1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "macro-assembler.h"
31 #include "mark-compact.h"
32 #include "msan.h"
33 #include "platform.h"
34
35 namespace v8 {
36 namespace internal {
37
38
39 // ----------------------------------------------------------------------------
40 // HeapObjectIterator
41
HeapObjectIterator(PagedSpace * space)42 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
43 // You can't actually iterate over the anchor page. It is not a real page,
44 // just an anchor for the double linked page list. Initialize as if we have
45 // reached the end of the anchor page, then the first iteration will move on
46 // to the first page.
47 Initialize(space,
48 NULL,
49 NULL,
50 kAllPagesInSpace,
51 NULL);
52 }
53
54
HeapObjectIterator(PagedSpace * space,HeapObjectCallback size_func)55 HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
56 HeapObjectCallback size_func) {
57 // You can't actually iterate over the anchor page. It is not a real page,
58 // just an anchor for the double linked page list. Initialize the current
59 // address and end as NULL, then the first iteration will move on
60 // to the first page.
61 Initialize(space,
62 NULL,
63 NULL,
64 kAllPagesInSpace,
65 size_func);
66 }
67
68
HeapObjectIterator(Page * page,HeapObjectCallback size_func)69 HeapObjectIterator::HeapObjectIterator(Page* page,
70 HeapObjectCallback size_func) {
71 Space* owner = page->owner();
72 ASSERT(owner == page->heap()->old_pointer_space() ||
73 owner == page->heap()->old_data_space() ||
74 owner == page->heap()->map_space() ||
75 owner == page->heap()->cell_space() ||
76 owner == page->heap()->property_cell_space() ||
77 owner == page->heap()->code_space());
78 Initialize(reinterpret_cast<PagedSpace*>(owner),
79 page->area_start(),
80 page->area_end(),
81 kOnePageOnly,
82 size_func);
83 ASSERT(page->WasSweptPrecisely());
84 }
85
86
Initialize(PagedSpace * space,Address cur,Address end,HeapObjectIterator::PageMode mode,HeapObjectCallback size_f)87 void HeapObjectIterator::Initialize(PagedSpace* space,
88 Address cur, Address end,
89 HeapObjectIterator::PageMode mode,
90 HeapObjectCallback size_f) {
91 // Check that we actually can iterate this space.
92 ASSERT(!space->was_swept_conservatively());
93
94 space_ = space;
95 cur_addr_ = cur;
96 cur_end_ = end;
97 page_mode_ = mode;
98 size_func_ = size_f;
99 }
100
101
102 // We have hit the end of the page and should advance to the next block of
103 // objects. This happens at the end of the page.
AdvanceToNextPage()104 bool HeapObjectIterator::AdvanceToNextPage() {
105 ASSERT(cur_addr_ == cur_end_);
106 if (page_mode_ == kOnePageOnly) return false;
107 Page* cur_page;
108 if (cur_addr_ == NULL) {
109 cur_page = space_->anchor();
110 } else {
111 cur_page = Page::FromAddress(cur_addr_ - 1);
112 ASSERT(cur_addr_ == cur_page->area_end());
113 }
114 cur_page = cur_page->next_page();
115 if (cur_page == space_->anchor()) return false;
116 cur_addr_ = cur_page->area_start();
117 cur_end_ = cur_page->area_end();
118 ASSERT(cur_page->WasSweptPrecisely());
119 return true;
120 }
121
122
123 // -----------------------------------------------------------------------------
124 // CodeRange
125
126
CodeRange(Isolate * isolate)127 CodeRange::CodeRange(Isolate* isolate)
128 : isolate_(isolate),
129 code_range_(NULL),
130 free_list_(0),
131 allocation_list_(0),
132 current_allocation_block_index_(0) {
133 }
134
135
SetUp(const size_t requested)136 bool CodeRange::SetUp(const size_t requested) {
137 ASSERT(code_range_ == NULL);
138
139 code_range_ = new VirtualMemory(requested);
140 CHECK(code_range_ != NULL);
141 if (!code_range_->IsReserved()) {
142 delete code_range_;
143 code_range_ = NULL;
144 return false;
145 }
146
147 // We are sure that we have mapped a block of requested addresses.
148 ASSERT(code_range_->size() == requested);
149 LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
150 Address base = reinterpret_cast<Address>(code_range_->address());
151 Address aligned_base =
152 RoundUp(reinterpret_cast<Address>(code_range_->address()),
153 MemoryChunk::kAlignment);
154 size_t size = code_range_->size() - (aligned_base - base);
155 allocation_list_.Add(FreeBlock(aligned_base, size));
156 current_allocation_block_index_ = 0;
157 return true;
158 }
159
160
CompareFreeBlockAddress(const FreeBlock * left,const FreeBlock * right)161 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
162 const FreeBlock* right) {
163 // The entire point of CodeRange is that the difference between two
164 // addresses in the range can be represented as a signed 32-bit int,
165 // so the cast is semantically correct.
166 return static_cast<int>(left->start - right->start);
167 }
168
169
GetNextAllocationBlock(size_t requested)170 void CodeRange::GetNextAllocationBlock(size_t requested) {
171 for (current_allocation_block_index_++;
172 current_allocation_block_index_ < allocation_list_.length();
173 current_allocation_block_index_++) {
174 if (requested <= allocation_list_[current_allocation_block_index_].size) {
175 return; // Found a large enough allocation block.
176 }
177 }
178
179 // Sort and merge the free blocks on the free list and the allocation list.
180 free_list_.AddAll(allocation_list_);
181 allocation_list_.Clear();
182 free_list_.Sort(&CompareFreeBlockAddress);
183 for (int i = 0; i < free_list_.length();) {
184 FreeBlock merged = free_list_[i];
185 i++;
186 // Add adjacent free blocks to the current merged block.
187 while (i < free_list_.length() &&
188 free_list_[i].start == merged.start + merged.size) {
189 merged.size += free_list_[i].size;
190 i++;
191 }
192 if (merged.size > 0) {
193 allocation_list_.Add(merged);
194 }
195 }
196 free_list_.Clear();
197
198 for (current_allocation_block_index_ = 0;
199 current_allocation_block_index_ < allocation_list_.length();
200 current_allocation_block_index_++) {
201 if (requested <= allocation_list_[current_allocation_block_index_].size) {
202 return; // Found a large enough allocation block.
203 }
204 }
205
206 // Code range is full or too fragmented.
207 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
208 }
209
210
AllocateRawMemory(const size_t requested_size,const size_t commit_size,size_t * allocated)211 Address CodeRange::AllocateRawMemory(const size_t requested_size,
212 const size_t commit_size,
213 size_t* allocated) {
214 ASSERT(commit_size <= requested_size);
215 ASSERT(current_allocation_block_index_ < allocation_list_.length());
216 if (requested_size > allocation_list_[current_allocation_block_index_].size) {
217 // Find an allocation block large enough. This function call may
218 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
219 GetNextAllocationBlock(requested_size);
220 }
221 // Commit the requested memory at the start of the current allocation block.
222 size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
223 FreeBlock current = allocation_list_[current_allocation_block_index_];
224 if (aligned_requested >= (current.size - Page::kPageSize)) {
225 // Don't leave a small free block, useless for a large object or chunk.
226 *allocated = current.size;
227 } else {
228 *allocated = aligned_requested;
229 }
230 ASSERT(*allocated <= current.size);
231 ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment));
232 if (!isolate_->memory_allocator()->CommitExecutableMemory(code_range_,
233 current.start,
234 commit_size,
235 *allocated)) {
236 *allocated = 0;
237 return NULL;
238 }
239 allocation_list_[current_allocation_block_index_].start += *allocated;
240 allocation_list_[current_allocation_block_index_].size -= *allocated;
241 if (*allocated == current.size) {
242 GetNextAllocationBlock(0); // This block is used up, get the next one.
243 }
244 return current.start;
245 }
246
247
CommitRawMemory(Address start,size_t length)248 bool CodeRange::CommitRawMemory(Address start, size_t length) {
249 return isolate_->memory_allocator()->CommitMemory(start, length, EXECUTABLE);
250 }
251
252
UncommitRawMemory(Address start,size_t length)253 bool CodeRange::UncommitRawMemory(Address start, size_t length) {
254 return code_range_->Uncommit(start, length);
255 }
256
257
FreeRawMemory(Address address,size_t length)258 void CodeRange::FreeRawMemory(Address address, size_t length) {
259 ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment));
260 free_list_.Add(FreeBlock(address, length));
261 code_range_->Uncommit(address, length);
262 }
263
264
TearDown()265 void CodeRange::TearDown() {
266 delete code_range_; // Frees all memory in the virtual memory range.
267 code_range_ = NULL;
268 free_list_.Free();
269 allocation_list_.Free();
270 }
271
272
273 // -----------------------------------------------------------------------------
274 // MemoryAllocator
275 //
276
MemoryAllocator(Isolate * isolate)277 MemoryAllocator::MemoryAllocator(Isolate* isolate)
278 : isolate_(isolate),
279 capacity_(0),
280 capacity_executable_(0),
281 size_(0),
282 size_executable_(0),
283 lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
284 highest_ever_allocated_(reinterpret_cast<void*>(0)) {
285 }
286
287
SetUp(intptr_t capacity,intptr_t capacity_executable)288 bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
289 capacity_ = RoundUp(capacity, Page::kPageSize);
290 capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
291 ASSERT_GE(capacity_, capacity_executable_);
292
293 size_ = 0;
294 size_executable_ = 0;
295
296 return true;
297 }
298
299
TearDown()300 void MemoryAllocator::TearDown() {
301 // Check that spaces were torn down before MemoryAllocator.
302 ASSERT(size_ == 0);
303 // TODO(gc) this will be true again when we fix FreeMemory.
304 // ASSERT(size_executable_ == 0);
305 capacity_ = 0;
306 capacity_executable_ = 0;
307 }
308
309
CommitMemory(Address base,size_t size,Executability executable)310 bool MemoryAllocator::CommitMemory(Address base,
311 size_t size,
312 Executability executable) {
313 if (!VirtualMemory::CommitRegion(base, size, executable == EXECUTABLE)) {
314 return false;
315 }
316 UpdateAllocatedSpaceLimits(base, base + size);
317 return true;
318 }
319
320
FreeMemory(VirtualMemory * reservation,Executability executable)321 void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
322 Executability executable) {
323 // TODO(gc) make code_range part of memory allocator?
324 ASSERT(reservation->IsReserved());
325 size_t size = reservation->size();
326 ASSERT(size_ >= size);
327 size_ -= size;
328
329 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
330
331 if (executable == EXECUTABLE) {
332 ASSERT(size_executable_ >= size);
333 size_executable_ -= size;
334 }
335 // Code which is part of the code-range does not have its own VirtualMemory.
336 ASSERT(!isolate_->code_range()->contains(
337 static_cast<Address>(reservation->address())));
338 ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
339 reservation->Release();
340 }
341
342
FreeMemory(Address base,size_t size,Executability executable)343 void MemoryAllocator::FreeMemory(Address base,
344 size_t size,
345 Executability executable) {
346 // TODO(gc) make code_range part of memory allocator?
347 ASSERT(size_ >= size);
348 size_ -= size;
349
350 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
351
352 if (executable == EXECUTABLE) {
353 ASSERT(size_executable_ >= size);
354 size_executable_ -= size;
355 }
356 if (isolate_->code_range()->contains(static_cast<Address>(base))) {
357 ASSERT(executable == EXECUTABLE);
358 isolate_->code_range()->FreeRawMemory(base, size);
359 } else {
360 ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
361 bool result = VirtualMemory::ReleaseRegion(base, size);
362 USE(result);
363 ASSERT(result);
364 }
365 }
366
367
ReserveAlignedMemory(size_t size,size_t alignment,VirtualMemory * controller)368 Address MemoryAllocator::ReserveAlignedMemory(size_t size,
369 size_t alignment,
370 VirtualMemory* controller) {
371 VirtualMemory reservation(size, alignment);
372
373 if (!reservation.IsReserved()) return NULL;
374 size_ += reservation.size();
375 Address base = RoundUp(static_cast<Address>(reservation.address()),
376 alignment);
377 controller->TakeControl(&reservation);
378 return base;
379 }
380
381
AllocateAlignedMemory(size_t reserve_size,size_t commit_size,size_t alignment,Executability executable,VirtualMemory * controller)382 Address MemoryAllocator::AllocateAlignedMemory(size_t reserve_size,
383 size_t commit_size,
384 size_t alignment,
385 Executability executable,
386 VirtualMemory* controller) {
387 ASSERT(commit_size <= reserve_size);
388 VirtualMemory reservation;
389 Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
390 if (base == NULL) return NULL;
391
392 if (executable == EXECUTABLE) {
393 if (!CommitExecutableMemory(&reservation,
394 base,
395 commit_size,
396 reserve_size)) {
397 base = NULL;
398 }
399 } else {
400 if (reservation.Commit(base, commit_size, false)) {
401 UpdateAllocatedSpaceLimits(base, base + commit_size);
402 } else {
403 base = NULL;
404 }
405 }
406
407 if (base == NULL) {
408 // Failed to commit the body. Release the mapping and any partially
409 // commited regions inside it.
410 reservation.Release();
411 return NULL;
412 }
413
414 controller->TakeControl(&reservation);
415 return base;
416 }
417
418
InitializeAsAnchor(PagedSpace * owner)419 void Page::InitializeAsAnchor(PagedSpace* owner) {
420 set_owner(owner);
421 set_prev_page(this);
422 set_next_page(this);
423 }
424
425
Initialize(Heap * heap,Address start,SemiSpace * semi_space)426 NewSpacePage* NewSpacePage::Initialize(Heap* heap,
427 Address start,
428 SemiSpace* semi_space) {
429 Address area_start = start + NewSpacePage::kObjectStartOffset;
430 Address area_end = start + Page::kPageSize;
431
432 MemoryChunk* chunk = MemoryChunk::Initialize(heap,
433 start,
434 Page::kPageSize,
435 area_start,
436 area_end,
437 NOT_EXECUTABLE,
438 semi_space);
439 chunk->set_next_chunk(NULL);
440 chunk->set_prev_chunk(NULL);
441 chunk->initialize_scan_on_scavenge(true);
442 bool in_to_space = (semi_space->id() != kFromSpace);
443 chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
444 : MemoryChunk::IN_FROM_SPACE);
445 ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
446 : MemoryChunk::IN_TO_SPACE));
447 NewSpacePage* page = static_cast<NewSpacePage*>(chunk);
448 heap->incremental_marking()->SetNewSpacePageFlags(page);
449 return page;
450 }
451
452
InitializeAsAnchor(SemiSpace * semi_space)453 void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) {
454 set_owner(semi_space);
455 set_next_chunk(this);
456 set_prev_chunk(this);
457 // Flags marks this invalid page as not being in new-space.
458 // All real new-space pages will be in new-space.
459 SetFlags(0, ~0);
460 }
461
462
Initialize(Heap * heap,Address base,size_t size,Address area_start,Address area_end,Executability executable,Space * owner)463 MemoryChunk* MemoryChunk::Initialize(Heap* heap,
464 Address base,
465 size_t size,
466 Address area_start,
467 Address area_end,
468 Executability executable,
469 Space* owner) {
470 MemoryChunk* chunk = FromAddress(base);
471
472 ASSERT(base == chunk->address());
473
474 chunk->heap_ = heap;
475 chunk->size_ = size;
476 chunk->area_start_ = area_start;
477 chunk->area_end_ = area_end;
478 chunk->flags_ = 0;
479 chunk->set_owner(owner);
480 chunk->InitializeReservedMemory();
481 chunk->slots_buffer_ = NULL;
482 chunk->skip_list_ = NULL;
483 chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity;
484 chunk->progress_bar_ = 0;
485 chunk->high_water_mark_ = static_cast<int>(area_start - base);
486 chunk->parallel_sweeping_ = 0;
487 chunk->available_in_small_free_list_ = 0;
488 chunk->available_in_medium_free_list_ = 0;
489 chunk->available_in_large_free_list_ = 0;
490 chunk->available_in_huge_free_list_ = 0;
491 chunk->non_available_small_blocks_ = 0;
492 chunk->ResetLiveBytes();
493 Bitmap::Clear(chunk);
494 chunk->initialize_scan_on_scavenge(false);
495 chunk->SetFlag(WAS_SWEPT_PRECISELY);
496
497 ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
498 ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
499
500 if (executable == EXECUTABLE) {
501 chunk->SetFlag(IS_EXECUTABLE);
502 }
503
504 if (owner == heap->old_data_space()) {
505 chunk->SetFlag(CONTAINS_ONLY_DATA);
506 }
507
508 return chunk;
509 }
510
511
512 // Commit MemoryChunk area to the requested size.
CommitArea(size_t requested)513 bool MemoryChunk::CommitArea(size_t requested) {
514 size_t guard_size = IsFlagSet(IS_EXECUTABLE) ?
515 MemoryAllocator::CodePageGuardSize() : 0;
516 size_t header_size = area_start() - address() - guard_size;
517 size_t commit_size = RoundUp(header_size + requested, OS::CommitPageSize());
518 size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
519 OS::CommitPageSize());
520
521 if (commit_size > committed_size) {
522 // Commit size should be less or equal than the reserved size.
523 ASSERT(commit_size <= size() - 2 * guard_size);
524 // Append the committed area.
525 Address start = address() + committed_size + guard_size;
526 size_t length = commit_size - committed_size;
527 if (reservation_.IsReserved()) {
528 Executability executable = IsFlagSet(IS_EXECUTABLE)
529 ? EXECUTABLE : NOT_EXECUTABLE;
530 if (!heap()->isolate()->memory_allocator()->CommitMemory(
531 start, length, executable)) {
532 return false;
533 }
534 } else {
535 CodeRange* code_range = heap_->isolate()->code_range();
536 ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE));
537 if (!code_range->CommitRawMemory(start, length)) return false;
538 }
539
540 if (Heap::ShouldZapGarbage()) {
541 heap_->isolate()->memory_allocator()->ZapBlock(start, length);
542 }
543 } else if (commit_size < committed_size) {
544 ASSERT(commit_size > 0);
545 // Shrink the committed area.
546 size_t length = committed_size - commit_size;
547 Address start = address() + committed_size + guard_size - length;
548 if (reservation_.IsReserved()) {
549 if (!reservation_.Uncommit(start, length)) return false;
550 } else {
551 CodeRange* code_range = heap_->isolate()->code_range();
552 ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE));
553 if (!code_range->UncommitRawMemory(start, length)) return false;
554 }
555 }
556
557 area_end_ = area_start_ + requested;
558 return true;
559 }
560
561
InsertAfter(MemoryChunk * other)562 void MemoryChunk::InsertAfter(MemoryChunk* other) {
563 next_chunk_ = other->next_chunk_;
564 prev_chunk_ = other;
565
566 // This memory barrier is needed since concurrent sweeper threads may iterate
567 // over the list of pages while a new page is inserted.
568 // TODO(hpayer): find a cleaner way to guarantee that the page list can be
569 // expanded concurrently
570 MemoryBarrier();
571
572 // The following two write operations can take effect in arbitrary order
573 // since pages are always iterated by the sweeper threads in LIFO order, i.e,
574 // the inserted page becomes visible for the sweeper threads after
575 // other->next_chunk_ = this;
576 other->next_chunk_->prev_chunk_ = this;
577 other->next_chunk_ = this;
578 }
579
580
Unlink()581 void MemoryChunk::Unlink() {
582 if (!InNewSpace() && IsFlagSet(SCAN_ON_SCAVENGE)) {
583 heap_->decrement_scan_on_scavenge_pages();
584 ClearFlag(SCAN_ON_SCAVENGE);
585 }
586 next_chunk_->prev_chunk_ = prev_chunk_;
587 prev_chunk_->next_chunk_ = next_chunk_;
588 prev_chunk_ = NULL;
589 next_chunk_ = NULL;
590 }
591
592
AllocateChunk(intptr_t reserve_area_size,intptr_t commit_area_size,Executability executable,Space * owner)593 MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
594 intptr_t commit_area_size,
595 Executability executable,
596 Space* owner) {
597 ASSERT(commit_area_size <= reserve_area_size);
598
599 size_t chunk_size;
600 Heap* heap = isolate_->heap();
601 Address base = NULL;
602 VirtualMemory reservation;
603 Address area_start = NULL;
604 Address area_end = NULL;
605
606 //
607 // MemoryChunk layout:
608 //
609 // Executable
610 // +----------------------------+<- base aligned with MemoryChunk::kAlignment
611 // | Header |
612 // +----------------------------+<- base + CodePageGuardStartOffset
613 // | Guard |
614 // +----------------------------+<- area_start_
615 // | Area |
616 // +----------------------------+<- area_end_ (area_start + commit_area_size)
617 // | Committed but not used |
618 // +----------------------------+<- aligned at OS page boundary
619 // | Reserved but not committed |
620 // +----------------------------+<- aligned at OS page boundary
621 // | Guard |
622 // +----------------------------+<- base + chunk_size
623 //
624 // Non-executable
625 // +----------------------------+<- base aligned with MemoryChunk::kAlignment
626 // | Header |
627 // +----------------------------+<- area_start_ (base + kObjectStartOffset)
628 // | Area |
629 // +----------------------------+<- area_end_ (area_start + commit_area_size)
630 // | Committed but not used |
631 // +----------------------------+<- aligned at OS page boundary
632 // | Reserved but not committed |
633 // +----------------------------+<- base + chunk_size
634 //
635
636 if (executable == EXECUTABLE) {
637 chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
638 OS::CommitPageSize()) + CodePageGuardSize();
639
640 // Check executable memory limit.
641 if (size_executable_ + chunk_size > capacity_executable_) {
642 LOG(isolate_,
643 StringEvent("MemoryAllocator::AllocateRawMemory",
644 "V8 Executable Allocation capacity exceeded"));
645 return NULL;
646 }
647
648 // Size of header (not executable) plus area (executable).
649 size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
650 OS::CommitPageSize());
651 // Allocate executable memory either from code range or from the
652 // OS.
653 if (isolate_->code_range()->exists()) {
654 base = isolate_->code_range()->AllocateRawMemory(chunk_size,
655 commit_size,
656 &chunk_size);
657 ASSERT(IsAligned(reinterpret_cast<intptr_t>(base),
658 MemoryChunk::kAlignment));
659 if (base == NULL) return NULL;
660 size_ += chunk_size;
661 // Update executable memory size.
662 size_executable_ += chunk_size;
663 } else {
664 base = AllocateAlignedMemory(chunk_size,
665 commit_size,
666 MemoryChunk::kAlignment,
667 executable,
668 &reservation);
669 if (base == NULL) return NULL;
670 // Update executable memory size.
671 size_executable_ += reservation.size();
672 }
673
674 if (Heap::ShouldZapGarbage()) {
675 ZapBlock(base, CodePageGuardStartOffset());
676 ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
677 }
678
679 area_start = base + CodePageAreaStartOffset();
680 area_end = area_start + commit_area_size;
681 } else {
682 chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
683 OS::CommitPageSize());
684 size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset +
685 commit_area_size, OS::CommitPageSize());
686 base = AllocateAlignedMemory(chunk_size,
687 commit_size,
688 MemoryChunk::kAlignment,
689 executable,
690 &reservation);
691
692 if (base == NULL) return NULL;
693
694 if (Heap::ShouldZapGarbage()) {
695 ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
696 }
697
698 area_start = base + Page::kObjectStartOffset;
699 area_end = area_start + commit_area_size;
700 }
701
702 // Use chunk_size for statistics and callbacks because we assume that they
703 // treat reserved but not-yet committed memory regions of chunks as allocated.
704 isolate_->counters()->memory_allocated()->
705 Increment(static_cast<int>(chunk_size));
706
707 LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
708 if (owner != NULL) {
709 ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
710 PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
711 }
712
713 MemoryChunk* result = MemoryChunk::Initialize(heap,
714 base,
715 chunk_size,
716 area_start,
717 area_end,
718 executable,
719 owner);
720 result->set_reserved_memory(&reservation);
721 MSAN_MEMORY_IS_INITIALIZED(base, chunk_size);
722 return result;
723 }
724
725
ResetFreeListStatistics()726 void Page::ResetFreeListStatistics() {
727 non_available_small_blocks_ = 0;
728 available_in_small_free_list_ = 0;
729 available_in_medium_free_list_ = 0;
730 available_in_large_free_list_ = 0;
731 available_in_huge_free_list_ = 0;
732 }
733
734
AllocatePage(intptr_t size,PagedSpace * owner,Executability executable)735 Page* MemoryAllocator::AllocatePage(intptr_t size,
736 PagedSpace* owner,
737 Executability executable) {
738 MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
739
740 if (chunk == NULL) return NULL;
741
742 return Page::Initialize(isolate_->heap(), chunk, executable, owner);
743 }
744
745
AllocateLargePage(intptr_t object_size,Space * owner,Executability executable)746 LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
747 Space* owner,
748 Executability executable) {
749 MemoryChunk* chunk = AllocateChunk(object_size,
750 object_size,
751 executable,
752 owner);
753 if (chunk == NULL) return NULL;
754 return LargePage::Initialize(isolate_->heap(), chunk);
755 }
756
757
Free(MemoryChunk * chunk)758 void MemoryAllocator::Free(MemoryChunk* chunk) {
759 LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
760 if (chunk->owner() != NULL) {
761 ObjectSpace space =
762 static_cast<ObjectSpace>(1 << chunk->owner()->identity());
763 PerformAllocationCallback(space, kAllocationActionFree, chunk->size());
764 }
765
766 isolate_->heap()->RememberUnmappedPage(
767 reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate());
768
769 delete chunk->slots_buffer();
770 delete chunk->skip_list();
771
772 VirtualMemory* reservation = chunk->reserved_memory();
773 if (reservation->IsReserved()) {
774 FreeMemory(reservation, chunk->executable());
775 } else {
776 FreeMemory(chunk->address(),
777 chunk->size(),
778 chunk->executable());
779 }
780 }
781
782
CommitBlock(Address start,size_t size,Executability executable)783 bool MemoryAllocator::CommitBlock(Address start,
784 size_t size,
785 Executability executable) {
786 if (!CommitMemory(start, size, executable)) return false;
787
788 if (Heap::ShouldZapGarbage()) {
789 ZapBlock(start, size);
790 }
791
792 isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
793 return true;
794 }
795
796
UncommitBlock(Address start,size_t size)797 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
798 if (!VirtualMemory::UncommitRegion(start, size)) return false;
799 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
800 return true;
801 }
802
803
ZapBlock(Address start,size_t size)804 void MemoryAllocator::ZapBlock(Address start, size_t size) {
805 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
806 Memory::Address_at(start + s) = kZapValue;
807 }
808 }
809
810
PerformAllocationCallback(ObjectSpace space,AllocationAction action,size_t size)811 void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
812 AllocationAction action,
813 size_t size) {
814 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
815 MemoryAllocationCallbackRegistration registration =
816 memory_allocation_callbacks_[i];
817 if ((registration.space & space) == space &&
818 (registration.action & action) == action)
819 registration.callback(space, action, static_cast<int>(size));
820 }
821 }
822
823
MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback)824 bool MemoryAllocator::MemoryAllocationCallbackRegistered(
825 MemoryAllocationCallback callback) {
826 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
827 if (memory_allocation_callbacks_[i].callback == callback) return true;
828 }
829 return false;
830 }
831
832
AddMemoryAllocationCallback(MemoryAllocationCallback callback,ObjectSpace space,AllocationAction action)833 void MemoryAllocator::AddMemoryAllocationCallback(
834 MemoryAllocationCallback callback,
835 ObjectSpace space,
836 AllocationAction action) {
837 ASSERT(callback != NULL);
838 MemoryAllocationCallbackRegistration registration(callback, space, action);
839 ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
840 return memory_allocation_callbacks_.Add(registration);
841 }
842
843
RemoveMemoryAllocationCallback(MemoryAllocationCallback callback)844 void MemoryAllocator::RemoveMemoryAllocationCallback(
845 MemoryAllocationCallback callback) {
846 ASSERT(callback != NULL);
847 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
848 if (memory_allocation_callbacks_[i].callback == callback) {
849 memory_allocation_callbacks_.Remove(i);
850 return;
851 }
852 }
853 UNREACHABLE();
854 }
855
856
857 #ifdef DEBUG
ReportStatistics()858 void MemoryAllocator::ReportStatistics() {
859 float pct = static_cast<float>(capacity_ - size_) / capacity_;
860 PrintF(" capacity: %" V8_PTR_PREFIX "d"
861 ", used: %" V8_PTR_PREFIX "d"
862 ", available: %%%d\n\n",
863 capacity_, size_, static_cast<int>(pct*100));
864 }
865 #endif
866
867
CodePageGuardStartOffset()868 int MemoryAllocator::CodePageGuardStartOffset() {
869 // We are guarding code pages: the first OS page after the header
870 // will be protected as non-writable.
871 return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize());
872 }
873
874
CodePageGuardSize()875 int MemoryAllocator::CodePageGuardSize() {
876 return static_cast<int>(OS::CommitPageSize());
877 }
878
879
CodePageAreaStartOffset()880 int MemoryAllocator::CodePageAreaStartOffset() {
881 // We are guarding code pages: the first OS page after the header
882 // will be protected as non-writable.
883 return CodePageGuardStartOffset() + CodePageGuardSize();
884 }
885
886
CodePageAreaEndOffset()887 int MemoryAllocator::CodePageAreaEndOffset() {
888 // We are guarding code pages: the last OS page will be protected as
889 // non-writable.
890 return Page::kPageSize - static_cast<int>(OS::CommitPageSize());
891 }
892
893
CommitExecutableMemory(VirtualMemory * vm,Address start,size_t commit_size,size_t reserved_size)894 bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm,
895 Address start,
896 size_t commit_size,
897 size_t reserved_size) {
898 // Commit page header (not executable).
899 if (!vm->Commit(start,
900 CodePageGuardStartOffset(),
901 false)) {
902 return false;
903 }
904
905 // Create guard page after the header.
906 if (!vm->Guard(start + CodePageGuardStartOffset())) {
907 return false;
908 }
909
910 // Commit page body (executable).
911 if (!vm->Commit(start + CodePageAreaStartOffset(),
912 commit_size - CodePageGuardStartOffset(),
913 true)) {
914 return false;
915 }
916
917 // Create guard page before the end.
918 if (!vm->Guard(start + reserved_size - CodePageGuardSize())) {
919 return false;
920 }
921
922 UpdateAllocatedSpaceLimits(start,
923 start + CodePageAreaStartOffset() +
924 commit_size - CodePageGuardStartOffset());
925 return true;
926 }
927
928
929 // -----------------------------------------------------------------------------
930 // MemoryChunk implementation
931
IncrementLiveBytesFromMutator(Address address,int by)932 void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) {
933 MemoryChunk* chunk = MemoryChunk::FromAddress(address);
934 if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) {
935 static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by);
936 }
937 chunk->IncrementLiveBytes(by);
938 }
939
940
941 // -----------------------------------------------------------------------------
942 // PagedSpace implementation
943
PagedSpace(Heap * heap,intptr_t max_capacity,AllocationSpace id,Executability executable)944 PagedSpace::PagedSpace(Heap* heap,
945 intptr_t max_capacity,
946 AllocationSpace id,
947 Executability executable)
948 : Space(heap, id, executable),
949 free_list_(this),
950 was_swept_conservatively_(false),
951 first_unswept_page_(Page::FromAddress(NULL)),
952 unswept_free_bytes_(0) {
953 if (id == CODE_SPACE) {
954 area_size_ = heap->isolate()->memory_allocator()->
955 CodePageAreaSize();
956 } else {
957 area_size_ = Page::kPageSize - Page::kObjectStartOffset;
958 }
959 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
960 * AreaSize();
961 accounting_stats_.Clear();
962
963 allocation_info_.set_top(NULL);
964 allocation_info_.set_limit(NULL);
965
966 anchor_.InitializeAsAnchor(this);
967 }
968
969
SetUp()970 bool PagedSpace::SetUp() {
971 return true;
972 }
973
974
HasBeenSetUp()975 bool PagedSpace::HasBeenSetUp() {
976 return true;
977 }
978
979
TearDown()980 void PagedSpace::TearDown() {
981 PageIterator iterator(this);
982 while (iterator.has_next()) {
983 heap()->isolate()->memory_allocator()->Free(iterator.next());
984 }
985 anchor_.set_next_page(&anchor_);
986 anchor_.set_prev_page(&anchor_);
987 accounting_stats_.Clear();
988 }
989
990
CommittedPhysicalMemory()991 size_t PagedSpace::CommittedPhysicalMemory() {
992 if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
993 MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
994 size_t size = 0;
995 PageIterator it(this);
996 while (it.has_next()) {
997 size += it.next()->CommittedPhysicalMemory();
998 }
999 return size;
1000 }
1001
1002
FindObject(Address addr)1003 MaybeObject* PagedSpace::FindObject(Address addr) {
1004 // Note: this function can only be called on precisely swept spaces.
1005 ASSERT(!heap()->mark_compact_collector()->in_use());
1006
1007 if (!Contains(addr)) return Failure::Exception();
1008
1009 Page* p = Page::FromAddress(addr);
1010 HeapObjectIterator it(p, NULL);
1011 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
1012 Address cur = obj->address();
1013 Address next = cur + obj->Size();
1014 if ((cur <= addr) && (addr < next)) return obj;
1015 }
1016
1017 UNREACHABLE();
1018 return Failure::Exception();
1019 }
1020
1021
CanExpand()1022 bool PagedSpace::CanExpand() {
1023 ASSERT(max_capacity_ % AreaSize() == 0);
1024
1025 if (Capacity() == max_capacity_) return false;
1026
1027 ASSERT(Capacity() < max_capacity_);
1028
1029 // Are we going to exceed capacity for this space?
1030 if ((Capacity() + Page::kPageSize) > max_capacity_) return false;
1031
1032 return true;
1033 }
1034
1035
Expand()1036 bool PagedSpace::Expand() {
1037 if (!CanExpand()) return false;
1038
1039 intptr_t size = AreaSize();
1040
1041 if (anchor_.next_page() == &anchor_) {
1042 size = SizeOfFirstPage();
1043 }
1044
1045 Page* p = heap()->isolate()->memory_allocator()->AllocatePage(
1046 size, this, executable());
1047 if (p == NULL) return false;
1048
1049 ASSERT(Capacity() <= max_capacity_);
1050
1051 p->InsertAfter(anchor_.prev_page());
1052
1053 return true;
1054 }
1055
1056
SizeOfFirstPage()1057 intptr_t PagedSpace::SizeOfFirstPage() {
1058 int size = 0;
1059 switch (identity()) {
1060 case OLD_POINTER_SPACE:
1061 size = 72 * kPointerSize * KB;
1062 break;
1063 case OLD_DATA_SPACE:
1064 size = 192 * KB;
1065 break;
1066 case MAP_SPACE:
1067 size = 16 * kPointerSize * KB;
1068 break;
1069 case CELL_SPACE:
1070 size = 16 * kPointerSize * KB;
1071 break;
1072 case PROPERTY_CELL_SPACE:
1073 size = 8 * kPointerSize * KB;
1074 break;
1075 case CODE_SPACE:
1076 if (heap()->isolate()->code_range()->exists()) {
1077 // When code range exists, code pages are allocated in a special way
1078 // (from the reserved code range). That part of the code is not yet
1079 // upgraded to handle small pages.
1080 size = AreaSize();
1081 } else {
1082 #if V8_TARGET_ARCH_MIPS
1083 // TODO(plind): Investigate larger code stubs size on MIPS.
1084 size = 480 * KB;
1085 #else
1086 size = 416 * KB;
1087 #endif
1088 }
1089 break;
1090 default:
1091 UNREACHABLE();
1092 }
1093 return Min(size, AreaSize());
1094 }
1095
1096
CountTotalPages()1097 int PagedSpace::CountTotalPages() {
1098 PageIterator it(this);
1099 int count = 0;
1100 while (it.has_next()) {
1101 it.next();
1102 count++;
1103 }
1104 return count;
1105 }
1106
1107
ObtainFreeListStatistics(Page * page,SizeStats * sizes)1108 void PagedSpace::ObtainFreeListStatistics(Page* page, SizeStats* sizes) {
1109 sizes->huge_size_ = page->available_in_huge_free_list();
1110 sizes->small_size_ = page->available_in_small_free_list();
1111 sizes->medium_size_ = page->available_in_medium_free_list();
1112 sizes->large_size_ = page->available_in_large_free_list();
1113 }
1114
1115
ResetFreeListStatistics()1116 void PagedSpace::ResetFreeListStatistics() {
1117 PageIterator page_iterator(this);
1118 while (page_iterator.has_next()) {
1119 Page* page = page_iterator.next();
1120 page->ResetFreeListStatistics();
1121 }
1122 }
1123
1124
IncreaseCapacity(int size)1125 void PagedSpace::IncreaseCapacity(int size) {
1126 accounting_stats_.ExpandSpace(size);
1127 }
1128
1129
ReleasePage(Page * page,bool unlink)1130 void PagedSpace::ReleasePage(Page* page, bool unlink) {
1131 ASSERT(page->LiveBytes() == 0);
1132 ASSERT(AreaSize() == page->area_size());
1133
1134 // Adjust list of unswept pages if the page is the head of the list.
1135 if (first_unswept_page_ == page) {
1136 first_unswept_page_ = page->next_page();
1137 if (first_unswept_page_ == anchor()) {
1138 first_unswept_page_ = Page::FromAddress(NULL);
1139 }
1140 }
1141
1142 if (page->WasSwept()) {
1143 intptr_t size = free_list_.EvictFreeListItems(page);
1144 accounting_stats_.AllocateBytes(size);
1145 ASSERT_EQ(AreaSize(), static_cast<int>(size));
1146 } else {
1147 DecreaseUnsweptFreeBytes(page);
1148 }
1149
1150 if (Page::FromAllocationTop(allocation_info_.top()) == page) {
1151 allocation_info_.set_top(NULL);
1152 allocation_info_.set_limit(NULL);
1153 }
1154
1155 if (unlink) {
1156 page->Unlink();
1157 }
1158 if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
1159 heap()->isolate()->memory_allocator()->Free(page);
1160 } else {
1161 heap()->QueueMemoryChunkForFree(page);
1162 }
1163
1164 ASSERT(Capacity() > 0);
1165 accounting_stats_.ShrinkSpace(AreaSize());
1166 }
1167
1168
1169 #ifdef DEBUG
Print()1170 void PagedSpace::Print() { }
1171 #endif
1172
1173 #ifdef VERIFY_HEAP
Verify(ObjectVisitor * visitor)1174 void PagedSpace::Verify(ObjectVisitor* visitor) {
1175 // We can only iterate over the pages if they were swept precisely.
1176 if (was_swept_conservatively_) return;
1177
1178 bool allocation_pointer_found_in_space =
1179 (allocation_info_.top() == allocation_info_.limit());
1180 PageIterator page_iterator(this);
1181 while (page_iterator.has_next()) {
1182 Page* page = page_iterator.next();
1183 CHECK(page->owner() == this);
1184 if (page == Page::FromAllocationTop(allocation_info_.top())) {
1185 allocation_pointer_found_in_space = true;
1186 }
1187 CHECK(page->WasSweptPrecisely());
1188 HeapObjectIterator it(page, NULL);
1189 Address end_of_previous_object = page->area_start();
1190 Address top = page->area_end();
1191 int black_size = 0;
1192 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
1193 CHECK(end_of_previous_object <= object->address());
1194
1195 // The first word should be a map, and we expect all map pointers to
1196 // be in map space.
1197 Map* map = object->map();
1198 CHECK(map->IsMap());
1199 CHECK(heap()->map_space()->Contains(map));
1200
1201 // Perform space-specific object verification.
1202 VerifyObject(object);
1203
1204 // The object itself should look OK.
1205 object->Verify();
1206
1207 // All the interior pointers should be contained in the heap.
1208 int size = object->Size();
1209 object->IterateBody(map->instance_type(), size, visitor);
1210 if (Marking::IsBlack(Marking::MarkBitFrom(object))) {
1211 black_size += size;
1212 }
1213
1214 CHECK(object->address() + size <= top);
1215 end_of_previous_object = object->address() + size;
1216 }
1217 CHECK_LE(black_size, page->LiveBytes());
1218 }
1219 CHECK(allocation_pointer_found_in_space);
1220 }
1221 #endif // VERIFY_HEAP
1222
1223 // -----------------------------------------------------------------------------
1224 // NewSpace implementation
1225
1226
SetUp(int reserved_semispace_capacity,int maximum_semispace_capacity)1227 bool NewSpace::SetUp(int reserved_semispace_capacity,
1228 int maximum_semispace_capacity) {
1229 // Set up new space based on the preallocated memory block defined by
1230 // start and size. The provided space is divided into two semi-spaces.
1231 // To support fast containment testing in the new space, the size of
1232 // this chunk must be a power of two and it must be aligned to its size.
1233 int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
1234
1235 size_t size = 2 * reserved_semispace_capacity;
1236 Address base =
1237 heap()->isolate()->memory_allocator()->ReserveAlignedMemory(
1238 size, size, &reservation_);
1239 if (base == NULL) return false;
1240
1241 chunk_base_ = base;
1242 chunk_size_ = static_cast<uintptr_t>(size);
1243 LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_));
1244
1245 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
1246 ASSERT(IsPowerOf2(maximum_semispace_capacity));
1247
1248 // Allocate and set up the histogram arrays if necessary.
1249 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1250 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1251
1252 #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
1253 promoted_histogram_[name].set_name(#name);
1254 INSTANCE_TYPE_LIST(SET_NAME)
1255 #undef SET_NAME
1256
1257 ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize());
1258 ASSERT(static_cast<intptr_t>(chunk_size_) >=
1259 2 * heap()->ReservedSemiSpaceSize());
1260 ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0));
1261
1262 to_space_.SetUp(chunk_base_,
1263 initial_semispace_capacity,
1264 maximum_semispace_capacity);
1265 from_space_.SetUp(chunk_base_ + reserved_semispace_capacity,
1266 initial_semispace_capacity,
1267 maximum_semispace_capacity);
1268 if (!to_space_.Commit()) {
1269 return false;
1270 }
1271 ASSERT(!from_space_.is_committed()); // No need to use memory yet.
1272
1273 start_ = chunk_base_;
1274 address_mask_ = ~(2 * reserved_semispace_capacity - 1);
1275 object_mask_ = address_mask_ | kHeapObjectTagMask;
1276 object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag;
1277
1278 ResetAllocationInfo();
1279
1280 return true;
1281 }
1282
1283
TearDown()1284 void NewSpace::TearDown() {
1285 if (allocated_histogram_) {
1286 DeleteArray(allocated_histogram_);
1287 allocated_histogram_ = NULL;
1288 }
1289 if (promoted_histogram_) {
1290 DeleteArray(promoted_histogram_);
1291 promoted_histogram_ = NULL;
1292 }
1293
1294 start_ = NULL;
1295 allocation_info_.set_top(NULL);
1296 allocation_info_.set_limit(NULL);
1297
1298 to_space_.TearDown();
1299 from_space_.TearDown();
1300
1301 LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_));
1302
1303 ASSERT(reservation_.IsReserved());
1304 heap()->isolate()->memory_allocator()->FreeMemory(&reservation_,
1305 NOT_EXECUTABLE);
1306 chunk_base_ = NULL;
1307 chunk_size_ = 0;
1308 }
1309
1310
Flip()1311 void NewSpace::Flip() {
1312 SemiSpace::Swap(&from_space_, &to_space_);
1313 }
1314
1315
Grow()1316 void NewSpace::Grow() {
1317 // Double the semispace size but only up to maximum capacity.
1318 ASSERT(Capacity() < MaximumCapacity());
1319 int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity()));
1320 if (to_space_.GrowTo(new_capacity)) {
1321 // Only grow from space if we managed to grow to-space.
1322 if (!from_space_.GrowTo(new_capacity)) {
1323 // If we managed to grow to-space but couldn't grow from-space,
1324 // attempt to shrink to-space.
1325 if (!to_space_.ShrinkTo(from_space_.Capacity())) {
1326 // We are in an inconsistent state because we could not
1327 // commit/uncommit memory from new space.
1328 V8::FatalProcessOutOfMemory("Failed to grow new space.");
1329 }
1330 }
1331 }
1332 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1333 }
1334
1335
Shrink()1336 void NewSpace::Shrink() {
1337 int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
1338 int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
1339 if (rounded_new_capacity < Capacity() &&
1340 to_space_.ShrinkTo(rounded_new_capacity)) {
1341 // Only shrink from-space if we managed to shrink to-space.
1342 from_space_.Reset();
1343 if (!from_space_.ShrinkTo(rounded_new_capacity)) {
1344 // If we managed to shrink to-space but couldn't shrink from
1345 // space, attempt to grow to-space again.
1346 if (!to_space_.GrowTo(from_space_.Capacity())) {
1347 // We are in an inconsistent state because we could not
1348 // commit/uncommit memory from new space.
1349 V8::FatalProcessOutOfMemory("Failed to shrink new space.");
1350 }
1351 }
1352 }
1353 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1354 }
1355
1356
UpdateAllocationInfo()1357 void NewSpace::UpdateAllocationInfo() {
1358 MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
1359 allocation_info_.set_top(to_space_.page_low());
1360 allocation_info_.set_limit(to_space_.page_high());
1361 UpdateInlineAllocationLimit(0);
1362 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1363 }
1364
1365
ResetAllocationInfo()1366 void NewSpace::ResetAllocationInfo() {
1367 to_space_.Reset();
1368 UpdateAllocationInfo();
1369 pages_used_ = 0;
1370 // Clear all mark-bits in the to-space.
1371 NewSpacePageIterator it(&to_space_);
1372 while (it.has_next()) {
1373 Bitmap::Clear(it.next());
1374 }
1375 }
1376
1377
UpdateInlineAllocationLimit(int size_in_bytes)1378 void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
1379 if (heap()->inline_allocation_disabled()) {
1380 // Lowest limit when linear allocation was disabled.
1381 Address high = to_space_.page_high();
1382 Address new_top = allocation_info_.top() + size_in_bytes;
1383 allocation_info_.set_limit(Min(new_top, high));
1384 } else if (inline_allocation_limit_step() == 0) {
1385 // Normal limit is the end of the current page.
1386 allocation_info_.set_limit(to_space_.page_high());
1387 } else {
1388 // Lower limit during incremental marking.
1389 Address high = to_space_.page_high();
1390 Address new_top = allocation_info_.top() + size_in_bytes;
1391 Address new_limit = new_top + inline_allocation_limit_step_;
1392 allocation_info_.set_limit(Min(new_limit, high));
1393 }
1394 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1395 }
1396
1397
AddFreshPage()1398 bool NewSpace::AddFreshPage() {
1399 Address top = allocation_info_.top();
1400 if (NewSpacePage::IsAtStart(top)) {
1401 // The current page is already empty. Don't try to make another.
1402
1403 // We should only get here if someone asks to allocate more
1404 // than what can be stored in a single page.
1405 // TODO(gc): Change the limit on new-space allocation to prevent this
1406 // from happening (all such allocations should go directly to LOSpace).
1407 return false;
1408 }
1409 if (!to_space_.AdvancePage()) {
1410 // Failed to get a new page in to-space.
1411 return false;
1412 }
1413
1414 // Clear remainder of current page.
1415 Address limit = NewSpacePage::FromLimit(top)->area_end();
1416 if (heap()->gc_state() == Heap::SCAVENGE) {
1417 heap()->promotion_queue()->SetNewLimit(limit);
1418 heap()->promotion_queue()->ActivateGuardIfOnTheSamePage();
1419 }
1420
1421 int remaining_in_page = static_cast<int>(limit - top);
1422 heap()->CreateFillerObjectAt(top, remaining_in_page);
1423 pages_used_++;
1424 UpdateAllocationInfo();
1425
1426 return true;
1427 }
1428
1429
SlowAllocateRaw(int size_in_bytes)1430 MaybeObject* NewSpace::SlowAllocateRaw(int size_in_bytes) {
1431 Address old_top = allocation_info_.top();
1432 Address high = to_space_.page_high();
1433 if (allocation_info_.limit() < high) {
1434 // Either the limit has been lowered because linear allocation was disabled
1435 // or because incremental marking wants to get a chance to do a step. Set
1436 // the new limit accordingly.
1437 Address new_top = old_top + size_in_bytes;
1438 int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_);
1439 heap()->incremental_marking()->Step(
1440 bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
1441 UpdateInlineAllocationLimit(size_in_bytes);
1442 top_on_previous_step_ = new_top;
1443 return AllocateRaw(size_in_bytes);
1444 } else if (AddFreshPage()) {
1445 // Switched to new page. Try allocating again.
1446 int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_);
1447 heap()->incremental_marking()->Step(
1448 bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
1449 top_on_previous_step_ = to_space_.page_low();
1450 return AllocateRaw(size_in_bytes);
1451 } else {
1452 return Failure::RetryAfterGC();
1453 }
1454 }
1455
1456
1457 #ifdef VERIFY_HEAP
1458 // We do not use the SemiSpaceIterator because verification doesn't assume
1459 // that it works (it depends on the invariants we are checking).
Verify()1460 void NewSpace::Verify() {
1461 // The allocation pointer should be in the space or at the very end.
1462 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1463
1464 // There should be objects packed in from the low address up to the
1465 // allocation pointer.
1466 Address current = to_space_.first_page()->area_start();
1467 CHECK_EQ(current, to_space_.space_start());
1468
1469 while (current != top()) {
1470 if (!NewSpacePage::IsAtEnd(current)) {
1471 // The allocation pointer should not be in the middle of an object.
1472 CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) ||
1473 current < top());
1474
1475 HeapObject* object = HeapObject::FromAddress(current);
1476
1477 // The first word should be a map, and we expect all map pointers to
1478 // be in map space.
1479 Map* map = object->map();
1480 CHECK(map->IsMap());
1481 CHECK(heap()->map_space()->Contains(map));
1482
1483 // The object should not be code or a map.
1484 CHECK(!object->IsMap());
1485 CHECK(!object->IsCode());
1486
1487 // The object itself should look OK.
1488 object->Verify();
1489
1490 // All the interior pointers should be contained in the heap.
1491 VerifyPointersVisitor visitor;
1492 int size = object->Size();
1493 object->IterateBody(map->instance_type(), size, &visitor);
1494
1495 current += size;
1496 } else {
1497 // At end of page, switch to next page.
1498 NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page();
1499 // Next page should be valid.
1500 CHECK(!page->is_anchor());
1501 current = page->area_start();
1502 }
1503 }
1504
1505 // Check semi-spaces.
1506 CHECK_EQ(from_space_.id(), kFromSpace);
1507 CHECK_EQ(to_space_.id(), kToSpace);
1508 from_space_.Verify();
1509 to_space_.Verify();
1510 }
1511 #endif
1512
1513 // -----------------------------------------------------------------------------
1514 // SemiSpace implementation
1515
SetUp(Address start,int initial_capacity,int maximum_capacity)1516 void SemiSpace::SetUp(Address start,
1517 int initial_capacity,
1518 int maximum_capacity) {
1519 // Creates a space in the young generation. The constructor does not
1520 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
1521 // memory of size 'capacity' when set up, and does not grow or shrink
1522 // otherwise. In the mark-compact collector, the memory region of the from
1523 // space is used as the marking stack. It requires contiguous memory
1524 // addresses.
1525 ASSERT(maximum_capacity >= Page::kPageSize);
1526 initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
1527 capacity_ = initial_capacity;
1528 maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
1529 maximum_committed_ = 0;
1530 committed_ = false;
1531 start_ = start;
1532 address_mask_ = ~(maximum_capacity - 1);
1533 object_mask_ = address_mask_ | kHeapObjectTagMask;
1534 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1535 age_mark_ = start_;
1536 }
1537
1538
TearDown()1539 void SemiSpace::TearDown() {
1540 start_ = NULL;
1541 capacity_ = 0;
1542 }
1543
1544
Commit()1545 bool SemiSpace::Commit() {
1546 ASSERT(!is_committed());
1547 int pages = capacity_ / Page::kPageSize;
1548 if (!heap()->isolate()->memory_allocator()->CommitBlock(start_,
1549 capacity_,
1550 executable())) {
1551 return false;
1552 }
1553
1554 NewSpacePage* current = anchor();
1555 for (int i = 0; i < pages; i++) {
1556 NewSpacePage* new_page =
1557 NewSpacePage::Initialize(heap(), start_ + i * Page::kPageSize, this);
1558 new_page->InsertAfter(current);
1559 current = new_page;
1560 }
1561
1562 SetCapacity(capacity_);
1563 committed_ = true;
1564 Reset();
1565 return true;
1566 }
1567
1568
Uncommit()1569 bool SemiSpace::Uncommit() {
1570 ASSERT(is_committed());
1571 Address start = start_ + maximum_capacity_ - capacity_;
1572 if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) {
1573 return false;
1574 }
1575 anchor()->set_next_page(anchor());
1576 anchor()->set_prev_page(anchor());
1577
1578 committed_ = false;
1579 return true;
1580 }
1581
1582
CommittedPhysicalMemory()1583 size_t SemiSpace::CommittedPhysicalMemory() {
1584 if (!is_committed()) return 0;
1585 size_t size = 0;
1586 NewSpacePageIterator it(this);
1587 while (it.has_next()) {
1588 size += it.next()->CommittedPhysicalMemory();
1589 }
1590 return size;
1591 }
1592
1593
GrowTo(int new_capacity)1594 bool SemiSpace::GrowTo(int new_capacity) {
1595 if (!is_committed()) {
1596 if (!Commit()) return false;
1597 }
1598 ASSERT((new_capacity & Page::kPageAlignmentMask) == 0);
1599 ASSERT(new_capacity <= maximum_capacity_);
1600 ASSERT(new_capacity > capacity_);
1601 int pages_before = capacity_ / Page::kPageSize;
1602 int pages_after = new_capacity / Page::kPageSize;
1603
1604 size_t delta = new_capacity - capacity_;
1605
1606 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1607 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1608 start_ + capacity_, delta, executable())) {
1609 return false;
1610 }
1611 SetCapacity(new_capacity);
1612 NewSpacePage* last_page = anchor()->prev_page();
1613 ASSERT(last_page != anchor());
1614 for (int i = pages_before; i < pages_after; i++) {
1615 Address page_address = start_ + i * Page::kPageSize;
1616 NewSpacePage* new_page = NewSpacePage::Initialize(heap(),
1617 page_address,
1618 this);
1619 new_page->InsertAfter(last_page);
1620 Bitmap::Clear(new_page);
1621 // Duplicate the flags that was set on the old page.
1622 new_page->SetFlags(last_page->GetFlags(),
1623 NewSpacePage::kCopyOnFlipFlagsMask);
1624 last_page = new_page;
1625 }
1626 return true;
1627 }
1628
1629
ShrinkTo(int new_capacity)1630 bool SemiSpace::ShrinkTo(int new_capacity) {
1631 ASSERT((new_capacity & Page::kPageAlignmentMask) == 0);
1632 ASSERT(new_capacity >= initial_capacity_);
1633 ASSERT(new_capacity < capacity_);
1634 if (is_committed()) {
1635 size_t delta = capacity_ - new_capacity;
1636 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1637
1638 MemoryAllocator* allocator = heap()->isolate()->memory_allocator();
1639 if (!allocator->UncommitBlock(start_ + new_capacity, delta)) {
1640 return false;
1641 }
1642
1643 int pages_after = new_capacity / Page::kPageSize;
1644 NewSpacePage* new_last_page =
1645 NewSpacePage::FromAddress(start_ + (pages_after - 1) * Page::kPageSize);
1646 new_last_page->set_next_page(anchor());
1647 anchor()->set_prev_page(new_last_page);
1648 ASSERT((current_page_ >= first_page()) && (current_page_ <= new_last_page));
1649 }
1650
1651 SetCapacity(new_capacity);
1652
1653 return true;
1654 }
1655
1656
FlipPages(intptr_t flags,intptr_t mask)1657 void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) {
1658 anchor_.set_owner(this);
1659 // Fixup back-pointers to anchor. Address of anchor changes
1660 // when we swap.
1661 anchor_.prev_page()->set_next_page(&anchor_);
1662 anchor_.next_page()->set_prev_page(&anchor_);
1663
1664 bool becomes_to_space = (id_ == kFromSpace);
1665 id_ = becomes_to_space ? kToSpace : kFromSpace;
1666 NewSpacePage* page = anchor_.next_page();
1667 while (page != &anchor_) {
1668 page->set_owner(this);
1669 page->SetFlags(flags, mask);
1670 if (becomes_to_space) {
1671 page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
1672 page->SetFlag(MemoryChunk::IN_TO_SPACE);
1673 page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
1674 page->ResetLiveBytes();
1675 } else {
1676 page->SetFlag(MemoryChunk::IN_FROM_SPACE);
1677 page->ClearFlag(MemoryChunk::IN_TO_SPACE);
1678 }
1679 ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
1680 ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
1681 page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
1682 page = page->next_page();
1683 }
1684 }
1685
1686
Reset()1687 void SemiSpace::Reset() {
1688 ASSERT(anchor_.next_page() != &anchor_);
1689 current_page_ = anchor_.next_page();
1690 }
1691
1692
Swap(SemiSpace * from,SemiSpace * to)1693 void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
1694 // We won't be swapping semispaces without data in them.
1695 ASSERT(from->anchor_.next_page() != &from->anchor_);
1696 ASSERT(to->anchor_.next_page() != &to->anchor_);
1697
1698 // Swap bits.
1699 SemiSpace tmp = *from;
1700 *from = *to;
1701 *to = tmp;
1702
1703 // Fixup back-pointers to the page list anchor now that its address
1704 // has changed.
1705 // Swap to/from-space bits on pages.
1706 // Copy GC flags from old active space (from-space) to new (to-space).
1707 intptr_t flags = from->current_page()->GetFlags();
1708 to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask);
1709
1710 from->FlipPages(0, 0);
1711 }
1712
1713
SetCapacity(int new_capacity)1714 void SemiSpace::SetCapacity(int new_capacity) {
1715 capacity_ = new_capacity;
1716 if (capacity_ > maximum_committed_) {
1717 maximum_committed_ = capacity_;
1718 }
1719 }
1720
1721
set_age_mark(Address mark)1722 void SemiSpace::set_age_mark(Address mark) {
1723 ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this);
1724 age_mark_ = mark;
1725 // Mark all pages up to the one containing mark.
1726 NewSpacePageIterator it(space_start(), mark);
1727 while (it.has_next()) {
1728 it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
1729 }
1730 }
1731
1732
1733 #ifdef DEBUG
Print()1734 void SemiSpace::Print() { }
1735 #endif
1736
1737 #ifdef VERIFY_HEAP
Verify()1738 void SemiSpace::Verify() {
1739 bool is_from_space = (id_ == kFromSpace);
1740 NewSpacePage* page = anchor_.next_page();
1741 CHECK(anchor_.semi_space() == this);
1742 while (page != &anchor_) {
1743 CHECK(page->semi_space() == this);
1744 CHECK(page->InNewSpace());
1745 CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
1746 : MemoryChunk::IN_TO_SPACE));
1747 CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
1748 : MemoryChunk::IN_FROM_SPACE));
1749 CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
1750 if (!is_from_space) {
1751 // The pointers-from-here-are-interesting flag isn't updated dynamically
1752 // on from-space pages, so it might be out of sync with the marking state.
1753 if (page->heap()->incremental_marking()->IsMarking()) {
1754 CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
1755 } else {
1756 CHECK(!page->IsFlagSet(
1757 MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
1758 }
1759 // TODO(gc): Check that the live_bytes_count_ field matches the
1760 // black marking on the page (if we make it match in new-space).
1761 }
1762 CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
1763 CHECK(page->prev_page()->next_page() == page);
1764 page = page->next_page();
1765 }
1766 }
1767 #endif
1768
1769 #ifdef DEBUG
AssertValidRange(Address start,Address end)1770 void SemiSpace::AssertValidRange(Address start, Address end) {
1771 // Addresses belong to same semi-space
1772 NewSpacePage* page = NewSpacePage::FromLimit(start);
1773 NewSpacePage* end_page = NewSpacePage::FromLimit(end);
1774 SemiSpace* space = page->semi_space();
1775 CHECK_EQ(space, end_page->semi_space());
1776 // Start address is before end address, either on same page,
1777 // or end address is on a later page in the linked list of
1778 // semi-space pages.
1779 if (page == end_page) {
1780 CHECK(start <= end);
1781 } else {
1782 while (page != end_page) {
1783 page = page->next_page();
1784 CHECK_NE(page, space->anchor());
1785 }
1786 }
1787 }
1788 #endif
1789
1790
1791 // -----------------------------------------------------------------------------
1792 // SemiSpaceIterator implementation.
SemiSpaceIterator(NewSpace * space)1793 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
1794 Initialize(space->bottom(), space->top(), NULL);
1795 }
1796
1797
SemiSpaceIterator(NewSpace * space,HeapObjectCallback size_func)1798 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
1799 HeapObjectCallback size_func) {
1800 Initialize(space->bottom(), space->top(), size_func);
1801 }
1802
1803
SemiSpaceIterator(NewSpace * space,Address start)1804 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
1805 Initialize(start, space->top(), NULL);
1806 }
1807
1808
SemiSpaceIterator(Address from,Address to)1809 SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) {
1810 Initialize(from, to, NULL);
1811 }
1812
1813
Initialize(Address start,Address end,HeapObjectCallback size_func)1814 void SemiSpaceIterator::Initialize(Address start,
1815 Address end,
1816 HeapObjectCallback size_func) {
1817 SemiSpace::AssertValidRange(start, end);
1818 current_ = start;
1819 limit_ = end;
1820 size_func_ = size_func;
1821 }
1822
1823
1824 #ifdef DEBUG
1825 // heap_histograms is shared, always clear it before using it.
ClearHistograms(Isolate * isolate)1826 static void ClearHistograms(Isolate* isolate) {
1827 // We reset the name each time, though it hasn't changed.
1828 #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
1829 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
1830 #undef DEF_TYPE_NAME
1831
1832 #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
1833 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
1834 #undef CLEAR_HISTOGRAM
1835
1836 isolate->js_spill_information()->Clear();
1837 }
1838
1839
ClearCodeKindStatistics(int * code_kind_statistics)1840 static void ClearCodeKindStatistics(int* code_kind_statistics) {
1841 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1842 code_kind_statistics[i] = 0;
1843 }
1844 }
1845
1846
ReportCodeKindStatistics(int * code_kind_statistics)1847 static void ReportCodeKindStatistics(int* code_kind_statistics) {
1848 PrintF("\n Code kind histograms: \n");
1849 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1850 if (code_kind_statistics[i] > 0) {
1851 PrintF(" %-20s: %10d bytes\n",
1852 Code::Kind2String(static_cast<Code::Kind>(i)),
1853 code_kind_statistics[i]);
1854 }
1855 }
1856 PrintF("\n");
1857 }
1858
1859
CollectHistogramInfo(HeapObject * obj)1860 static int CollectHistogramInfo(HeapObject* obj) {
1861 Isolate* isolate = obj->GetIsolate();
1862 InstanceType type = obj->map()->instance_type();
1863 ASSERT(0 <= type && type <= LAST_TYPE);
1864 ASSERT(isolate->heap_histograms()[type].name() != NULL);
1865 isolate->heap_histograms()[type].increment_number(1);
1866 isolate->heap_histograms()[type].increment_bytes(obj->Size());
1867
1868 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
1869 JSObject::cast(obj)->IncrementSpillStatistics(
1870 isolate->js_spill_information());
1871 }
1872
1873 return obj->Size();
1874 }
1875
1876
ReportHistogram(Isolate * isolate,bool print_spill)1877 static void ReportHistogram(Isolate* isolate, bool print_spill) {
1878 PrintF("\n Object Histogram:\n");
1879 for (int i = 0; i <= LAST_TYPE; i++) {
1880 if (isolate->heap_histograms()[i].number() > 0) {
1881 PrintF(" %-34s%10d (%10d bytes)\n",
1882 isolate->heap_histograms()[i].name(),
1883 isolate->heap_histograms()[i].number(),
1884 isolate->heap_histograms()[i].bytes());
1885 }
1886 }
1887 PrintF("\n");
1888
1889 // Summarize string types.
1890 int string_number = 0;
1891 int string_bytes = 0;
1892 #define INCREMENT(type, size, name, camel_name) \
1893 string_number += isolate->heap_histograms()[type].number(); \
1894 string_bytes += isolate->heap_histograms()[type].bytes();
1895 STRING_TYPE_LIST(INCREMENT)
1896 #undef INCREMENT
1897 if (string_number > 0) {
1898 PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
1899 string_bytes);
1900 }
1901
1902 if (FLAG_collect_heap_spill_statistics && print_spill) {
1903 isolate->js_spill_information()->Print();
1904 }
1905 }
1906 #endif // DEBUG
1907
1908
1909 // Support for statistics gathering for --heap-stats and --log-gc.
ClearHistograms()1910 void NewSpace::ClearHistograms() {
1911 for (int i = 0; i <= LAST_TYPE; i++) {
1912 allocated_histogram_[i].clear();
1913 promoted_histogram_[i].clear();
1914 }
1915 }
1916
1917
1918 // Because the copying collector does not touch garbage objects, we iterate
1919 // the new space before a collection to get a histogram of allocated objects.
1920 // This only happens when --log-gc flag is set.
CollectStatistics()1921 void NewSpace::CollectStatistics() {
1922 ClearHistograms();
1923 SemiSpaceIterator it(this);
1924 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
1925 RecordAllocation(obj);
1926 }
1927
1928
DoReportStatistics(Isolate * isolate,HistogramInfo * info,const char * description)1929 static void DoReportStatistics(Isolate* isolate,
1930 HistogramInfo* info, const char* description) {
1931 LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
1932 // Lump all the string types together.
1933 int string_number = 0;
1934 int string_bytes = 0;
1935 #define INCREMENT(type, size, name, camel_name) \
1936 string_number += info[type].number(); \
1937 string_bytes += info[type].bytes();
1938 STRING_TYPE_LIST(INCREMENT)
1939 #undef INCREMENT
1940 if (string_number > 0) {
1941 LOG(isolate,
1942 HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
1943 }
1944
1945 // Then do the other types.
1946 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
1947 if (info[i].number() > 0) {
1948 LOG(isolate,
1949 HeapSampleItemEvent(info[i].name(), info[i].number(),
1950 info[i].bytes()));
1951 }
1952 }
1953 LOG(isolate, HeapSampleEndEvent("NewSpace", description));
1954 }
1955
1956
ReportStatistics()1957 void NewSpace::ReportStatistics() {
1958 #ifdef DEBUG
1959 if (FLAG_heap_stats) {
1960 float pct = static_cast<float>(Available()) / Capacity();
1961 PrintF(" capacity: %" V8_PTR_PREFIX "d"
1962 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
1963 Capacity(), Available(), static_cast<int>(pct*100));
1964 PrintF("\n Object Histogram:\n");
1965 for (int i = 0; i <= LAST_TYPE; i++) {
1966 if (allocated_histogram_[i].number() > 0) {
1967 PrintF(" %-34s%10d (%10d bytes)\n",
1968 allocated_histogram_[i].name(),
1969 allocated_histogram_[i].number(),
1970 allocated_histogram_[i].bytes());
1971 }
1972 }
1973 PrintF("\n");
1974 }
1975 #endif // DEBUG
1976
1977 if (FLAG_log_gc) {
1978 Isolate* isolate = heap()->isolate();
1979 DoReportStatistics(isolate, allocated_histogram_, "allocated");
1980 DoReportStatistics(isolate, promoted_histogram_, "promoted");
1981 }
1982 }
1983
1984
RecordAllocation(HeapObject * obj)1985 void NewSpace::RecordAllocation(HeapObject* obj) {
1986 InstanceType type = obj->map()->instance_type();
1987 ASSERT(0 <= type && type <= LAST_TYPE);
1988 allocated_histogram_[type].increment_number(1);
1989 allocated_histogram_[type].increment_bytes(obj->Size());
1990 }
1991
1992
RecordPromotion(HeapObject * obj)1993 void NewSpace::RecordPromotion(HeapObject* obj) {
1994 InstanceType type = obj->map()->instance_type();
1995 ASSERT(0 <= type && type <= LAST_TYPE);
1996 promoted_histogram_[type].increment_number(1);
1997 promoted_histogram_[type].increment_bytes(obj->Size());
1998 }
1999
2000
CommittedPhysicalMemory()2001 size_t NewSpace::CommittedPhysicalMemory() {
2002 if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
2003 MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
2004 size_t size = to_space_.CommittedPhysicalMemory();
2005 if (from_space_.is_committed()) {
2006 size += from_space_.CommittedPhysicalMemory();
2007 }
2008 return size;
2009 }
2010
2011
2012 // -----------------------------------------------------------------------------
2013 // Free lists for old object spaces implementation
2014
set_size(Heap * heap,int size_in_bytes)2015 void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
2016 ASSERT(size_in_bytes > 0);
2017 ASSERT(IsAligned(size_in_bytes, kPointerSize));
2018
2019 // We write a map and possibly size information to the block. If the block
2020 // is big enough to be a FreeSpace with at least one extra word (the next
2021 // pointer), we set its map to be the free space map and its size to an
2022 // appropriate array length for the desired size from HeapObject::Size().
2023 // If the block is too small (eg, one or two words), to hold both a size
2024 // field and a next pointer, we give it a filler map that gives it the
2025 // correct size.
2026 if (size_in_bytes > FreeSpace::kHeaderSize) {
2027 set_map_no_write_barrier(heap->raw_unchecked_free_space_map());
2028 // Can't use FreeSpace::cast because it fails during deserialization.
2029 FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this);
2030 this_as_free_space->set_size(size_in_bytes);
2031 } else if (size_in_bytes == kPointerSize) {
2032 set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map());
2033 } else if (size_in_bytes == 2 * kPointerSize) {
2034 set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map());
2035 } else {
2036 UNREACHABLE();
2037 }
2038 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
2039 // deserialization because the free space map is not done yet.
2040 }
2041
2042
next()2043 FreeListNode* FreeListNode::next() {
2044 ASSERT(IsFreeListNode(this));
2045 if (map() == GetHeap()->raw_unchecked_free_space_map()) {
2046 ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
2047 return reinterpret_cast<FreeListNode*>(
2048 Memory::Address_at(address() + kNextOffset));
2049 } else {
2050 return reinterpret_cast<FreeListNode*>(
2051 Memory::Address_at(address() + kPointerSize));
2052 }
2053 }
2054
2055
next_address()2056 FreeListNode** FreeListNode::next_address() {
2057 ASSERT(IsFreeListNode(this));
2058 if (map() == GetHeap()->raw_unchecked_free_space_map()) {
2059 ASSERT(Size() >= kNextOffset + kPointerSize);
2060 return reinterpret_cast<FreeListNode**>(address() + kNextOffset);
2061 } else {
2062 return reinterpret_cast<FreeListNode**>(address() + kPointerSize);
2063 }
2064 }
2065
2066
set_next(FreeListNode * next)2067 void FreeListNode::set_next(FreeListNode* next) {
2068 ASSERT(IsFreeListNode(this));
2069 // While we are booting the VM the free space map will actually be null. So
2070 // we have to make sure that we don't try to use it for anything at that
2071 // stage.
2072 if (map() == GetHeap()->raw_unchecked_free_space_map()) {
2073 ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
2074 Memory::Address_at(address() + kNextOffset) =
2075 reinterpret_cast<Address>(next);
2076 } else {
2077 Memory::Address_at(address() + kPointerSize) =
2078 reinterpret_cast<Address>(next);
2079 }
2080 }
2081
2082
Concatenate(FreeListCategory * category)2083 intptr_t FreeListCategory::Concatenate(FreeListCategory* category) {
2084 intptr_t free_bytes = 0;
2085 if (category->top_ != NULL) {
2086 ASSERT(category->end_ != NULL);
2087 // This is safe (not going to deadlock) since Concatenate operations
2088 // are never performed on the same free lists at the same time in
2089 // reverse order.
2090 LockGuard<Mutex> target_lock_guard(mutex());
2091 LockGuard<Mutex> source_lock_guard(category->mutex());
2092 free_bytes = category->available();
2093 if (end_ == NULL) {
2094 end_ = category->end();
2095 } else {
2096 category->end()->set_next(top_);
2097 }
2098 top_ = category->top();
2099 available_ += category->available();
2100 category->Reset();
2101 }
2102 return free_bytes;
2103 }
2104
2105
Reset()2106 void FreeListCategory::Reset() {
2107 top_ = NULL;
2108 end_ = NULL;
2109 available_ = 0;
2110 }
2111
2112
EvictFreeListItemsInList(Page * p)2113 intptr_t FreeListCategory::EvictFreeListItemsInList(Page* p) {
2114 int sum = 0;
2115 FreeListNode** n = &top_;
2116 while (*n != NULL) {
2117 if (Page::FromAddress((*n)->address()) == p) {
2118 FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n);
2119 sum += free_space->Size();
2120 *n = (*n)->next();
2121 } else {
2122 n = (*n)->next_address();
2123 }
2124 }
2125 if (top_ == NULL) {
2126 end_ = NULL;
2127 }
2128 available_ -= sum;
2129 return sum;
2130 }
2131
2132
PickNodeFromList(int * node_size)2133 FreeListNode* FreeListCategory::PickNodeFromList(int *node_size) {
2134 FreeListNode* node = top_;
2135
2136 if (node == NULL) return NULL;
2137
2138 while (node != NULL &&
2139 Page::FromAddress(node->address())->IsEvacuationCandidate()) {
2140 available_ -= reinterpret_cast<FreeSpace*>(node)->Size();
2141 node = node->next();
2142 }
2143
2144 if (node != NULL) {
2145 set_top(node->next());
2146 *node_size = reinterpret_cast<FreeSpace*>(node)->Size();
2147 available_ -= *node_size;
2148 } else {
2149 set_top(NULL);
2150 }
2151
2152 if (top() == NULL) {
2153 set_end(NULL);
2154 }
2155
2156 return node;
2157 }
2158
2159
PickNodeFromList(int size_in_bytes,int * node_size)2160 FreeListNode* FreeListCategory::PickNodeFromList(int size_in_bytes,
2161 int *node_size) {
2162 FreeListNode* node = PickNodeFromList(node_size);
2163 if (node != NULL && *node_size < size_in_bytes) {
2164 Free(node, *node_size);
2165 *node_size = 0;
2166 return NULL;
2167 }
2168 return node;
2169 }
2170
2171
Free(FreeListNode * node,int size_in_bytes)2172 void FreeListCategory::Free(FreeListNode* node, int size_in_bytes) {
2173 node->set_next(top_);
2174 top_ = node;
2175 if (end_ == NULL) {
2176 end_ = node;
2177 }
2178 available_ += size_in_bytes;
2179 }
2180
2181
RepairFreeList(Heap * heap)2182 void FreeListCategory::RepairFreeList(Heap* heap) {
2183 FreeListNode* n = top_;
2184 while (n != NULL) {
2185 Map** map_location = reinterpret_cast<Map**>(n->address());
2186 if (*map_location == NULL) {
2187 *map_location = heap->free_space_map();
2188 } else {
2189 ASSERT(*map_location == heap->free_space_map());
2190 }
2191 n = n->next();
2192 }
2193 }
2194
2195
FreeList(PagedSpace * owner)2196 FreeList::FreeList(PagedSpace* owner)
2197 : owner_(owner), heap_(owner->heap()) {
2198 Reset();
2199 }
2200
2201
Concatenate(FreeList * free_list)2202 intptr_t FreeList::Concatenate(FreeList* free_list) {
2203 intptr_t free_bytes = 0;
2204 free_bytes += small_list_.Concatenate(free_list->small_list());
2205 free_bytes += medium_list_.Concatenate(free_list->medium_list());
2206 free_bytes += large_list_.Concatenate(free_list->large_list());
2207 free_bytes += huge_list_.Concatenate(free_list->huge_list());
2208 return free_bytes;
2209 }
2210
2211
Reset()2212 void FreeList::Reset() {
2213 small_list_.Reset();
2214 medium_list_.Reset();
2215 large_list_.Reset();
2216 huge_list_.Reset();
2217 }
2218
2219
Free(Address start,int size_in_bytes)2220 int FreeList::Free(Address start, int size_in_bytes) {
2221 if (size_in_bytes == 0) return 0;
2222
2223 FreeListNode* node = FreeListNode::FromAddress(start);
2224 node->set_size(heap_, size_in_bytes);
2225 Page* page = Page::FromAddress(start);
2226
2227 // Early return to drop too-small blocks on the floor.
2228 if (size_in_bytes < kSmallListMin) {
2229 page->add_non_available_small_blocks(size_in_bytes);
2230 return size_in_bytes;
2231 }
2232
2233 // Insert other blocks at the head of a free list of the appropriate
2234 // magnitude.
2235 if (size_in_bytes <= kSmallListMax) {
2236 small_list_.Free(node, size_in_bytes);
2237 page->add_available_in_small_free_list(size_in_bytes);
2238 } else if (size_in_bytes <= kMediumListMax) {
2239 medium_list_.Free(node, size_in_bytes);
2240 page->add_available_in_medium_free_list(size_in_bytes);
2241 } else if (size_in_bytes <= kLargeListMax) {
2242 large_list_.Free(node, size_in_bytes);
2243 page->add_available_in_large_free_list(size_in_bytes);
2244 } else {
2245 huge_list_.Free(node, size_in_bytes);
2246 page->add_available_in_huge_free_list(size_in_bytes);
2247 }
2248
2249 ASSERT(IsVeryLong() || available() == SumFreeLists());
2250 return 0;
2251 }
2252
2253
FindNodeFor(int size_in_bytes,int * node_size)2254 FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
2255 FreeListNode* node = NULL;
2256 Page* page = NULL;
2257
2258 if (size_in_bytes <= kSmallAllocationMax) {
2259 node = small_list_.PickNodeFromList(node_size);
2260 if (node != NULL) {
2261 ASSERT(size_in_bytes <= *node_size);
2262 page = Page::FromAddress(node->address());
2263 page->add_available_in_small_free_list(-(*node_size));
2264 ASSERT(IsVeryLong() || available() == SumFreeLists());
2265 return node;
2266 }
2267 }
2268
2269 if (size_in_bytes <= kMediumAllocationMax) {
2270 node = medium_list_.PickNodeFromList(node_size);
2271 if (node != NULL) {
2272 ASSERT(size_in_bytes <= *node_size);
2273 page = Page::FromAddress(node->address());
2274 page->add_available_in_medium_free_list(-(*node_size));
2275 ASSERT(IsVeryLong() || available() == SumFreeLists());
2276 return node;
2277 }
2278 }
2279
2280 if (size_in_bytes <= kLargeAllocationMax) {
2281 node = large_list_.PickNodeFromList(node_size);
2282 if (node != NULL) {
2283 ASSERT(size_in_bytes <= *node_size);
2284 page = Page::FromAddress(node->address());
2285 page->add_available_in_large_free_list(-(*node_size));
2286 ASSERT(IsVeryLong() || available() == SumFreeLists());
2287 return node;
2288 }
2289 }
2290
2291 int huge_list_available = huge_list_.available();
2292 for (FreeListNode** cur = huge_list_.GetTopAddress();
2293 *cur != NULL;
2294 cur = (*cur)->next_address()) {
2295 FreeListNode* cur_node = *cur;
2296 while (cur_node != NULL &&
2297 Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) {
2298 int size = reinterpret_cast<FreeSpace*>(cur_node)->Size();
2299 huge_list_available -= size;
2300 page = Page::FromAddress(cur_node->address());
2301 page->add_available_in_huge_free_list(-size);
2302 cur_node = cur_node->next();
2303 }
2304
2305 *cur = cur_node;
2306 if (cur_node == NULL) {
2307 huge_list_.set_end(NULL);
2308 break;
2309 }
2310
2311 ASSERT((*cur)->map() == heap_->raw_unchecked_free_space_map());
2312 FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
2313 int size = cur_as_free_space->Size();
2314 if (size >= size_in_bytes) {
2315 // Large enough node found. Unlink it from the list.
2316 node = *cur;
2317 *cur = node->next();
2318 *node_size = size;
2319 huge_list_available -= size;
2320 page = Page::FromAddress(node->address());
2321 page->add_available_in_huge_free_list(-size);
2322 break;
2323 }
2324 }
2325
2326 if (huge_list_.top() == NULL) {
2327 huge_list_.set_end(NULL);
2328 }
2329 huge_list_.set_available(huge_list_available);
2330
2331 if (node != NULL) {
2332 ASSERT(IsVeryLong() || available() == SumFreeLists());
2333 return node;
2334 }
2335
2336 if (size_in_bytes <= kSmallListMax) {
2337 node = small_list_.PickNodeFromList(size_in_bytes, node_size);
2338 if (node != NULL) {
2339 ASSERT(size_in_bytes <= *node_size);
2340 page = Page::FromAddress(node->address());
2341 page->add_available_in_small_free_list(-(*node_size));
2342 }
2343 } else if (size_in_bytes <= kMediumListMax) {
2344 node = medium_list_.PickNodeFromList(size_in_bytes, node_size);
2345 if (node != NULL) {
2346 ASSERT(size_in_bytes <= *node_size);
2347 page = Page::FromAddress(node->address());
2348 page->add_available_in_medium_free_list(-(*node_size));
2349 }
2350 } else if (size_in_bytes <= kLargeListMax) {
2351 node = large_list_.PickNodeFromList(size_in_bytes, node_size);
2352 if (node != NULL) {
2353 ASSERT(size_in_bytes <= *node_size);
2354 page = Page::FromAddress(node->address());
2355 page->add_available_in_large_free_list(-(*node_size));
2356 }
2357 }
2358
2359 ASSERT(IsVeryLong() || available() == SumFreeLists());
2360 return node;
2361 }
2362
2363
2364 // Allocation on the old space free list. If it succeeds then a new linear
2365 // allocation space has been set up with the top and limit of the space. If
2366 // the allocation fails then NULL is returned, and the caller can perform a GC
2367 // or allocate a new page before retrying.
Allocate(int size_in_bytes)2368 HeapObject* FreeList::Allocate(int size_in_bytes) {
2369 ASSERT(0 < size_in_bytes);
2370 ASSERT(size_in_bytes <= kMaxBlockSize);
2371 ASSERT(IsAligned(size_in_bytes, kPointerSize));
2372 // Don't free list allocate if there is linear space available.
2373 ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
2374
2375 int old_linear_size = static_cast<int>(owner_->limit() - owner_->top());
2376 // Mark the old linear allocation area with a free space map so it can be
2377 // skipped when scanning the heap. This also puts it back in the free list
2378 // if it is big enough.
2379 owner_->Free(owner_->top(), old_linear_size);
2380
2381 owner_->heap()->incremental_marking()->OldSpaceStep(
2382 size_in_bytes - old_linear_size);
2383
2384 int new_node_size = 0;
2385 FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size);
2386 if (new_node == NULL) {
2387 owner_->SetTopAndLimit(NULL, NULL);
2388 return NULL;
2389 }
2390
2391 int bytes_left = new_node_size - size_in_bytes;
2392 ASSERT(bytes_left >= 0);
2393
2394 #ifdef DEBUG
2395 for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
2396 reinterpret_cast<Object**>(new_node->address())[i] =
2397 Smi::FromInt(kCodeZapValue);
2398 }
2399 #endif
2400
2401 // The old-space-step might have finished sweeping and restarted marking.
2402 // Verify that it did not turn the page of the new node into an evacuation
2403 // candidate.
2404 ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
2405
2406 const int kThreshold = IncrementalMarking::kAllocatedThreshold;
2407
2408 // Memory in the linear allocation area is counted as allocated. We may free
2409 // a little of this again immediately - see below.
2410 owner_->Allocate(new_node_size);
2411
2412 if (owner_->heap()->inline_allocation_disabled()) {
2413 // Keep the linear allocation area empty if requested to do so, just
2414 // return area back to the free list instead.
2415 owner_->Free(new_node->address() + size_in_bytes, bytes_left);
2416 ASSERT(owner_->top() == NULL && owner_->limit() == NULL);
2417 } else if (bytes_left > kThreshold &&
2418 owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
2419 FLAG_incremental_marking_steps) {
2420 int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
2421 // We don't want to give too large linear areas to the allocator while
2422 // incremental marking is going on, because we won't check again whether
2423 // we want to do another increment until the linear area is used up.
2424 owner_->Free(new_node->address() + size_in_bytes + linear_size,
2425 new_node_size - size_in_bytes - linear_size);
2426 owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
2427 new_node->address() + size_in_bytes + linear_size);
2428 } else if (bytes_left > 0) {
2429 // Normally we give the rest of the node to the allocator as its new
2430 // linear allocation area.
2431 owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
2432 new_node->address() + new_node_size);
2433 } else {
2434 // TODO(gc) Try not freeing linear allocation region when bytes_left
2435 // are zero.
2436 owner_->SetTopAndLimit(NULL, NULL);
2437 }
2438
2439 return new_node;
2440 }
2441
2442
EvictFreeListItems(Page * p)2443 intptr_t FreeList::EvictFreeListItems(Page* p) {
2444 intptr_t sum = huge_list_.EvictFreeListItemsInList(p);
2445 p->set_available_in_huge_free_list(0);
2446
2447 if (sum < p->area_size()) {
2448 sum += small_list_.EvictFreeListItemsInList(p) +
2449 medium_list_.EvictFreeListItemsInList(p) +
2450 large_list_.EvictFreeListItemsInList(p);
2451 p->set_available_in_small_free_list(0);
2452 p->set_available_in_medium_free_list(0);
2453 p->set_available_in_large_free_list(0);
2454 }
2455
2456 return sum;
2457 }
2458
2459
RepairLists(Heap * heap)2460 void FreeList::RepairLists(Heap* heap) {
2461 small_list_.RepairFreeList(heap);
2462 medium_list_.RepairFreeList(heap);
2463 large_list_.RepairFreeList(heap);
2464 huge_list_.RepairFreeList(heap);
2465 }
2466
2467
2468 #ifdef DEBUG
SumFreeList()2469 intptr_t FreeListCategory::SumFreeList() {
2470 intptr_t sum = 0;
2471 FreeListNode* cur = top_;
2472 while (cur != NULL) {
2473 ASSERT(cur->map() == cur->GetHeap()->raw_unchecked_free_space_map());
2474 FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur);
2475 sum += cur_as_free_space->Size();
2476 cur = cur->next();
2477 }
2478 return sum;
2479 }
2480
2481
2482 static const int kVeryLongFreeList = 500;
2483
2484
FreeListLength()2485 int FreeListCategory::FreeListLength() {
2486 int length = 0;
2487 FreeListNode* cur = top_;
2488 while (cur != NULL) {
2489 length++;
2490 cur = cur->next();
2491 if (length == kVeryLongFreeList) return length;
2492 }
2493 return length;
2494 }
2495
2496
IsVeryLong()2497 bool FreeList::IsVeryLong() {
2498 if (small_list_.FreeListLength() == kVeryLongFreeList) return true;
2499 if (medium_list_.FreeListLength() == kVeryLongFreeList) return true;
2500 if (large_list_.FreeListLength() == kVeryLongFreeList) return true;
2501 if (huge_list_.FreeListLength() == kVeryLongFreeList) return true;
2502 return false;
2503 }
2504
2505
2506 // This can take a very long time because it is linear in the number of entries
2507 // on the free list, so it should not be called if FreeListLength returns
2508 // kVeryLongFreeList.
SumFreeLists()2509 intptr_t FreeList::SumFreeLists() {
2510 intptr_t sum = small_list_.SumFreeList();
2511 sum += medium_list_.SumFreeList();
2512 sum += large_list_.SumFreeList();
2513 sum += huge_list_.SumFreeList();
2514 return sum;
2515 }
2516 #endif
2517
2518
2519 // -----------------------------------------------------------------------------
2520 // OldSpace implementation
2521
PrepareForMarkCompact()2522 void PagedSpace::PrepareForMarkCompact() {
2523 // We don't have a linear allocation area while sweeping. It will be restored
2524 // on the first allocation after the sweep.
2525 EmptyAllocationInfo();
2526
2527 // Stop lazy sweeping and clear marking bits for unswept pages.
2528 if (first_unswept_page_ != NULL) {
2529 Page* p = first_unswept_page_;
2530 do {
2531 // Do not use ShouldBeSweptLazily predicate here.
2532 // New evacuation candidates were selected but they still have
2533 // to be swept before collection starts.
2534 if (!p->WasSwept()) {
2535 Bitmap::Clear(p);
2536 if (FLAG_gc_verbose) {
2537 PrintF("Sweeping 0x%" V8PRIxPTR " lazily abandoned.\n",
2538 reinterpret_cast<intptr_t>(p));
2539 }
2540 }
2541 p = p->next_page();
2542 } while (p != anchor());
2543 }
2544 first_unswept_page_ = Page::FromAddress(NULL);
2545 unswept_free_bytes_ = 0;
2546
2547 // Clear the free list before a full GC---it will be rebuilt afterward.
2548 free_list_.Reset();
2549 }
2550
2551
SizeOfObjects()2552 intptr_t PagedSpace::SizeOfObjects() {
2553 ASSERT(!heap()->IsSweepingComplete() || (unswept_free_bytes_ == 0));
2554 return Size() - unswept_free_bytes_ - (limit() - top());
2555 }
2556
2557
2558 // After we have booted, we have created a map which represents free space
2559 // on the heap. If there was already a free list then the elements on it
2560 // were created with the wrong FreeSpaceMap (normally NULL), so we need to
2561 // fix them.
RepairFreeListsAfterBoot()2562 void PagedSpace::RepairFreeListsAfterBoot() {
2563 free_list_.RepairLists(heap());
2564 }
2565
2566
AdvanceSweeper(intptr_t bytes_to_sweep)2567 bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) {
2568 if (IsLazySweepingComplete()) return true;
2569
2570 intptr_t freed_bytes = 0;
2571 Page* p = first_unswept_page_;
2572 do {
2573 Page* next_page = p->next_page();
2574 if (ShouldBeSweptLazily(p)) {
2575 if (FLAG_gc_verbose) {
2576 PrintF("Sweeping 0x%" V8PRIxPTR " lazily advanced.\n",
2577 reinterpret_cast<intptr_t>(p));
2578 }
2579 DecreaseUnsweptFreeBytes(p);
2580 freed_bytes +=
2581 MarkCompactCollector::
2582 SweepConservatively<MarkCompactCollector::SWEEP_SEQUENTIALLY>(
2583 this, NULL, p);
2584 }
2585 p = next_page;
2586 } while (p != anchor() && freed_bytes < bytes_to_sweep);
2587
2588 if (p == anchor()) {
2589 first_unswept_page_ = Page::FromAddress(NULL);
2590 } else {
2591 first_unswept_page_ = p;
2592 }
2593
2594 heap()->FreeQueuedChunks();
2595
2596 return IsLazySweepingComplete();
2597 }
2598
2599
EvictEvacuationCandidatesFromFreeLists()2600 void PagedSpace::EvictEvacuationCandidatesFromFreeLists() {
2601 if (allocation_info_.top() >= allocation_info_.limit()) return;
2602
2603 if (Page::FromAllocationTop(allocation_info_.top())->
2604 IsEvacuationCandidate()) {
2605 // Create filler object to keep page iterable if it was iterable.
2606 int remaining =
2607 static_cast<int>(allocation_info_.limit() - allocation_info_.top());
2608 heap()->CreateFillerObjectAt(allocation_info_.top(), remaining);
2609
2610 allocation_info_.set_top(NULL);
2611 allocation_info_.set_limit(NULL);
2612 }
2613 }
2614
2615
EnsureSweeperProgress(intptr_t size_in_bytes)2616 bool PagedSpace::EnsureSweeperProgress(intptr_t size_in_bytes) {
2617 MarkCompactCollector* collector = heap()->mark_compact_collector();
2618 if (collector->AreSweeperThreadsActivated()) {
2619 if (collector->IsConcurrentSweepingInProgress()) {
2620 if (collector->StealMemoryFromSweeperThreads(this) < size_in_bytes) {
2621 if (!collector->sequential_sweeping()) {
2622 collector->WaitUntilSweepingCompleted();
2623 return true;
2624 }
2625 }
2626 return false;
2627 }
2628 return true;
2629 } else {
2630 return AdvanceSweeper(size_in_bytes);
2631 }
2632 }
2633
2634
SlowAllocateRaw(int size_in_bytes)2635 HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
2636 // Allocation in this space has failed.
2637
2638 // If there are unswept pages advance lazy sweeper a bounded number of times
2639 // until we find a size_in_bytes contiguous piece of memory
2640 const int kMaxSweepingTries = 5;
2641 bool sweeping_complete = false;
2642
2643 for (int i = 0; i < kMaxSweepingTries && !sweeping_complete; i++) {
2644 sweeping_complete = EnsureSweeperProgress(size_in_bytes);
2645
2646 // Retry the free list allocation.
2647 HeapObject* object = free_list_.Allocate(size_in_bytes);
2648 if (object != NULL) return object;
2649 }
2650
2651 // Free list allocation failed and there is no next page. Fail if we have
2652 // hit the old generation size limit that should cause a garbage
2653 // collection.
2654 if (!heap()->always_allocate() &&
2655 heap()->OldGenerationAllocationLimitReached()) {
2656 return NULL;
2657 }
2658
2659 // Try to expand the space and allocate in the new next page.
2660 if (Expand()) {
2661 ASSERT(CountTotalPages() > 1 || size_in_bytes <= free_list_.available());
2662 return free_list_.Allocate(size_in_bytes);
2663 }
2664
2665 // Last ditch, sweep all the remaining pages to try to find space. This may
2666 // cause a pause.
2667 if (!IsLazySweepingComplete()) {
2668 EnsureSweeperProgress(kMaxInt);
2669
2670 // Retry the free list allocation.
2671 HeapObject* object = free_list_.Allocate(size_in_bytes);
2672 if (object != NULL) return object;
2673 }
2674
2675 // Finally, fail.
2676 return NULL;
2677 }
2678
2679
2680 #ifdef DEBUG
ReportCodeStatistics(Isolate * isolate)2681 void PagedSpace::ReportCodeStatistics(Isolate* isolate) {
2682 CommentStatistic* comments_statistics =
2683 isolate->paged_space_comments_statistics();
2684 ReportCodeKindStatistics(isolate->code_kind_statistics());
2685 PrintF("Code comment statistics (\" [ comment-txt : size/ "
2686 "count (average)\"):\n");
2687 for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
2688 const CommentStatistic& cs = comments_statistics[i];
2689 if (cs.size > 0) {
2690 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
2691 cs.size/cs.count);
2692 }
2693 }
2694 PrintF("\n");
2695 }
2696
2697
ResetCodeStatistics(Isolate * isolate)2698 void PagedSpace::ResetCodeStatistics(Isolate* isolate) {
2699 CommentStatistic* comments_statistics =
2700 isolate->paged_space_comments_statistics();
2701 ClearCodeKindStatistics(isolate->code_kind_statistics());
2702 for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
2703 comments_statistics[i].Clear();
2704 }
2705 comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
2706 comments_statistics[CommentStatistic::kMaxComments].size = 0;
2707 comments_statistics[CommentStatistic::kMaxComments].count = 0;
2708 }
2709
2710
2711 // Adds comment to 'comment_statistics' table. Performance OK as long as
2712 // 'kMaxComments' is small
EnterComment(Isolate * isolate,const char * comment,int delta)2713 static void EnterComment(Isolate* isolate, const char* comment, int delta) {
2714 CommentStatistic* comments_statistics =
2715 isolate->paged_space_comments_statistics();
2716 // Do not count empty comments
2717 if (delta <= 0) return;
2718 CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
2719 // Search for a free or matching entry in 'comments_statistics': 'cs'
2720 // points to result.
2721 for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
2722 if (comments_statistics[i].comment == NULL) {
2723 cs = &comments_statistics[i];
2724 cs->comment = comment;
2725 break;
2726 } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
2727 cs = &comments_statistics[i];
2728 break;
2729 }
2730 }
2731 // Update entry for 'comment'
2732 cs->size += delta;
2733 cs->count += 1;
2734 }
2735
2736
2737 // Call for each nested comment start (start marked with '[ xxx', end marked
2738 // with ']'. RelocIterator 'it' must point to a comment reloc info.
CollectCommentStatistics(Isolate * isolate,RelocIterator * it)2739 static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
2740 ASSERT(!it->done());
2741 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
2742 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
2743 if (tmp[0] != '[') {
2744 // Not a nested comment; skip
2745 return;
2746 }
2747
2748 // Search for end of nested comment or a new nested comment
2749 const char* const comment_txt =
2750 reinterpret_cast<const char*>(it->rinfo()->data());
2751 const byte* prev_pc = it->rinfo()->pc();
2752 int flat_delta = 0;
2753 it->next();
2754 while (true) {
2755 // All nested comments must be terminated properly, and therefore exit
2756 // from loop.
2757 ASSERT(!it->done());
2758 if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
2759 const char* const txt =
2760 reinterpret_cast<const char*>(it->rinfo()->data());
2761 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
2762 if (txt[0] == ']') break; // End of nested comment
2763 // A new comment
2764 CollectCommentStatistics(isolate, it);
2765 // Skip code that was covered with previous comment
2766 prev_pc = it->rinfo()->pc();
2767 }
2768 it->next();
2769 }
2770 EnterComment(isolate, comment_txt, flat_delta);
2771 }
2772
2773
2774 // Collects code size statistics:
2775 // - by code kind
2776 // - by code comment
CollectCodeStatistics()2777 void PagedSpace::CollectCodeStatistics() {
2778 Isolate* isolate = heap()->isolate();
2779 HeapObjectIterator obj_it(this);
2780 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
2781 if (obj->IsCode()) {
2782 Code* code = Code::cast(obj);
2783 isolate->code_kind_statistics()[code->kind()] += code->Size();
2784 RelocIterator it(code);
2785 int delta = 0;
2786 const byte* prev_pc = code->instruction_start();
2787 while (!it.done()) {
2788 if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
2789 delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
2790 CollectCommentStatistics(isolate, &it);
2791 prev_pc = it.rinfo()->pc();
2792 }
2793 it.next();
2794 }
2795
2796 ASSERT(code->instruction_start() <= prev_pc &&
2797 prev_pc <= code->instruction_end());
2798 delta += static_cast<int>(code->instruction_end() - prev_pc);
2799 EnterComment(isolate, "NoComment", delta);
2800 }
2801 }
2802 }
2803
2804
ReportStatistics()2805 void PagedSpace::ReportStatistics() {
2806 int pct = static_cast<int>(Available() * 100 / Capacity());
2807 PrintF(" capacity: %" V8_PTR_PREFIX "d"
2808 ", waste: %" V8_PTR_PREFIX "d"
2809 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
2810 Capacity(), Waste(), Available(), pct);
2811
2812 if (was_swept_conservatively_) return;
2813 ClearHistograms(heap()->isolate());
2814 HeapObjectIterator obj_it(this);
2815 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
2816 CollectHistogramInfo(obj);
2817 ReportHistogram(heap()->isolate(), true);
2818 }
2819 #endif
2820
2821
2822 // -----------------------------------------------------------------------------
2823 // MapSpace implementation
2824 // TODO(mvstanton): this is weird...the compiler can't make a vtable unless
2825 // there is at least one non-inlined virtual function. I would prefer to hide
2826 // the VerifyObject definition behind VERIFY_HEAP.
2827
VerifyObject(HeapObject * object)2828 void MapSpace::VerifyObject(HeapObject* object) {
2829 CHECK(object->IsMap());
2830 }
2831
2832
2833 // -----------------------------------------------------------------------------
2834 // CellSpace and PropertyCellSpace implementation
2835 // TODO(mvstanton): this is weird...the compiler can't make a vtable unless
2836 // there is at least one non-inlined virtual function. I would prefer to hide
2837 // the VerifyObject definition behind VERIFY_HEAP.
2838
VerifyObject(HeapObject * object)2839 void CellSpace::VerifyObject(HeapObject* object) {
2840 CHECK(object->IsCell());
2841 }
2842
2843
VerifyObject(HeapObject * object)2844 void PropertyCellSpace::VerifyObject(HeapObject* object) {
2845 CHECK(object->IsPropertyCell());
2846 }
2847
2848
2849 // -----------------------------------------------------------------------------
2850 // LargeObjectIterator
2851
LargeObjectIterator(LargeObjectSpace * space)2852 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
2853 current_ = space->first_page_;
2854 size_func_ = NULL;
2855 }
2856
2857
LargeObjectIterator(LargeObjectSpace * space,HeapObjectCallback size_func)2858 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
2859 HeapObjectCallback size_func) {
2860 current_ = space->first_page_;
2861 size_func_ = size_func;
2862 }
2863
2864
Next()2865 HeapObject* LargeObjectIterator::Next() {
2866 if (current_ == NULL) return NULL;
2867
2868 HeapObject* object = current_->GetObject();
2869 current_ = current_->next_page();
2870 return object;
2871 }
2872
2873
2874 // -----------------------------------------------------------------------------
2875 // LargeObjectSpace
ComparePointers(void * key1,void * key2)2876 static bool ComparePointers(void* key1, void* key2) {
2877 return key1 == key2;
2878 }
2879
2880
LargeObjectSpace(Heap * heap,intptr_t max_capacity,AllocationSpace id)2881 LargeObjectSpace::LargeObjectSpace(Heap* heap,
2882 intptr_t max_capacity,
2883 AllocationSpace id)
2884 : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
2885 max_capacity_(max_capacity),
2886 first_page_(NULL),
2887 size_(0),
2888 page_count_(0),
2889 objects_size_(0),
2890 chunk_map_(ComparePointers, 1024) {}
2891
2892
SetUp()2893 bool LargeObjectSpace::SetUp() {
2894 first_page_ = NULL;
2895 size_ = 0;
2896 maximum_committed_ = 0;
2897 page_count_ = 0;
2898 objects_size_ = 0;
2899 chunk_map_.Clear();
2900 return true;
2901 }
2902
2903
TearDown()2904 void LargeObjectSpace::TearDown() {
2905 while (first_page_ != NULL) {
2906 LargePage* page = first_page_;
2907 first_page_ = first_page_->next_page();
2908 LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
2909
2910 ObjectSpace space = static_cast<ObjectSpace>(1 << identity());
2911 heap()->isolate()->memory_allocator()->PerformAllocationCallback(
2912 space, kAllocationActionFree, page->size());
2913 heap()->isolate()->memory_allocator()->Free(page);
2914 }
2915 SetUp();
2916 }
2917
2918
AllocateRaw(int object_size,Executability executable)2919 MaybeObject* LargeObjectSpace::AllocateRaw(int object_size,
2920 Executability executable) {
2921 // Check if we want to force a GC before growing the old space further.
2922 // If so, fail the allocation.
2923 if (!heap()->always_allocate() &&
2924 heap()->OldGenerationAllocationLimitReached()) {
2925 return Failure::RetryAfterGC(identity());
2926 }
2927
2928 if (Size() + object_size > max_capacity_) {
2929 return Failure::RetryAfterGC(identity());
2930 }
2931
2932 LargePage* page = heap()->isolate()->memory_allocator()->
2933 AllocateLargePage(object_size, this, executable);
2934 if (page == NULL) return Failure::RetryAfterGC(identity());
2935 ASSERT(page->area_size() >= object_size);
2936
2937 size_ += static_cast<int>(page->size());
2938 objects_size_ += object_size;
2939 page_count_++;
2940 page->set_next_page(first_page_);
2941 first_page_ = page;
2942
2943 if (size_ > maximum_committed_) {
2944 maximum_committed_ = size_;
2945 }
2946
2947 // Register all MemoryChunk::kAlignment-aligned chunks covered by
2948 // this large page in the chunk map.
2949 uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
2950 uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment;
2951 for (uintptr_t key = base; key <= limit; key++) {
2952 HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key),
2953 static_cast<uint32_t>(key),
2954 true);
2955 ASSERT(entry != NULL);
2956 entry->value = page;
2957 }
2958
2959 HeapObject* object = page->GetObject();
2960
2961 if (Heap::ShouldZapGarbage()) {
2962 // Make the object consistent so the heap can be verified in OldSpaceStep.
2963 // We only need to do this in debug builds or if verify_heap is on.
2964 reinterpret_cast<Object**>(object->address())[0] =
2965 heap()->fixed_array_map();
2966 reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0);
2967 }
2968
2969 heap()->incremental_marking()->OldSpaceStep(object_size);
2970 return object;
2971 }
2972
2973
CommittedPhysicalMemory()2974 size_t LargeObjectSpace::CommittedPhysicalMemory() {
2975 if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
2976 size_t size = 0;
2977 LargePage* current = first_page_;
2978 while (current != NULL) {
2979 size += current->CommittedPhysicalMemory();
2980 current = current->next_page();
2981 }
2982 return size;
2983 }
2984
2985
2986 // GC support
FindObject(Address a)2987 MaybeObject* LargeObjectSpace::FindObject(Address a) {
2988 LargePage* page = FindPage(a);
2989 if (page != NULL) {
2990 return page->GetObject();
2991 }
2992 return Failure::Exception();
2993 }
2994
2995
FindPage(Address a)2996 LargePage* LargeObjectSpace::FindPage(Address a) {
2997 uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
2998 HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
2999 static_cast<uint32_t>(key),
3000 false);
3001 if (e != NULL) {
3002 ASSERT(e->value != NULL);
3003 LargePage* page = reinterpret_cast<LargePage*>(e->value);
3004 ASSERT(page->is_valid());
3005 if (page->Contains(a)) {
3006 return page;
3007 }
3008 }
3009 return NULL;
3010 }
3011
3012
FreeUnmarkedObjects()3013 void LargeObjectSpace::FreeUnmarkedObjects() {
3014 LargePage* previous = NULL;
3015 LargePage* current = first_page_;
3016 while (current != NULL) {
3017 HeapObject* object = current->GetObject();
3018 // Can this large page contain pointers to non-trivial objects. No other
3019 // pointer object is this big.
3020 bool is_pointer_object = object->IsFixedArray();
3021 MarkBit mark_bit = Marking::MarkBitFrom(object);
3022 if (mark_bit.Get()) {
3023 mark_bit.Clear();
3024 Page::FromAddress(object->address())->ResetProgressBar();
3025 Page::FromAddress(object->address())->ResetLiveBytes();
3026 previous = current;
3027 current = current->next_page();
3028 } else {
3029 LargePage* page = current;
3030 // Cut the chunk out from the chunk list.
3031 current = current->next_page();
3032 if (previous == NULL) {
3033 first_page_ = current;
3034 } else {
3035 previous->set_next_page(current);
3036 }
3037
3038 // Free the chunk.
3039 heap()->mark_compact_collector()->ReportDeleteIfNeeded(
3040 object, heap()->isolate());
3041 size_ -= static_cast<int>(page->size());
3042 objects_size_ -= object->Size();
3043 page_count_--;
3044
3045 // Remove entries belonging to this page.
3046 // Use variable alignment to help pass length check (<= 80 characters)
3047 // of single line in tools/presubmit.py.
3048 const intptr_t alignment = MemoryChunk::kAlignment;
3049 uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment;
3050 uintptr_t limit = base + (page->size()-1)/alignment;
3051 for (uintptr_t key = base; key <= limit; key++) {
3052 chunk_map_.Remove(reinterpret_cast<void*>(key),
3053 static_cast<uint32_t>(key));
3054 }
3055
3056 if (is_pointer_object) {
3057 heap()->QueueMemoryChunkForFree(page);
3058 } else {
3059 heap()->isolate()->memory_allocator()->Free(page);
3060 }
3061 }
3062 }
3063 heap()->FreeQueuedChunks();
3064 }
3065
3066
Contains(HeapObject * object)3067 bool LargeObjectSpace::Contains(HeapObject* object) {
3068 Address address = object->address();
3069 MemoryChunk* chunk = MemoryChunk::FromAddress(address);
3070
3071 bool owned = (chunk->owner() == this);
3072
3073 SLOW_ASSERT(!owned || !FindObject(address)->IsFailure());
3074
3075 return owned;
3076 }
3077
3078
3079 #ifdef VERIFY_HEAP
3080 // We do not assume that the large object iterator works, because it depends
3081 // on the invariants we are checking during verification.
Verify()3082 void LargeObjectSpace::Verify() {
3083 for (LargePage* chunk = first_page_;
3084 chunk != NULL;
3085 chunk = chunk->next_page()) {
3086 // Each chunk contains an object that starts at the large object page's
3087 // object area start.
3088 HeapObject* object = chunk->GetObject();
3089 Page* page = Page::FromAddress(object->address());
3090 CHECK(object->address() == page->area_start());
3091
3092 // The first word should be a map, and we expect all map pointers to be
3093 // in map space.
3094 Map* map = object->map();
3095 CHECK(map->IsMap());
3096 CHECK(heap()->map_space()->Contains(map));
3097
3098 // We have only code, sequential strings, external strings
3099 // (sequential strings that have been morphed into external
3100 // strings), fixed arrays, and byte arrays in large object space.
3101 CHECK(object->IsCode() || object->IsSeqString() ||
3102 object->IsExternalString() || object->IsFixedArray() ||
3103 object->IsFixedDoubleArray() || object->IsByteArray());
3104
3105 // The object itself should look OK.
3106 object->Verify();
3107
3108 // Byte arrays and strings don't have interior pointers.
3109 if (object->IsCode()) {
3110 VerifyPointersVisitor code_visitor;
3111 object->IterateBody(map->instance_type(),
3112 object->Size(),
3113 &code_visitor);
3114 } else if (object->IsFixedArray()) {
3115 FixedArray* array = FixedArray::cast(object);
3116 for (int j = 0; j < array->length(); j++) {
3117 Object* element = array->get(j);
3118 if (element->IsHeapObject()) {
3119 HeapObject* element_object = HeapObject::cast(element);
3120 CHECK(heap()->Contains(element_object));
3121 CHECK(element_object->map()->IsMap());
3122 }
3123 }
3124 }
3125 }
3126 }
3127 #endif
3128
3129
3130 #ifdef DEBUG
Print()3131 void LargeObjectSpace::Print() {
3132 LargeObjectIterator it(this);
3133 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3134 obj->Print();
3135 }
3136 }
3137
3138
ReportStatistics()3139 void LargeObjectSpace::ReportStatistics() {
3140 PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
3141 int num_objects = 0;
3142 ClearHistograms(heap()->isolate());
3143 LargeObjectIterator it(this);
3144 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3145 num_objects++;
3146 CollectHistogramInfo(obj);
3147 }
3148
3149 PrintF(" number of objects %d, "
3150 "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
3151 if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
3152 }
3153
3154
CollectCodeStatistics()3155 void LargeObjectSpace::CollectCodeStatistics() {
3156 Isolate* isolate = heap()->isolate();
3157 LargeObjectIterator obj_it(this);
3158 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
3159 if (obj->IsCode()) {
3160 Code* code = Code::cast(obj);
3161 isolate->code_kind_statistics()[code->kind()] += code->Size();
3162 }
3163 }
3164 }
3165
3166
Print()3167 void Page::Print() {
3168 // Make a best-effort to print the objects in the page.
3169 PrintF("Page@%p in %s\n",
3170 this->address(),
3171 AllocationSpaceName(this->owner()->identity()));
3172 printf(" --------------------------------------\n");
3173 HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction());
3174 unsigned mark_size = 0;
3175 for (HeapObject* object = objects.Next();
3176 object != NULL;
3177 object = objects.Next()) {
3178 bool is_marked = Marking::MarkBitFrom(object).Get();
3179 PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little.
3180 if (is_marked) {
3181 mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object);
3182 }
3183 object->ShortPrint();
3184 PrintF("\n");
3185 }
3186 printf(" --------------------------------------\n");
3187 printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
3188 }
3189
3190 #endif // DEBUG
3191
3192 } } // namespace v8::internal
3193