1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "scopes.h"
31
32 #include "accessors.h"
33 #include "bootstrapper.h"
34 #include "compiler.h"
35 #include "messages.h"
36 #include "scopeinfo.h"
37
38 namespace v8 {
39 namespace internal {
40
41 // ----------------------------------------------------------------------------
42 // Implementation of LocalsMap
43 //
44 // Note: We are storing the handle locations as key values in the hash map.
45 // When inserting a new variable via Declare(), we rely on the fact that
46 // the handle location remains alive for the duration of that variable
47 // use. Because a Variable holding a handle with the same location exists
48 // this is ensured.
49
Match(void * key1,void * key2)50 static bool Match(void* key1, void* key2) {
51 String* name1 = *reinterpret_cast<String**>(key1);
52 String* name2 = *reinterpret_cast<String**>(key2);
53 ASSERT(name1->IsInternalizedString());
54 ASSERT(name2->IsInternalizedString());
55 return name1 == name2;
56 }
57
58
VariableMap(Zone * zone)59 VariableMap::VariableMap(Zone* zone)
60 : ZoneHashMap(Match, 8, ZoneAllocationPolicy(zone)),
61 zone_(zone) {}
~VariableMap()62 VariableMap::~VariableMap() {}
63
64
Declare(Scope * scope,Handle<String> name,VariableMode mode,bool is_valid_lhs,Variable::Kind kind,InitializationFlag initialization_flag,Interface * interface)65 Variable* VariableMap::Declare(
66 Scope* scope,
67 Handle<String> name,
68 VariableMode mode,
69 bool is_valid_lhs,
70 Variable::Kind kind,
71 InitializationFlag initialization_flag,
72 Interface* interface) {
73 Entry* p = ZoneHashMap::Lookup(name.location(), name->Hash(), true,
74 ZoneAllocationPolicy(zone()));
75 if (p->value == NULL) {
76 // The variable has not been declared yet -> insert it.
77 ASSERT(p->key == name.location());
78 p->value = new(zone()) Variable(scope,
79 name,
80 mode,
81 is_valid_lhs,
82 kind,
83 initialization_flag,
84 interface);
85 }
86 return reinterpret_cast<Variable*>(p->value);
87 }
88
89
Lookup(Handle<String> name)90 Variable* VariableMap::Lookup(Handle<String> name) {
91 Entry* p = ZoneHashMap::Lookup(name.location(), name->Hash(), false,
92 ZoneAllocationPolicy(NULL));
93 if (p != NULL) {
94 ASSERT(*reinterpret_cast<String**>(p->key) == *name);
95 ASSERT(p->value != NULL);
96 return reinterpret_cast<Variable*>(p->value);
97 }
98 return NULL;
99 }
100
101
102 // ----------------------------------------------------------------------------
103 // Implementation of Scope
104
Scope(Scope * outer_scope,ScopeType scope_type,Zone * zone)105 Scope::Scope(Scope* outer_scope, ScopeType scope_type, Zone* zone)
106 : isolate_(zone->isolate()),
107 inner_scopes_(4, zone),
108 variables_(zone),
109 internals_(4, zone),
110 temps_(4, zone),
111 params_(4, zone),
112 unresolved_(16, zone),
113 decls_(4, zone),
114 interface_(FLAG_harmony_modules &&
115 (scope_type == MODULE_SCOPE || scope_type == GLOBAL_SCOPE)
116 ? Interface::NewModule(zone) : NULL),
117 already_resolved_(false),
118 zone_(zone) {
119 SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null());
120 // The outermost scope must be a global scope.
121 ASSERT(scope_type == GLOBAL_SCOPE || outer_scope != NULL);
122 ASSERT(!HasIllegalRedeclaration());
123 }
124
125
Scope(Scope * inner_scope,ScopeType scope_type,Handle<ScopeInfo> scope_info,Zone * zone)126 Scope::Scope(Scope* inner_scope,
127 ScopeType scope_type,
128 Handle<ScopeInfo> scope_info,
129 Zone* zone)
130 : isolate_(zone->isolate()),
131 inner_scopes_(4, zone),
132 variables_(zone),
133 internals_(4, zone),
134 temps_(4, zone),
135 params_(4, zone),
136 unresolved_(16, zone),
137 decls_(4, zone),
138 interface_(NULL),
139 already_resolved_(true),
140 zone_(zone) {
141 SetDefaults(scope_type, NULL, scope_info);
142 if (!scope_info.is_null()) {
143 num_heap_slots_ = scope_info_->ContextLength();
144 }
145 // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
146 num_heap_slots_ = Max(num_heap_slots_,
147 static_cast<int>(Context::MIN_CONTEXT_SLOTS));
148 AddInnerScope(inner_scope);
149 }
150
151
Scope(Scope * inner_scope,Handle<String> catch_variable_name,Zone * zone)152 Scope::Scope(Scope* inner_scope, Handle<String> catch_variable_name, Zone* zone)
153 : isolate_(zone->isolate()),
154 inner_scopes_(1, zone),
155 variables_(zone),
156 internals_(0, zone),
157 temps_(0, zone),
158 params_(0, zone),
159 unresolved_(0, zone),
160 decls_(0, zone),
161 interface_(NULL),
162 already_resolved_(true),
163 zone_(zone) {
164 SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
165 AddInnerScope(inner_scope);
166 ++num_var_or_const_;
167 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
168 Variable* variable = variables_.Declare(this,
169 catch_variable_name,
170 VAR,
171 true, // Valid left-hand side.
172 Variable::NORMAL,
173 kCreatedInitialized);
174 AllocateHeapSlot(variable);
175 }
176
177
SetDefaults(ScopeType scope_type,Scope * outer_scope,Handle<ScopeInfo> scope_info)178 void Scope::SetDefaults(ScopeType scope_type,
179 Scope* outer_scope,
180 Handle<ScopeInfo> scope_info) {
181 outer_scope_ = outer_scope;
182 scope_type_ = scope_type;
183 scope_name_ = isolate_->factory()->empty_string();
184 dynamics_ = NULL;
185 receiver_ = NULL;
186 function_ = NULL;
187 arguments_ = NULL;
188 illegal_redecl_ = NULL;
189 scope_inside_with_ = false;
190 scope_contains_with_ = false;
191 scope_calls_eval_ = false;
192 // Inherit the strict mode from the parent scope.
193 language_mode_ = (outer_scope != NULL)
194 ? outer_scope->language_mode_ : CLASSIC_MODE;
195 outer_scope_calls_non_strict_eval_ = false;
196 inner_scope_calls_eval_ = false;
197 force_eager_compilation_ = false;
198 force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
199 ? outer_scope->has_forced_context_allocation() : false;
200 num_var_or_const_ = 0;
201 num_stack_slots_ = 0;
202 num_heap_slots_ = 0;
203 num_modules_ = 0;
204 module_var_ = NULL,
205 scope_info_ = scope_info;
206 start_position_ = RelocInfo::kNoPosition;
207 end_position_ = RelocInfo::kNoPosition;
208 if (!scope_info.is_null()) {
209 scope_calls_eval_ = scope_info->CallsEval();
210 language_mode_ = scope_info->language_mode();
211 }
212 }
213
214
DeserializeScopeChain(Context * context,Scope * global_scope,Zone * zone)215 Scope* Scope::DeserializeScopeChain(Context* context, Scope* global_scope,
216 Zone* zone) {
217 // Reconstruct the outer scope chain from a closure's context chain.
218 Scope* current_scope = NULL;
219 Scope* innermost_scope = NULL;
220 bool contains_with = false;
221 while (!context->IsNativeContext()) {
222 if (context->IsWithContext()) {
223 Scope* with_scope = new(zone) Scope(current_scope,
224 WITH_SCOPE,
225 Handle<ScopeInfo>::null(),
226 zone);
227 current_scope = with_scope;
228 // All the inner scopes are inside a with.
229 contains_with = true;
230 for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
231 s->scope_inside_with_ = true;
232 }
233 } else if (context->IsGlobalContext()) {
234 ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
235 current_scope = new(zone) Scope(current_scope,
236 GLOBAL_SCOPE,
237 Handle<ScopeInfo>(scope_info),
238 zone);
239 } else if (context->IsModuleContext()) {
240 ScopeInfo* scope_info = ScopeInfo::cast(context->module()->scope_info());
241 current_scope = new(zone) Scope(current_scope,
242 MODULE_SCOPE,
243 Handle<ScopeInfo>(scope_info),
244 zone);
245 } else if (context->IsFunctionContext()) {
246 ScopeInfo* scope_info = context->closure()->shared()->scope_info();
247 current_scope = new(zone) Scope(current_scope,
248 FUNCTION_SCOPE,
249 Handle<ScopeInfo>(scope_info),
250 zone);
251 } else if (context->IsBlockContext()) {
252 ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
253 current_scope = new(zone) Scope(current_scope,
254 BLOCK_SCOPE,
255 Handle<ScopeInfo>(scope_info),
256 zone);
257 } else {
258 ASSERT(context->IsCatchContext());
259 String* name = String::cast(context->extension());
260 current_scope = new(zone) Scope(
261 current_scope, Handle<String>(name), zone);
262 }
263 if (contains_with) current_scope->RecordWithStatement();
264 if (innermost_scope == NULL) innermost_scope = current_scope;
265
266 // Forget about a with when we move to a context for a different function.
267 if (context->previous()->closure() != context->closure()) {
268 contains_with = false;
269 }
270 context = context->previous();
271 }
272
273 global_scope->AddInnerScope(current_scope);
274 global_scope->PropagateScopeInfo(false);
275 return (innermost_scope == NULL) ? global_scope : innermost_scope;
276 }
277
278
Analyze(CompilationInfo * info)279 bool Scope::Analyze(CompilationInfo* info) {
280 ASSERT(info->function() != NULL);
281 Scope* scope = info->function()->scope();
282 Scope* top = scope;
283
284 // Traverse the scope tree up to the first unresolved scope or the global
285 // scope and start scope resolution and variable allocation from that scope.
286 while (!top->is_global_scope() &&
287 !top->outer_scope()->already_resolved()) {
288 top = top->outer_scope();
289 }
290
291 // Allocate the variables.
292 {
293 AstNodeFactory<AstNullVisitor> ast_node_factory(info->isolate(),
294 info->zone());
295 if (!top->AllocateVariables(info, &ast_node_factory)) return false;
296 }
297
298 #ifdef DEBUG
299 if (info->isolate()->bootstrapper()->IsActive()
300 ? FLAG_print_builtin_scopes
301 : FLAG_print_scopes) {
302 scope->Print();
303 }
304
305 if (FLAG_harmony_modules && FLAG_print_interfaces && top->is_global_scope()) {
306 PrintF("global : ");
307 top->interface()->Print();
308 }
309 #endif
310
311 info->SetScope(scope);
312 return true;
313 }
314
315
Initialize()316 void Scope::Initialize() {
317 ASSERT(!already_resolved());
318
319 // Add this scope as a new inner scope of the outer scope.
320 if (outer_scope_ != NULL) {
321 outer_scope_->inner_scopes_.Add(this, zone());
322 scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
323 } else {
324 scope_inside_with_ = is_with_scope();
325 }
326
327 // Declare convenience variables.
328 // Declare and allocate receiver (even for the global scope, and even
329 // if naccesses_ == 0).
330 // NOTE: When loading parameters in the global scope, we must take
331 // care not to access them as properties of the global object, but
332 // instead load them directly from the stack. Currently, the only
333 // such parameter is 'this' which is passed on the stack when
334 // invoking scripts
335 if (is_declaration_scope()) {
336 Variable* var =
337 variables_.Declare(this,
338 isolate_->factory()->this_string(),
339 VAR,
340 false,
341 Variable::THIS,
342 kCreatedInitialized);
343 var->AllocateTo(Variable::PARAMETER, -1);
344 receiver_ = var;
345 } else {
346 ASSERT(outer_scope() != NULL);
347 receiver_ = outer_scope()->receiver();
348 }
349
350 if (is_function_scope()) {
351 // Declare 'arguments' variable which exists in all functions.
352 // Note that it might never be accessed, in which case it won't be
353 // allocated during variable allocation.
354 variables_.Declare(this,
355 isolate_->factory()->arguments_string(),
356 VAR,
357 true,
358 Variable::ARGUMENTS,
359 kCreatedInitialized);
360 }
361 }
362
363
FinalizeBlockScope()364 Scope* Scope::FinalizeBlockScope() {
365 ASSERT(is_block_scope());
366 ASSERT(internals_.is_empty());
367 ASSERT(temps_.is_empty());
368 ASSERT(params_.is_empty());
369
370 if (num_var_or_const() > 0) return this;
371
372 // Remove this scope from outer scope.
373 for (int i = 0; i < outer_scope_->inner_scopes_.length(); i++) {
374 if (outer_scope_->inner_scopes_[i] == this) {
375 outer_scope_->inner_scopes_.Remove(i);
376 break;
377 }
378 }
379
380 // Reparent inner scopes.
381 for (int i = 0; i < inner_scopes_.length(); i++) {
382 outer_scope()->AddInnerScope(inner_scopes_[i]);
383 }
384
385 // Move unresolved variables
386 for (int i = 0; i < unresolved_.length(); i++) {
387 outer_scope()->unresolved_.Add(unresolved_[i], zone());
388 }
389
390 return NULL;
391 }
392
393
LocalLookup(Handle<String> name)394 Variable* Scope::LocalLookup(Handle<String> name) {
395 Variable* result = variables_.Lookup(name);
396 if (result != NULL || scope_info_.is_null()) {
397 return result;
398 }
399 // If we have a serialized scope info, we might find the variable there.
400 // There should be no local slot with the given name.
401 ASSERT(scope_info_->StackSlotIndex(*name) < 0);
402
403 // Check context slot lookup.
404 VariableMode mode;
405 Variable::Location location = Variable::CONTEXT;
406 InitializationFlag init_flag;
407 int index = scope_info_->ContextSlotIndex(*name, &mode, &init_flag);
408 if (index < 0) {
409 // Check parameters.
410 index = scope_info_->ParameterIndex(*name);
411 if (index < 0) return NULL;
412
413 mode = DYNAMIC;
414 location = Variable::LOOKUP;
415 init_flag = kCreatedInitialized;
416 }
417
418 Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
419 init_flag);
420 var->AllocateTo(location, index);
421 return var;
422 }
423
424
LookupFunctionVar(Handle<String> name,AstNodeFactory<AstNullVisitor> * factory)425 Variable* Scope::LookupFunctionVar(Handle<String> name,
426 AstNodeFactory<AstNullVisitor>* factory) {
427 if (function_ != NULL && function_->proxy()->name().is_identical_to(name)) {
428 return function_->proxy()->var();
429 } else if (!scope_info_.is_null()) {
430 // If we are backed by a scope info, try to lookup the variable there.
431 VariableMode mode;
432 int index = scope_info_->FunctionContextSlotIndex(*name, &mode);
433 if (index < 0) return NULL;
434 Variable* var = new(zone()) Variable(
435 this, name, mode, true /* is valid LHS */,
436 Variable::NORMAL, kCreatedInitialized);
437 VariableProxy* proxy = factory->NewVariableProxy(var);
438 VariableDeclaration* declaration = factory->NewVariableDeclaration(
439 proxy, mode, this, RelocInfo::kNoPosition);
440 DeclareFunctionVar(declaration);
441 var->AllocateTo(Variable::CONTEXT, index);
442 return var;
443 } else {
444 return NULL;
445 }
446 }
447
448
Lookup(Handle<String> name)449 Variable* Scope::Lookup(Handle<String> name) {
450 for (Scope* scope = this;
451 scope != NULL;
452 scope = scope->outer_scope()) {
453 Variable* var = scope->LocalLookup(name);
454 if (var != NULL) return var;
455 }
456 return NULL;
457 }
458
459
DeclareParameter(Handle<String> name,VariableMode mode)460 void Scope::DeclareParameter(Handle<String> name, VariableMode mode) {
461 ASSERT(!already_resolved());
462 ASSERT(is_function_scope());
463 Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
464 kCreatedInitialized);
465 params_.Add(var, zone());
466 }
467
468
DeclareLocal(Handle<String> name,VariableMode mode,InitializationFlag init_flag,Interface * interface)469 Variable* Scope::DeclareLocal(Handle<String> name,
470 VariableMode mode,
471 InitializationFlag init_flag,
472 Interface* interface) {
473 ASSERT(!already_resolved());
474 // This function handles VAR and CONST modes. DYNAMIC variables are
475 // introduces during variable allocation, INTERNAL variables are allocated
476 // explicitly, and TEMPORARY variables are allocated via NewTemporary().
477 ASSERT(IsDeclaredVariableMode(mode));
478 ++num_var_or_const_;
479 return variables_.Declare(
480 this, name, mode, true, Variable::NORMAL, init_flag, interface);
481 }
482
483
DeclareDynamicGlobal(Handle<String> name)484 Variable* Scope::DeclareDynamicGlobal(Handle<String> name) {
485 ASSERT(is_global_scope());
486 return variables_.Declare(this,
487 name,
488 DYNAMIC_GLOBAL,
489 true,
490 Variable::NORMAL,
491 kCreatedInitialized);
492 }
493
494
RemoveUnresolved(VariableProxy * var)495 void Scope::RemoveUnresolved(VariableProxy* var) {
496 // Most likely (always?) any variable we want to remove
497 // was just added before, so we search backwards.
498 for (int i = unresolved_.length(); i-- > 0;) {
499 if (unresolved_[i] == var) {
500 unresolved_.Remove(i);
501 return;
502 }
503 }
504 }
505
506
NewInternal(Handle<String> name)507 Variable* Scope::NewInternal(Handle<String> name) {
508 ASSERT(!already_resolved());
509 Variable* var = new(zone()) Variable(this,
510 name,
511 INTERNAL,
512 false,
513 Variable::NORMAL,
514 kCreatedInitialized);
515 internals_.Add(var, zone());
516 return var;
517 }
518
519
NewTemporary(Handle<String> name)520 Variable* Scope::NewTemporary(Handle<String> name) {
521 ASSERT(!already_resolved());
522 Variable* var = new(zone()) Variable(this,
523 name,
524 TEMPORARY,
525 true,
526 Variable::NORMAL,
527 kCreatedInitialized);
528 temps_.Add(var, zone());
529 return var;
530 }
531
532
AddDeclaration(Declaration * declaration)533 void Scope::AddDeclaration(Declaration* declaration) {
534 decls_.Add(declaration, zone());
535 }
536
537
SetIllegalRedeclaration(Expression * expression)538 void Scope::SetIllegalRedeclaration(Expression* expression) {
539 // Record only the first illegal redeclaration.
540 if (!HasIllegalRedeclaration()) {
541 illegal_redecl_ = expression;
542 }
543 ASSERT(HasIllegalRedeclaration());
544 }
545
546
VisitIllegalRedeclaration(AstVisitor * visitor)547 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
548 ASSERT(HasIllegalRedeclaration());
549 illegal_redecl_->Accept(visitor);
550 }
551
552
CheckConflictingVarDeclarations()553 Declaration* Scope::CheckConflictingVarDeclarations() {
554 int length = decls_.length();
555 for (int i = 0; i < length; i++) {
556 Declaration* decl = decls_[i];
557 if (decl->mode() != VAR) continue;
558 Handle<String> name = decl->proxy()->name();
559
560 // Iterate through all scopes until and including the declaration scope.
561 Scope* previous = NULL;
562 Scope* current = decl->scope();
563 do {
564 // There is a conflict if there exists a non-VAR binding.
565 Variable* other_var = current->variables_.Lookup(name);
566 if (other_var != NULL && other_var->mode() != VAR) {
567 return decl;
568 }
569 previous = current;
570 current = current->outer_scope_;
571 } while (!previous->is_declaration_scope());
572 }
573 return NULL;
574 }
575
576
577 class VarAndOrder {
578 public:
VarAndOrder(Variable * var,int order)579 VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
var() const580 Variable* var() const { return var_; }
order() const581 int order() const { return order_; }
Compare(const VarAndOrder * a,const VarAndOrder * b)582 static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
583 return a->order_ - b->order_;
584 }
585
586 private:
587 Variable* var_;
588 int order_;
589 };
590
591
CollectStackAndContextLocals(ZoneList<Variable * > * stack_locals,ZoneList<Variable * > * context_locals)592 void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
593 ZoneList<Variable*>* context_locals) {
594 ASSERT(stack_locals != NULL);
595 ASSERT(context_locals != NULL);
596
597 // Collect internals which are always allocated on the heap.
598 for (int i = 0; i < internals_.length(); i++) {
599 Variable* var = internals_[i];
600 if (var->is_used()) {
601 ASSERT(var->IsContextSlot());
602 context_locals->Add(var, zone());
603 }
604 }
605
606 // Collect temporaries which are always allocated on the stack, unless the
607 // context as a whole has forced context allocation.
608 for (int i = 0; i < temps_.length(); i++) {
609 Variable* var = temps_[i];
610 if (var->is_used()) {
611 if (var->IsContextSlot()) {
612 ASSERT(has_forced_context_allocation());
613 context_locals->Add(var, zone());
614 } else {
615 ASSERT(var->IsStackLocal());
616 stack_locals->Add(var, zone());
617 }
618 }
619 }
620
621 // Collect declared local variables.
622 ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
623 for (VariableMap::Entry* p = variables_.Start();
624 p != NULL;
625 p = variables_.Next(p)) {
626 Variable* var = reinterpret_cast<Variable*>(p->value);
627 if (var->is_used()) {
628 vars.Add(VarAndOrder(var, p->order), zone());
629 }
630 }
631 vars.Sort(VarAndOrder::Compare);
632 int var_count = vars.length();
633 for (int i = 0; i < var_count; i++) {
634 Variable* var = vars[i].var();
635 if (var->IsStackLocal()) {
636 stack_locals->Add(var, zone());
637 } else if (var->IsContextSlot()) {
638 context_locals->Add(var, zone());
639 }
640 }
641 }
642
643
AllocateVariables(CompilationInfo * info,AstNodeFactory<AstNullVisitor> * factory)644 bool Scope::AllocateVariables(CompilationInfo* info,
645 AstNodeFactory<AstNullVisitor>* factory) {
646 // 1) Propagate scope information.
647 bool outer_scope_calls_non_strict_eval = false;
648 if (outer_scope_ != NULL) {
649 outer_scope_calls_non_strict_eval =
650 outer_scope_->outer_scope_calls_non_strict_eval() |
651 outer_scope_->calls_non_strict_eval();
652 }
653 PropagateScopeInfo(outer_scope_calls_non_strict_eval);
654
655 // 2) Allocate module instances.
656 if (FLAG_harmony_modules && (is_global_scope() || is_module_scope())) {
657 ASSERT(num_modules_ == 0);
658 AllocateModulesRecursively(this);
659 }
660
661 // 3) Resolve variables.
662 if (!ResolveVariablesRecursively(info, factory)) return false;
663
664 // 4) Allocate variables.
665 AllocateVariablesRecursively();
666
667 return true;
668 }
669
670
HasTrivialContext() const671 bool Scope::HasTrivialContext() const {
672 // A function scope has a trivial context if it always is the global
673 // context. We iteratively scan out the context chain to see if
674 // there is anything that makes this scope non-trivial; otherwise we
675 // return true.
676 for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
677 if (scope->is_eval_scope()) return false;
678 if (scope->scope_inside_with_) return false;
679 if (scope->num_heap_slots_ > 0) return false;
680 }
681 return true;
682 }
683
684
HasTrivialOuterContext() const685 bool Scope::HasTrivialOuterContext() const {
686 Scope* outer = outer_scope_;
687 if (outer == NULL) return true;
688 // Note that the outer context may be trivial in general, but the current
689 // scope may be inside a 'with' statement in which case the outer context
690 // for this scope is not trivial.
691 return !scope_inside_with_ && outer->HasTrivialContext();
692 }
693
694
HasLazyCompilableOuterContext() const695 bool Scope::HasLazyCompilableOuterContext() const {
696 Scope* outer = outer_scope_;
697 if (outer == NULL) return true;
698 // We have to prevent lazy compilation if this scope is inside a with scope
699 // and all declaration scopes between them have empty contexts. Such
700 // declaration scopes may become invisible during scope info deserialization.
701 outer = outer->DeclarationScope();
702 bool found_non_trivial_declarations = false;
703 for (const Scope* scope = outer; scope != NULL; scope = scope->outer_scope_) {
704 if (scope->is_with_scope() && !found_non_trivial_declarations) return false;
705 if (scope->is_declaration_scope() && scope->num_heap_slots() > 0) {
706 found_non_trivial_declarations = true;
707 }
708 }
709 return true;
710 }
711
712
AllowsLazyCompilation() const713 bool Scope::AllowsLazyCompilation() const {
714 return !force_eager_compilation_ && HasLazyCompilableOuterContext();
715 }
716
717
AllowsLazyCompilationWithoutContext() const718 bool Scope::AllowsLazyCompilationWithoutContext() const {
719 return !force_eager_compilation_ && HasTrivialOuterContext();
720 }
721
722
ContextChainLength(Scope * scope)723 int Scope::ContextChainLength(Scope* scope) {
724 int n = 0;
725 for (Scope* s = this; s != scope; s = s->outer_scope_) {
726 ASSERT(s != NULL); // scope must be in the scope chain
727 if (s->is_with_scope() || s->num_heap_slots() > 0) n++;
728 // Catch and module scopes always have heap slots.
729 ASSERT(!s->is_catch_scope() || s->num_heap_slots() > 0);
730 ASSERT(!s->is_module_scope() || s->num_heap_slots() > 0);
731 }
732 return n;
733 }
734
735
GlobalScope()736 Scope* Scope::GlobalScope() {
737 Scope* scope = this;
738 while (!scope->is_global_scope()) {
739 scope = scope->outer_scope();
740 }
741 return scope;
742 }
743
744
DeclarationScope()745 Scope* Scope::DeclarationScope() {
746 Scope* scope = this;
747 while (!scope->is_declaration_scope()) {
748 scope = scope->outer_scope();
749 }
750 return scope;
751 }
752
753
GetScopeInfo()754 Handle<ScopeInfo> Scope::GetScopeInfo() {
755 if (scope_info_.is_null()) {
756 scope_info_ = ScopeInfo::Create(this, zone());
757 }
758 return scope_info_;
759 }
760
761
GetNestedScopeChain(List<Handle<ScopeInfo>> * chain,int position)762 void Scope::GetNestedScopeChain(
763 List<Handle<ScopeInfo> >* chain,
764 int position) {
765 if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo()));
766
767 for (int i = 0; i < inner_scopes_.length(); i++) {
768 Scope* scope = inner_scopes_[i];
769 int beg_pos = scope->start_position();
770 int end_pos = scope->end_position();
771 ASSERT(beg_pos >= 0 && end_pos >= 0);
772 if (beg_pos <= position && position < end_pos) {
773 scope->GetNestedScopeChain(chain, position);
774 return;
775 }
776 }
777 }
778
779
780 #ifdef DEBUG
Header(ScopeType scope_type)781 static const char* Header(ScopeType scope_type) {
782 switch (scope_type) {
783 case EVAL_SCOPE: return "eval";
784 case FUNCTION_SCOPE: return "function";
785 case MODULE_SCOPE: return "module";
786 case GLOBAL_SCOPE: return "global";
787 case CATCH_SCOPE: return "catch";
788 case BLOCK_SCOPE: return "block";
789 case WITH_SCOPE: return "with";
790 }
791 UNREACHABLE();
792 return NULL;
793 }
794
795
Indent(int n,const char * str)796 static void Indent(int n, const char* str) {
797 PrintF("%*s%s", n, "", str);
798 }
799
800
PrintName(Handle<String> name)801 static void PrintName(Handle<String> name) {
802 SmartArrayPointer<char> s = name->ToCString(DISALLOW_NULLS);
803 PrintF("%s", *s);
804 }
805
806
PrintLocation(Variable * var)807 static void PrintLocation(Variable* var) {
808 switch (var->location()) {
809 case Variable::UNALLOCATED:
810 break;
811 case Variable::PARAMETER:
812 PrintF("parameter[%d]", var->index());
813 break;
814 case Variable::LOCAL:
815 PrintF("local[%d]", var->index());
816 break;
817 case Variable::CONTEXT:
818 PrintF("context[%d]", var->index());
819 break;
820 case Variable::LOOKUP:
821 PrintF("lookup");
822 break;
823 }
824 }
825
826
PrintVar(int indent,Variable * var)827 static void PrintVar(int indent, Variable* var) {
828 if (var->is_used() || !var->IsUnallocated()) {
829 Indent(indent, Variable::Mode2String(var->mode()));
830 PrintF(" ");
831 PrintName(var->name());
832 PrintF("; // ");
833 PrintLocation(var);
834 if (var->has_forced_context_allocation()) {
835 if (!var->IsUnallocated()) PrintF(", ");
836 PrintF("forced context allocation");
837 }
838 PrintF("\n");
839 }
840 }
841
842
PrintMap(int indent,VariableMap * map)843 static void PrintMap(int indent, VariableMap* map) {
844 for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
845 Variable* var = reinterpret_cast<Variable*>(p->value);
846 PrintVar(indent, var);
847 }
848 }
849
850
Print(int n)851 void Scope::Print(int n) {
852 int n0 = (n > 0 ? n : 0);
853 int n1 = n0 + 2; // indentation
854
855 // Print header.
856 Indent(n0, Header(scope_type_));
857 if (scope_name_->length() > 0) {
858 PrintF(" ");
859 PrintName(scope_name_);
860 }
861
862 // Print parameters, if any.
863 if (is_function_scope()) {
864 PrintF(" (");
865 for (int i = 0; i < params_.length(); i++) {
866 if (i > 0) PrintF(", ");
867 PrintName(params_[i]->name());
868 }
869 PrintF(")");
870 }
871
872 PrintF(" { // (%d, %d)\n", start_position(), end_position());
873
874 // Function name, if any (named function literals, only).
875 if (function_ != NULL) {
876 Indent(n1, "// (local) function name: ");
877 PrintName(function_->proxy()->name());
878 PrintF("\n");
879 }
880
881 // Scope info.
882 if (HasTrivialOuterContext()) {
883 Indent(n1, "// scope has trivial outer context\n");
884 }
885 switch (language_mode()) {
886 case CLASSIC_MODE:
887 break;
888 case STRICT_MODE:
889 Indent(n1, "// strict mode scope\n");
890 break;
891 case EXTENDED_MODE:
892 Indent(n1, "// extended mode scope\n");
893 break;
894 }
895 if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
896 if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
897 if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
898 if (outer_scope_calls_non_strict_eval_) {
899 Indent(n1, "// outer scope calls 'eval' in non-strict context\n");
900 }
901 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
902 if (num_stack_slots_ > 0) { Indent(n1, "// ");
903 PrintF("%d stack slots\n", num_stack_slots_); }
904 if (num_heap_slots_ > 0) { Indent(n1, "// ");
905 PrintF("%d heap slots\n", num_heap_slots_); }
906
907 // Print locals.
908 if (function_ != NULL) {
909 Indent(n1, "// function var:\n");
910 PrintVar(n1, function_->proxy()->var());
911 }
912
913 if (temps_.length() > 0) {
914 Indent(n1, "// temporary vars:\n");
915 for (int i = 0; i < temps_.length(); i++) {
916 PrintVar(n1, temps_[i]);
917 }
918 }
919
920 if (internals_.length() > 0) {
921 Indent(n1, "// internal vars:\n");
922 for (int i = 0; i < internals_.length(); i++) {
923 PrintVar(n1, internals_[i]);
924 }
925 }
926
927 if (variables_.Start() != NULL) {
928 Indent(n1, "// local vars:\n");
929 PrintMap(n1, &variables_);
930 }
931
932 if (dynamics_ != NULL) {
933 Indent(n1, "// dynamic vars:\n");
934 PrintMap(n1, dynamics_->GetMap(DYNAMIC));
935 PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
936 PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
937 }
938
939 // Print inner scopes (disable by providing negative n).
940 if (n >= 0) {
941 for (int i = 0; i < inner_scopes_.length(); i++) {
942 PrintF("\n");
943 inner_scopes_[i]->Print(n1);
944 }
945 }
946
947 Indent(n0, "}\n");
948 }
949 #endif // DEBUG
950
951
NonLocal(Handle<String> name,VariableMode mode)952 Variable* Scope::NonLocal(Handle<String> name, VariableMode mode) {
953 if (dynamics_ == NULL) dynamics_ = new(zone()) DynamicScopePart(zone());
954 VariableMap* map = dynamics_->GetMap(mode);
955 Variable* var = map->Lookup(name);
956 if (var == NULL) {
957 // Declare a new non-local.
958 InitializationFlag init_flag = (mode == VAR)
959 ? kCreatedInitialized : kNeedsInitialization;
960 var = map->Declare(NULL,
961 name,
962 mode,
963 true,
964 Variable::NORMAL,
965 init_flag);
966 // Allocate it by giving it a dynamic lookup.
967 var->AllocateTo(Variable::LOOKUP, -1);
968 }
969 return var;
970 }
971
972
LookupRecursive(Handle<String> name,BindingKind * binding_kind,AstNodeFactory<AstNullVisitor> * factory)973 Variable* Scope::LookupRecursive(Handle<String> name,
974 BindingKind* binding_kind,
975 AstNodeFactory<AstNullVisitor>* factory) {
976 ASSERT(binding_kind != NULL);
977 if (already_resolved() && is_with_scope()) {
978 // Short-cut: if the scope is deserialized from a scope info, variable
979 // allocation is already fixed. We can simply return with dynamic lookup.
980 *binding_kind = DYNAMIC_LOOKUP;
981 return NULL;
982 }
983
984 // Try to find the variable in this scope.
985 Variable* var = LocalLookup(name);
986
987 // We found a variable and we are done. (Even if there is an 'eval' in
988 // this scope which introduces the same variable again, the resulting
989 // variable remains the same.)
990 if (var != NULL) {
991 *binding_kind = BOUND;
992 return var;
993 }
994
995 // We did not find a variable locally. Check against the function variable,
996 // if any. We can do this for all scopes, since the function variable is
997 // only present - if at all - for function scopes.
998 *binding_kind = UNBOUND;
999 var = LookupFunctionVar(name, factory);
1000 if (var != NULL) {
1001 *binding_kind = BOUND;
1002 } else if (outer_scope_ != NULL) {
1003 var = outer_scope_->LookupRecursive(name, binding_kind, factory);
1004 if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
1005 var->ForceContextAllocation();
1006 }
1007 } else {
1008 ASSERT(is_global_scope());
1009 }
1010
1011 if (is_with_scope()) {
1012 ASSERT(!already_resolved());
1013 // The current scope is a with scope, so the variable binding can not be
1014 // statically resolved. However, note that it was necessary to do a lookup
1015 // in the outer scope anyway, because if a binding exists in an outer scope,
1016 // the associated variable has to be marked as potentially being accessed
1017 // from inside of an inner with scope (the property may not be in the 'with'
1018 // object).
1019 *binding_kind = DYNAMIC_LOOKUP;
1020 return NULL;
1021 } else if (calls_non_strict_eval()) {
1022 // A variable binding may have been found in an outer scope, but the current
1023 // scope makes a non-strict 'eval' call, so the found variable may not be
1024 // the correct one (the 'eval' may introduce a binding with the same name).
1025 // In that case, change the lookup result to reflect this situation.
1026 if (*binding_kind == BOUND) {
1027 *binding_kind = BOUND_EVAL_SHADOWED;
1028 } else if (*binding_kind == UNBOUND) {
1029 *binding_kind = UNBOUND_EVAL_SHADOWED;
1030 }
1031 }
1032 return var;
1033 }
1034
1035
ResolveVariable(CompilationInfo * info,VariableProxy * proxy,AstNodeFactory<AstNullVisitor> * factory)1036 bool Scope::ResolveVariable(CompilationInfo* info,
1037 VariableProxy* proxy,
1038 AstNodeFactory<AstNullVisitor>* factory) {
1039 ASSERT(info->global_scope()->is_global_scope());
1040
1041 // If the proxy is already resolved there's nothing to do
1042 // (functions and consts may be resolved by the parser).
1043 if (proxy->var() != NULL) return true;
1044
1045 // Otherwise, try to resolve the variable.
1046 BindingKind binding_kind;
1047 Variable* var = LookupRecursive(proxy->name(), &binding_kind, factory);
1048 switch (binding_kind) {
1049 case BOUND:
1050 // We found a variable binding.
1051 break;
1052
1053 case BOUND_EVAL_SHADOWED:
1054 // We either found a variable binding that might be shadowed by eval or
1055 // gave up on it (e.g. by encountering a local with the same in the outer
1056 // scope which was not promoted to a context, this can happen if we use
1057 // debugger to evaluate arbitrary expressions at a break point).
1058 if (var->IsGlobalObjectProperty()) {
1059 var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
1060 } else if (var->is_dynamic()) {
1061 var = NonLocal(proxy->name(), DYNAMIC);
1062 } else {
1063 Variable* invalidated = var;
1064 var = NonLocal(proxy->name(), DYNAMIC_LOCAL);
1065 var->set_local_if_not_shadowed(invalidated);
1066 }
1067 break;
1068
1069 case UNBOUND:
1070 // No binding has been found. Declare a variable on the global object.
1071 var = info->global_scope()->DeclareDynamicGlobal(proxy->name());
1072 break;
1073
1074 case UNBOUND_EVAL_SHADOWED:
1075 // No binding has been found. But some scope makes a
1076 // non-strict 'eval' call.
1077 var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
1078 break;
1079
1080 case DYNAMIC_LOOKUP:
1081 // The variable could not be resolved statically.
1082 var = NonLocal(proxy->name(), DYNAMIC);
1083 break;
1084 }
1085
1086 ASSERT(var != NULL);
1087
1088 if (FLAG_harmony_scoping && is_extended_mode() &&
1089 var->is_const_mode() && proxy->IsLValue()) {
1090 // Assignment to const. Throw a syntax error.
1091 MessageLocation location(
1092 info->script(), proxy->position(), proxy->position());
1093 Isolate* isolate = info->isolate();
1094 Factory* factory = isolate->factory();
1095 Handle<JSArray> array = factory->NewJSArray(0);
1096 Handle<Object> result =
1097 factory->NewSyntaxError("harmony_const_assign", array);
1098 isolate->Throw(*result, &location);
1099 return false;
1100 }
1101
1102 if (FLAG_harmony_modules) {
1103 bool ok;
1104 #ifdef DEBUG
1105 if (FLAG_print_interface_details)
1106 PrintF("# Resolve %s:\n", var->name()->ToAsciiArray());
1107 #endif
1108 proxy->interface()->Unify(var->interface(), zone(), &ok);
1109 if (!ok) {
1110 #ifdef DEBUG
1111 if (FLAG_print_interfaces) {
1112 PrintF("SCOPES TYPE ERROR\n");
1113 PrintF("proxy: ");
1114 proxy->interface()->Print();
1115 PrintF("var: ");
1116 var->interface()->Print();
1117 }
1118 #endif
1119
1120 // Inconsistent use of module. Throw a syntax error.
1121 // TODO(rossberg): generate more helpful error message.
1122 MessageLocation location(
1123 info->script(), proxy->position(), proxy->position());
1124 Isolate* isolate = info->isolate();
1125 Factory* factory = isolate->factory();
1126 Handle<JSArray> array = factory->NewJSArray(1);
1127 USE(JSObject::SetElement(array, 0, var->name(), NONE, kStrictMode));
1128 Handle<Object> result =
1129 factory->NewSyntaxError("module_type_error", array);
1130 isolate->Throw(*result, &location);
1131 return false;
1132 }
1133 }
1134
1135 proxy->BindTo(var);
1136
1137 return true;
1138 }
1139
1140
ResolveVariablesRecursively(CompilationInfo * info,AstNodeFactory<AstNullVisitor> * factory)1141 bool Scope::ResolveVariablesRecursively(
1142 CompilationInfo* info,
1143 AstNodeFactory<AstNullVisitor>* factory) {
1144 ASSERT(info->global_scope()->is_global_scope());
1145
1146 // Resolve unresolved variables for this scope.
1147 for (int i = 0; i < unresolved_.length(); i++) {
1148 if (!ResolveVariable(info, unresolved_[i], factory)) return false;
1149 }
1150
1151 // Resolve unresolved variables for inner scopes.
1152 for (int i = 0; i < inner_scopes_.length(); i++) {
1153 if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
1154 return false;
1155 }
1156
1157 return true;
1158 }
1159
1160
PropagateScopeInfo(bool outer_scope_calls_non_strict_eval)1161 bool Scope::PropagateScopeInfo(bool outer_scope_calls_non_strict_eval ) {
1162 if (outer_scope_calls_non_strict_eval) {
1163 outer_scope_calls_non_strict_eval_ = true;
1164 }
1165
1166 bool calls_non_strict_eval =
1167 this->calls_non_strict_eval() || outer_scope_calls_non_strict_eval_;
1168 for (int i = 0; i < inner_scopes_.length(); i++) {
1169 Scope* inner_scope = inner_scopes_[i];
1170 if (inner_scope->PropagateScopeInfo(calls_non_strict_eval)) {
1171 inner_scope_calls_eval_ = true;
1172 }
1173 if (inner_scope->force_eager_compilation_) {
1174 force_eager_compilation_ = true;
1175 }
1176 }
1177
1178 return scope_calls_eval_ || inner_scope_calls_eval_;
1179 }
1180
1181
MustAllocate(Variable * var)1182 bool Scope::MustAllocate(Variable* var) {
1183 // Give var a read/write use if there is a chance it might be accessed
1184 // via an eval() call. This is only possible if the variable has a
1185 // visible name.
1186 if ((var->is_this() || var->name()->length() > 0) &&
1187 (var->has_forced_context_allocation() ||
1188 scope_calls_eval_ ||
1189 inner_scope_calls_eval_ ||
1190 scope_contains_with_ ||
1191 is_catch_scope() ||
1192 is_block_scope() ||
1193 is_module_scope() ||
1194 is_global_scope())) {
1195 var->set_is_used(true);
1196 }
1197 // Global variables do not need to be allocated.
1198 return !var->IsGlobalObjectProperty() && var->is_used();
1199 }
1200
1201
MustAllocateInContext(Variable * var)1202 bool Scope::MustAllocateInContext(Variable* var) {
1203 // If var is accessed from an inner scope, or if there is a possibility
1204 // that it might be accessed from the current or an inner scope (through
1205 // an eval() call or a runtime with lookup), it must be allocated in the
1206 // context.
1207 //
1208 // Exceptions: If the scope as a whole has forced context allocation, all
1209 // variables will have context allocation, even temporaries. Otherwise
1210 // temporary variables are always stack-allocated. Catch-bound variables are
1211 // always context-allocated.
1212 if (has_forced_context_allocation()) return true;
1213 if (var->mode() == TEMPORARY) return false;
1214 if (var->mode() == INTERNAL) return true;
1215 if (is_catch_scope() || is_block_scope() || is_module_scope()) return true;
1216 if (is_global_scope() && IsLexicalVariableMode(var->mode())) return true;
1217 return var->has_forced_context_allocation() ||
1218 scope_calls_eval_ ||
1219 inner_scope_calls_eval_ ||
1220 scope_contains_with_;
1221 }
1222
1223
HasArgumentsParameter()1224 bool Scope::HasArgumentsParameter() {
1225 for (int i = 0; i < params_.length(); i++) {
1226 if (params_[i]->name().is_identical_to(
1227 isolate_->factory()->arguments_string())) {
1228 return true;
1229 }
1230 }
1231 return false;
1232 }
1233
1234
AllocateStackSlot(Variable * var)1235 void Scope::AllocateStackSlot(Variable* var) {
1236 var->AllocateTo(Variable::LOCAL, num_stack_slots_++);
1237 }
1238
1239
AllocateHeapSlot(Variable * var)1240 void Scope::AllocateHeapSlot(Variable* var) {
1241 var->AllocateTo(Variable::CONTEXT, num_heap_slots_++);
1242 }
1243
1244
AllocateParameterLocals()1245 void Scope::AllocateParameterLocals() {
1246 ASSERT(is_function_scope());
1247 Variable* arguments = LocalLookup(isolate_->factory()->arguments_string());
1248 ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly
1249
1250 bool uses_nonstrict_arguments = false;
1251
1252 if (MustAllocate(arguments) && !HasArgumentsParameter()) {
1253 // 'arguments' is used. Unless there is also a parameter called
1254 // 'arguments', we must be conservative and allocate all parameters to
1255 // the context assuming they will be captured by the arguments object.
1256 // If we have a parameter named 'arguments', a (new) value is always
1257 // assigned to it via the function invocation. Then 'arguments' denotes
1258 // that specific parameter value and cannot be used to access the
1259 // parameters, which is why we don't need to allocate an arguments
1260 // object in that case.
1261
1262 // We are using 'arguments'. Tell the code generator that is needs to
1263 // allocate the arguments object by setting 'arguments_'.
1264 arguments_ = arguments;
1265
1266 // In strict mode 'arguments' does not alias formal parameters.
1267 // Therefore in strict mode we allocate parameters as if 'arguments'
1268 // were not used.
1269 uses_nonstrict_arguments = is_classic_mode();
1270 }
1271
1272 // The same parameter may occur multiple times in the parameters_ list.
1273 // If it does, and if it is not copied into the context object, it must
1274 // receive the highest parameter index for that parameter; thus iteration
1275 // order is relevant!
1276 for (int i = params_.length() - 1; i >= 0; --i) {
1277 Variable* var = params_[i];
1278 ASSERT(var->scope() == this);
1279 if (uses_nonstrict_arguments) {
1280 // Force context allocation of the parameter.
1281 var->ForceContextAllocation();
1282 }
1283
1284 if (MustAllocate(var)) {
1285 if (MustAllocateInContext(var)) {
1286 ASSERT(var->IsUnallocated() || var->IsContextSlot());
1287 if (var->IsUnallocated()) {
1288 AllocateHeapSlot(var);
1289 }
1290 } else {
1291 ASSERT(var->IsUnallocated() || var->IsParameter());
1292 if (var->IsUnallocated()) {
1293 var->AllocateTo(Variable::PARAMETER, i);
1294 }
1295 }
1296 }
1297 }
1298 }
1299
1300
AllocateNonParameterLocal(Variable * var)1301 void Scope::AllocateNonParameterLocal(Variable* var) {
1302 ASSERT(var->scope() == this);
1303 ASSERT(!var->IsVariable(isolate_->factory()->dot_result_string()) ||
1304 !var->IsStackLocal());
1305 if (var->IsUnallocated() && MustAllocate(var)) {
1306 if (MustAllocateInContext(var)) {
1307 AllocateHeapSlot(var);
1308 } else {
1309 AllocateStackSlot(var);
1310 }
1311 }
1312 }
1313
1314
AllocateNonParameterLocals()1315 void Scope::AllocateNonParameterLocals() {
1316 // All variables that have no rewrite yet are non-parameter locals.
1317 for (int i = 0; i < temps_.length(); i++) {
1318 AllocateNonParameterLocal(temps_[i]);
1319 }
1320
1321 for (int i = 0; i < internals_.length(); i++) {
1322 AllocateNonParameterLocal(internals_[i]);
1323 }
1324
1325 ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
1326 for (VariableMap::Entry* p = variables_.Start();
1327 p != NULL;
1328 p = variables_.Next(p)) {
1329 Variable* var = reinterpret_cast<Variable*>(p->value);
1330 vars.Add(VarAndOrder(var, p->order), zone());
1331 }
1332 vars.Sort(VarAndOrder::Compare);
1333 int var_count = vars.length();
1334 for (int i = 0; i < var_count; i++) {
1335 AllocateNonParameterLocal(vars[i].var());
1336 }
1337
1338 // For now, function_ must be allocated at the very end. If it gets
1339 // allocated in the context, it must be the last slot in the context,
1340 // because of the current ScopeInfo implementation (see
1341 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1342 if (function_ != NULL) {
1343 AllocateNonParameterLocal(function_->proxy()->var());
1344 }
1345 }
1346
1347
AllocateVariablesRecursively()1348 void Scope::AllocateVariablesRecursively() {
1349 // Allocate variables for inner scopes.
1350 for (int i = 0; i < inner_scopes_.length(); i++) {
1351 inner_scopes_[i]->AllocateVariablesRecursively();
1352 }
1353
1354 // If scope is already resolved, we still need to allocate
1355 // variables in inner scopes which might not had been resolved yet.
1356 if (already_resolved()) return;
1357 // The number of slots required for variables.
1358 num_stack_slots_ = 0;
1359 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1360
1361 // Allocate variables for this scope.
1362 // Parameters must be allocated first, if any.
1363 if (is_function_scope()) AllocateParameterLocals();
1364 AllocateNonParameterLocals();
1365
1366 // Force allocation of a context for this scope if necessary. For a 'with'
1367 // scope and for a function scope that makes an 'eval' call we need a context,
1368 // even if no local variables were statically allocated in the scope.
1369 // Likewise for modules.
1370 bool must_have_context = is_with_scope() || is_module_scope() ||
1371 (is_function_scope() && calls_eval());
1372
1373 // If we didn't allocate any locals in the local context, then we only
1374 // need the minimal number of slots if we must have a context.
1375 if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
1376 num_heap_slots_ = 0;
1377 }
1378
1379 // Allocation done.
1380 ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1381 }
1382
1383
AllocateModulesRecursively(Scope * host_scope)1384 void Scope::AllocateModulesRecursively(Scope* host_scope) {
1385 if (already_resolved()) return;
1386 if (is_module_scope()) {
1387 ASSERT(interface_->IsFrozen());
1388 Handle<String> name = isolate_->factory()->InternalizeOneByteString(
1389 STATIC_ASCII_VECTOR(".module"));
1390 ASSERT(module_var_ == NULL);
1391 module_var_ = host_scope->NewInternal(name);
1392 ++host_scope->num_modules_;
1393 }
1394
1395 for (int i = 0; i < inner_scopes_.length(); i++) {
1396 Scope* inner_scope = inner_scopes_.at(i);
1397 inner_scope->AllocateModulesRecursively(host_scope);
1398 }
1399 }
1400
1401
StackLocalCount() const1402 int Scope::StackLocalCount() const {
1403 return num_stack_slots() -
1404 (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
1405 }
1406
1407
ContextLocalCount() const1408 int Scope::ContextLocalCount() const {
1409 if (num_heap_slots() == 0) return 0;
1410 return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
1411 (function_ != NULL && function_->proxy()->var()->IsContextSlot() ? 1 : 0);
1412 }
1413
1414 } } // namespace v8::internal
1415