_mismatches) {
2541 jmp(done, done_near);
2542 }
2543 } else {
2544 SetCallKind(ecx, call_kind);
2545 jmp(adaptor, RelocInfo::CODE_TARGET);
2546 }
2547 bind(&invoke);
2548 }
2549 }
2550
2551
InvokeCode(const Operand & code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2552 void MacroAssembler::InvokeCode(const Operand& code,
2553 const ParameterCount& expected,
2554 const ParameterCount& actual,
2555 InvokeFlag flag,
2556 const CallWrapper& call_wrapper,
2557 CallKind call_kind) {
2558 // You can't call a function without a valid frame.
2559 ASSERT(flag == JUMP_FUNCTION || has_frame());
2560
2561 Label done;
2562 bool definitely_mismatches = false;
2563 InvokePrologue(expected, actual, Handle<Code>::null(), code,
2564 &done, &definitely_mismatches, flag, Label::kNear,
2565 call_wrapper, call_kind);
2566 if (!definitely_mismatches) {
2567 if (flag == CALL_FUNCTION) {
2568 call_wrapper.BeforeCall(CallSize(code));
2569 SetCallKind(ecx, call_kind);
2570 call(code);
2571 call_wrapper.AfterCall();
2572 } else {
2573 ASSERT(flag == JUMP_FUNCTION);
2574 SetCallKind(ecx, call_kind);
2575 jmp(code);
2576 }
2577 bind(&done);
2578 }
2579 }
2580
2581
InvokeCode(Handle<Code> code,const ParameterCount & expected,const ParameterCount & actual,RelocInfo::Mode rmode,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2582 void MacroAssembler::InvokeCode(Handle<Code> code,
2583 const ParameterCount& expected,
2584 const ParameterCount& actual,
2585 RelocInfo::Mode rmode,
2586 InvokeFlag flag,
2587 const CallWrapper& call_wrapper,
2588 CallKind call_kind) {
2589 // You can't call a function without a valid frame.
2590 ASSERT(flag == JUMP_FUNCTION || has_frame());
2591
2592 Label done;
2593 Operand dummy(eax, 0);
2594 bool definitely_mismatches = false;
2595 InvokePrologue(expected, actual, code, dummy, &done, &definitely_mismatches,
2596 flag, Label::kNear, call_wrapper, call_kind);
2597 if (!definitely_mismatches) {
2598 if (flag == CALL_FUNCTION) {
2599 call_wrapper.BeforeCall(CallSize(code, rmode));
2600 SetCallKind(ecx, call_kind);
2601 call(code, rmode);
2602 call_wrapper.AfterCall();
2603 } else {
2604 ASSERT(flag == JUMP_FUNCTION);
2605 SetCallKind(ecx, call_kind);
2606 jmp(code, rmode);
2607 }
2608 bind(&done);
2609 }
2610 }
2611
2612
InvokeFunction(Register fun,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2613 void MacroAssembler::InvokeFunction(Register fun,
2614 const ParameterCount& actual,
2615 InvokeFlag flag,
2616 const CallWrapper& call_wrapper,
2617 CallKind call_kind) {
2618 // You can't call a function without a valid frame.
2619 ASSERT(flag == JUMP_FUNCTION || has_frame());
2620
2621 ASSERT(fun.is(edi));
2622 mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2623 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2624 mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2625 SmiUntag(ebx);
2626
2627 ParameterCount expected(ebx);
2628 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2629 expected, actual, flag, call_wrapper, call_kind);
2630 }
2631
2632
InvokeFunction(Register fun,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2633 void MacroAssembler::InvokeFunction(Register fun,
2634 const ParameterCount& expected,
2635 const ParameterCount& actual,
2636 InvokeFlag flag,
2637 const CallWrapper& call_wrapper,
2638 CallKind call_kind) {
2639 // You can't call a function without a valid frame.
2640 ASSERT(flag == JUMP_FUNCTION || has_frame());
2641
2642 ASSERT(fun.is(edi));
2643 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2644
2645 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2646 expected, actual, flag, call_wrapper, call_kind);
2647 }
2648
2649
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2650 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2651 const ParameterCount& expected,
2652 const ParameterCount& actual,
2653 InvokeFlag flag,
2654 const CallWrapper& call_wrapper,
2655 CallKind call_kind) {
2656 LoadHeapObject(edi, function);
2657 InvokeFunction(edi, expected, actual, flag, call_wrapper, call_kind);
2658 }
2659
2660
InvokeBuiltin(Builtins::JavaScript id,InvokeFlag flag,const CallWrapper & call_wrapper)2661 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2662 InvokeFlag flag,
2663 const CallWrapper& call_wrapper) {
2664 // You can't call a builtin without a valid frame.
2665 ASSERT(flag == JUMP_FUNCTION || has_frame());
2666
2667 // Rely on the assertion to check that the number of provided
2668 // arguments match the expected number of arguments. Fake a
2669 // parameter count to avoid emitting code to do the check.
2670 ParameterCount expected(0);
2671 GetBuiltinFunction(edi, id);
2672 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2673 expected, expected, flag, call_wrapper, CALL_AS_METHOD);
2674 }
2675
2676
GetBuiltinFunction(Register target,Builtins::JavaScript id)2677 void MacroAssembler::GetBuiltinFunction(Register target,
2678 Builtins::JavaScript id) {
2679 // Load the JavaScript builtin function from the builtins object.
2680 mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2681 mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2682 mov(target, FieldOperand(target,
2683 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2684 }
2685
2686
GetBuiltinEntry(Register target,Builtins::JavaScript id)2687 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2688 ASSERT(!target.is(edi));
2689 // Load the JavaScript builtin function from the builtins object.
2690 GetBuiltinFunction(edi, id);
2691 // Load the code entry point from the function into the target register.
2692 mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2693 }
2694
2695
LoadContext(Register dst,int context_chain_length)2696 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2697 if (context_chain_length > 0) {
2698 // Move up the chain of contexts to the context containing the slot.
2699 mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2700 for (int i = 1; i < context_chain_length; i++) {
2701 mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2702 }
2703 } else {
2704 // Slot is in the current function context. Move it into the
2705 // destination register in case we store into it (the write barrier
2706 // cannot be allowed to destroy the context in esi).
2707 mov(dst, esi);
2708 }
2709
2710 // We should not have found a with context by walking the context chain
2711 // (i.e., the static scope chain and runtime context chain do not agree).
2712 // A variable occurring in such a scope should have slot type LOOKUP and
2713 // not CONTEXT.
2714 if (emit_debug_code()) {
2715 cmp(FieldOperand(dst, HeapObject::kMapOffset),
2716 isolate()->factory()->with_context_map());
2717 Check(not_equal, kVariableResolvedToWithContext);
2718 }
2719 }
2720
2721
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch,Label * no_map_match)2722 void MacroAssembler::LoadTransitionedArrayMapConditional(
2723 ElementsKind expected_kind,
2724 ElementsKind transitioned_kind,
2725 Register map_in_out,
2726 Register scratch,
2727 Label* no_map_match) {
2728 // Load the global or builtins object from the current context.
2729 mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2730 mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
2731
2732 // Check that the function's map is the same as the expected cached map.
2733 mov(scratch, Operand(scratch,
2734 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2735
2736 size_t offset = expected_kind * kPointerSize +
2737 FixedArrayBase::kHeaderSize;
2738 cmp(map_in_out, FieldOperand(scratch, offset));
2739 j(not_equal, no_map_match);
2740
2741 // Use the transitioned cached map.
2742 offset = transitioned_kind * kPointerSize +
2743 FixedArrayBase::kHeaderSize;
2744 mov(map_in_out, FieldOperand(scratch, offset));
2745 }
2746
2747
LoadInitialArrayMap(Register function_in,Register scratch,Register map_out,bool can_have_holes)2748 void MacroAssembler::LoadInitialArrayMap(
2749 Register function_in, Register scratch,
2750 Register map_out, bool can_have_holes) {
2751 ASSERT(!function_in.is(map_out));
2752 Label done;
2753 mov(map_out, FieldOperand(function_in,
2754 JSFunction::kPrototypeOrInitialMapOffset));
2755 if (!FLAG_smi_only_arrays) {
2756 ElementsKind kind = can_have_holes ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
2757 LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
2758 kind,
2759 map_out,
2760 scratch,
2761 &done);
2762 } else if (can_have_holes) {
2763 LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
2764 FAST_HOLEY_SMI_ELEMENTS,
2765 map_out,
2766 scratch,
2767 &done);
2768 }
2769 bind(&done);
2770 }
2771
2772
LoadGlobalContext(Register global_context)2773 void MacroAssembler::LoadGlobalContext(Register global_context) {
2774 // Load the global or builtins object from the current context.
2775 mov(global_context,
2776 Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2777 // Load the native context from the global or builtins object.
2778 mov(global_context,
2779 FieldOperand(global_context, GlobalObject::kNativeContextOffset));
2780 }
2781
2782
LoadGlobalFunction(int index,Register function)2783 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2784 // Load the global or builtins object from the current context.
2785 mov(function,
2786 Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2787 // Load the native context from the global or builtins object.
2788 mov(function,
2789 FieldOperand(function, GlobalObject::kNativeContextOffset));
2790 // Load the function from the native context.
2791 mov(function, Operand(function, Context::SlotOffset(index)));
2792 }
2793
2794
LoadGlobalFunctionInitialMap(Register function,Register map)2795 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2796 Register map) {
2797 // Load the initial map. The global functions all have initial maps.
2798 mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2799 if (emit_debug_code()) {
2800 Label ok, fail;
2801 CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2802 jmp(&ok);
2803 bind(&fail);
2804 Abort(kGlobalFunctionsMustHaveInitialMap);
2805 bind(&ok);
2806 }
2807 }
2808
2809
2810 // Store the value in register src in the safepoint register stack
2811 // slot for register dst.
StoreToSafepointRegisterSlot(Register dst,Register src)2812 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2813 mov(SafepointRegisterSlot(dst), src);
2814 }
2815
2816
StoreToSafepointRegisterSlot(Register dst,Immediate src)2817 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
2818 mov(SafepointRegisterSlot(dst), src);
2819 }
2820
2821
LoadFromSafepointRegisterSlot(Register dst,Register src)2822 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2823 mov(dst, SafepointRegisterSlot(src));
2824 }
2825
2826
SafepointRegisterSlot(Register reg)2827 Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2828 return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2829 }
2830
2831
SafepointRegisterStackIndex(int reg_code)2832 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2833 // The registers are pushed starting with the lowest encoding,
2834 // which means that lowest encodings are furthest away from
2835 // the stack pointer.
2836 ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2837 return kNumSafepointRegisters - reg_code - 1;
2838 }
2839
2840
LoadHeapObject(Register result,Handle<HeapObject> object)2841 void MacroAssembler::LoadHeapObject(Register result,
2842 Handle<HeapObject> object) {
2843 AllowDeferredHandleDereference embedding_raw_address;
2844 if (isolate()->heap()->InNewSpace(*object)) {
2845 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2846 mov(result, Operand::ForCell(cell));
2847 } else {
2848 mov(result, object);
2849 }
2850 }
2851
2852
CmpHeapObject(Register reg,Handle<HeapObject> object)2853 void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
2854 AllowDeferredHandleDereference using_raw_address;
2855 if (isolate()->heap()->InNewSpace(*object)) {
2856 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2857 cmp(reg, Operand::ForCell(cell));
2858 } else {
2859 cmp(reg, object);
2860 }
2861 }
2862
2863
PushHeapObject(Handle<HeapObject> object)2864 void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2865 AllowDeferredHandleDereference using_raw_address;
2866 if (isolate()->heap()->InNewSpace(*object)) {
2867 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2868 push(Operand::ForCell(cell));
2869 } else {
2870 Push(object);
2871 }
2872 }
2873
2874
Ret()2875 void MacroAssembler::Ret() {
2876 ret(0);
2877 }
2878
2879
Ret(int bytes_dropped,Register scratch)2880 void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2881 if (is_uint16(bytes_dropped)) {
2882 ret(bytes_dropped);
2883 } else {
2884 pop(scratch);
2885 add(esp, Immediate(bytes_dropped));
2886 push(scratch);
2887 ret(0);
2888 }
2889 }
2890
2891
VerifyX87StackDepth(uint32_t depth)2892 void MacroAssembler::VerifyX87StackDepth(uint32_t depth) {
2893 // Make sure the floating point stack is either empty or has depth items.
2894 ASSERT(depth <= 7);
2895 // This is very expensive.
2896 ASSERT(FLAG_debug_code && FLAG_enable_slow_asserts);
2897
2898 // The top-of-stack (tos) is 7 if there is one item pushed.
2899 int tos = (8 - depth) % 8;
2900 const int kTopMask = 0x3800;
2901 push(eax);
2902 fwait();
2903 fnstsw_ax();
2904 and_(eax, kTopMask);
2905 shr(eax, 11);
2906 cmp(eax, Immediate(tos));
2907 Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
2908 fnclex();
2909 pop(eax);
2910 }
2911
2912
Drop(int stack_elements)2913 void MacroAssembler::Drop(int stack_elements) {
2914 if (stack_elements > 0) {
2915 add(esp, Immediate(stack_elements * kPointerSize));
2916 }
2917 }
2918
2919
Move(Register dst,Register src)2920 void MacroAssembler::Move(Register dst, Register src) {
2921 if (!dst.is(src)) {
2922 mov(dst, src);
2923 }
2924 }
2925
2926
SetCounter(StatsCounter * counter,int value)2927 void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2928 if (FLAG_native_code_counters && counter->Enabled()) {
2929 mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
2930 }
2931 }
2932
2933
IncrementCounter(StatsCounter * counter,int value)2934 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2935 ASSERT(value > 0);
2936 if (FLAG_native_code_counters && counter->Enabled()) {
2937 Operand operand = Operand::StaticVariable(ExternalReference(counter));
2938 if (value == 1) {
2939 inc(operand);
2940 } else {
2941 add(operand, Immediate(value));
2942 }
2943 }
2944 }
2945
2946
DecrementCounter(StatsCounter * counter,int value)2947 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2948 ASSERT(value > 0);
2949 if (FLAG_native_code_counters && counter->Enabled()) {
2950 Operand operand = Operand::StaticVariable(ExternalReference(counter));
2951 if (value == 1) {
2952 dec(operand);
2953 } else {
2954 sub(operand, Immediate(value));
2955 }
2956 }
2957 }
2958
2959
IncrementCounter(Condition cc,StatsCounter * counter,int value)2960 void MacroAssembler::IncrementCounter(Condition cc,
2961 StatsCounter* counter,
2962 int value) {
2963 ASSERT(value > 0);
2964 if (FLAG_native_code_counters && counter->Enabled()) {
2965 Label skip;
2966 j(NegateCondition(cc), &skip);
2967 pushfd();
2968 IncrementCounter(counter, value);
2969 popfd();
2970 bind(&skip);
2971 }
2972 }
2973
2974
DecrementCounter(Condition cc,StatsCounter * counter,int value)2975 void MacroAssembler::DecrementCounter(Condition cc,
2976 StatsCounter* counter,
2977 int value) {
2978 ASSERT(value > 0);
2979 if (FLAG_native_code_counters && counter->Enabled()) {
2980 Label skip;
2981 j(NegateCondition(cc), &skip);
2982 pushfd();
2983 DecrementCounter(counter, value);
2984 popfd();
2985 bind(&skip);
2986 }
2987 }
2988
2989
Assert(Condition cc,BailoutReason reason)2990 void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
2991 if (emit_debug_code()) Check(cc, reason);
2992 }
2993
2994
AssertFastElements(Register elements)2995 void MacroAssembler::AssertFastElements(Register elements) {
2996 if (emit_debug_code()) {
2997 Factory* factory = isolate()->factory();
2998 Label ok;
2999 cmp(FieldOperand(elements, HeapObject::kMapOffset),
3000 Immediate(factory->fixed_array_map()));
3001 j(equal, &ok);
3002 cmp(FieldOperand(elements, HeapObject::kMapOffset),
3003 Immediate(factory->fixed_double_array_map()));
3004 j(equal, &ok);
3005 cmp(FieldOperand(elements, HeapObject::kMapOffset),
3006 Immediate(factory->fixed_cow_array_map()));
3007 j(equal, &ok);
3008 Abort(kJSObjectWithFastElementsMapHasSlowElements);
3009 bind(&ok);
3010 }
3011 }
3012
3013
Check(Condition cc,BailoutReason reason)3014 void MacroAssembler::Check(Condition cc, BailoutReason reason) {
3015 Label L;
3016 j(cc, &L);
3017 Abort(reason);
3018 // will not return here
3019 bind(&L);
3020 }
3021
3022
CheckStackAlignment()3023 void MacroAssembler::CheckStackAlignment() {
3024 int frame_alignment = OS::ActivationFrameAlignment();
3025 int frame_alignment_mask = frame_alignment - 1;
3026 if (frame_alignment > kPointerSize) {
3027 ASSERT(IsPowerOf2(frame_alignment));
3028 Label alignment_as_expected;
3029 test(esp, Immediate(frame_alignment_mask));
3030 j(zero, &alignment_as_expected);
3031 // Abort if stack is not aligned.
3032 int3();
3033 bind(&alignment_as_expected);
3034 }
3035 }
3036
3037
Abort(BailoutReason reason)3038 void MacroAssembler::Abort(BailoutReason reason) {
3039 // We want to pass the msg string like a smi to avoid GC
3040 // problems, however msg is not guaranteed to be aligned
3041 // properly. Instead, we pass an aligned pointer that is
3042 // a proper v8 smi, but also pass the alignment difference
3043 // from the real pointer as a smi.
3044 const char* msg = GetBailoutReason(reason);
3045 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
3046 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
3047 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
3048 #ifdef DEBUG
3049 if (msg != NULL) {
3050 RecordComment("Abort message: ");
3051 RecordComment(msg);
3052 }
3053
3054 if (FLAG_trap_on_abort) {
3055 int3();
3056 return;
3057 }
3058 #endif
3059
3060 push(eax);
3061 push(Immediate(p0));
3062 push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0))));
3063 // Disable stub call restrictions to always allow calls to abort.
3064 if (!has_frame_) {
3065 // We don't actually want to generate a pile of code for this, so just
3066 // claim there is a stack frame, without generating one.
3067 FrameScope scope(this, StackFrame::NONE);
3068 CallRuntime(Runtime::kAbort, 2);
3069 } else {
3070 CallRuntime(Runtime::kAbort, 2);
3071 }
3072 // will not return here
3073 int3();
3074 }
3075
3076
Throw(BailoutReason reason)3077 void MacroAssembler::Throw(BailoutReason reason) {
3078 #ifdef DEBUG
3079 const char* msg = GetBailoutReason(reason);
3080 if (msg != NULL) {
3081 RecordComment("Throw message: ");
3082 RecordComment(msg);
3083 }
3084 #endif
3085
3086 push(eax);
3087 push(Immediate(Smi::FromInt(reason)));
3088 // Disable stub call restrictions to always allow calls to throw.
3089 if (!has_frame_) {
3090 // We don't actually want to generate a pile of code for this, so just
3091 // claim there is a stack frame, without generating one.
3092 FrameScope scope(this, StackFrame::NONE);
3093 CallRuntime(Runtime::kThrowMessage, 1);
3094 } else {
3095 CallRuntime(Runtime::kThrowMessage, 1);
3096 }
3097 // will not return here
3098 int3();
3099 }
3100
3101
ThrowIf(Condition cc,BailoutReason reason)3102 void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) {
3103 Label L;
3104 j(NegateCondition(cc), &L);
3105 Throw(reason);
3106 // will not return here
3107 bind(&L);
3108 }
3109
3110
LoadInstanceDescriptors(Register map,Register descriptors)3111 void MacroAssembler::LoadInstanceDescriptors(Register map,
3112 Register descriptors) {
3113 mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
3114 }
3115
3116
NumberOfOwnDescriptors(Register dst,Register map)3117 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
3118 mov(dst, FieldOperand(map, Map::kBitField3Offset));
3119 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
3120 }
3121
3122
LoadPowerOf2(XMMRegister dst,Register scratch,int power)3123 void MacroAssembler::LoadPowerOf2(XMMRegister dst,
3124 Register scratch,
3125 int power) {
3126 ASSERT(is_uintn(power + HeapNumber::kExponentBias,
3127 HeapNumber::kExponentBits));
3128 mov(scratch, Immediate(power + HeapNumber::kExponentBias));
3129 movd(dst, scratch);
3130 psllq(dst, HeapNumber::kMantissaBits);
3131 }
3132
3133
LookupNumberStringCache(Register object,Register result,Register scratch1,Register scratch2,Label * not_found)3134 void MacroAssembler::LookupNumberStringCache(Register object,
3135 Register result,
3136 Register scratch1,
3137 Register scratch2,
3138 Label* not_found) {
3139 // Use of registers. Register result is used as a temporary.
3140 Register number_string_cache = result;
3141 Register mask = scratch1;
3142 Register scratch = scratch2;
3143
3144 // Load the number string cache.
3145 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
3146 // Make the hash mask from the length of the number string cache. It
3147 // contains two elements (number and string) for each cache entry.
3148 mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
3149 shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
3150 sub(mask, Immediate(1)); // Make mask.
3151
3152 // Calculate the entry in the number string cache. The hash value in the
3153 // number string cache for smis is just the smi value, and the hash for
3154 // doubles is the xor of the upper and lower words. See
3155 // Heap::GetNumberStringCache.
3156 Label smi_hash_calculated;
3157 Label load_result_from_cache;
3158 Label not_smi;
3159 STATIC_ASSERT(kSmiTag == 0);
3160 JumpIfNotSmi(object, ¬_smi, Label::kNear);
3161 mov(scratch, object);
3162 SmiUntag(scratch);
3163 jmp(&smi_hash_calculated, Label::kNear);
3164 bind(¬_smi);
3165 cmp(FieldOperand(object, HeapObject::kMapOffset),
3166 isolate()->factory()->heap_number_map());
3167 j(not_equal, not_found);
3168 STATIC_ASSERT(8 == kDoubleSize);
3169 mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
3170 xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
3171 // Object is heap number and hash is now in scratch. Calculate cache index.
3172 and_(scratch, mask);
3173 Register index = scratch;
3174 Register probe = mask;
3175 mov(probe,
3176 FieldOperand(number_string_cache,
3177 index,
3178 times_twice_pointer_size,
3179 FixedArray::kHeaderSize));
3180 JumpIfSmi(probe, not_found);
3181 if (CpuFeatures::IsSupported(SSE2)) {
3182 CpuFeatureScope fscope(this, SSE2);
3183 movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
3184 ucomisd(xmm0, FieldOperand(probe, HeapNumber::kValueOffset));
3185 } else {
3186 fld_d(FieldOperand(object, HeapNumber::kValueOffset));
3187 fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
3188 FCmp();
3189 }
3190 j(parity_even, not_found); // Bail out if NaN is involved.
3191 j(not_equal, not_found); // The cache did not contain this value.
3192 jmp(&load_result_from_cache, Label::kNear);
3193
3194 bind(&smi_hash_calculated);
3195 // Object is smi and hash is now in scratch. Calculate cache index.
3196 and_(scratch, mask);
3197 // Check if the entry is the smi we are looking for.
3198 cmp(object,
3199 FieldOperand(number_string_cache,
3200 index,
3201 times_twice_pointer_size,
3202 FixedArray::kHeaderSize));
3203 j(not_equal, not_found);
3204
3205 // Get the result from the cache.
3206 bind(&load_result_from_cache);
3207 mov(result,
3208 FieldOperand(number_string_cache,
3209 index,
3210 times_twice_pointer_size,
3211 FixedArray::kHeaderSize + kPointerSize));
3212 IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
3213 }
3214
3215
JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,Register scratch,Label * failure)3216 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
3217 Register instance_type,
3218 Register scratch,
3219 Label* failure) {
3220 if (!scratch.is(instance_type)) {
3221 mov(scratch, instance_type);
3222 }
3223 and_(scratch,
3224 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
3225 cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
3226 j(not_equal, failure);
3227 }
3228
3229
JumpIfNotBothSequentialAsciiStrings(Register object1,Register object2,Register scratch1,Register scratch2,Label * failure)3230 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
3231 Register object2,
3232 Register scratch1,
3233 Register scratch2,
3234 Label* failure) {
3235 // Check that both objects are not smis.
3236 STATIC_ASSERT(kSmiTag == 0);
3237 mov(scratch1, object1);
3238 and_(scratch1, object2);
3239 JumpIfSmi(scratch1, failure);
3240
3241 // Load instance type for both strings.
3242 mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
3243 mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
3244 movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
3245 movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
3246
3247 // Check that both are flat ASCII strings.
3248 const int kFlatAsciiStringMask =
3249 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
3250 const int kFlatAsciiStringTag =
3251 kStringTag | kOneByteStringTag | kSeqStringTag;
3252 // Interleave bits from both instance types and compare them in one check.
3253 ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
3254 and_(scratch1, kFlatAsciiStringMask);
3255 and_(scratch2, kFlatAsciiStringMask);
3256 lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
3257 cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
3258 j(not_equal, failure);
3259 }
3260
3261
JumpIfNotUniqueName(Operand operand,Label * not_unique_name,Label::Distance distance)3262 void MacroAssembler::JumpIfNotUniqueName(Operand operand,
3263 Label* not_unique_name,
3264 Label::Distance distance) {
3265 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3266 Label succeed;
3267 test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3268 j(zero, &succeed);
3269 cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
3270 j(not_equal, not_unique_name, distance);
3271
3272 bind(&succeed);
3273 }
3274
3275
EmitSeqStringSetCharCheck(Register string,Register index,Register value,uint32_t encoding_mask)3276 void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
3277 Register index,
3278 Register value,
3279 uint32_t encoding_mask) {
3280 Label is_object;
3281 JumpIfNotSmi(string, &is_object, Label::kNear);
3282 Throw(kNonObject);
3283 bind(&is_object);
3284
3285 push(value);
3286 mov(value, FieldOperand(string, HeapObject::kMapOffset));
3287 movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
3288
3289 and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
3290 cmp(value, Immediate(encoding_mask));
3291 pop(value);
3292 ThrowIf(not_equal, kUnexpectedStringType);
3293
3294 // The index is assumed to be untagged coming in, tag it to compare with the
3295 // string length without using a temp register, it is restored at the end of
3296 // this function.
3297 SmiTag(index);
3298 // Can't use overflow here directly, compiler can't seem to disambiguate.
3299 ThrowIf(NegateCondition(no_overflow), kIndexIsTooLarge);
3300
3301 cmp(index, FieldOperand(string, String::kLengthOffset));
3302 ThrowIf(greater_equal, kIndexIsTooLarge);
3303
3304 cmp(index, Immediate(Smi::FromInt(0)));
3305 ThrowIf(less, kIndexIsNegative);
3306
3307 // Restore the index
3308 SmiUntag(index);
3309 }
3310
3311
PrepareCallCFunction(int num_arguments,Register scratch)3312 void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
3313 int frame_alignment = OS::ActivationFrameAlignment();
3314 if (frame_alignment != 0) {
3315 // Make stack end at alignment and make room for num_arguments words
3316 // and the original value of esp.
3317 mov(scratch, esp);
3318 sub(esp, Immediate((num_arguments + 1) * kPointerSize));
3319 ASSERT(IsPowerOf2(frame_alignment));
3320 and_(esp, -frame_alignment);
3321 mov(Operand(esp, num_arguments * kPointerSize), scratch);
3322 } else {
3323 sub(esp, Immediate(num_arguments * kPointerSize));
3324 }
3325 }
3326
3327
CallCFunction(ExternalReference function,int num_arguments)3328 void MacroAssembler::CallCFunction(ExternalReference function,
3329 int num_arguments) {
3330 // Trashing eax is ok as it will be the return value.
3331 mov(eax, Immediate(function));
3332 CallCFunction(eax, num_arguments);
3333 }
3334
3335
CallCFunction(Register function,int num_arguments)3336 void MacroAssembler::CallCFunction(Register function,
3337 int num_arguments) {
3338 ASSERT(has_frame());
3339 // Check stack alignment.
3340 if (emit_debug_code()) {
3341 CheckStackAlignment();
3342 }
3343
3344 call(function);
3345 if (OS::ActivationFrameAlignment() != 0) {
3346 mov(esp, Operand(esp, num_arguments * kPointerSize));
3347 } else {
3348 add(esp, Immediate(num_arguments * kPointerSize));
3349 }
3350 }
3351
3352
AreAliased(Register r1,Register r2,Register r3,Register r4)3353 bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
3354 if (r1.is(r2)) return true;
3355 if (r1.is(r3)) return true;
3356 if (r1.is(r4)) return true;
3357 if (r2.is(r3)) return true;
3358 if (r2.is(r4)) return true;
3359 if (r3.is(r4)) return true;
3360 return false;
3361 }
3362
3363
CodePatcher(byte * address,int size)3364 CodePatcher::CodePatcher(byte* address, int size)
3365 : address_(address),
3366 size_(size),
3367 masm_(NULL, address, size + Assembler::kGap) {
3368 // Create a new macro assembler pointing to the address of the code to patch.
3369 // The size is adjusted with kGap on order for the assembler to generate size
3370 // bytes of instructions without failing with buffer size constraints.
3371 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3372 }
3373
3374
~CodePatcher()3375 CodePatcher::~CodePatcher() {
3376 // Indicate that code has changed.
3377 CPU::FlushICache(address_, size_);
3378
3379 // Check that the code was patched as expected.
3380 ASSERT(masm_.pc_ == address_ + size_);
3381 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3382 }
3383
3384
CheckPageFlag(Register object,Register scratch,int mask,Condition cc,Label * condition_met,Label::Distance condition_met_distance)3385 void MacroAssembler::CheckPageFlag(
3386 Register object,
3387 Register scratch,
3388 int mask,
3389 Condition cc,
3390 Label* condition_met,
3391 Label::Distance condition_met_distance) {
3392 ASSERT(cc == zero || cc == not_zero);
3393 if (scratch.is(object)) {
3394 and_(scratch, Immediate(~Page::kPageAlignmentMask));
3395 } else {
3396 mov(scratch, Immediate(~Page::kPageAlignmentMask));
3397 and_(scratch, object);
3398 }
3399 if (mask < (1 << kBitsPerByte)) {
3400 test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
3401 static_cast<uint8_t>(mask));
3402 } else {
3403 test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
3404 }
3405 j(cc, condition_met, condition_met_distance);
3406 }
3407
3408
CheckPageFlagForMap(Handle<Map> map,int mask,Condition cc,Label * condition_met,Label::Distance condition_met_distance)3409 void MacroAssembler::CheckPageFlagForMap(
3410 Handle<Map> map,
3411 int mask,
3412 Condition cc,
3413 Label* condition_met,
3414 Label::Distance condition_met_distance) {
3415 ASSERT(cc == zero || cc == not_zero);
3416 Page* page = Page::FromAddress(map->address());
3417 ExternalReference reference(ExternalReference::page_flags(page));
3418 // The inlined static address check of the page's flags relies
3419 // on maps never being compacted.
3420 ASSERT(!isolate()->heap()->mark_compact_collector()->
3421 IsOnEvacuationCandidate(*map));
3422 if (mask < (1 << kBitsPerByte)) {
3423 test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
3424 } else {
3425 test(Operand::StaticVariable(reference), Immediate(mask));
3426 }
3427 j(cc, condition_met, condition_met_distance);
3428 }
3429
3430
CheckMapDeprecated(Handle<Map> map,Register scratch,Label * if_deprecated)3431 void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
3432 Register scratch,
3433 Label* if_deprecated) {
3434 if (map->CanBeDeprecated()) {
3435 mov(scratch, map);
3436 mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
3437 and_(scratch, Immediate(Smi::FromInt(Map::Deprecated::kMask)));
3438 j(not_zero, if_deprecated);
3439 }
3440 }
3441
3442
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black,Label::Distance on_black_near)3443 void MacroAssembler::JumpIfBlack(Register object,
3444 Register scratch0,
3445 Register scratch1,
3446 Label* on_black,
3447 Label::Distance on_black_near) {
3448 HasColor(object, scratch0, scratch1,
3449 on_black, on_black_near,
3450 1, 0); // kBlackBitPattern.
3451 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
3452 }
3453
3454
HasColor(Register object,Register bitmap_scratch,Register mask_scratch,Label * has_color,Label::Distance has_color_distance,int first_bit,int second_bit)3455 void MacroAssembler::HasColor(Register object,
3456 Register bitmap_scratch,
3457 Register mask_scratch,
3458 Label* has_color,
3459 Label::Distance has_color_distance,
3460 int first_bit,
3461 int second_bit) {
3462 ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
3463
3464 GetMarkBits(object, bitmap_scratch, mask_scratch);
3465
3466 Label other_color, word_boundary;
3467 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3468 j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
3469 add(mask_scratch, mask_scratch); // Shift left 1 by adding.
3470 j(zero, &word_boundary, Label::kNear);
3471 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3472 j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3473 jmp(&other_color, Label::kNear);
3474
3475 bind(&word_boundary);
3476 test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
3477
3478 j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3479 bind(&other_color);
3480 }
3481
3482
GetMarkBits(Register addr_reg,Register bitmap_reg,Register mask_reg)3483 void MacroAssembler::GetMarkBits(Register addr_reg,
3484 Register bitmap_reg,
3485 Register mask_reg) {
3486 ASSERT(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
3487 mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
3488 and_(bitmap_reg, addr_reg);
3489 mov(ecx, addr_reg);
3490 int shift =
3491 Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
3492 shr(ecx, shift);
3493 and_(ecx,
3494 (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
3495
3496 add(bitmap_reg, ecx);
3497 mov(ecx, addr_reg);
3498 shr(ecx, kPointerSizeLog2);
3499 and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
3500 mov(mask_reg, Immediate(1));
3501 shl_cl(mask_reg);
3502 }
3503
3504
EnsureNotWhite(Register value,Register bitmap_scratch,Register mask_scratch,Label * value_is_white_and_not_data,Label::Distance distance)3505 void MacroAssembler::EnsureNotWhite(
3506 Register value,
3507 Register bitmap_scratch,
3508 Register mask_scratch,
3509 Label* value_is_white_and_not_data,
3510 Label::Distance distance) {
3511 ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
3512 GetMarkBits(value, bitmap_scratch, mask_scratch);
3513
3514 // If the value is black or grey we don't need to do anything.
3515 ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3516 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
3517 ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
3518 ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3519
3520 Label done;
3521
3522 // Since both black and grey have a 1 in the first position and white does
3523 // not have a 1 there we only need to check one bit.
3524 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3525 j(not_zero, &done, Label::kNear);
3526
3527 if (emit_debug_code()) {
3528 // Check for impossible bit pattern.
3529 Label ok;
3530 push(mask_scratch);
3531 // shl. May overflow making the check conservative.
3532 add(mask_scratch, mask_scratch);
3533 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3534 j(zero, &ok, Label::kNear);
3535 int3();
3536 bind(&ok);
3537 pop(mask_scratch);
3538 }
3539
3540 // Value is white. We check whether it is data that doesn't need scanning.
3541 // Currently only checks for HeapNumber and non-cons strings.
3542 Register map = ecx; // Holds map while checking type.
3543 Register length = ecx; // Holds length of object after checking type.
3544 Label not_heap_number;
3545 Label is_data_object;
3546
3547 // Check for heap-number
3548 mov(map, FieldOperand(value, HeapObject::kMapOffset));
3549 cmp(map, isolate()->factory()->heap_number_map());
3550 j(not_equal, ¬_heap_number, Label::kNear);
3551 mov(length, Immediate(HeapNumber::kSize));
3552 jmp(&is_data_object, Label::kNear);
3553
3554 bind(¬_heap_number);
3555 // Check for strings.
3556 ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3557 ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3558 // If it's a string and it's not a cons string then it's an object containing
3559 // no GC pointers.
3560 Register instance_type = ecx;
3561 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
3562 test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
3563 j(not_zero, value_is_white_and_not_data);
3564 // It's a non-indirect (non-cons and non-slice) string.
3565 // If it's external, the length is just ExternalString::kSize.
3566 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3567 Label not_external;
3568 // External strings are the only ones with the kExternalStringTag bit
3569 // set.
3570 ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
3571 ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
3572 test_b(instance_type, kExternalStringTag);
3573 j(zero, ¬_external, Label::kNear);
3574 mov(length, Immediate(ExternalString::kSize));
3575 jmp(&is_data_object, Label::kNear);
3576
3577 bind(¬_external);
3578 // Sequential string, either ASCII or UC16.
3579 ASSERT(kOneByteStringTag == 0x04);
3580 and_(length, Immediate(kStringEncodingMask));
3581 xor_(length, Immediate(kStringEncodingMask));
3582 add(length, Immediate(0x04));
3583 // Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted
3584 // by 2. If we multiply the string length as smi by this, it still
3585 // won't overflow a 32-bit value.
3586 ASSERT_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
3587 ASSERT(SeqOneByteString::kMaxSize <=
3588 static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
3589 imul(length, FieldOperand(value, String::kLengthOffset));
3590 shr(length, 2 + kSmiTagSize + kSmiShiftSize);
3591 add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
3592 and_(length, Immediate(~kObjectAlignmentMask));
3593
3594 bind(&is_data_object);
3595 // Value is a data object, and it is white. Mark it black. Since we know
3596 // that the object is white we can make it black by flipping one bit.
3597 or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
3598
3599 and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
3600 add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
3601 length);
3602 if (emit_debug_code()) {
3603 mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3604 cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
3605 Check(less_equal, kLiveBytesCountOverflowChunkSize);
3606 }
3607
3608 bind(&done);
3609 }
3610
3611
EnumLength(Register dst,Register map)3612 void MacroAssembler::EnumLength(Register dst, Register map) {
3613 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3614 mov(dst, FieldOperand(map, Map::kBitField3Offset));
3615 and_(dst, Immediate(Smi::FromInt(Map::EnumLengthBits::kMask)));
3616 }
3617
3618
CheckEnumCache(Label * call_runtime)3619 void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3620 Label next, start;
3621 mov(ecx, eax);
3622
3623 // Check if the enum length field is properly initialized, indicating that
3624 // there is an enum cache.
3625 mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3626
3627 EnumLength(edx, ebx);
3628 cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
3629 j(equal, call_runtime);
3630
3631 jmp(&start);
3632
3633 bind(&next);
3634 mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3635
3636 // For all objects but the receiver, check that the cache is empty.
3637 EnumLength(edx, ebx);
3638 cmp(edx, Immediate(Smi::FromInt(0)));
3639 j(not_equal, call_runtime);
3640
3641 bind(&start);
3642
3643 // Check that there are no elements. Register rcx contains the current JS
3644 // object we've reached through the prototype chain.
3645 mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
3646 cmp(ecx, isolate()->factory()->empty_fixed_array());
3647 j(not_equal, call_runtime);
3648
3649 mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3650 cmp(ecx, isolate()->factory()->null_value());
3651 j(not_equal, &next);
3652 }
3653
3654
TestJSArrayForAllocationMemento(Register receiver_reg,Register scratch_reg,Label * no_memento_found)3655 void MacroAssembler::TestJSArrayForAllocationMemento(
3656 Register receiver_reg,
3657 Register scratch_reg,
3658 Label* no_memento_found) {
3659 ExternalReference new_space_start =
3660 ExternalReference::new_space_start(isolate());
3661 ExternalReference new_space_allocation_top =
3662 ExternalReference::new_space_allocation_top_address(isolate());
3663
3664 lea(scratch_reg, Operand(receiver_reg,
3665 JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3666 cmp(scratch_reg, Immediate(new_space_start));
3667 j(less, no_memento_found);
3668 cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
3669 j(greater, no_memento_found);
3670 cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
3671 Immediate(isolate()->factory()->allocation_memento_map()));
3672 }
3673
3674
JumpIfDictionaryInPrototypeChain(Register object,Register scratch0,Register scratch1,Label * found)3675 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
3676 Register object,
3677 Register scratch0,
3678 Register scratch1,
3679 Label* found) {
3680 ASSERT(!scratch1.is(scratch0));
3681 Factory* factory = isolate()->factory();
3682 Register current = scratch0;
3683 Label loop_again;
3684
3685 // scratch contained elements pointer.
3686 mov(current, object);
3687
3688 // Loop based on the map going up the prototype chain.
3689 bind(&loop_again);
3690 mov(current, FieldOperand(current, HeapObject::kMapOffset));
3691 mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
3692 and_(scratch1, Map::kElementsKindMask);
3693 shr(scratch1, Map::kElementsKindShift);
3694 cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
3695 j(equal, found);
3696 mov(current, FieldOperand(current, Map::kPrototypeOffset));
3697 cmp(current, Immediate(factory->null_value()));
3698 j(not_equal, &loop_again);
3699 }
3700
3701 } } // namespace v8::internal
3702
3703 #endif // V8_TARGET_ARCH_IA32
3704