• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "scopes.h"
31 
32 #include "accessors.h"
33 #include "bootstrapper.h"
34 #include "compiler.h"
35 #include "messages.h"
36 #include "scopeinfo.h"
37 
38 namespace v8 {
39 namespace internal {
40 
41 // ----------------------------------------------------------------------------
42 // Implementation of LocalsMap
43 //
44 // Note: We are storing the handle locations as key values in the hash map.
45 //       When inserting a new variable via Declare(), we rely on the fact that
46 //       the handle location remains alive for the duration of that variable
47 //       use. Because a Variable holding a handle with the same location exists
48 //       this is ensured.
49 
Match(void * key1,void * key2)50 static bool Match(void* key1, void* key2) {
51   String* name1 = *reinterpret_cast<String**>(key1);
52   String* name2 = *reinterpret_cast<String**>(key2);
53   ASSERT(name1->IsInternalizedString());
54   ASSERT(name2->IsInternalizedString());
55   return name1 == name2;
56 }
57 
58 
VariableMap(Zone * zone)59 VariableMap::VariableMap(Zone* zone)
60     : ZoneHashMap(Match, 8, ZoneAllocationPolicy(zone)),
61       zone_(zone) {}
~VariableMap()62 VariableMap::~VariableMap() {}
63 
64 
Declare(Scope * scope,Handle<String> name,VariableMode mode,bool is_valid_lhs,Variable::Kind kind,InitializationFlag initialization_flag,Interface * interface)65 Variable* VariableMap::Declare(
66     Scope* scope,
67     Handle<String> name,
68     VariableMode mode,
69     bool is_valid_lhs,
70     Variable::Kind kind,
71     InitializationFlag initialization_flag,
72     Interface* interface) {
73   Entry* p = ZoneHashMap::Lookup(name.location(), name->Hash(), true,
74                                  ZoneAllocationPolicy(zone()));
75   if (p->value == NULL) {
76     // The variable has not been declared yet -> insert it.
77     ASSERT(p->key == name.location());
78     p->value = new(zone()) Variable(scope,
79                                     name,
80                                     mode,
81                                     is_valid_lhs,
82                                     kind,
83                                     initialization_flag,
84                                     interface);
85   }
86   return reinterpret_cast<Variable*>(p->value);
87 }
88 
89 
Lookup(Handle<String> name)90 Variable* VariableMap::Lookup(Handle<String> name) {
91   Entry* p = ZoneHashMap::Lookup(name.location(), name->Hash(), false,
92                                  ZoneAllocationPolicy(NULL));
93   if (p != NULL) {
94     ASSERT(*reinterpret_cast<String**>(p->key) == *name);
95     ASSERT(p->value != NULL);
96     return reinterpret_cast<Variable*>(p->value);
97   }
98   return NULL;
99 }
100 
101 
102 // ----------------------------------------------------------------------------
103 // Implementation of Scope
104 
Scope(Scope * outer_scope,ScopeType scope_type,Zone * zone)105 Scope::Scope(Scope* outer_scope, ScopeType scope_type, Zone* zone)
106     : isolate_(zone->isolate()),
107       inner_scopes_(4, zone),
108       variables_(zone),
109       internals_(4, zone),
110       temps_(4, zone),
111       params_(4, zone),
112       unresolved_(16, zone),
113       decls_(4, zone),
114       interface_(FLAG_harmony_modules &&
115                  (scope_type == MODULE_SCOPE || scope_type == GLOBAL_SCOPE)
116                      ? Interface::NewModule(zone) : NULL),
117       already_resolved_(false),
118       zone_(zone) {
119   SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null());
120   // The outermost scope must be a global scope.
121   ASSERT(scope_type == GLOBAL_SCOPE || outer_scope != NULL);
122   ASSERT(!HasIllegalRedeclaration());
123 }
124 
125 
Scope(Scope * inner_scope,ScopeType scope_type,Handle<ScopeInfo> scope_info,Zone * zone)126 Scope::Scope(Scope* inner_scope,
127              ScopeType scope_type,
128              Handle<ScopeInfo> scope_info,
129              Zone* zone)
130     : isolate_(zone->isolate()),
131       inner_scopes_(4, zone),
132       variables_(zone),
133       internals_(4, zone),
134       temps_(4, zone),
135       params_(4, zone),
136       unresolved_(16, zone),
137       decls_(4, zone),
138       interface_(NULL),
139       already_resolved_(true),
140       zone_(zone) {
141   SetDefaults(scope_type, NULL, scope_info);
142   if (!scope_info.is_null()) {
143     num_heap_slots_ = scope_info_->ContextLength();
144   }
145   // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
146   num_heap_slots_ = Max(num_heap_slots_,
147                         static_cast<int>(Context::MIN_CONTEXT_SLOTS));
148   AddInnerScope(inner_scope);
149 }
150 
151 
Scope(Scope * inner_scope,Handle<String> catch_variable_name,Zone * zone)152 Scope::Scope(Scope* inner_scope, Handle<String> catch_variable_name, Zone* zone)
153     : isolate_(zone->isolate()),
154       inner_scopes_(1, zone),
155       variables_(zone),
156       internals_(0, zone),
157       temps_(0, zone),
158       params_(0, zone),
159       unresolved_(0, zone),
160       decls_(0, zone),
161       interface_(NULL),
162       already_resolved_(true),
163       zone_(zone) {
164   SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
165   AddInnerScope(inner_scope);
166   ++num_var_or_const_;
167   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
168   Variable* variable = variables_.Declare(this,
169                                           catch_variable_name,
170                                           VAR,
171                                           true,  // Valid left-hand side.
172                                           Variable::NORMAL,
173                                           kCreatedInitialized);
174   AllocateHeapSlot(variable);
175 }
176 
177 
SetDefaults(ScopeType scope_type,Scope * outer_scope,Handle<ScopeInfo> scope_info)178 void Scope::SetDefaults(ScopeType scope_type,
179                         Scope* outer_scope,
180                         Handle<ScopeInfo> scope_info) {
181   outer_scope_ = outer_scope;
182   scope_type_ = scope_type;
183   scope_name_ = isolate_->factory()->empty_string();
184   dynamics_ = NULL;
185   receiver_ = NULL;
186   function_ = NULL;
187   arguments_ = NULL;
188   illegal_redecl_ = NULL;
189   scope_inside_with_ = false;
190   scope_contains_with_ = false;
191   scope_calls_eval_ = false;
192   // Inherit the strict mode from the parent scope.
193   language_mode_ = (outer_scope != NULL)
194       ? outer_scope->language_mode_ : CLASSIC_MODE;
195   outer_scope_calls_non_strict_eval_ = false;
196   inner_scope_calls_eval_ = false;
197   force_eager_compilation_ = false;
198   force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
199       ? outer_scope->has_forced_context_allocation() : false;
200   num_var_or_const_ = 0;
201   num_stack_slots_ = 0;
202   num_heap_slots_ = 0;
203   num_modules_ = 0;
204   module_var_ = NULL,
205   scope_info_ = scope_info;
206   start_position_ = RelocInfo::kNoPosition;
207   end_position_ = RelocInfo::kNoPosition;
208   if (!scope_info.is_null()) {
209     scope_calls_eval_ = scope_info->CallsEval();
210     language_mode_ = scope_info->language_mode();
211   }
212 }
213 
214 
DeserializeScopeChain(Context * context,Scope * global_scope,Zone * zone)215 Scope* Scope::DeserializeScopeChain(Context* context, Scope* global_scope,
216                                     Zone* zone) {
217   // Reconstruct the outer scope chain from a closure's context chain.
218   Scope* current_scope = NULL;
219   Scope* innermost_scope = NULL;
220   bool contains_with = false;
221   while (!context->IsNativeContext()) {
222     if (context->IsWithContext()) {
223       Scope* with_scope = new(zone) Scope(current_scope,
224                                           WITH_SCOPE,
225                                           Handle<ScopeInfo>::null(),
226                                           zone);
227       current_scope = with_scope;
228       // All the inner scopes are inside a with.
229       contains_with = true;
230       for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
231         s->scope_inside_with_ = true;
232       }
233     } else if (context->IsGlobalContext()) {
234       ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
235       current_scope = new(zone) Scope(current_scope,
236                                       GLOBAL_SCOPE,
237                                       Handle<ScopeInfo>(scope_info),
238                                       zone);
239     } else if (context->IsModuleContext()) {
240       ScopeInfo* scope_info = ScopeInfo::cast(context->module()->scope_info());
241       current_scope = new(zone) Scope(current_scope,
242                                       MODULE_SCOPE,
243                                       Handle<ScopeInfo>(scope_info),
244                                       zone);
245     } else if (context->IsFunctionContext()) {
246       ScopeInfo* scope_info = context->closure()->shared()->scope_info();
247       current_scope = new(zone) Scope(current_scope,
248                                       FUNCTION_SCOPE,
249                                       Handle<ScopeInfo>(scope_info),
250                                       zone);
251     } else if (context->IsBlockContext()) {
252       ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
253       current_scope = new(zone) Scope(current_scope,
254                                       BLOCK_SCOPE,
255                                       Handle<ScopeInfo>(scope_info),
256                                       zone);
257     } else {
258       ASSERT(context->IsCatchContext());
259       String* name = String::cast(context->extension());
260       current_scope = new(zone) Scope(
261           current_scope, Handle<String>(name), zone);
262     }
263     if (contains_with) current_scope->RecordWithStatement();
264     if (innermost_scope == NULL) innermost_scope = current_scope;
265 
266     // Forget about a with when we move to a context for a different function.
267     if (context->previous()->closure() != context->closure()) {
268       contains_with = false;
269     }
270     context = context->previous();
271   }
272 
273   global_scope->AddInnerScope(current_scope);
274   global_scope->PropagateScopeInfo(false);
275   return (innermost_scope == NULL) ? global_scope : innermost_scope;
276 }
277 
278 
Analyze(CompilationInfo * info)279 bool Scope::Analyze(CompilationInfo* info) {
280   ASSERT(info->function() != NULL);
281   Scope* scope = info->function()->scope();
282   Scope* top = scope;
283 
284   // Traverse the scope tree up to the first unresolved scope or the global
285   // scope and start scope resolution and variable allocation from that scope.
286   while (!top->is_global_scope() &&
287          !top->outer_scope()->already_resolved()) {
288     top = top->outer_scope();
289   }
290 
291   // Allocate the variables.
292   {
293     AstNodeFactory<AstNullVisitor> ast_node_factory(info->isolate(),
294                                                     info->zone());
295     if (!top->AllocateVariables(info, &ast_node_factory)) return false;
296   }
297 
298 #ifdef DEBUG
299   if (info->isolate()->bootstrapper()->IsActive()
300           ? FLAG_print_builtin_scopes
301           : FLAG_print_scopes) {
302     scope->Print();
303   }
304 
305   if (FLAG_harmony_modules && FLAG_print_interfaces && top->is_global_scope()) {
306     PrintF("global : ");
307     top->interface()->Print();
308   }
309 #endif
310 
311   info->SetScope(scope);
312   return true;
313 }
314 
315 
Initialize()316 void Scope::Initialize() {
317   ASSERT(!already_resolved());
318 
319   // Add this scope as a new inner scope of the outer scope.
320   if (outer_scope_ != NULL) {
321     outer_scope_->inner_scopes_.Add(this, zone());
322     scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
323   } else {
324     scope_inside_with_ = is_with_scope();
325   }
326 
327   // Declare convenience variables.
328   // Declare and allocate receiver (even for the global scope, and even
329   // if naccesses_ == 0).
330   // NOTE: When loading parameters in the global scope, we must take
331   // care not to access them as properties of the global object, but
332   // instead load them directly from the stack. Currently, the only
333   // such parameter is 'this' which is passed on the stack when
334   // invoking scripts
335   if (is_declaration_scope()) {
336     Variable* var =
337         variables_.Declare(this,
338                            isolate_->factory()->this_string(),
339                            VAR,
340                            false,
341                            Variable::THIS,
342                            kCreatedInitialized);
343     var->AllocateTo(Variable::PARAMETER, -1);
344     receiver_ = var;
345   } else {
346     ASSERT(outer_scope() != NULL);
347     receiver_ = outer_scope()->receiver();
348   }
349 
350   if (is_function_scope()) {
351     // Declare 'arguments' variable which exists in all functions.
352     // Note that it might never be accessed, in which case it won't be
353     // allocated during variable allocation.
354     variables_.Declare(this,
355                        isolate_->factory()->arguments_string(),
356                        VAR,
357                        true,
358                        Variable::ARGUMENTS,
359                        kCreatedInitialized);
360   }
361 }
362 
363 
FinalizeBlockScope()364 Scope* Scope::FinalizeBlockScope() {
365   ASSERT(is_block_scope());
366   ASSERT(internals_.is_empty());
367   ASSERT(temps_.is_empty());
368   ASSERT(params_.is_empty());
369 
370   if (num_var_or_const() > 0) return this;
371 
372   // Remove this scope from outer scope.
373   for (int i = 0; i < outer_scope_->inner_scopes_.length(); i++) {
374     if (outer_scope_->inner_scopes_[i] == this) {
375       outer_scope_->inner_scopes_.Remove(i);
376       break;
377     }
378   }
379 
380   // Reparent inner scopes.
381   for (int i = 0; i < inner_scopes_.length(); i++) {
382     outer_scope()->AddInnerScope(inner_scopes_[i]);
383   }
384 
385   // Move unresolved variables
386   for (int i = 0; i < unresolved_.length(); i++) {
387     outer_scope()->unresolved_.Add(unresolved_[i], zone());
388   }
389 
390   return NULL;
391 }
392 
393 
LocalLookup(Handle<String> name)394 Variable* Scope::LocalLookup(Handle<String> name) {
395   Variable* result = variables_.Lookup(name);
396   if (result != NULL || scope_info_.is_null()) {
397     return result;
398   }
399   // If we have a serialized scope info, we might find the variable there.
400   // There should be no local slot with the given name.
401   ASSERT(scope_info_->StackSlotIndex(*name) < 0);
402 
403   // Check context slot lookup.
404   VariableMode mode;
405   Variable::Location location = Variable::CONTEXT;
406   InitializationFlag init_flag;
407   int index = scope_info_->ContextSlotIndex(*name, &mode, &init_flag);
408   if (index < 0) {
409     // Check parameters.
410     index = scope_info_->ParameterIndex(*name);
411     if (index < 0) return NULL;
412 
413     mode = DYNAMIC;
414     location = Variable::LOOKUP;
415     init_flag = kCreatedInitialized;
416   }
417 
418   Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
419                                      init_flag);
420   var->AllocateTo(location, index);
421   return var;
422 }
423 
424 
LookupFunctionVar(Handle<String> name,AstNodeFactory<AstNullVisitor> * factory)425 Variable* Scope::LookupFunctionVar(Handle<String> name,
426                                    AstNodeFactory<AstNullVisitor>* factory) {
427   if (function_ != NULL && function_->proxy()->name().is_identical_to(name)) {
428     return function_->proxy()->var();
429   } else if (!scope_info_.is_null()) {
430     // If we are backed by a scope info, try to lookup the variable there.
431     VariableMode mode;
432     int index = scope_info_->FunctionContextSlotIndex(*name, &mode);
433     if (index < 0) return NULL;
434     Variable* var = new(zone()) Variable(
435         this, name, mode, true /* is valid LHS */,
436         Variable::NORMAL, kCreatedInitialized);
437     VariableProxy* proxy = factory->NewVariableProxy(var);
438     VariableDeclaration* declaration = factory->NewVariableDeclaration(
439         proxy, mode, this, RelocInfo::kNoPosition);
440     DeclareFunctionVar(declaration);
441     var->AllocateTo(Variable::CONTEXT, index);
442     return var;
443   } else {
444     return NULL;
445   }
446 }
447 
448 
Lookup(Handle<String> name)449 Variable* Scope::Lookup(Handle<String> name) {
450   for (Scope* scope = this;
451        scope != NULL;
452        scope = scope->outer_scope()) {
453     Variable* var = scope->LocalLookup(name);
454     if (var != NULL) return var;
455   }
456   return NULL;
457 }
458 
459 
DeclareParameter(Handle<String> name,VariableMode mode)460 void Scope::DeclareParameter(Handle<String> name, VariableMode mode) {
461   ASSERT(!already_resolved());
462   ASSERT(is_function_scope());
463   Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
464                                      kCreatedInitialized);
465   params_.Add(var, zone());
466 }
467 
468 
DeclareLocal(Handle<String> name,VariableMode mode,InitializationFlag init_flag,Interface * interface)469 Variable* Scope::DeclareLocal(Handle<String> name,
470                               VariableMode mode,
471                               InitializationFlag init_flag,
472                               Interface* interface) {
473   ASSERT(!already_resolved());
474   // This function handles VAR and CONST modes.  DYNAMIC variables are
475   // introduces during variable allocation, INTERNAL variables are allocated
476   // explicitly, and TEMPORARY variables are allocated via NewTemporary().
477   ASSERT(IsDeclaredVariableMode(mode));
478   ++num_var_or_const_;
479   return variables_.Declare(
480       this, name, mode, true, Variable::NORMAL, init_flag, interface);
481 }
482 
483 
DeclareDynamicGlobal(Handle<String> name)484 Variable* Scope::DeclareDynamicGlobal(Handle<String> name) {
485   ASSERT(is_global_scope());
486   return variables_.Declare(this,
487                             name,
488                             DYNAMIC_GLOBAL,
489                             true,
490                             Variable::NORMAL,
491                             kCreatedInitialized);
492 }
493 
494 
RemoveUnresolved(VariableProxy * var)495 void Scope::RemoveUnresolved(VariableProxy* var) {
496   // Most likely (always?) any variable we want to remove
497   // was just added before, so we search backwards.
498   for (int i = unresolved_.length(); i-- > 0;) {
499     if (unresolved_[i] == var) {
500       unresolved_.Remove(i);
501       return;
502     }
503   }
504 }
505 
506 
NewInternal(Handle<String> name)507 Variable* Scope::NewInternal(Handle<String> name) {
508   ASSERT(!already_resolved());
509   Variable* var = new(zone()) Variable(this,
510                                        name,
511                                        INTERNAL,
512                                        false,
513                                        Variable::NORMAL,
514                                        kCreatedInitialized);
515   internals_.Add(var, zone());
516   return var;
517 }
518 
519 
NewTemporary(Handle<String> name)520 Variable* Scope::NewTemporary(Handle<String> name) {
521   ASSERT(!already_resolved());
522   Variable* var = new(zone()) Variable(this,
523                                        name,
524                                        TEMPORARY,
525                                        true,
526                                        Variable::NORMAL,
527                                        kCreatedInitialized);
528   temps_.Add(var, zone());
529   return var;
530 }
531 
532 
AddDeclaration(Declaration * declaration)533 void Scope::AddDeclaration(Declaration* declaration) {
534   decls_.Add(declaration, zone());
535 }
536 
537 
SetIllegalRedeclaration(Expression * expression)538 void Scope::SetIllegalRedeclaration(Expression* expression) {
539   // Record only the first illegal redeclaration.
540   if (!HasIllegalRedeclaration()) {
541     illegal_redecl_ = expression;
542   }
543   ASSERT(HasIllegalRedeclaration());
544 }
545 
546 
VisitIllegalRedeclaration(AstVisitor * visitor)547 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
548   ASSERT(HasIllegalRedeclaration());
549   illegal_redecl_->Accept(visitor);
550 }
551 
552 
CheckConflictingVarDeclarations()553 Declaration* Scope::CheckConflictingVarDeclarations() {
554   int length = decls_.length();
555   for (int i = 0; i < length; i++) {
556     Declaration* decl = decls_[i];
557     if (decl->mode() != VAR) continue;
558     Handle<String> name = decl->proxy()->name();
559 
560     // Iterate through all scopes until and including the declaration scope.
561     Scope* previous = NULL;
562     Scope* current = decl->scope();
563     do {
564       // There is a conflict if there exists a non-VAR binding.
565       Variable* other_var = current->variables_.Lookup(name);
566       if (other_var != NULL && other_var->mode() != VAR) {
567         return decl;
568       }
569       previous = current;
570       current = current->outer_scope_;
571     } while (!previous->is_declaration_scope());
572   }
573   return NULL;
574 }
575 
576 
577 class VarAndOrder {
578  public:
VarAndOrder(Variable * var,int order)579   VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
var() const580   Variable* var() const { return var_; }
order() const581   int order() const { return order_; }
Compare(const VarAndOrder * a,const VarAndOrder * b)582   static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
583     return a->order_ - b->order_;
584   }
585 
586  private:
587   Variable* var_;
588   int order_;
589 };
590 
591 
CollectStackAndContextLocals(ZoneList<Variable * > * stack_locals,ZoneList<Variable * > * context_locals)592 void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
593                                          ZoneList<Variable*>* context_locals) {
594   ASSERT(stack_locals != NULL);
595   ASSERT(context_locals != NULL);
596 
597   // Collect internals which are always allocated on the heap.
598   for (int i = 0; i < internals_.length(); i++) {
599     Variable* var = internals_[i];
600     if (var->is_used()) {
601       ASSERT(var->IsContextSlot());
602       context_locals->Add(var, zone());
603     }
604   }
605 
606   // Collect temporaries which are always allocated on the stack, unless the
607   // context as a whole has forced context allocation.
608   for (int i = 0; i < temps_.length(); i++) {
609     Variable* var = temps_[i];
610     if (var->is_used()) {
611       if (var->IsContextSlot()) {
612         ASSERT(has_forced_context_allocation());
613         context_locals->Add(var, zone());
614       } else {
615         ASSERT(var->IsStackLocal());
616         stack_locals->Add(var, zone());
617       }
618     }
619   }
620 
621   // Collect declared local variables.
622   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
623   for (VariableMap::Entry* p = variables_.Start();
624        p != NULL;
625        p = variables_.Next(p)) {
626     Variable* var = reinterpret_cast<Variable*>(p->value);
627     if (var->is_used()) {
628       vars.Add(VarAndOrder(var, p->order), zone());
629     }
630   }
631   vars.Sort(VarAndOrder::Compare);
632   int var_count = vars.length();
633   for (int i = 0; i < var_count; i++) {
634     Variable* var = vars[i].var();
635     if (var->IsStackLocal()) {
636       stack_locals->Add(var, zone());
637     } else if (var->IsContextSlot()) {
638       context_locals->Add(var, zone());
639     }
640   }
641 }
642 
643 
AllocateVariables(CompilationInfo * info,AstNodeFactory<AstNullVisitor> * factory)644 bool Scope::AllocateVariables(CompilationInfo* info,
645                               AstNodeFactory<AstNullVisitor>* factory) {
646   // 1) Propagate scope information.
647   bool outer_scope_calls_non_strict_eval = false;
648   if (outer_scope_ != NULL) {
649     outer_scope_calls_non_strict_eval =
650         outer_scope_->outer_scope_calls_non_strict_eval() |
651         outer_scope_->calls_non_strict_eval();
652   }
653   PropagateScopeInfo(outer_scope_calls_non_strict_eval);
654 
655   // 2) Allocate module instances.
656   if (FLAG_harmony_modules && (is_global_scope() || is_module_scope())) {
657     ASSERT(num_modules_ == 0);
658     AllocateModulesRecursively(this);
659   }
660 
661   // 3) Resolve variables.
662   if (!ResolveVariablesRecursively(info, factory)) return false;
663 
664   // 4) Allocate variables.
665   AllocateVariablesRecursively();
666 
667   return true;
668 }
669 
670 
HasTrivialContext() const671 bool Scope::HasTrivialContext() const {
672   // A function scope has a trivial context if it always is the global
673   // context. We iteratively scan out the context chain to see if
674   // there is anything that makes this scope non-trivial; otherwise we
675   // return true.
676   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
677     if (scope->is_eval_scope()) return false;
678     if (scope->scope_inside_with_) return false;
679     if (scope->num_heap_slots_ > 0) return false;
680   }
681   return true;
682 }
683 
684 
HasTrivialOuterContext() const685 bool Scope::HasTrivialOuterContext() const {
686   Scope* outer = outer_scope_;
687   if (outer == NULL) return true;
688   // Note that the outer context may be trivial in general, but the current
689   // scope may be inside a 'with' statement in which case the outer context
690   // for this scope is not trivial.
691   return !scope_inside_with_ && outer->HasTrivialContext();
692 }
693 
694 
HasLazyCompilableOuterContext() const695 bool Scope::HasLazyCompilableOuterContext() const {
696   Scope* outer = outer_scope_;
697   if (outer == NULL) return true;
698   // We have to prevent lazy compilation if this scope is inside a with scope
699   // and all declaration scopes between them have empty contexts. Such
700   // declaration scopes may become invisible during scope info deserialization.
701   outer = outer->DeclarationScope();
702   bool found_non_trivial_declarations = false;
703   for (const Scope* scope = outer; scope != NULL; scope = scope->outer_scope_) {
704     if (scope->is_with_scope() && !found_non_trivial_declarations) return false;
705     if (scope->is_declaration_scope() && scope->num_heap_slots() > 0) {
706       found_non_trivial_declarations = true;
707     }
708   }
709   return true;
710 }
711 
712 
AllowsLazyCompilation() const713 bool Scope::AllowsLazyCompilation() const {
714   return !force_eager_compilation_ && HasLazyCompilableOuterContext();
715 }
716 
717 
AllowsLazyCompilationWithoutContext() const718 bool Scope::AllowsLazyCompilationWithoutContext() const {
719   return !force_eager_compilation_ && HasTrivialOuterContext();
720 }
721 
722 
ContextChainLength(Scope * scope)723 int Scope::ContextChainLength(Scope* scope) {
724   int n = 0;
725   for (Scope* s = this; s != scope; s = s->outer_scope_) {
726     ASSERT(s != NULL);  // scope must be in the scope chain
727     if (s->is_with_scope() || s->num_heap_slots() > 0) n++;
728     // Catch and module scopes always have heap slots.
729     ASSERT(!s->is_catch_scope() || s->num_heap_slots() > 0);
730     ASSERT(!s->is_module_scope() || s->num_heap_slots() > 0);
731   }
732   return n;
733 }
734 
735 
GlobalScope()736 Scope* Scope::GlobalScope() {
737   Scope* scope = this;
738   while (!scope->is_global_scope()) {
739     scope = scope->outer_scope();
740   }
741   return scope;
742 }
743 
744 
DeclarationScope()745 Scope* Scope::DeclarationScope() {
746   Scope* scope = this;
747   while (!scope->is_declaration_scope()) {
748     scope = scope->outer_scope();
749   }
750   return scope;
751 }
752 
753 
GetScopeInfo()754 Handle<ScopeInfo> Scope::GetScopeInfo() {
755   if (scope_info_.is_null()) {
756     scope_info_ = ScopeInfo::Create(this, zone());
757   }
758   return scope_info_;
759 }
760 
761 
GetNestedScopeChain(List<Handle<ScopeInfo>> * chain,int position)762 void Scope::GetNestedScopeChain(
763     List<Handle<ScopeInfo> >* chain,
764     int position) {
765   if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo()));
766 
767   for (int i = 0; i < inner_scopes_.length(); i++) {
768     Scope* scope = inner_scopes_[i];
769     int beg_pos = scope->start_position();
770     int end_pos = scope->end_position();
771     ASSERT(beg_pos >= 0 && end_pos >= 0);
772     if (beg_pos <= position && position < end_pos) {
773       scope->GetNestedScopeChain(chain, position);
774       return;
775     }
776   }
777 }
778 
779 
780 #ifdef DEBUG
Header(ScopeType scope_type)781 static const char* Header(ScopeType scope_type) {
782   switch (scope_type) {
783     case EVAL_SCOPE: return "eval";
784     case FUNCTION_SCOPE: return "function";
785     case MODULE_SCOPE: return "module";
786     case GLOBAL_SCOPE: return "global";
787     case CATCH_SCOPE: return "catch";
788     case BLOCK_SCOPE: return "block";
789     case WITH_SCOPE: return "with";
790   }
791   UNREACHABLE();
792   return NULL;
793 }
794 
795 
Indent(int n,const char * str)796 static void Indent(int n, const char* str) {
797   PrintF("%*s%s", n, "", str);
798 }
799 
800 
PrintName(Handle<String> name)801 static void PrintName(Handle<String> name) {
802   SmartArrayPointer<char> s = name->ToCString(DISALLOW_NULLS);
803   PrintF("%s", *s);
804 }
805 
806 
PrintLocation(Variable * var)807 static void PrintLocation(Variable* var) {
808   switch (var->location()) {
809     case Variable::UNALLOCATED:
810       break;
811     case Variable::PARAMETER:
812       PrintF("parameter[%d]", var->index());
813       break;
814     case Variable::LOCAL:
815       PrintF("local[%d]", var->index());
816       break;
817     case Variable::CONTEXT:
818       PrintF("context[%d]", var->index());
819       break;
820     case Variable::LOOKUP:
821       PrintF("lookup");
822       break;
823   }
824 }
825 
826 
PrintVar(int indent,Variable * var)827 static void PrintVar(int indent, Variable* var) {
828   if (var->is_used() || !var->IsUnallocated()) {
829     Indent(indent, Variable::Mode2String(var->mode()));
830     PrintF(" ");
831     PrintName(var->name());
832     PrintF(";  // ");
833     PrintLocation(var);
834     if (var->has_forced_context_allocation()) {
835       if (!var->IsUnallocated()) PrintF(", ");
836       PrintF("forced context allocation");
837     }
838     PrintF("\n");
839   }
840 }
841 
842 
PrintMap(int indent,VariableMap * map)843 static void PrintMap(int indent, VariableMap* map) {
844   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
845     Variable* var = reinterpret_cast<Variable*>(p->value);
846     PrintVar(indent, var);
847   }
848 }
849 
850 
Print(int n)851 void Scope::Print(int n) {
852   int n0 = (n > 0 ? n : 0);
853   int n1 = n0 + 2;  // indentation
854 
855   // Print header.
856   Indent(n0, Header(scope_type_));
857   if (scope_name_->length() > 0) {
858     PrintF(" ");
859     PrintName(scope_name_);
860   }
861 
862   // Print parameters, if any.
863   if (is_function_scope()) {
864     PrintF(" (");
865     for (int i = 0; i < params_.length(); i++) {
866       if (i > 0) PrintF(", ");
867       PrintName(params_[i]->name());
868     }
869     PrintF(")");
870   }
871 
872   PrintF(" { // (%d, %d)\n", start_position(), end_position());
873 
874   // Function name, if any (named function literals, only).
875   if (function_ != NULL) {
876     Indent(n1, "// (local) function name: ");
877     PrintName(function_->proxy()->name());
878     PrintF("\n");
879   }
880 
881   // Scope info.
882   if (HasTrivialOuterContext()) {
883     Indent(n1, "// scope has trivial outer context\n");
884   }
885   switch (language_mode()) {
886     case CLASSIC_MODE:
887       break;
888     case STRICT_MODE:
889       Indent(n1, "// strict mode scope\n");
890       break;
891     case EXTENDED_MODE:
892       Indent(n1, "// extended mode scope\n");
893       break;
894   }
895   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
896   if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
897   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
898   if (outer_scope_calls_non_strict_eval_) {
899     Indent(n1, "// outer scope calls 'eval' in non-strict context\n");
900   }
901   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
902   if (num_stack_slots_ > 0) { Indent(n1, "// ");
903   PrintF("%d stack slots\n", num_stack_slots_); }
904   if (num_heap_slots_ > 0) { Indent(n1, "// ");
905   PrintF("%d heap slots\n", num_heap_slots_); }
906 
907   // Print locals.
908   if (function_ != NULL) {
909     Indent(n1, "// function var:\n");
910     PrintVar(n1, function_->proxy()->var());
911   }
912 
913   if (temps_.length() > 0) {
914     Indent(n1, "// temporary vars:\n");
915     for (int i = 0; i < temps_.length(); i++) {
916       PrintVar(n1, temps_[i]);
917     }
918   }
919 
920   if (internals_.length() > 0) {
921     Indent(n1, "// internal vars:\n");
922     for (int i = 0; i < internals_.length(); i++) {
923       PrintVar(n1, internals_[i]);
924     }
925   }
926 
927   if (variables_.Start() != NULL) {
928     Indent(n1, "// local vars:\n");
929     PrintMap(n1, &variables_);
930   }
931 
932   if (dynamics_ != NULL) {
933     Indent(n1, "// dynamic vars:\n");
934     PrintMap(n1, dynamics_->GetMap(DYNAMIC));
935     PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
936     PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
937   }
938 
939   // Print inner scopes (disable by providing negative n).
940   if (n >= 0) {
941     for (int i = 0; i < inner_scopes_.length(); i++) {
942       PrintF("\n");
943       inner_scopes_[i]->Print(n1);
944     }
945   }
946 
947   Indent(n0, "}\n");
948 }
949 #endif  // DEBUG
950 
951 
NonLocal(Handle<String> name,VariableMode mode)952 Variable* Scope::NonLocal(Handle<String> name, VariableMode mode) {
953   if (dynamics_ == NULL) dynamics_ = new(zone()) DynamicScopePart(zone());
954   VariableMap* map = dynamics_->GetMap(mode);
955   Variable* var = map->Lookup(name);
956   if (var == NULL) {
957     // Declare a new non-local.
958     InitializationFlag init_flag = (mode == VAR)
959         ? kCreatedInitialized : kNeedsInitialization;
960     var = map->Declare(NULL,
961                        name,
962                        mode,
963                        true,
964                        Variable::NORMAL,
965                        init_flag);
966     // Allocate it by giving it a dynamic lookup.
967     var->AllocateTo(Variable::LOOKUP, -1);
968   }
969   return var;
970 }
971 
972 
LookupRecursive(Handle<String> name,BindingKind * binding_kind,AstNodeFactory<AstNullVisitor> * factory)973 Variable* Scope::LookupRecursive(Handle<String> name,
974                                  BindingKind* binding_kind,
975                                  AstNodeFactory<AstNullVisitor>* factory) {
976   ASSERT(binding_kind != NULL);
977   if (already_resolved() && is_with_scope()) {
978     // Short-cut: if the scope is deserialized from a scope info, variable
979     // allocation is already fixed.  We can simply return with dynamic lookup.
980     *binding_kind = DYNAMIC_LOOKUP;
981     return NULL;
982   }
983 
984   // Try to find the variable in this scope.
985   Variable* var = LocalLookup(name);
986 
987   // We found a variable and we are done. (Even if there is an 'eval' in
988   // this scope which introduces the same variable again, the resulting
989   // variable remains the same.)
990   if (var != NULL) {
991     *binding_kind = BOUND;
992     return var;
993   }
994 
995   // We did not find a variable locally. Check against the function variable,
996   // if any. We can do this for all scopes, since the function variable is
997   // only present - if at all - for function scopes.
998   *binding_kind = UNBOUND;
999   var = LookupFunctionVar(name, factory);
1000   if (var != NULL) {
1001     *binding_kind = BOUND;
1002   } else if (outer_scope_ != NULL) {
1003     var = outer_scope_->LookupRecursive(name, binding_kind, factory);
1004     if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
1005       var->ForceContextAllocation();
1006     }
1007   } else {
1008     ASSERT(is_global_scope());
1009   }
1010 
1011   if (is_with_scope()) {
1012     ASSERT(!already_resolved());
1013     // The current scope is a with scope, so the variable binding can not be
1014     // statically resolved. However, note that it was necessary to do a lookup
1015     // in the outer scope anyway, because if a binding exists in an outer scope,
1016     // the associated variable has to be marked as potentially being accessed
1017     // from inside of an inner with scope (the property may not be in the 'with'
1018     // object).
1019     *binding_kind = DYNAMIC_LOOKUP;
1020     return NULL;
1021   } else if (calls_non_strict_eval()) {
1022     // A variable binding may have been found in an outer scope, but the current
1023     // scope makes a non-strict 'eval' call, so the found variable may not be
1024     // the correct one (the 'eval' may introduce a binding with the same name).
1025     // In that case, change the lookup result to reflect this situation.
1026     if (*binding_kind == BOUND) {
1027       *binding_kind = BOUND_EVAL_SHADOWED;
1028     } else if (*binding_kind == UNBOUND) {
1029       *binding_kind = UNBOUND_EVAL_SHADOWED;
1030     }
1031   }
1032   return var;
1033 }
1034 
1035 
ResolveVariable(CompilationInfo * info,VariableProxy * proxy,AstNodeFactory<AstNullVisitor> * factory)1036 bool Scope::ResolveVariable(CompilationInfo* info,
1037                             VariableProxy* proxy,
1038                             AstNodeFactory<AstNullVisitor>* factory) {
1039   ASSERT(info->global_scope()->is_global_scope());
1040 
1041   // If the proxy is already resolved there's nothing to do
1042   // (functions and consts may be resolved by the parser).
1043   if (proxy->var() != NULL) return true;
1044 
1045   // Otherwise, try to resolve the variable.
1046   BindingKind binding_kind;
1047   Variable* var = LookupRecursive(proxy->name(), &binding_kind, factory);
1048   switch (binding_kind) {
1049     case BOUND:
1050       // We found a variable binding.
1051       break;
1052 
1053     case BOUND_EVAL_SHADOWED:
1054       // We either found a variable binding that might be shadowed by eval  or
1055       // gave up on it (e.g. by encountering a local with the same in the outer
1056       // scope which was not promoted to a context, this can happen if we use
1057       // debugger to evaluate arbitrary expressions at a break point).
1058       if (var->IsGlobalObjectProperty()) {
1059         var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
1060       } else if (var->is_dynamic()) {
1061         var = NonLocal(proxy->name(), DYNAMIC);
1062       } else {
1063         Variable* invalidated = var;
1064         var = NonLocal(proxy->name(), DYNAMIC_LOCAL);
1065         var->set_local_if_not_shadowed(invalidated);
1066       }
1067       break;
1068 
1069     case UNBOUND:
1070       // No binding has been found. Declare a variable on the global object.
1071       var = info->global_scope()->DeclareDynamicGlobal(proxy->name());
1072       break;
1073 
1074     case UNBOUND_EVAL_SHADOWED:
1075       // No binding has been found. But some scope makes a
1076       // non-strict 'eval' call.
1077       var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
1078       break;
1079 
1080     case DYNAMIC_LOOKUP:
1081       // The variable could not be resolved statically.
1082       var = NonLocal(proxy->name(), DYNAMIC);
1083       break;
1084   }
1085 
1086   ASSERT(var != NULL);
1087 
1088   if (FLAG_harmony_scoping && is_extended_mode() &&
1089       var->is_const_mode() && proxy->IsLValue()) {
1090     // Assignment to const. Throw a syntax error.
1091     MessageLocation location(
1092         info->script(), proxy->position(), proxy->position());
1093     Isolate* isolate = info->isolate();
1094     Factory* factory = isolate->factory();
1095     Handle<JSArray> array = factory->NewJSArray(0);
1096     Handle<Object> result =
1097         factory->NewSyntaxError("harmony_const_assign", array);
1098     isolate->Throw(*result, &location);
1099     return false;
1100   }
1101 
1102   if (FLAG_harmony_modules) {
1103     bool ok;
1104 #ifdef DEBUG
1105     if (FLAG_print_interface_details)
1106       PrintF("# Resolve %s:\n", var->name()->ToAsciiArray());
1107 #endif
1108     proxy->interface()->Unify(var->interface(), zone(), &ok);
1109     if (!ok) {
1110 #ifdef DEBUG
1111       if (FLAG_print_interfaces) {
1112         PrintF("SCOPES TYPE ERROR\n");
1113         PrintF("proxy: ");
1114         proxy->interface()->Print();
1115         PrintF("var: ");
1116         var->interface()->Print();
1117       }
1118 #endif
1119 
1120       // Inconsistent use of module. Throw a syntax error.
1121       // TODO(rossberg): generate more helpful error message.
1122       MessageLocation location(
1123           info->script(), proxy->position(), proxy->position());
1124       Isolate* isolate = info->isolate();
1125       Factory* factory = isolate->factory();
1126       Handle<JSArray> array = factory->NewJSArray(1);
1127       USE(JSObject::SetElement(array, 0, var->name(), NONE, kStrictMode));
1128       Handle<Object> result =
1129           factory->NewSyntaxError("module_type_error", array);
1130       isolate->Throw(*result, &location);
1131       return false;
1132     }
1133   }
1134 
1135   proxy->BindTo(var);
1136 
1137   return true;
1138 }
1139 
1140 
ResolveVariablesRecursively(CompilationInfo * info,AstNodeFactory<AstNullVisitor> * factory)1141 bool Scope::ResolveVariablesRecursively(
1142     CompilationInfo* info,
1143     AstNodeFactory<AstNullVisitor>* factory) {
1144   ASSERT(info->global_scope()->is_global_scope());
1145 
1146   // Resolve unresolved variables for this scope.
1147   for (int i = 0; i < unresolved_.length(); i++) {
1148     if (!ResolveVariable(info, unresolved_[i], factory)) return false;
1149   }
1150 
1151   // Resolve unresolved variables for inner scopes.
1152   for (int i = 0; i < inner_scopes_.length(); i++) {
1153     if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
1154       return false;
1155   }
1156 
1157   return true;
1158 }
1159 
1160 
PropagateScopeInfo(bool outer_scope_calls_non_strict_eval)1161 bool Scope::PropagateScopeInfo(bool outer_scope_calls_non_strict_eval ) {
1162   if (outer_scope_calls_non_strict_eval) {
1163     outer_scope_calls_non_strict_eval_ = true;
1164   }
1165 
1166   bool calls_non_strict_eval =
1167       this->calls_non_strict_eval() || outer_scope_calls_non_strict_eval_;
1168   for (int i = 0; i < inner_scopes_.length(); i++) {
1169     Scope* inner_scope = inner_scopes_[i];
1170     if (inner_scope->PropagateScopeInfo(calls_non_strict_eval)) {
1171       inner_scope_calls_eval_ = true;
1172     }
1173     if (inner_scope->force_eager_compilation_) {
1174       force_eager_compilation_ = true;
1175     }
1176   }
1177 
1178   return scope_calls_eval_ || inner_scope_calls_eval_;
1179 }
1180 
1181 
MustAllocate(Variable * var)1182 bool Scope::MustAllocate(Variable* var) {
1183   // Give var a read/write use if there is a chance it might be accessed
1184   // via an eval() call.  This is only possible if the variable has a
1185   // visible name.
1186   if ((var->is_this() || var->name()->length() > 0) &&
1187       (var->has_forced_context_allocation() ||
1188        scope_calls_eval_ ||
1189        inner_scope_calls_eval_ ||
1190        scope_contains_with_ ||
1191        is_catch_scope() ||
1192        is_block_scope() ||
1193        is_module_scope() ||
1194        is_global_scope())) {
1195     var->set_is_used(true);
1196   }
1197   // Global variables do not need to be allocated.
1198   return !var->IsGlobalObjectProperty() && var->is_used();
1199 }
1200 
1201 
MustAllocateInContext(Variable * var)1202 bool Scope::MustAllocateInContext(Variable* var) {
1203   // If var is accessed from an inner scope, or if there is a possibility
1204   // that it might be accessed from the current or an inner scope (through
1205   // an eval() call or a runtime with lookup), it must be allocated in the
1206   // context.
1207   //
1208   // Exceptions: If the scope as a whole has forced context allocation, all
1209   // variables will have context allocation, even temporaries.  Otherwise
1210   // temporary variables are always stack-allocated.  Catch-bound variables are
1211   // always context-allocated.
1212   if (has_forced_context_allocation()) return true;
1213   if (var->mode() == TEMPORARY) return false;
1214   if (var->mode() == INTERNAL) return true;
1215   if (is_catch_scope() || is_block_scope() || is_module_scope()) return true;
1216   if (is_global_scope() && IsLexicalVariableMode(var->mode())) return true;
1217   return var->has_forced_context_allocation() ||
1218       scope_calls_eval_ ||
1219       inner_scope_calls_eval_ ||
1220       scope_contains_with_;
1221 }
1222 
1223 
HasArgumentsParameter()1224 bool Scope::HasArgumentsParameter() {
1225   for (int i = 0; i < params_.length(); i++) {
1226     if (params_[i]->name().is_identical_to(
1227             isolate_->factory()->arguments_string())) {
1228       return true;
1229     }
1230   }
1231   return false;
1232 }
1233 
1234 
AllocateStackSlot(Variable * var)1235 void Scope::AllocateStackSlot(Variable* var) {
1236   var->AllocateTo(Variable::LOCAL, num_stack_slots_++);
1237 }
1238 
1239 
AllocateHeapSlot(Variable * var)1240 void Scope::AllocateHeapSlot(Variable* var) {
1241   var->AllocateTo(Variable::CONTEXT, num_heap_slots_++);
1242 }
1243 
1244 
AllocateParameterLocals()1245 void Scope::AllocateParameterLocals() {
1246   ASSERT(is_function_scope());
1247   Variable* arguments = LocalLookup(isolate_->factory()->arguments_string());
1248   ASSERT(arguments != NULL);  // functions have 'arguments' declared implicitly
1249 
1250   bool uses_nonstrict_arguments = false;
1251 
1252   if (MustAllocate(arguments) && !HasArgumentsParameter()) {
1253     // 'arguments' is used. Unless there is also a parameter called
1254     // 'arguments', we must be conservative and allocate all parameters to
1255     // the context assuming they will be captured by the arguments object.
1256     // If we have a parameter named 'arguments', a (new) value is always
1257     // assigned to it via the function invocation. Then 'arguments' denotes
1258     // that specific parameter value and cannot be used to access the
1259     // parameters, which is why we don't need to allocate an arguments
1260     // object in that case.
1261 
1262     // We are using 'arguments'. Tell the code generator that is needs to
1263     // allocate the arguments object by setting 'arguments_'.
1264     arguments_ = arguments;
1265 
1266     // In strict mode 'arguments' does not alias formal parameters.
1267     // Therefore in strict mode we allocate parameters as if 'arguments'
1268     // were not used.
1269     uses_nonstrict_arguments = is_classic_mode();
1270   }
1271 
1272   // The same parameter may occur multiple times in the parameters_ list.
1273   // If it does, and if it is not copied into the context object, it must
1274   // receive the highest parameter index for that parameter; thus iteration
1275   // order is relevant!
1276   for (int i = params_.length() - 1; i >= 0; --i) {
1277     Variable* var = params_[i];
1278     ASSERT(var->scope() == this);
1279     if (uses_nonstrict_arguments) {
1280       // Force context allocation of the parameter.
1281       var->ForceContextAllocation();
1282     }
1283 
1284     if (MustAllocate(var)) {
1285       if (MustAllocateInContext(var)) {
1286         ASSERT(var->IsUnallocated() || var->IsContextSlot());
1287         if (var->IsUnallocated()) {
1288           AllocateHeapSlot(var);
1289         }
1290       } else {
1291         ASSERT(var->IsUnallocated() || var->IsParameter());
1292         if (var->IsUnallocated()) {
1293           var->AllocateTo(Variable::PARAMETER, i);
1294         }
1295       }
1296     }
1297   }
1298 }
1299 
1300 
AllocateNonParameterLocal(Variable * var)1301 void Scope::AllocateNonParameterLocal(Variable* var) {
1302   ASSERT(var->scope() == this);
1303   ASSERT(!var->IsVariable(isolate_->factory()->dot_result_string()) ||
1304          !var->IsStackLocal());
1305   if (var->IsUnallocated() && MustAllocate(var)) {
1306     if (MustAllocateInContext(var)) {
1307       AllocateHeapSlot(var);
1308     } else {
1309       AllocateStackSlot(var);
1310     }
1311   }
1312 }
1313 
1314 
AllocateNonParameterLocals()1315 void Scope::AllocateNonParameterLocals() {
1316   // All variables that have no rewrite yet are non-parameter locals.
1317   for (int i = 0; i < temps_.length(); i++) {
1318     AllocateNonParameterLocal(temps_[i]);
1319   }
1320 
1321   for (int i = 0; i < internals_.length(); i++) {
1322     AllocateNonParameterLocal(internals_[i]);
1323   }
1324 
1325   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
1326   for (VariableMap::Entry* p = variables_.Start();
1327        p != NULL;
1328        p = variables_.Next(p)) {
1329     Variable* var = reinterpret_cast<Variable*>(p->value);
1330     vars.Add(VarAndOrder(var, p->order), zone());
1331   }
1332   vars.Sort(VarAndOrder::Compare);
1333   int var_count = vars.length();
1334   for (int i = 0; i < var_count; i++) {
1335     AllocateNonParameterLocal(vars[i].var());
1336   }
1337 
1338   // For now, function_ must be allocated at the very end.  If it gets
1339   // allocated in the context, it must be the last slot in the context,
1340   // because of the current ScopeInfo implementation (see
1341   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1342   if (function_ != NULL) {
1343     AllocateNonParameterLocal(function_->proxy()->var());
1344   }
1345 }
1346 
1347 
AllocateVariablesRecursively()1348 void Scope::AllocateVariablesRecursively() {
1349   // Allocate variables for inner scopes.
1350   for (int i = 0; i < inner_scopes_.length(); i++) {
1351     inner_scopes_[i]->AllocateVariablesRecursively();
1352   }
1353 
1354   // If scope is already resolved, we still need to allocate
1355   // variables in inner scopes which might not had been resolved yet.
1356   if (already_resolved()) return;
1357   // The number of slots required for variables.
1358   num_stack_slots_ = 0;
1359   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1360 
1361   // Allocate variables for this scope.
1362   // Parameters must be allocated first, if any.
1363   if (is_function_scope()) AllocateParameterLocals();
1364   AllocateNonParameterLocals();
1365 
1366   // Force allocation of a context for this scope if necessary. For a 'with'
1367   // scope and for a function scope that makes an 'eval' call we need a context,
1368   // even if no local variables were statically allocated in the scope.
1369   // Likewise for modules.
1370   bool must_have_context = is_with_scope() || is_module_scope() ||
1371       (is_function_scope() && calls_eval());
1372 
1373   // If we didn't allocate any locals in the local context, then we only
1374   // need the minimal number of slots if we must have a context.
1375   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
1376     num_heap_slots_ = 0;
1377   }
1378 
1379   // Allocation done.
1380   ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1381 }
1382 
1383 
AllocateModulesRecursively(Scope * host_scope)1384 void Scope::AllocateModulesRecursively(Scope* host_scope) {
1385   if (already_resolved()) return;
1386   if (is_module_scope()) {
1387     ASSERT(interface_->IsFrozen());
1388     Handle<String> name = isolate_->factory()->InternalizeOneByteString(
1389         STATIC_ASCII_VECTOR(".module"));
1390     ASSERT(module_var_ == NULL);
1391     module_var_ = host_scope->NewInternal(name);
1392     ++host_scope->num_modules_;
1393   }
1394 
1395   for (int i = 0; i < inner_scopes_.length(); i++) {
1396     Scope* inner_scope = inner_scopes_.at(i);
1397     inner_scope->AllocateModulesRecursively(host_scope);
1398   }
1399 }
1400 
1401 
StackLocalCount() const1402 int Scope::StackLocalCount() const {
1403   return num_stack_slots() -
1404       (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
1405 }
1406 
1407 
ContextLocalCount() const1408 int Scope::ContextLocalCount() const {
1409   if (num_heap_slots() == 0) return 0;
1410   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
1411       (function_ != NULL && function_->proxy()->var()->IsContextSlot() ? 1 : 0);
1412 }
1413 
1414 } }  // namespace v8::internal
1415