• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if V8_TARGET_ARCH_X64
31 
32 #include "codegen.h"
33 #include "deoptimizer.h"
34 #include "full-codegen.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 
40 #define __ ACCESS_MASM(masm)
41 
42 
Generate_Adaptor(MacroAssembler * masm,CFunctionId id,BuiltinExtraArguments extra_args)43 void Builtins::Generate_Adaptor(MacroAssembler* masm,
44                                 CFunctionId id,
45                                 BuiltinExtraArguments extra_args) {
46   // ----------- S t a t e -------------
47   //  -- rax                 : number of arguments excluding receiver
48   //  -- rdi                 : called function (only guaranteed when
49   //                           extra_args requires it)
50   //  -- rsi                 : context
51   //  -- rsp[0]              : return address
52   //  -- rsp[8]              : last argument
53   //  -- ...
54   //  -- rsp[8 * argc]       : first argument (argc == rax)
55   //  -- rsp[8 * (argc + 1)] : receiver
56   // -----------------------------------
57 
58   // Insert extra arguments.
59   int num_extra_args = 0;
60   if (extra_args == NEEDS_CALLED_FUNCTION) {
61     num_extra_args = 1;
62     __ PopReturnAddressTo(kScratchRegister);
63     __ push(rdi);
64     __ PushReturnAddressFrom(kScratchRegister);
65   } else {
66     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
67   }
68 
69   // JumpToExternalReference expects rax to contain the number of arguments
70   // including the receiver and the extra arguments.
71   __ addq(rax, Immediate(num_extra_args + 1));
72   __ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
73 }
74 
75 
CallRuntimePassFunction(MacroAssembler * masm,Runtime::FunctionId function_id)76 static void CallRuntimePassFunction(MacroAssembler* masm,
77                                     Runtime::FunctionId function_id) {
78   FrameScope scope(masm, StackFrame::INTERNAL);
79   // Push a copy of the function onto the stack.
80   __ push(rdi);
81   // Push call kind information.
82   __ push(rcx);
83   // Function is also the parameter to the runtime call.
84   __ push(rdi);
85 
86   __ CallRuntime(function_id, 1);
87   // Restore call kind information.
88   __ pop(rcx);
89   // Restore receiver.
90   __ pop(rdi);
91 }
92 
93 
GenerateTailCallToSharedCode(MacroAssembler * masm)94 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
95   __ movq(kScratchRegister,
96           FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
97   __ movq(kScratchRegister,
98           FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
99   __ lea(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
100   __ jmp(kScratchRegister);
101 }
102 
103 
Generate_InRecompileQueue(MacroAssembler * masm)104 void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) {
105   // Checking whether the queued function is ready for install is optional,
106   // since we come across interrupts and stack checks elsewhere.  However,
107   // not checking may delay installing ready functions, and always checking
108   // would be quite expensive.  A good compromise is to first check against
109   // stack limit as a cue for an interrupt signal.
110   Label ok;
111   __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
112   __ j(above_equal, &ok);
113 
114   CallRuntimePassFunction(masm, Runtime::kTryInstallRecompiledCode);
115   // Tail call to returned code.
116   __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
117   __ jmp(rax);
118 
119   __ bind(&ok);
120   GenerateTailCallToSharedCode(masm);
121 }
122 
123 
Generate_ConcurrentRecompile(MacroAssembler * masm)124 void Builtins::Generate_ConcurrentRecompile(MacroAssembler* masm) {
125   CallRuntimePassFunction(masm, Runtime::kConcurrentRecompile);
126   GenerateTailCallToSharedCode(masm);
127 }
128 
129 
Generate_JSConstructStubHelper(MacroAssembler * masm,bool is_api_function,bool count_constructions)130 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
131                                            bool is_api_function,
132                                            bool count_constructions) {
133   // ----------- S t a t e -------------
134   //  -- rax: number of arguments
135   //  -- rdi: constructor function
136   // -----------------------------------
137 
138   // Should never count constructions for api objects.
139   ASSERT(!is_api_function || !count_constructions);
140 
141   // Enter a construct frame.
142   {
143     FrameScope scope(masm, StackFrame::CONSTRUCT);
144 
145     // Store a smi-tagged arguments count on the stack.
146     __ Integer32ToSmi(rax, rax);
147     __ push(rax);
148 
149     // Push the function to invoke on the stack.
150     __ push(rdi);
151 
152     // Try to allocate the object without transitioning into C code. If any of
153     // the preconditions is not met, the code bails out to the runtime call.
154     Label rt_call, allocated;
155     if (FLAG_inline_new) {
156       Label undo_allocation;
157 
158 #ifdef ENABLE_DEBUGGER_SUPPORT
159       ExternalReference debug_step_in_fp =
160           ExternalReference::debug_step_in_fp_address(masm->isolate());
161       __ Move(kScratchRegister, debug_step_in_fp);
162       __ cmpq(Operand(kScratchRegister, 0), Immediate(0));
163       __ j(not_equal, &rt_call);
164 #endif
165 
166       // Verified that the constructor is a JSFunction.
167       // Load the initial map and verify that it is in fact a map.
168       // rdi: constructor
169       __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
170       // Will both indicate a NULL and a Smi
171       ASSERT(kSmiTag == 0);
172       __ JumpIfSmi(rax, &rt_call);
173       // rdi: constructor
174       // rax: initial map (if proven valid below)
175       __ CmpObjectType(rax, MAP_TYPE, rbx);
176       __ j(not_equal, &rt_call);
177 
178       // Check that the constructor is not constructing a JSFunction (see
179       // comments in Runtime_NewObject in runtime.cc). In which case the
180       // initial map's instance type would be JS_FUNCTION_TYPE.
181       // rdi: constructor
182       // rax: initial map
183       __ CmpInstanceType(rax, JS_FUNCTION_TYPE);
184       __ j(equal, &rt_call);
185 
186       if (count_constructions) {
187         Label allocate;
188         // Decrease generous allocation count.
189         __ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
190         __ decb(FieldOperand(rcx,
191                              SharedFunctionInfo::kConstructionCountOffset));
192         __ j(not_zero, &allocate);
193 
194         __ push(rax);
195         __ push(rdi);
196 
197         __ push(rdi);  // constructor
198         // The call will replace the stub, so the countdown is only done once.
199         __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
200 
201         __ pop(rdi);
202         __ pop(rax);
203 
204         __ bind(&allocate);
205       }
206 
207       // Now allocate the JSObject on the heap.
208       __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
209       __ shl(rdi, Immediate(kPointerSizeLog2));
210       // rdi: size of new object
211       __ Allocate(rdi,
212                   rbx,
213                   rdi,
214                   no_reg,
215                   &rt_call,
216                   NO_ALLOCATION_FLAGS);
217       // Allocated the JSObject, now initialize the fields.
218       // rax: initial map
219       // rbx: JSObject (not HeapObject tagged - the actual address).
220       // rdi: start of next object
221       __ movq(Operand(rbx, JSObject::kMapOffset), rax);
222       __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
223       __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
224       __ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
225       // Set extra fields in the newly allocated object.
226       // rax: initial map
227       // rbx: JSObject
228       // rdi: start of next object
229       __ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
230       __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
231       if (count_constructions) {
232         __ movzxbq(rsi,
233                    FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
234         __ lea(rsi,
235                Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize));
236         // rsi: offset of first field after pre-allocated fields
237         if (FLAG_debug_code) {
238           __ cmpq(rsi, rdi);
239           __ Assert(less_equal,
240                     kUnexpectedNumberOfPreAllocatedPropertyFields);
241         }
242         __ InitializeFieldsWithFiller(rcx, rsi, rdx);
243         __ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
244       }
245       __ InitializeFieldsWithFiller(rcx, rdi, rdx);
246 
247       // Add the object tag to make the JSObject real, so that we can continue
248       // and jump into the continuation code at any time from now on. Any
249       // failures need to undo the allocation, so that the heap is in a
250       // consistent state and verifiable.
251       // rax: initial map
252       // rbx: JSObject
253       // rdi: start of next object
254       __ or_(rbx, Immediate(kHeapObjectTag));
255 
256       // Check if a non-empty properties array is needed.
257       // Allocate and initialize a FixedArray if it is.
258       // rax: initial map
259       // rbx: JSObject
260       // rdi: start of next object
261       // Calculate total properties described map.
262       __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
263       __ movzxbq(rcx,
264                  FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
265       __ addq(rdx, rcx);
266       // Calculate unused properties past the end of the in-object properties.
267       __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
268       __ subq(rdx, rcx);
269       // Done if no extra properties are to be allocated.
270       __ j(zero, &allocated);
271       __ Assert(positive, kPropertyAllocationCountFailed);
272 
273       // Scale the number of elements by pointer size and add the header for
274       // FixedArrays to the start of the next object calculation from above.
275       // rbx: JSObject
276       // rdi: start of next object (will be start of FixedArray)
277       // rdx: number of elements in properties array
278       __ Allocate(FixedArray::kHeaderSize,
279                   times_pointer_size,
280                   rdx,
281                   rdi,
282                   rax,
283                   no_reg,
284                   &undo_allocation,
285                   RESULT_CONTAINS_TOP);
286 
287       // Initialize the FixedArray.
288       // rbx: JSObject
289       // rdi: FixedArray
290       // rdx: number of elements
291       // rax: start of next object
292       __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
293       __ movq(Operand(rdi, HeapObject::kMapOffset), rcx);  // setup the map
294       __ Integer32ToSmi(rdx, rdx);
295       __ movq(Operand(rdi, FixedArray::kLengthOffset), rdx);  // and length
296 
297       // Initialize the fields to undefined.
298       // rbx: JSObject
299       // rdi: FixedArray
300       // rax: start of next object
301       // rdx: number of elements
302       { Label loop, entry;
303         __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
304         __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
305         __ jmp(&entry);
306         __ bind(&loop);
307         __ movq(Operand(rcx, 0), rdx);
308         __ addq(rcx, Immediate(kPointerSize));
309         __ bind(&entry);
310         __ cmpq(rcx, rax);
311         __ j(below, &loop);
312       }
313 
314       // Store the initialized FixedArray into the properties field of
315       // the JSObject
316       // rbx: JSObject
317       // rdi: FixedArray
318       __ or_(rdi, Immediate(kHeapObjectTag));  // add the heap tag
319       __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
320 
321 
322       // Continue with JSObject being successfully allocated
323       // rbx: JSObject
324       __ jmp(&allocated);
325 
326       // Undo the setting of the new top so that the heap is verifiable. For
327       // example, the map's unused properties potentially do not match the
328       // allocated objects unused properties.
329       // rbx: JSObject (previous new top)
330       __ bind(&undo_allocation);
331       __ UndoAllocationInNewSpace(rbx);
332     }
333 
334     // Allocate the new receiver object using the runtime call.
335     // rdi: function (constructor)
336     __ bind(&rt_call);
337     // Must restore rdi (constructor) before calling runtime.
338     __ movq(rdi, Operand(rsp, 0));
339     __ push(rdi);
340     __ CallRuntime(Runtime::kNewObject, 1);
341     __ movq(rbx, rax);  // store result in rbx
342 
343     // New object allocated.
344     // rbx: newly allocated object
345     __ bind(&allocated);
346     // Retrieve the function from the stack.
347     __ pop(rdi);
348 
349     // Retrieve smi-tagged arguments count from the stack.
350     __ movq(rax, Operand(rsp, 0));
351     __ SmiToInteger32(rax, rax);
352 
353     // Push the allocated receiver to the stack. We need two copies
354     // because we may have to return the original one and the calling
355     // conventions dictate that the called function pops the receiver.
356     __ push(rbx);
357     __ push(rbx);
358 
359     // Set up pointer to last argument.
360     __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
361 
362     // Copy arguments and receiver to the expression stack.
363     Label loop, entry;
364     __ movq(rcx, rax);
365     __ jmp(&entry);
366     __ bind(&loop);
367     __ push(Operand(rbx, rcx, times_pointer_size, 0));
368     __ bind(&entry);
369     __ decq(rcx);
370     __ j(greater_equal, &loop);
371 
372     // Call the function.
373     if (is_api_function) {
374       __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
375       Handle<Code> code =
376           masm->isolate()->builtins()->HandleApiCallConstruct();
377       ParameterCount expected(0);
378       __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
379                     CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
380     } else {
381       ParameterCount actual(rax);
382       __ InvokeFunction(rdi, actual, CALL_FUNCTION,
383                         NullCallWrapper(), CALL_AS_METHOD);
384     }
385 
386     // Store offset of return address for deoptimizer.
387     if (!is_api_function && !count_constructions) {
388       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
389     }
390 
391     // Restore context from the frame.
392     __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
393 
394     // If the result is an object (in the ECMA sense), we should get rid
395     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
396     // on page 74.
397     Label use_receiver, exit;
398     // If the result is a smi, it is *not* an object in the ECMA sense.
399     __ JumpIfSmi(rax, &use_receiver);
400 
401     // If the type of the result (stored in its map) is less than
402     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
403     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
404     __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
405     __ j(above_equal, &exit);
406 
407     // Throw away the result of the constructor invocation and use the
408     // on-stack receiver as the result.
409     __ bind(&use_receiver);
410     __ movq(rax, Operand(rsp, 0));
411 
412     // Restore the arguments count and leave the construct frame.
413     __ bind(&exit);
414     __ movq(rbx, Operand(rsp, kPointerSize));  // Get arguments count.
415 
416     // Leave construct frame.
417   }
418 
419   // Remove caller arguments from the stack and return.
420   __ PopReturnAddressTo(rcx);
421   SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
422   __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
423   __ PushReturnAddressFrom(rcx);
424   Counters* counters = masm->isolate()->counters();
425   __ IncrementCounter(counters->constructed_objects(), 1);
426   __ ret(0);
427 }
428 
429 
Generate_JSConstructStubCountdown(MacroAssembler * masm)430 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
431   Generate_JSConstructStubHelper(masm, false, true);
432 }
433 
434 
Generate_JSConstructStubGeneric(MacroAssembler * masm)435 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
436   Generate_JSConstructStubHelper(masm, false, false);
437 }
438 
439 
Generate_JSConstructStubApi(MacroAssembler * masm)440 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
441   Generate_JSConstructStubHelper(masm, true, false);
442 }
443 
444 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)445 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
446                                              bool is_construct) {
447   ProfileEntryHookStub::MaybeCallEntryHook(masm);
448 
449   // Expects five C++ function parameters.
450   // - Address entry (ignored)
451   // - JSFunction* function (
452   // - Object* receiver
453   // - int argc
454   // - Object*** argv
455   // (see Handle::Invoke in execution.cc).
456 
457   // Open a C++ scope for the FrameScope.
458   {
459     // Platform specific argument handling. After this, the stack contains
460     // an internal frame and the pushed function and receiver, and
461     // register rax and rbx holds the argument count and argument array,
462     // while rdi holds the function pointer and rsi the context.
463 
464 #ifdef _WIN64
465     // MSVC parameters in:
466     // rcx        : entry (ignored)
467     // rdx        : function
468     // r8         : receiver
469     // r9         : argc
470     // [rsp+0x20] : argv
471 
472     // Clear the context before we push it when entering the internal frame.
473     __ Set(rsi, 0);
474     // Enter an internal frame.
475     FrameScope scope(masm, StackFrame::INTERNAL);
476 
477     // Load the function context into rsi.
478     __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
479 
480     // Push the function and the receiver onto the stack.
481     __ push(rdx);
482     __ push(r8);
483 
484     // Load the number of arguments and setup pointer to the arguments.
485     __ movq(rax, r9);
486     // Load the previous frame pointer to access C argument on stack
487     __ movq(kScratchRegister, Operand(rbp, 0));
488     __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
489     // Load the function pointer into rdi.
490     __ movq(rdi, rdx);
491 #else  // _WIN64
492     // GCC parameters in:
493     // rdi : entry (ignored)
494     // rsi : function
495     // rdx : receiver
496     // rcx : argc
497     // r8  : argv
498 
499     __ movq(rdi, rsi);
500     // rdi : function
501 
502     // Clear the context before we push it when entering the internal frame.
503     __ Set(rsi, 0);
504     // Enter an internal frame.
505     FrameScope scope(masm, StackFrame::INTERNAL);
506 
507     // Push the function and receiver and setup the context.
508     __ push(rdi);
509     __ push(rdx);
510     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
511 
512     // Load the number of arguments and setup pointer to the arguments.
513     __ movq(rax, rcx);
514     __ movq(rbx, r8);
515 #endif  // _WIN64
516 
517     // Current stack contents:
518     // [rsp + 2 * kPointerSize ... ] : Internal frame
519     // [rsp + kPointerSize]          : function
520     // [rsp]                         : receiver
521     // Current register contents:
522     // rax : argc
523     // rbx : argv
524     // rsi : context
525     // rdi : function
526 
527     // Copy arguments to the stack in a loop.
528     // Register rbx points to array of pointers to handle locations.
529     // Push the values of these handles.
530     Label loop, entry;
531     __ Set(rcx, 0);  // Set loop variable to 0.
532     __ jmp(&entry);
533     __ bind(&loop);
534     __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
535     __ push(Operand(kScratchRegister, 0));  // dereference handle
536     __ addq(rcx, Immediate(1));
537     __ bind(&entry);
538     __ cmpq(rcx, rax);
539     __ j(not_equal, &loop);
540 
541     // Invoke the code.
542     if (is_construct) {
543       // No type feedback cell is available
544       Handle<Object> undefined_sentinel(
545           masm->isolate()->factory()->undefined_value());
546       __ Move(rbx, undefined_sentinel);
547       // Expects rdi to hold function pointer.
548       CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
549       __ CallStub(&stub);
550     } else {
551       ParameterCount actual(rax);
552       // Function must be in rdi.
553       __ InvokeFunction(rdi, actual, CALL_FUNCTION,
554                         NullCallWrapper(), CALL_AS_METHOD);
555     }
556     // Exit the internal frame. Notice that this also removes the empty
557     // context and the function left on the stack by the code
558     // invocation.
559   }
560 
561   // TODO(X64): Is argument correct? Is there a receiver to remove?
562   __ ret(1 * kPointerSize);  // Remove receiver.
563 }
564 
565 
Generate_JSEntryTrampoline(MacroAssembler * masm)566 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
567   Generate_JSEntryTrampolineHelper(masm, false);
568 }
569 
570 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)571 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
572   Generate_JSEntryTrampolineHelper(masm, true);
573 }
574 
575 
Generate_LazyCompile(MacroAssembler * masm)576 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
577   CallRuntimePassFunction(masm, Runtime::kLazyCompile);
578   // Do a tail-call of the compiled function.
579   __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
580   __ jmp(rax);
581 }
582 
583 
Generate_LazyRecompile(MacroAssembler * masm)584 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
585   CallRuntimePassFunction(masm, Runtime::kLazyRecompile);
586   // Do a tail-call of the compiled function.
587   __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
588   __ jmp(rax);
589 }
590 
591 
GenerateMakeCodeYoungAgainCommon(MacroAssembler * masm)592 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
593   // For now, we are relying on the fact that make_code_young doesn't do any
594   // garbage collection which allows us to save/restore the registers without
595   // worrying about which of them contain pointers. We also don't build an
596   // internal frame to make the code faster, since we shouldn't have to do stack
597   // crawls in MakeCodeYoung. This seems a bit fragile.
598 
599   // Re-execute the code that was patched back to the young age when
600   // the stub returns.
601   __ subq(Operand(rsp, 0), Immediate(5));
602   __ Pushad();
603   __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
604   __ movq(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
605   {  // NOLINT
606     FrameScope scope(masm, StackFrame::MANUAL);
607     __ PrepareCallCFunction(1);
608     __ CallCFunction(
609         ExternalReference::get_make_code_young_function(masm->isolate()), 1);
610   }
611   __ Popad();
612   __ ret(0);
613 }
614 
615 
616 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
617 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
618     MacroAssembler* masm) {                                  \
619   GenerateMakeCodeYoungAgainCommon(masm);                    \
620 }                                                            \
621 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
622     MacroAssembler* masm) {                                  \
623   GenerateMakeCodeYoungAgainCommon(masm);                    \
624 }
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)625 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
626 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
627 
628 
629 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
630   // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
631   // that make_code_young doesn't do any garbage collection which allows us to
632   // save/restore the registers without worrying about which of them contain
633   // pointers.
634   __ Pushad();
635   __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
636   __ movq(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
637   __ subq(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
638   {  // NOLINT
639     FrameScope scope(masm, StackFrame::MANUAL);
640     __ PrepareCallCFunction(1);
641     __ CallCFunction(
642         ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
643         1);
644   }
645   __ Popad();
646 
647   // Perform prologue operations usually performed by the young code stub.
648   __ PopReturnAddressTo(kScratchRegister);
649   __ push(rbp);  // Caller's frame pointer.
650   __ movq(rbp, rsp);
651   __ push(rsi);  // Callee's context.
652   __ push(rdi);  // Callee's JS Function.
653   __ PushReturnAddressFrom(kScratchRegister);
654 
655   // Jump to point after the code-age stub.
656   __ ret(0);
657 }
658 
659 
Generate_MarkCodeAsExecutedTwice(MacroAssembler * masm)660 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
661   GenerateMakeCodeYoungAgainCommon(masm);
662 }
663 
664 
Generate_NotifyStubFailureHelper(MacroAssembler * masm,SaveFPRegsMode save_doubles)665 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
666                                              SaveFPRegsMode save_doubles) {
667   // Enter an internal frame.
668   {
669     FrameScope scope(masm, StackFrame::INTERNAL);
670 
671     // Preserve registers across notification, this is important for compiled
672     // stubs that tail call the runtime on deopts passing their parameters in
673     // registers.
674     __ Pushad();
675     __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
676     __ Popad();
677     // Tear down internal frame.
678   }
679 
680   __ pop(MemOperand(rsp, 0));  // Ignore state offset
681   __ ret(0);  // Return to IC Miss stub, continuation still on stack.
682 }
683 
684 
Generate_NotifyStubFailure(MacroAssembler * masm)685 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
686   Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
687 }
688 
689 
Generate_NotifyStubFailureSaveDoubles(MacroAssembler * masm)690 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
691   Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
692 }
693 
694 
Generate_NotifyDeoptimizedHelper(MacroAssembler * masm,Deoptimizer::BailoutType type)695 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
696                                              Deoptimizer::BailoutType type) {
697   // Enter an internal frame.
698   {
699     FrameScope scope(masm, StackFrame::INTERNAL);
700 
701     // Pass the deoptimization type to the runtime system.
702     __ Push(Smi::FromInt(static_cast<int>(type)));
703 
704     __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
705     // Tear down internal frame.
706   }
707 
708   // Get the full codegen state from the stack and untag it.
709   __ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
710 
711   // Switch on the state.
712   Label not_no_registers, not_tos_rax;
713   __ cmpq(kScratchRegister, Immediate(FullCodeGenerator::NO_REGISTERS));
714   __ j(not_equal, &not_no_registers, Label::kNear);
715   __ ret(1 * kPointerSize);  // Remove state.
716 
717   __ bind(&not_no_registers);
718   __ movq(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
719   __ cmpq(kScratchRegister, Immediate(FullCodeGenerator::TOS_REG));
720   __ j(not_equal, &not_tos_rax, Label::kNear);
721   __ ret(2 * kPointerSize);  // Remove state, rax.
722 
723   __ bind(&not_tos_rax);
724   __ Abort(kNoCasesLeft);
725 }
726 
727 
Generate_NotifyDeoptimized(MacroAssembler * masm)728 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
729   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
730 }
731 
732 
Generate_NotifySoftDeoptimized(MacroAssembler * masm)733 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
734   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
735 }
736 
737 
Generate_NotifyLazyDeoptimized(MacroAssembler * masm)738 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
739   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
740 }
741 
742 
Generate_FunctionCall(MacroAssembler * masm)743 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
744   // Stack Layout:
745   // rsp[0]           : Return address
746   // rsp[8]           : Argument n
747   // rsp[16]          : Argument n-1
748   //  ...
749   // rsp[8 * n]       : Argument 1
750   // rsp[8 * (n + 1)] : Receiver (function to call)
751   //
752   // rax contains the number of arguments, n, not counting the receiver.
753   //
754   // 1. Make sure we have at least one argument.
755   { Label done;
756     __ testq(rax, rax);
757     __ j(not_zero, &done);
758     __ PopReturnAddressTo(rbx);
759     __ Push(masm->isolate()->factory()->undefined_value());
760     __ PushReturnAddressFrom(rbx);
761     __ incq(rax);
762     __ bind(&done);
763   }
764 
765   // 2. Get the function to call (passed as receiver) from the stack, check
766   //    if it is a function.
767   Label slow, non_function;
768   StackArgumentsAccessor args(rsp, rax);
769   __ movq(rdi, args.GetReceiverOperand());
770   __ JumpIfSmi(rdi, &non_function);
771   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
772   __ j(not_equal, &slow);
773 
774   // 3a. Patch the first argument if necessary when calling a function.
775   Label shift_arguments;
776   __ Set(rdx, 0);  // indicate regular JS_FUNCTION
777   { Label convert_to_object, use_global_receiver, patch_receiver;
778     // Change context eagerly in case we need the global receiver.
779     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
780 
781     // Do not transform the receiver for strict mode functions.
782     __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
783     __ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
784              Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
785     __ j(not_equal, &shift_arguments);
786 
787     // Do not transform the receiver for natives.
788     // SharedFunctionInfo is already loaded into rbx.
789     __ testb(FieldOperand(rbx, SharedFunctionInfo::kNativeByteOffset),
790              Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
791     __ j(not_zero, &shift_arguments);
792 
793     // Compute the receiver in non-strict mode.
794     __ movq(rbx, args.GetArgumentOperand(1));
795     __ JumpIfSmi(rbx, &convert_to_object, Label::kNear);
796 
797     __ CompareRoot(rbx, Heap::kNullValueRootIndex);
798     __ j(equal, &use_global_receiver);
799     __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
800     __ j(equal, &use_global_receiver);
801 
802     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
803     __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
804     __ j(above_equal, &shift_arguments);
805 
806     __ bind(&convert_to_object);
807     {
808       // Enter an internal frame in order to preserve argument count.
809       FrameScope scope(masm, StackFrame::INTERNAL);
810       __ Integer32ToSmi(rax, rax);
811       __ push(rax);
812 
813       __ push(rbx);
814       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
815       __ movq(rbx, rax);
816       __ Set(rdx, 0);  // indicate regular JS_FUNCTION
817 
818       __ pop(rax);
819       __ SmiToInteger32(rax, rax);
820     }
821 
822     // Restore the function to rdi.
823     __ movq(rdi, args.GetReceiverOperand());
824     __ jmp(&patch_receiver, Label::kNear);
825 
826     // Use the global receiver object from the called function as the
827     // receiver.
828     __ bind(&use_global_receiver);
829     const int kGlobalIndex =
830         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
831     __ movq(rbx, FieldOperand(rsi, kGlobalIndex));
832     __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
833     __ movq(rbx, FieldOperand(rbx, kGlobalIndex));
834     __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
835 
836     __ bind(&patch_receiver);
837     __ movq(args.GetArgumentOperand(1), rbx);
838 
839     __ jmp(&shift_arguments);
840   }
841 
842   // 3b. Check for function proxy.
843   __ bind(&slow);
844   __ Set(rdx, 1);  // indicate function proxy
845   __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
846   __ j(equal, &shift_arguments);
847   __ bind(&non_function);
848   __ Set(rdx, 2);  // indicate non-function
849 
850   // 3c. Patch the first argument when calling a non-function.  The
851   //     CALL_NON_FUNCTION builtin expects the non-function callee as
852   //     receiver, so overwrite the first argument which will ultimately
853   //     become the receiver.
854   __ movq(args.GetArgumentOperand(1), rdi);
855 
856   // 4. Shift arguments and return address one slot down on the stack
857   //    (overwriting the original receiver).  Adjust argument count to make
858   //    the original first argument the new receiver.
859   __ bind(&shift_arguments);
860   { Label loop;
861     __ movq(rcx, rax);
862     __ bind(&loop);
863     __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
864     __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
865     __ decq(rcx);
866     __ j(not_sign, &loop);  // While non-negative (to copy return address).
867     __ pop(rbx);  // Discard copy of return address.
868     __ decq(rax);  // One fewer argument (first argument is new receiver).
869   }
870 
871   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
872   //     or a function proxy via CALL_FUNCTION_PROXY.
873   { Label function, non_proxy;
874     __ testq(rdx, rdx);
875     __ j(zero, &function);
876     __ Set(rbx, 0);
877     __ SetCallKind(rcx, CALL_AS_METHOD);
878     __ cmpq(rdx, Immediate(1));
879     __ j(not_equal, &non_proxy);
880 
881     __ PopReturnAddressTo(rdx);
882     __ push(rdi);  // re-add proxy object as additional argument
883     __ PushReturnAddressFrom(rdx);
884     __ incq(rax);
885     __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
886     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
887            RelocInfo::CODE_TARGET);
888 
889     __ bind(&non_proxy);
890     __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
891     __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
892             RelocInfo::CODE_TARGET);
893     __ bind(&function);
894   }
895 
896   // 5b. Get the code to call from the function and check that the number of
897   //     expected arguments matches what we're providing.  If so, jump
898   //     (tail-call) to the code in register edx without checking arguments.
899   __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
900   __ movsxlq(rbx,
901              FieldOperand(rdx,
902                           SharedFunctionInfo::kFormalParameterCountOffset));
903   __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
904   __ SetCallKind(rcx, CALL_AS_METHOD);
905   __ cmpq(rax, rbx);
906   __ j(not_equal,
907        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
908        RelocInfo::CODE_TARGET);
909 
910   ParameterCount expected(0);
911   __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION,
912                 NullCallWrapper(), CALL_AS_METHOD);
913 }
914 
915 
Generate_FunctionApply(MacroAssembler * masm)916 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
917   // Stack at entry:
918   // rsp     : return address
919   // rsp[8]  : arguments
920   // rsp[16] : receiver ("this")
921   // rsp[24] : function
922   {
923     FrameScope frame_scope(masm, StackFrame::INTERNAL);
924     // Stack frame:
925     // rbp     : Old base pointer
926     // rbp[8]  : return address
927     // rbp[16] : function arguments
928     // rbp[24] : receiver
929     // rbp[32] : function
930     static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
931     static const int kReceiverOffset = kArgumentsOffset + kPointerSize;
932     static const int kFunctionOffset = kReceiverOffset + kPointerSize;
933 
934     __ push(Operand(rbp, kFunctionOffset));
935     __ push(Operand(rbp, kArgumentsOffset));
936     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
937 
938     // Check the stack for overflow. We are not trying to catch
939     // interruptions (e.g. debug break and preemption) here, so the "real stack
940     // limit" is checked.
941     Label okay;
942     __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
943     __ movq(rcx, rsp);
944     // Make rcx the space we have left. The stack might already be overflowed
945     // here which will cause rcx to become negative.
946     __ subq(rcx, kScratchRegister);
947     // Make rdx the space we need for the array when it is unrolled onto the
948     // stack.
949     __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
950     // Check if the arguments will overflow the stack.
951     __ cmpq(rcx, rdx);
952     __ j(greater, &okay);  // Signed comparison.
953 
954     // Out of stack space.
955     __ push(Operand(rbp, kFunctionOffset));
956     __ push(rax);
957     __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
958     __ bind(&okay);
959     // End of stack check.
960 
961     // Push current index and limit.
962     const int kLimitOffset =
963         StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
964     const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
965     __ push(rax);  // limit
966     __ push(Immediate(0));  // index
967 
968     // Get the receiver.
969     __ movq(rbx, Operand(rbp, kReceiverOffset));
970 
971     // Check that the function is a JS function (otherwise it must be a proxy).
972     Label push_receiver;
973     __ movq(rdi, Operand(rbp, kFunctionOffset));
974     __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
975     __ j(not_equal, &push_receiver);
976 
977     // Change context eagerly to get the right global object if necessary.
978     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
979 
980     // Do not transform the receiver for strict mode functions.
981     Label call_to_object, use_global_receiver;
982     __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
983     __ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
984              Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
985     __ j(not_equal, &push_receiver);
986 
987     // Do not transform the receiver for natives.
988     __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
989              Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
990     __ j(not_equal, &push_receiver);
991 
992     // Compute the receiver in non-strict mode.
993     __ JumpIfSmi(rbx, &call_to_object, Label::kNear);
994     __ CompareRoot(rbx, Heap::kNullValueRootIndex);
995     __ j(equal, &use_global_receiver);
996     __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
997     __ j(equal, &use_global_receiver);
998 
999     // If given receiver is already a JavaScript object then there's no
1000     // reason for converting it.
1001     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1002     __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
1003     __ j(above_equal, &push_receiver);
1004 
1005     // Convert the receiver to an object.
1006     __ bind(&call_to_object);
1007     __ push(rbx);
1008     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1009     __ movq(rbx, rax);
1010     __ jmp(&push_receiver, Label::kNear);
1011 
1012     // Use the current global receiver object as the receiver.
1013     __ bind(&use_global_receiver);
1014     const int kGlobalOffset =
1015         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1016     __ movq(rbx, FieldOperand(rsi, kGlobalOffset));
1017     __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
1018     __ movq(rbx, FieldOperand(rbx, kGlobalOffset));
1019     __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
1020 
1021     // Push the receiver.
1022     __ bind(&push_receiver);
1023     __ push(rbx);
1024 
1025     // Copy all arguments from the array to the stack.
1026     Label entry, loop;
1027     __ movq(rax, Operand(rbp, kIndexOffset));
1028     __ jmp(&entry);
1029     __ bind(&loop);
1030     __ movq(rdx, Operand(rbp, kArgumentsOffset));  // load arguments
1031 
1032     // Use inline caching to speed up access to arguments.
1033     Handle<Code> ic =
1034         masm->isolate()->builtins()->KeyedLoadIC_Initialize();
1035     __ Call(ic, RelocInfo::CODE_TARGET);
1036     // It is important that we do not have a test instruction after the
1037     // call.  A test instruction after the call is used to indicate that
1038     // we have generated an inline version of the keyed load.  In this
1039     // case, we know that we are not generating a test instruction next.
1040 
1041     // Push the nth argument.
1042     __ push(rax);
1043 
1044     // Update the index on the stack and in register rax.
1045     __ movq(rax, Operand(rbp, kIndexOffset));
1046     __ SmiAddConstant(rax, rax, Smi::FromInt(1));
1047     __ movq(Operand(rbp, kIndexOffset), rax);
1048 
1049     __ bind(&entry);
1050     __ cmpq(rax, Operand(rbp, kLimitOffset));
1051     __ j(not_equal, &loop);
1052 
1053     // Invoke the function.
1054     Label call_proxy;
1055     ParameterCount actual(rax);
1056     __ SmiToInteger32(rax, rax);
1057     __ movq(rdi, Operand(rbp, kFunctionOffset));
1058     __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
1059     __ j(not_equal, &call_proxy);
1060     __ InvokeFunction(rdi, actual, CALL_FUNCTION,
1061                       NullCallWrapper(), CALL_AS_METHOD);
1062 
1063     frame_scope.GenerateLeaveFrame();
1064     __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1065 
1066     // Invoke the function proxy.
1067     __ bind(&call_proxy);
1068     __ push(rdi);  // add function proxy as last argument
1069     __ incq(rax);
1070     __ Set(rbx, 0);
1071     __ SetCallKind(rcx, CALL_AS_METHOD);
1072     __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
1073     __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1074             RelocInfo::CODE_TARGET);
1075 
1076     // Leave internal frame.
1077   }
1078   __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1079 }
1080 
1081 
Generate_InternalArrayCode(MacroAssembler * masm)1082 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
1083   // ----------- S t a t e -------------
1084   //  -- rax    : argc
1085   //  -- rsp[0] : return address
1086   //  -- rsp[8] : last argument
1087   // -----------------------------------
1088   Label generic_array_code;
1089 
1090   // Get the InternalArray function.
1091   __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
1092 
1093   if (FLAG_debug_code) {
1094     // Initial map for the builtin InternalArray functions should be maps.
1095     __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1096     // Will both indicate a NULL and a Smi.
1097     STATIC_ASSERT(kSmiTag == 0);
1098     Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
1099     __ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
1100     __ CmpObjectType(rbx, MAP_TYPE, rcx);
1101     __ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
1102   }
1103 
1104   // Run the native code for the InternalArray function called as a normal
1105   // function.
1106   // tail call a stub
1107   InternalArrayConstructorStub stub(masm->isolate());
1108   __ TailCallStub(&stub);
1109 }
1110 
1111 
Generate_ArrayCode(MacroAssembler * masm)1112 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
1113   // ----------- S t a t e -------------
1114   //  -- rax    : argc
1115   //  -- rsp[0] : return address
1116   //  -- rsp[8] : last argument
1117   // -----------------------------------
1118   Label generic_array_code;
1119 
1120   // Get the Array function.
1121   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
1122 
1123   if (FLAG_debug_code) {
1124     // Initial map for the builtin Array functions should be maps.
1125     __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1126     // Will both indicate a NULL and a Smi.
1127     STATIC_ASSERT(kSmiTag == 0);
1128     Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
1129     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
1130     __ CmpObjectType(rbx, MAP_TYPE, rcx);
1131     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
1132   }
1133 
1134   // Run the native code for the Array function called as a normal function.
1135   // tail call a stub
1136   Handle<Object> undefined_sentinel(
1137       masm->isolate()->heap()->undefined_value(),
1138       masm->isolate());
1139   __ Move(rbx, undefined_sentinel);
1140   ArrayConstructorStub stub(masm->isolate());
1141   __ TailCallStub(&stub);
1142 }
1143 
1144 
Generate_StringConstructCode(MacroAssembler * masm)1145 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
1146   // ----------- S t a t e -------------
1147   //  -- rax                 : number of arguments
1148   //  -- rdi                 : constructor function
1149   //  -- rsp[0]              : return address
1150   //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
1151   //  -- rsp[(argc + 1) * 8] : receiver
1152   // -----------------------------------
1153   Counters* counters = masm->isolate()->counters();
1154   __ IncrementCounter(counters->string_ctor_calls(), 1);
1155 
1156   if (FLAG_debug_code) {
1157     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, rcx);
1158     __ cmpq(rdi, rcx);
1159     __ Assert(equal, kUnexpectedStringFunction);
1160   }
1161 
1162   // Load the first argument into rax and get rid of the rest
1163   // (including the receiver).
1164   StackArgumentsAccessor args(rsp, rax);
1165   Label no_arguments;
1166   __ testq(rax, rax);
1167   __ j(zero, &no_arguments);
1168   __ movq(rbx, args.GetArgumentOperand(1));
1169   __ PopReturnAddressTo(rcx);
1170   __ lea(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
1171   __ PushReturnAddressFrom(rcx);
1172   __ movq(rax, rbx);
1173 
1174   // Lookup the argument in the number to string cache.
1175   Label not_cached, argument_is_string;
1176   __ LookupNumberStringCache(rax,  // Input.
1177                              rbx,  // Result.
1178                              rcx,  // Scratch 1.
1179                              rdx,  // Scratch 2.
1180                              &not_cached);
1181   __ IncrementCounter(counters->string_ctor_cached_number(), 1);
1182   __ bind(&argument_is_string);
1183 
1184   // ----------- S t a t e -------------
1185   //  -- rbx    : argument converted to string
1186   //  -- rdi    : constructor function
1187   //  -- rsp[0] : return address
1188   // -----------------------------------
1189 
1190   // Allocate a JSValue and put the tagged pointer into rax.
1191   Label gc_required;
1192   __ Allocate(JSValue::kSize,
1193               rax,  // Result.
1194               rcx,  // New allocation top (we ignore it).
1195               no_reg,
1196               &gc_required,
1197               TAG_OBJECT);
1198 
1199   // Set the map.
1200   __ LoadGlobalFunctionInitialMap(rdi, rcx);
1201   if (FLAG_debug_code) {
1202     __ cmpb(FieldOperand(rcx, Map::kInstanceSizeOffset),
1203             Immediate(JSValue::kSize >> kPointerSizeLog2));
1204     __ Assert(equal, kUnexpectedStringWrapperInstanceSize);
1205     __ cmpb(FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset), Immediate(0));
1206     __ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
1207   }
1208   __ movq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
1209 
1210   // Set properties and elements.
1211   __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
1212   __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rcx);
1213   __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
1214 
1215   // Set the value.
1216   __ movq(FieldOperand(rax, JSValue::kValueOffset), rbx);
1217 
1218   // Ensure the object is fully initialized.
1219   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
1220 
1221   // We're done. Return.
1222   __ ret(0);
1223 
1224   // The argument was not found in the number to string cache. Check
1225   // if it's a string already before calling the conversion builtin.
1226   Label convert_argument;
1227   __ bind(&not_cached);
1228   STATIC_ASSERT(kSmiTag == 0);
1229   __ JumpIfSmi(rax, &convert_argument);
1230   Condition is_string = masm->IsObjectStringType(rax, rbx, rcx);
1231   __ j(NegateCondition(is_string), &convert_argument);
1232   __ movq(rbx, rax);
1233   __ IncrementCounter(counters->string_ctor_string_value(), 1);
1234   __ jmp(&argument_is_string);
1235 
1236   // Invoke the conversion builtin and put the result into rbx.
1237   __ bind(&convert_argument);
1238   __ IncrementCounter(counters->string_ctor_conversions(), 1);
1239   {
1240     FrameScope scope(masm, StackFrame::INTERNAL);
1241     __ push(rdi);  // Preserve the function.
1242     __ push(rax);
1243     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
1244     __ pop(rdi);
1245   }
1246   __ movq(rbx, rax);
1247   __ jmp(&argument_is_string);
1248 
1249   // Load the empty string into rbx, remove the receiver from the
1250   // stack, and jump back to the case where the argument is a string.
1251   __ bind(&no_arguments);
1252   __ LoadRoot(rbx, Heap::kempty_stringRootIndex);
1253   __ PopReturnAddressTo(rcx);
1254   __ lea(rsp, Operand(rsp, kPointerSize));
1255   __ PushReturnAddressFrom(rcx);
1256   __ jmp(&argument_is_string);
1257 
1258   // At this point the argument is already a string. Call runtime to
1259   // create a string wrapper.
1260   __ bind(&gc_required);
1261   __ IncrementCounter(counters->string_ctor_gc_required(), 1);
1262   {
1263     FrameScope scope(masm, StackFrame::INTERNAL);
1264     __ push(rbx);
1265     __ CallRuntime(Runtime::kNewStringWrapper, 1);
1266   }
1267   __ ret(0);
1268 }
1269 
1270 
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1271 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1272   __ push(rbp);
1273   __ movq(rbp, rsp);
1274 
1275   // Store the arguments adaptor context sentinel.
1276   __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1277 
1278   // Push the function on the stack.
1279   __ push(rdi);
1280 
1281   // Preserve the number of arguments on the stack. Must preserve rax,
1282   // rbx and rcx because these registers are used when copying the
1283   // arguments and the receiver.
1284   __ Integer32ToSmi(r8, rax);
1285   __ push(r8);
1286 }
1287 
1288 
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1289 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1290   // Retrieve the number of arguments from the stack. Number is a Smi.
1291   __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1292 
1293   // Leave the frame.
1294   __ movq(rsp, rbp);
1295   __ pop(rbp);
1296 
1297   // Remove caller arguments from the stack.
1298   __ PopReturnAddressTo(rcx);
1299   SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
1300   __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
1301   __ PushReturnAddressFrom(rcx);
1302 }
1303 
1304 
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)1305 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1306   // ----------- S t a t e -------------
1307   //  -- rax : actual number of arguments
1308   //  -- rbx : expected number of arguments
1309   //  -- rcx : call kind information
1310   //  -- rdx : code entry to call
1311   // -----------------------------------
1312 
1313   Label invoke, dont_adapt_arguments;
1314   Counters* counters = masm->isolate()->counters();
1315   __ IncrementCounter(counters->arguments_adaptors(), 1);
1316 
1317   Label enough, too_few;
1318   __ cmpq(rax, rbx);
1319   __ j(less, &too_few);
1320   __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1321   __ j(equal, &dont_adapt_arguments);
1322 
1323   {  // Enough parameters: Actual >= expected.
1324     __ bind(&enough);
1325     EnterArgumentsAdaptorFrame(masm);
1326 
1327     // Copy receiver and all expected arguments.
1328     const int offset = StandardFrameConstants::kCallerSPOffset;
1329     __ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
1330     __ Set(r8, -1);  // account for receiver
1331 
1332     Label copy;
1333     __ bind(&copy);
1334     __ incq(r8);
1335     __ push(Operand(rax, 0));
1336     __ subq(rax, Immediate(kPointerSize));
1337     __ cmpq(r8, rbx);
1338     __ j(less, &copy);
1339     __ jmp(&invoke);
1340   }
1341 
1342   {  // Too few parameters: Actual < expected.
1343     __ bind(&too_few);
1344     EnterArgumentsAdaptorFrame(masm);
1345 
1346     // Copy receiver and all actual arguments.
1347     const int offset = StandardFrameConstants::kCallerSPOffset;
1348     __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
1349     __ Set(r8, -1);  // account for receiver
1350 
1351     Label copy;
1352     __ bind(&copy);
1353     __ incq(r8);
1354     __ push(Operand(rdi, 0));
1355     __ subq(rdi, Immediate(kPointerSize));
1356     __ cmpq(r8, rax);
1357     __ j(less, &copy);
1358 
1359     // Fill remaining expected arguments with undefined values.
1360     Label fill;
1361     __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
1362     __ bind(&fill);
1363     __ incq(r8);
1364     __ push(kScratchRegister);
1365     __ cmpq(r8, rbx);
1366     __ j(less, &fill);
1367 
1368     // Restore function pointer.
1369     __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1370   }
1371 
1372   // Call the entry point.
1373   __ bind(&invoke);
1374   __ call(rdx);
1375 
1376   // Store offset of return address for deoptimizer.
1377   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1378 
1379   // Leave frame and return.
1380   LeaveArgumentsAdaptorFrame(masm);
1381   __ ret(0);
1382 
1383   // -------------------------------------------
1384   // Dont adapt arguments.
1385   // -------------------------------------------
1386   __ bind(&dont_adapt_arguments);
1387   __ jmp(rdx);
1388 }
1389 
1390 
Generate_OnStackReplacement(MacroAssembler * masm)1391 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1392   // Lookup the function in the JavaScript frame.
1393   __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1394   {
1395     FrameScope scope(masm, StackFrame::INTERNAL);
1396     // Lookup and calculate pc offset.
1397     __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerPCOffset));
1398     __ movq(rbx, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
1399     __ subq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1400     __ subq(rdx, FieldOperand(rbx, SharedFunctionInfo::kCodeOffset));
1401     __ Integer32ToSmi(rdx, rdx);
1402 
1403     // Pass both function and pc offset as arguments.
1404     __ push(rax);
1405     __ push(rdx);
1406     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 2);
1407   }
1408 
1409   Label skip;
1410   // If the code object is null, just return to the unoptimized code.
1411   __ cmpq(rax, Immediate(0));
1412   __ j(not_equal, &skip, Label::kNear);
1413   __ ret(0);
1414 
1415   __ bind(&skip);
1416 
1417   // Load deoptimization data from the code object.
1418   __ movq(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1419 
1420   // Load the OSR entrypoint offset from the deoptimization data.
1421   __ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
1422       DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1423 
1424   // Compute the target address = code_obj + header_size + osr_offset
1425   __ lea(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
1426 
1427   // Overwrite the return address on the stack.
1428   __ movq(Operand(rsp, 0), rax);
1429 
1430   // And "return" to the OSR entry point of the function.
1431   __ ret(0);
1432 }
1433 
1434 
Generate_OsrAfterStackCheck(MacroAssembler * masm)1435 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1436   // We check the stack limit as indicator that recompilation might be done.
1437   Label ok;
1438   __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
1439   __ j(above_equal, &ok);
1440   {
1441     FrameScope scope(masm, StackFrame::INTERNAL);
1442     __ CallRuntime(Runtime::kStackGuard, 0);
1443   }
1444   __ jmp(masm->isolate()->builtins()->OnStackReplacement(),
1445          RelocInfo::CODE_TARGET);
1446 
1447   __ bind(&ok);
1448   __ ret(0);
1449 }
1450 
1451 
1452 #undef __
1453 
1454 } }  // namespace v8::internal
1455 
1456 #endif  // V8_TARGET_ARCH_X64
1457