1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Sema/SemaDiagnostic.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37
getBestDynamicClassType() const38 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
39 const Expr *E = ignoreParenBaseCasts();
40
41 QualType DerivedType = E->getType();
42 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
43 DerivedType = PTy->getPointeeType();
44
45 if (DerivedType->isDependentType())
46 return NULL;
47
48 const RecordType *Ty = DerivedType->castAs<RecordType>();
49 Decl *D = Ty->getDecl();
50 return cast<CXXRecordDecl>(D);
51 }
52
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const53 const Expr *Expr::skipRValueSubobjectAdjustments(
54 SmallVectorImpl<const Expr *> &CommaLHSs,
55 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
56 const Expr *E = this;
57 while (true) {
58 E = E->IgnoreParens();
59
60 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
61 if ((CE->getCastKind() == CK_DerivedToBase ||
62 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
63 E->getType()->isRecordType()) {
64 E = CE->getSubExpr();
65 CXXRecordDecl *Derived
66 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
67 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
68 continue;
69 }
70
71 if (CE->getCastKind() == CK_NoOp) {
72 E = CE->getSubExpr();
73 continue;
74 }
75 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
76 if (!ME->isArrow()) {
77 assert(ME->getBase()->getType()->isRecordType());
78 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
79 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
80 E = ME->getBase();
81 Adjustments.push_back(SubobjectAdjustment(Field));
82 continue;
83 }
84 }
85 }
86 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
87 if (BO->isPtrMemOp()) {
88 assert(BO->getRHS()->isRValue());
89 E = BO->getLHS();
90 const MemberPointerType *MPT =
91 BO->getRHS()->getType()->getAs<MemberPointerType>();
92 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
93 continue;
94 } else if (BO->getOpcode() == BO_Comma) {
95 CommaLHSs.push_back(BO->getLHS());
96 E = BO->getRHS();
97 continue;
98 }
99 }
100
101 // Nothing changed.
102 break;
103 }
104 return E;
105 }
106
107 const Expr *
findMaterializedTemporary(const MaterializeTemporaryExpr * & MTE) const108 Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
109 const Expr *E = this;
110
111 // This might be a default initializer for a reference member. Walk over the
112 // wrapper node for that.
113 if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
114 E = DAE->getExpr();
115
116 // Look through single-element init lists that claim to be lvalues. They're
117 // just syntactic wrappers in this case.
118 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
119 if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
120 E = ILE->getInit(0);
121 if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
122 E = DAE->getExpr();
123 }
124 }
125
126 // Look through expressions for materialized temporaries (for now).
127 if (const MaterializeTemporaryExpr *M
128 = dyn_cast<MaterializeTemporaryExpr>(E)) {
129 MTE = M;
130 E = M->GetTemporaryExpr();
131 }
132
133 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
134 E = DAE->getExpr();
135 return E;
136 }
137
138 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
139 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
140 /// but also int expressions which are produced by things like comparisons in
141 /// C.
isKnownToHaveBooleanValue() const142 bool Expr::isKnownToHaveBooleanValue() const {
143 const Expr *E = IgnoreParens();
144
145 // If this value has _Bool type, it is obvious 0/1.
146 if (E->getType()->isBooleanType()) return true;
147 // If this is a non-scalar-integer type, we don't care enough to try.
148 if (!E->getType()->isIntegralOrEnumerationType()) return false;
149
150 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
151 switch (UO->getOpcode()) {
152 case UO_Plus:
153 return UO->getSubExpr()->isKnownToHaveBooleanValue();
154 default:
155 return false;
156 }
157 }
158
159 // Only look through implicit casts. If the user writes
160 // '(int) (a && b)' treat it as an arbitrary int.
161 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
162 return CE->getSubExpr()->isKnownToHaveBooleanValue();
163
164 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
165 switch (BO->getOpcode()) {
166 default: return false;
167 case BO_LT: // Relational operators.
168 case BO_GT:
169 case BO_LE:
170 case BO_GE:
171 case BO_EQ: // Equality operators.
172 case BO_NE:
173 case BO_LAnd: // AND operator.
174 case BO_LOr: // Logical OR operator.
175 return true;
176
177 case BO_And: // Bitwise AND operator.
178 case BO_Xor: // Bitwise XOR operator.
179 case BO_Or: // Bitwise OR operator.
180 // Handle things like (x==2)|(y==12).
181 return BO->getLHS()->isKnownToHaveBooleanValue() &&
182 BO->getRHS()->isKnownToHaveBooleanValue();
183
184 case BO_Comma:
185 case BO_Assign:
186 return BO->getRHS()->isKnownToHaveBooleanValue();
187 }
188 }
189
190 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
191 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
192 CO->getFalseExpr()->isKnownToHaveBooleanValue();
193
194 return false;
195 }
196
197 // Amusing macro metaprogramming hack: check whether a class provides
198 // a more specific implementation of getExprLoc().
199 //
200 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
201 namespace {
202 /// This implementation is used when a class provides a custom
203 /// implementation of getExprLoc.
204 template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)205 SourceLocation getExprLocImpl(const Expr *expr,
206 SourceLocation (T::*v)() const) {
207 return static_cast<const E*>(expr)->getExprLoc();
208 }
209
210 /// This implementation is used when a class doesn't provide
211 /// a custom implementation of getExprLoc. Overload resolution
212 /// should pick it over the implementation above because it's
213 /// more specialized according to function template partial ordering.
214 template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)215 SourceLocation getExprLocImpl(const Expr *expr,
216 SourceLocation (Expr::*v)() const) {
217 return static_cast<const E*>(expr)->getLocStart();
218 }
219 }
220
getExprLoc() const221 SourceLocation Expr::getExprLoc() const {
222 switch (getStmtClass()) {
223 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
224 #define ABSTRACT_STMT(type)
225 #define STMT(type, base) \
226 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
227 #define EXPR(type, base) \
228 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
229 #include "clang/AST/StmtNodes.inc"
230 }
231 llvm_unreachable("unknown statement kind");
232 }
233
234 //===----------------------------------------------------------------------===//
235 // Primary Expressions.
236 //===----------------------------------------------------------------------===//
237
238 /// \brief Compute the type-, value-, and instantiation-dependence of a
239 /// declaration reference
240 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)241 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
242 bool &TypeDependent,
243 bool &ValueDependent,
244 bool &InstantiationDependent) {
245 TypeDependent = false;
246 ValueDependent = false;
247 InstantiationDependent = false;
248
249 // (TD) C++ [temp.dep.expr]p3:
250 // An id-expression is type-dependent if it contains:
251 //
252 // and
253 //
254 // (VD) C++ [temp.dep.constexpr]p2:
255 // An identifier is value-dependent if it is:
256
257 // (TD) - an identifier that was declared with dependent type
258 // (VD) - a name declared with a dependent type,
259 if (T->isDependentType()) {
260 TypeDependent = true;
261 ValueDependent = true;
262 InstantiationDependent = true;
263 return;
264 } else if (T->isInstantiationDependentType()) {
265 InstantiationDependent = true;
266 }
267
268 // (TD) - a conversion-function-id that specifies a dependent type
269 if (D->getDeclName().getNameKind()
270 == DeclarationName::CXXConversionFunctionName) {
271 QualType T = D->getDeclName().getCXXNameType();
272 if (T->isDependentType()) {
273 TypeDependent = true;
274 ValueDependent = true;
275 InstantiationDependent = true;
276 return;
277 }
278
279 if (T->isInstantiationDependentType())
280 InstantiationDependent = true;
281 }
282
283 // (VD) - the name of a non-type template parameter,
284 if (isa<NonTypeTemplateParmDecl>(D)) {
285 ValueDependent = true;
286 InstantiationDependent = true;
287 return;
288 }
289
290 // (VD) - a constant with integral or enumeration type and is
291 // initialized with an expression that is value-dependent.
292 // (VD) - a constant with literal type and is initialized with an
293 // expression that is value-dependent [C++11].
294 // (VD) - FIXME: Missing from the standard:
295 // - an entity with reference type and is initialized with an
296 // expression that is value-dependent [C++11]
297 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
298 if ((Ctx.getLangOpts().CPlusPlus11 ?
299 Var->getType()->isLiteralType(Ctx) :
300 Var->getType()->isIntegralOrEnumerationType()) &&
301 (Var->getType().isConstQualified() ||
302 Var->getType()->isReferenceType())) {
303 if (const Expr *Init = Var->getAnyInitializer())
304 if (Init->isValueDependent()) {
305 ValueDependent = true;
306 InstantiationDependent = true;
307 }
308 }
309
310 // (VD) - FIXME: Missing from the standard:
311 // - a member function or a static data member of the current
312 // instantiation
313 if (Var->isStaticDataMember() &&
314 Var->getDeclContext()->isDependentContext()) {
315 ValueDependent = true;
316 InstantiationDependent = true;
317 }
318
319 return;
320 }
321
322 // (VD) - FIXME: Missing from the standard:
323 // - a member function or a static data member of the current
324 // instantiation
325 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
326 ValueDependent = true;
327 InstantiationDependent = true;
328 }
329 }
330
computeDependence(ASTContext & Ctx)331 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
332 bool TypeDependent = false;
333 bool ValueDependent = false;
334 bool InstantiationDependent = false;
335 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
336 ValueDependent, InstantiationDependent);
337
338 // (TD) C++ [temp.dep.expr]p3:
339 // An id-expression is type-dependent if it contains:
340 //
341 // and
342 //
343 // (VD) C++ [temp.dep.constexpr]p2:
344 // An identifier is value-dependent if it is:
345 if (!TypeDependent && !ValueDependent &&
346 hasExplicitTemplateArgs() &&
347 TemplateSpecializationType::anyDependentTemplateArguments(
348 getTemplateArgs(),
349 getNumTemplateArgs(),
350 InstantiationDependent)) {
351 TypeDependent = true;
352 ValueDependent = true;
353 InstantiationDependent = true;
354 }
355
356 ExprBits.TypeDependent = TypeDependent;
357 ExprBits.ValueDependent = ValueDependent;
358 ExprBits.InstantiationDependent = InstantiationDependent;
359
360 // Is the declaration a parameter pack?
361 if (getDecl()->isParameterPack())
362 ExprBits.ContainsUnexpandedParameterPack = true;
363 }
364
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)365 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
366 NestedNameSpecifierLoc QualifierLoc,
367 SourceLocation TemplateKWLoc,
368 ValueDecl *D, bool RefersToEnclosingLocal,
369 const DeclarationNameInfo &NameInfo,
370 NamedDecl *FoundD,
371 const TemplateArgumentListInfo *TemplateArgs,
372 QualType T, ExprValueKind VK)
373 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
374 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
375 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
376 if (QualifierLoc)
377 getInternalQualifierLoc() = QualifierLoc;
378 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
379 if (FoundD)
380 getInternalFoundDecl() = FoundD;
381 DeclRefExprBits.HasTemplateKWAndArgsInfo
382 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
383 DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
384 if (TemplateArgs) {
385 bool Dependent = false;
386 bool InstantiationDependent = false;
387 bool ContainsUnexpandedParameterPack = false;
388 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
389 Dependent,
390 InstantiationDependent,
391 ContainsUnexpandedParameterPack);
392 if (InstantiationDependent)
393 setInstantiationDependent(true);
394 } else if (TemplateKWLoc.isValid()) {
395 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
396 }
397 DeclRefExprBits.HadMultipleCandidates = 0;
398
399 computeDependence(Ctx);
400 }
401
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)402 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
403 NestedNameSpecifierLoc QualifierLoc,
404 SourceLocation TemplateKWLoc,
405 ValueDecl *D,
406 bool RefersToEnclosingLocal,
407 SourceLocation NameLoc,
408 QualType T,
409 ExprValueKind VK,
410 NamedDecl *FoundD,
411 const TemplateArgumentListInfo *TemplateArgs) {
412 return Create(Context, QualifierLoc, TemplateKWLoc, D,
413 RefersToEnclosingLocal,
414 DeclarationNameInfo(D->getDeclName(), NameLoc),
415 T, VK, FoundD, TemplateArgs);
416 }
417
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)418 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
419 NestedNameSpecifierLoc QualifierLoc,
420 SourceLocation TemplateKWLoc,
421 ValueDecl *D,
422 bool RefersToEnclosingLocal,
423 const DeclarationNameInfo &NameInfo,
424 QualType T,
425 ExprValueKind VK,
426 NamedDecl *FoundD,
427 const TemplateArgumentListInfo *TemplateArgs) {
428 // Filter out cases where the found Decl is the same as the value refenenced.
429 if (D == FoundD)
430 FoundD = 0;
431
432 std::size_t Size = sizeof(DeclRefExpr);
433 if (QualifierLoc)
434 Size += sizeof(NestedNameSpecifierLoc);
435 if (FoundD)
436 Size += sizeof(NamedDecl *);
437 if (TemplateArgs)
438 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
439 else if (TemplateKWLoc.isValid())
440 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
441
442 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
443 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
444 RefersToEnclosingLocal,
445 NameInfo, FoundD, TemplateArgs, T, VK);
446 }
447
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)448 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
449 bool HasQualifier,
450 bool HasFoundDecl,
451 bool HasTemplateKWAndArgsInfo,
452 unsigned NumTemplateArgs) {
453 std::size_t Size = sizeof(DeclRefExpr);
454 if (HasQualifier)
455 Size += sizeof(NestedNameSpecifierLoc);
456 if (HasFoundDecl)
457 Size += sizeof(NamedDecl *);
458 if (HasTemplateKWAndArgsInfo)
459 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
460
461 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
462 return new (Mem) DeclRefExpr(EmptyShell());
463 }
464
getLocStart() const465 SourceLocation DeclRefExpr::getLocStart() const {
466 if (hasQualifier())
467 return getQualifierLoc().getBeginLoc();
468 return getNameInfo().getLocStart();
469 }
getLocEnd() const470 SourceLocation DeclRefExpr::getLocEnd() const {
471 if (hasExplicitTemplateArgs())
472 return getRAngleLoc();
473 return getNameInfo().getLocEnd();
474 }
475
476 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
477 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)478 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
479 ASTContext &Context = CurrentDecl->getASTContext();
480
481 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
482 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
483 return FD->getNameAsString();
484
485 SmallString<256> Name;
486 llvm::raw_svector_ostream Out(Name);
487
488 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
489 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
490 Out << "virtual ";
491 if (MD->isStatic())
492 Out << "static ";
493 }
494
495 PrintingPolicy Policy(Context.getLangOpts());
496 std::string Proto;
497 llvm::raw_string_ostream POut(Proto);
498 FD->printQualifiedName(POut, Policy);
499
500 const FunctionDecl *Decl = FD;
501 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
502 Decl = Pattern;
503 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
504 const FunctionProtoType *FT = 0;
505 if (FD->hasWrittenPrototype())
506 FT = dyn_cast<FunctionProtoType>(AFT);
507
508 POut << "(";
509 if (FT) {
510 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
511 if (i) POut << ", ";
512 POut << Decl->getParamDecl(i)->getType().stream(Policy);
513 }
514
515 if (FT->isVariadic()) {
516 if (FD->getNumParams()) POut << ", ";
517 POut << "...";
518 }
519 }
520 POut << ")";
521
522 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
523 const FunctionType *FT = MD->getType()->castAs<FunctionType>();
524 if (FT->isConst())
525 POut << " const";
526 if (FT->isVolatile())
527 POut << " volatile";
528 RefQualifierKind Ref = MD->getRefQualifier();
529 if (Ref == RQ_LValue)
530 POut << " &";
531 else if (Ref == RQ_RValue)
532 POut << " &&";
533 }
534
535 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
536 SpecsTy Specs;
537 const DeclContext *Ctx = FD->getDeclContext();
538 while (Ctx && isa<NamedDecl>(Ctx)) {
539 const ClassTemplateSpecializationDecl *Spec
540 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
541 if (Spec && !Spec->isExplicitSpecialization())
542 Specs.push_back(Spec);
543 Ctx = Ctx->getParent();
544 }
545
546 std::string TemplateParams;
547 llvm::raw_string_ostream TOut(TemplateParams);
548 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
549 I != E; ++I) {
550 const TemplateParameterList *Params
551 = (*I)->getSpecializedTemplate()->getTemplateParameters();
552 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
553 assert(Params->size() == Args.size());
554 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
555 StringRef Param = Params->getParam(i)->getName();
556 if (Param.empty()) continue;
557 TOut << Param << " = ";
558 Args.get(i).print(Policy, TOut);
559 TOut << ", ";
560 }
561 }
562
563 FunctionTemplateSpecializationInfo *FSI
564 = FD->getTemplateSpecializationInfo();
565 if (FSI && !FSI->isExplicitSpecialization()) {
566 const TemplateParameterList* Params
567 = FSI->getTemplate()->getTemplateParameters();
568 const TemplateArgumentList* Args = FSI->TemplateArguments;
569 assert(Params->size() == Args->size());
570 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
571 StringRef Param = Params->getParam(i)->getName();
572 if (Param.empty()) continue;
573 TOut << Param << " = ";
574 Args->get(i).print(Policy, TOut);
575 TOut << ", ";
576 }
577 }
578
579 TOut.flush();
580 if (!TemplateParams.empty()) {
581 // remove the trailing comma and space
582 TemplateParams.resize(TemplateParams.size() - 2);
583 POut << " [" << TemplateParams << "]";
584 }
585
586 POut.flush();
587
588 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
589 AFT->getResultType().getAsStringInternal(Proto, Policy);
590
591 Out << Proto;
592
593 Out.flush();
594 return Name.str().str();
595 }
596 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
597 SmallString<256> Name;
598 llvm::raw_svector_ostream Out(Name);
599 Out << (MD->isInstanceMethod() ? '-' : '+');
600 Out << '[';
601
602 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
603 // a null check to avoid a crash.
604 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
605 Out << *ID;
606
607 if (const ObjCCategoryImplDecl *CID =
608 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
609 Out << '(' << *CID << ')';
610
611 Out << ' ';
612 Out << MD->getSelector().getAsString();
613 Out << ']';
614
615 Out.flush();
616 return Name.str().str();
617 }
618 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
619 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
620 return "top level";
621 }
622 return "";
623 }
624
setIntValue(ASTContext & C,const llvm::APInt & Val)625 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
626 if (hasAllocation())
627 C.Deallocate(pVal);
628
629 BitWidth = Val.getBitWidth();
630 unsigned NumWords = Val.getNumWords();
631 const uint64_t* Words = Val.getRawData();
632 if (NumWords > 1) {
633 pVal = new (C) uint64_t[NumWords];
634 std::copy(Words, Words + NumWords, pVal);
635 } else if (NumWords == 1)
636 VAL = Words[0];
637 else
638 VAL = 0;
639 }
640
IntegerLiteral(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)641 IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
642 QualType type, SourceLocation l)
643 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
644 false, false),
645 Loc(l) {
646 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
647 assert(V.getBitWidth() == C.getIntWidth(type) &&
648 "Integer type is not the correct size for constant.");
649 setValue(C, V);
650 }
651
652 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)653 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
654 QualType type, SourceLocation l) {
655 return new (C) IntegerLiteral(C, V, type, l);
656 }
657
658 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)659 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
660 return new (C) IntegerLiteral(Empty);
661 }
662
FloatingLiteral(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)663 FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
664 bool isexact, QualType Type, SourceLocation L)
665 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
666 false, false), Loc(L) {
667 setSemantics(V.getSemantics());
668 FloatingLiteralBits.IsExact = isexact;
669 setValue(C, V);
670 }
671
FloatingLiteral(ASTContext & C,EmptyShell Empty)672 FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
673 : Expr(FloatingLiteralClass, Empty) {
674 setRawSemantics(IEEEhalf);
675 FloatingLiteralBits.IsExact = false;
676 }
677
678 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)679 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
680 bool isexact, QualType Type, SourceLocation L) {
681 return new (C) FloatingLiteral(C, V, isexact, Type, L);
682 }
683
684 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)685 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
686 return new (C) FloatingLiteral(C, Empty);
687 }
688
getSemantics() const689 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
690 switch(FloatingLiteralBits.Semantics) {
691 case IEEEhalf:
692 return llvm::APFloat::IEEEhalf;
693 case IEEEsingle:
694 return llvm::APFloat::IEEEsingle;
695 case IEEEdouble:
696 return llvm::APFloat::IEEEdouble;
697 case x87DoubleExtended:
698 return llvm::APFloat::x87DoubleExtended;
699 case IEEEquad:
700 return llvm::APFloat::IEEEquad;
701 case PPCDoubleDouble:
702 return llvm::APFloat::PPCDoubleDouble;
703 }
704 llvm_unreachable("Unrecognised floating semantics");
705 }
706
setSemantics(const llvm::fltSemantics & Sem)707 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
708 if (&Sem == &llvm::APFloat::IEEEhalf)
709 FloatingLiteralBits.Semantics = IEEEhalf;
710 else if (&Sem == &llvm::APFloat::IEEEsingle)
711 FloatingLiteralBits.Semantics = IEEEsingle;
712 else if (&Sem == &llvm::APFloat::IEEEdouble)
713 FloatingLiteralBits.Semantics = IEEEdouble;
714 else if (&Sem == &llvm::APFloat::x87DoubleExtended)
715 FloatingLiteralBits.Semantics = x87DoubleExtended;
716 else if (&Sem == &llvm::APFloat::IEEEquad)
717 FloatingLiteralBits.Semantics = IEEEquad;
718 else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
719 FloatingLiteralBits.Semantics = PPCDoubleDouble;
720 else
721 llvm_unreachable("Unknown floating semantics");
722 }
723
724 /// getValueAsApproximateDouble - This returns the value as an inaccurate
725 /// double. Note that this may cause loss of precision, but is useful for
726 /// debugging dumps, etc.
getValueAsApproximateDouble() const727 double FloatingLiteral::getValueAsApproximateDouble() const {
728 llvm::APFloat V = getValue();
729 bool ignored;
730 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
731 &ignored);
732 return V.convertToDouble();
733 }
734
mapCharByteWidth(TargetInfo const & target,StringKind k)735 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
736 int CharByteWidth = 0;
737 switch(k) {
738 case Ascii:
739 case UTF8:
740 CharByteWidth = target.getCharWidth();
741 break;
742 case Wide:
743 CharByteWidth = target.getWCharWidth();
744 break;
745 case UTF16:
746 CharByteWidth = target.getChar16Width();
747 break;
748 case UTF32:
749 CharByteWidth = target.getChar32Width();
750 break;
751 }
752 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
753 CharByteWidth /= 8;
754 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
755 && "character byte widths supported are 1, 2, and 4 only");
756 return CharByteWidth;
757 }
758
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)759 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
760 StringKind Kind, bool Pascal, QualType Ty,
761 const SourceLocation *Loc,
762 unsigned NumStrs) {
763 // Allocate enough space for the StringLiteral plus an array of locations for
764 // any concatenated string tokens.
765 void *Mem = C.Allocate(sizeof(StringLiteral)+
766 sizeof(SourceLocation)*(NumStrs-1),
767 llvm::alignOf<StringLiteral>());
768 StringLiteral *SL = new (Mem) StringLiteral(Ty);
769
770 // OPTIMIZE: could allocate this appended to the StringLiteral.
771 SL->setString(C,Str,Kind,Pascal);
772
773 SL->TokLocs[0] = Loc[0];
774 SL->NumConcatenated = NumStrs;
775
776 if (NumStrs != 1)
777 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
778 return SL;
779 }
780
CreateEmpty(ASTContext & C,unsigned NumStrs)781 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
782 void *Mem = C.Allocate(sizeof(StringLiteral)+
783 sizeof(SourceLocation)*(NumStrs-1),
784 llvm::alignOf<StringLiteral>());
785 StringLiteral *SL = new (Mem) StringLiteral(QualType());
786 SL->CharByteWidth = 0;
787 SL->Length = 0;
788 SL->NumConcatenated = NumStrs;
789 return SL;
790 }
791
outputString(raw_ostream & OS) const792 void StringLiteral::outputString(raw_ostream &OS) const {
793 switch (getKind()) {
794 case Ascii: break; // no prefix.
795 case Wide: OS << 'L'; break;
796 case UTF8: OS << "u8"; break;
797 case UTF16: OS << 'u'; break;
798 case UTF32: OS << 'U'; break;
799 }
800 OS << '"';
801 static const char Hex[] = "0123456789ABCDEF";
802
803 unsigned LastSlashX = getLength();
804 for (unsigned I = 0, N = getLength(); I != N; ++I) {
805 switch (uint32_t Char = getCodeUnit(I)) {
806 default:
807 // FIXME: Convert UTF-8 back to codepoints before rendering.
808
809 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
810 // Leave invalid surrogates alone; we'll use \x for those.
811 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
812 Char <= 0xdbff) {
813 uint32_t Trail = getCodeUnit(I + 1);
814 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
815 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
816 ++I;
817 }
818 }
819
820 if (Char > 0xff) {
821 // If this is a wide string, output characters over 0xff using \x
822 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
823 // codepoint: use \x escapes for invalid codepoints.
824 if (getKind() == Wide ||
825 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
826 // FIXME: Is this the best way to print wchar_t?
827 OS << "\\x";
828 int Shift = 28;
829 while ((Char >> Shift) == 0)
830 Shift -= 4;
831 for (/**/; Shift >= 0; Shift -= 4)
832 OS << Hex[(Char >> Shift) & 15];
833 LastSlashX = I;
834 break;
835 }
836
837 if (Char > 0xffff)
838 OS << "\\U00"
839 << Hex[(Char >> 20) & 15]
840 << Hex[(Char >> 16) & 15];
841 else
842 OS << "\\u";
843 OS << Hex[(Char >> 12) & 15]
844 << Hex[(Char >> 8) & 15]
845 << Hex[(Char >> 4) & 15]
846 << Hex[(Char >> 0) & 15];
847 break;
848 }
849
850 // If we used \x... for the previous character, and this character is a
851 // hexadecimal digit, prevent it being slurped as part of the \x.
852 if (LastSlashX + 1 == I) {
853 switch (Char) {
854 case '0': case '1': case '2': case '3': case '4':
855 case '5': case '6': case '7': case '8': case '9':
856 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
857 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
858 OS << "\"\"";
859 }
860 }
861
862 assert(Char <= 0xff &&
863 "Characters above 0xff should already have been handled.");
864
865 if (isPrintable(Char))
866 OS << (char)Char;
867 else // Output anything hard as an octal escape.
868 OS << '\\'
869 << (char)('0' + ((Char >> 6) & 7))
870 << (char)('0' + ((Char >> 3) & 7))
871 << (char)('0' + ((Char >> 0) & 7));
872 break;
873 // Handle some common non-printable cases to make dumps prettier.
874 case '\\': OS << "\\\\"; break;
875 case '"': OS << "\\\""; break;
876 case '\n': OS << "\\n"; break;
877 case '\t': OS << "\\t"; break;
878 case '\a': OS << "\\a"; break;
879 case '\b': OS << "\\b"; break;
880 }
881 }
882 OS << '"';
883 }
884
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)885 void StringLiteral::setString(ASTContext &C, StringRef Str,
886 StringKind Kind, bool IsPascal) {
887 //FIXME: we assume that the string data comes from a target that uses the same
888 // code unit size and endianess for the type of string.
889 this->Kind = Kind;
890 this->IsPascal = IsPascal;
891
892 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
893 assert((Str.size()%CharByteWidth == 0)
894 && "size of data must be multiple of CharByteWidth");
895 Length = Str.size()/CharByteWidth;
896
897 switch(CharByteWidth) {
898 case 1: {
899 char *AStrData = new (C) char[Length];
900 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
901 StrData.asChar = AStrData;
902 break;
903 }
904 case 2: {
905 uint16_t *AStrData = new (C) uint16_t[Length];
906 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
907 StrData.asUInt16 = AStrData;
908 break;
909 }
910 case 4: {
911 uint32_t *AStrData = new (C) uint32_t[Length];
912 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
913 StrData.asUInt32 = AStrData;
914 break;
915 }
916 default:
917 assert(false && "unsupported CharByteWidth");
918 }
919 }
920
921 /// getLocationOfByte - Return a source location that points to the specified
922 /// byte of this string literal.
923 ///
924 /// Strings are amazingly complex. They can be formed from multiple tokens and
925 /// can have escape sequences in them in addition to the usual trigraph and
926 /// escaped newline business. This routine handles this complexity.
927 ///
928 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const929 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
930 const LangOptions &Features, const TargetInfo &Target) const {
931 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
932 "Only narrow string literals are currently supported");
933
934 // Loop over all of the tokens in this string until we find the one that
935 // contains the byte we're looking for.
936 unsigned TokNo = 0;
937 while (1) {
938 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
939 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
940
941 // Get the spelling of the string so that we can get the data that makes up
942 // the string literal, not the identifier for the macro it is potentially
943 // expanded through.
944 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
945
946 // Re-lex the token to get its length and original spelling.
947 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
948 bool Invalid = false;
949 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
950 if (Invalid)
951 return StrTokSpellingLoc;
952
953 const char *StrData = Buffer.data()+LocInfo.second;
954
955 // Create a lexer starting at the beginning of this token.
956 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
957 Buffer.begin(), StrData, Buffer.end());
958 Token TheTok;
959 TheLexer.LexFromRawLexer(TheTok);
960
961 // Use the StringLiteralParser to compute the length of the string in bytes.
962 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
963 unsigned TokNumBytes = SLP.GetStringLength();
964
965 // If the byte is in this token, return the location of the byte.
966 if (ByteNo < TokNumBytes ||
967 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
968 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
969
970 // Now that we know the offset of the token in the spelling, use the
971 // preprocessor to get the offset in the original source.
972 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
973 }
974
975 // Move to the next string token.
976 ++TokNo;
977 ByteNo -= TokNumBytes;
978 }
979 }
980
981
982
983 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
984 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)985 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
986 switch (Op) {
987 case UO_PostInc: return "++";
988 case UO_PostDec: return "--";
989 case UO_PreInc: return "++";
990 case UO_PreDec: return "--";
991 case UO_AddrOf: return "&";
992 case UO_Deref: return "*";
993 case UO_Plus: return "+";
994 case UO_Minus: return "-";
995 case UO_Not: return "~";
996 case UO_LNot: return "!";
997 case UO_Real: return "__real";
998 case UO_Imag: return "__imag";
999 case UO_Extension: return "__extension__";
1000 }
1001 llvm_unreachable("Unknown unary operator");
1002 }
1003
1004 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1005 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1006 switch (OO) {
1007 default: llvm_unreachable("No unary operator for overloaded function");
1008 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1009 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1010 case OO_Amp: return UO_AddrOf;
1011 case OO_Star: return UO_Deref;
1012 case OO_Plus: return UO_Plus;
1013 case OO_Minus: return UO_Minus;
1014 case OO_Tilde: return UO_Not;
1015 case OO_Exclaim: return UO_LNot;
1016 }
1017 }
1018
getOverloadedOperator(Opcode Opc)1019 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1020 switch (Opc) {
1021 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1022 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1023 case UO_AddrOf: return OO_Amp;
1024 case UO_Deref: return OO_Star;
1025 case UO_Plus: return OO_Plus;
1026 case UO_Minus: return OO_Minus;
1027 case UO_Not: return OO_Tilde;
1028 case UO_LNot: return OO_Exclaim;
1029 default: return OO_None;
1030 }
1031 }
1032
1033
1034 //===----------------------------------------------------------------------===//
1035 // Postfix Operators.
1036 //===----------------------------------------------------------------------===//
1037
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1038 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1039 ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
1040 SourceLocation rparenloc)
1041 : Expr(SC, t, VK, OK_Ordinary,
1042 fn->isTypeDependent(),
1043 fn->isValueDependent(),
1044 fn->isInstantiationDependent(),
1045 fn->containsUnexpandedParameterPack()),
1046 NumArgs(args.size()) {
1047
1048 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1049 SubExprs[FN] = fn;
1050 for (unsigned i = 0; i != args.size(); ++i) {
1051 if (args[i]->isTypeDependent())
1052 ExprBits.TypeDependent = true;
1053 if (args[i]->isValueDependent())
1054 ExprBits.ValueDependent = true;
1055 if (args[i]->isInstantiationDependent())
1056 ExprBits.InstantiationDependent = true;
1057 if (args[i]->containsUnexpandedParameterPack())
1058 ExprBits.ContainsUnexpandedParameterPack = true;
1059
1060 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1061 }
1062
1063 CallExprBits.NumPreArgs = NumPreArgs;
1064 RParenLoc = rparenloc;
1065 }
1066
CallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1067 CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1068 QualType t, ExprValueKind VK, SourceLocation rparenloc)
1069 : Expr(CallExprClass, t, VK, OK_Ordinary,
1070 fn->isTypeDependent(),
1071 fn->isValueDependent(),
1072 fn->isInstantiationDependent(),
1073 fn->containsUnexpandedParameterPack()),
1074 NumArgs(args.size()) {
1075
1076 SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1077 SubExprs[FN] = fn;
1078 for (unsigned i = 0; i != args.size(); ++i) {
1079 if (args[i]->isTypeDependent())
1080 ExprBits.TypeDependent = true;
1081 if (args[i]->isValueDependent())
1082 ExprBits.ValueDependent = true;
1083 if (args[i]->isInstantiationDependent())
1084 ExprBits.InstantiationDependent = true;
1085 if (args[i]->containsUnexpandedParameterPack())
1086 ExprBits.ContainsUnexpandedParameterPack = true;
1087
1088 SubExprs[i+PREARGS_START] = args[i];
1089 }
1090
1091 CallExprBits.NumPreArgs = 0;
1092 RParenLoc = rparenloc;
1093 }
1094
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)1095 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
1096 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1097 // FIXME: Why do we allocate this?
1098 SubExprs = new (C) Stmt*[PREARGS_START];
1099 CallExprBits.NumPreArgs = 0;
1100 }
1101
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1102 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1103 EmptyShell Empty)
1104 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1105 // FIXME: Why do we allocate this?
1106 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1107 CallExprBits.NumPreArgs = NumPreArgs;
1108 }
1109
getCalleeDecl()1110 Decl *CallExpr::getCalleeDecl() {
1111 Expr *CEE = getCallee()->IgnoreParenImpCasts();
1112
1113 while (SubstNonTypeTemplateParmExpr *NTTP
1114 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1115 CEE = NTTP->getReplacement()->IgnoreParenCasts();
1116 }
1117
1118 // If we're calling a dereference, look at the pointer instead.
1119 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1120 if (BO->isPtrMemOp())
1121 CEE = BO->getRHS()->IgnoreParenCasts();
1122 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1123 if (UO->getOpcode() == UO_Deref)
1124 CEE = UO->getSubExpr()->IgnoreParenCasts();
1125 }
1126 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1127 return DRE->getDecl();
1128 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1129 return ME->getMemberDecl();
1130
1131 return 0;
1132 }
1133
getDirectCallee()1134 FunctionDecl *CallExpr::getDirectCallee() {
1135 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1136 }
1137
1138 /// setNumArgs - This changes the number of arguments present in this call.
1139 /// Any orphaned expressions are deleted by this, and any new operands are set
1140 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)1141 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1142 // No change, just return.
1143 if (NumArgs == getNumArgs()) return;
1144
1145 // If shrinking # arguments, just delete the extras and forgot them.
1146 if (NumArgs < getNumArgs()) {
1147 this->NumArgs = NumArgs;
1148 return;
1149 }
1150
1151 // Otherwise, we are growing the # arguments. New an bigger argument array.
1152 unsigned NumPreArgs = getNumPreArgs();
1153 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1154 // Copy over args.
1155 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1156 NewSubExprs[i] = SubExprs[i];
1157 // Null out new args.
1158 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1159 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1160 NewSubExprs[i] = 0;
1161
1162 if (SubExprs) C.Deallocate(SubExprs);
1163 SubExprs = NewSubExprs;
1164 this->NumArgs = NumArgs;
1165 }
1166
1167 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
1168 /// not, return 0.
isBuiltinCall() const1169 unsigned CallExpr::isBuiltinCall() const {
1170 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1171 // function. As a result, we try and obtain the DeclRefExpr from the
1172 // ImplicitCastExpr.
1173 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1174 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1175 return 0;
1176
1177 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1178 if (!DRE)
1179 return 0;
1180
1181 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1182 if (!FDecl)
1183 return 0;
1184
1185 if (!FDecl->getIdentifier())
1186 return 0;
1187
1188 return FDecl->getBuiltinID();
1189 }
1190
isUnevaluatedBuiltinCall(ASTContext & Ctx) const1191 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1192 if (unsigned BI = isBuiltinCall())
1193 return Ctx.BuiltinInfo.isUnevaluated(BI);
1194 return false;
1195 }
1196
getCallReturnType() const1197 QualType CallExpr::getCallReturnType() const {
1198 QualType CalleeType = getCallee()->getType();
1199 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1200 CalleeType = FnTypePtr->getPointeeType();
1201 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1202 CalleeType = BPT->getPointeeType();
1203 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1204 // This should never be overloaded and so should never return null.
1205 CalleeType = Expr::findBoundMemberType(getCallee());
1206
1207 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1208 return FnType->getResultType();
1209 }
1210
getLocStart() const1211 SourceLocation CallExpr::getLocStart() const {
1212 if (isa<CXXOperatorCallExpr>(this))
1213 return cast<CXXOperatorCallExpr>(this)->getLocStart();
1214
1215 SourceLocation begin = getCallee()->getLocStart();
1216 if (begin.isInvalid() && getNumArgs() > 0)
1217 begin = getArg(0)->getLocStart();
1218 return begin;
1219 }
getLocEnd() const1220 SourceLocation CallExpr::getLocEnd() const {
1221 if (isa<CXXOperatorCallExpr>(this))
1222 return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1223
1224 SourceLocation end = getRParenLoc();
1225 if (end.isInvalid() && getNumArgs() > 0)
1226 end = getArg(getNumArgs() - 1)->getLocEnd();
1227 return end;
1228 }
1229
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1230 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1231 SourceLocation OperatorLoc,
1232 TypeSourceInfo *tsi,
1233 ArrayRef<OffsetOfNode> comps,
1234 ArrayRef<Expr*> exprs,
1235 SourceLocation RParenLoc) {
1236 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1237 sizeof(OffsetOfNode) * comps.size() +
1238 sizeof(Expr*) * exprs.size());
1239
1240 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1241 RParenLoc);
1242 }
1243
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1244 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1245 unsigned numComps, unsigned numExprs) {
1246 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1247 sizeof(OffsetOfNode) * numComps +
1248 sizeof(Expr*) * numExprs);
1249 return new (Mem) OffsetOfExpr(numComps, numExprs);
1250 }
1251
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1252 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1253 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1254 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1255 SourceLocation RParenLoc)
1256 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1257 /*TypeDependent=*/false,
1258 /*ValueDependent=*/tsi->getType()->isDependentType(),
1259 tsi->getType()->isInstantiationDependentType(),
1260 tsi->getType()->containsUnexpandedParameterPack()),
1261 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1262 NumComps(comps.size()), NumExprs(exprs.size())
1263 {
1264 for (unsigned i = 0; i != comps.size(); ++i) {
1265 setComponent(i, comps[i]);
1266 }
1267
1268 for (unsigned i = 0; i != exprs.size(); ++i) {
1269 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1270 ExprBits.ValueDependent = true;
1271 if (exprs[i]->containsUnexpandedParameterPack())
1272 ExprBits.ContainsUnexpandedParameterPack = true;
1273
1274 setIndexExpr(i, exprs[i]);
1275 }
1276 }
1277
getFieldName() const1278 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1279 assert(getKind() == Field || getKind() == Identifier);
1280 if (getKind() == Field)
1281 return getField()->getIdentifier();
1282
1283 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1284 }
1285
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1286 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1287 NestedNameSpecifierLoc QualifierLoc,
1288 SourceLocation TemplateKWLoc,
1289 ValueDecl *memberdecl,
1290 DeclAccessPair founddecl,
1291 DeclarationNameInfo nameinfo,
1292 const TemplateArgumentListInfo *targs,
1293 QualType ty,
1294 ExprValueKind vk,
1295 ExprObjectKind ok) {
1296 std::size_t Size = sizeof(MemberExpr);
1297
1298 bool hasQualOrFound = (QualifierLoc ||
1299 founddecl.getDecl() != memberdecl ||
1300 founddecl.getAccess() != memberdecl->getAccess());
1301 if (hasQualOrFound)
1302 Size += sizeof(MemberNameQualifier);
1303
1304 if (targs)
1305 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1306 else if (TemplateKWLoc.isValid())
1307 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1308
1309 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1310 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1311 ty, vk, ok);
1312
1313 if (hasQualOrFound) {
1314 // FIXME: Wrong. We should be looking at the member declaration we found.
1315 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1316 E->setValueDependent(true);
1317 E->setTypeDependent(true);
1318 E->setInstantiationDependent(true);
1319 }
1320 else if (QualifierLoc &&
1321 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1322 E->setInstantiationDependent(true);
1323
1324 E->HasQualifierOrFoundDecl = true;
1325
1326 MemberNameQualifier *NQ = E->getMemberQualifier();
1327 NQ->QualifierLoc = QualifierLoc;
1328 NQ->FoundDecl = founddecl;
1329 }
1330
1331 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1332
1333 if (targs) {
1334 bool Dependent = false;
1335 bool InstantiationDependent = false;
1336 bool ContainsUnexpandedParameterPack = false;
1337 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1338 Dependent,
1339 InstantiationDependent,
1340 ContainsUnexpandedParameterPack);
1341 if (InstantiationDependent)
1342 E->setInstantiationDependent(true);
1343 } else if (TemplateKWLoc.isValid()) {
1344 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1345 }
1346
1347 return E;
1348 }
1349
getLocStart() const1350 SourceLocation MemberExpr::getLocStart() const {
1351 if (isImplicitAccess()) {
1352 if (hasQualifier())
1353 return getQualifierLoc().getBeginLoc();
1354 return MemberLoc;
1355 }
1356
1357 // FIXME: We don't want this to happen. Rather, we should be able to
1358 // detect all kinds of implicit accesses more cleanly.
1359 SourceLocation BaseStartLoc = getBase()->getLocStart();
1360 if (BaseStartLoc.isValid())
1361 return BaseStartLoc;
1362 return MemberLoc;
1363 }
getLocEnd() const1364 SourceLocation MemberExpr::getLocEnd() const {
1365 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1366 if (hasExplicitTemplateArgs())
1367 EndLoc = getRAngleLoc();
1368 else if (EndLoc.isInvalid())
1369 EndLoc = getBase()->getLocEnd();
1370 return EndLoc;
1371 }
1372
CheckCastConsistency() const1373 void CastExpr::CheckCastConsistency() const {
1374 switch (getCastKind()) {
1375 case CK_DerivedToBase:
1376 case CK_UncheckedDerivedToBase:
1377 case CK_DerivedToBaseMemberPointer:
1378 case CK_BaseToDerived:
1379 case CK_BaseToDerivedMemberPointer:
1380 assert(!path_empty() && "Cast kind should have a base path!");
1381 break;
1382
1383 case CK_CPointerToObjCPointerCast:
1384 assert(getType()->isObjCObjectPointerType());
1385 assert(getSubExpr()->getType()->isPointerType());
1386 goto CheckNoBasePath;
1387
1388 case CK_BlockPointerToObjCPointerCast:
1389 assert(getType()->isObjCObjectPointerType());
1390 assert(getSubExpr()->getType()->isBlockPointerType());
1391 goto CheckNoBasePath;
1392
1393 case CK_ReinterpretMemberPointer:
1394 assert(getType()->isMemberPointerType());
1395 assert(getSubExpr()->getType()->isMemberPointerType());
1396 goto CheckNoBasePath;
1397
1398 case CK_BitCast:
1399 // Arbitrary casts to C pointer types count as bitcasts.
1400 // Otherwise, we should only have block and ObjC pointer casts
1401 // here if they stay within the type kind.
1402 if (!getType()->isPointerType()) {
1403 assert(getType()->isObjCObjectPointerType() ==
1404 getSubExpr()->getType()->isObjCObjectPointerType());
1405 assert(getType()->isBlockPointerType() ==
1406 getSubExpr()->getType()->isBlockPointerType());
1407 }
1408 goto CheckNoBasePath;
1409
1410 case CK_AnyPointerToBlockPointerCast:
1411 assert(getType()->isBlockPointerType());
1412 assert(getSubExpr()->getType()->isAnyPointerType() &&
1413 !getSubExpr()->getType()->isBlockPointerType());
1414 goto CheckNoBasePath;
1415
1416 case CK_CopyAndAutoreleaseBlockObject:
1417 assert(getType()->isBlockPointerType());
1418 assert(getSubExpr()->getType()->isBlockPointerType());
1419 goto CheckNoBasePath;
1420
1421 case CK_FunctionToPointerDecay:
1422 assert(getType()->isPointerType());
1423 assert(getSubExpr()->getType()->isFunctionType());
1424 goto CheckNoBasePath;
1425
1426 // These should not have an inheritance path.
1427 case CK_Dynamic:
1428 case CK_ToUnion:
1429 case CK_ArrayToPointerDecay:
1430 case CK_NullToMemberPointer:
1431 case CK_NullToPointer:
1432 case CK_ConstructorConversion:
1433 case CK_IntegralToPointer:
1434 case CK_PointerToIntegral:
1435 case CK_ToVoid:
1436 case CK_VectorSplat:
1437 case CK_IntegralCast:
1438 case CK_IntegralToFloating:
1439 case CK_FloatingToIntegral:
1440 case CK_FloatingCast:
1441 case CK_ObjCObjectLValueCast:
1442 case CK_FloatingRealToComplex:
1443 case CK_FloatingComplexToReal:
1444 case CK_FloatingComplexCast:
1445 case CK_FloatingComplexToIntegralComplex:
1446 case CK_IntegralRealToComplex:
1447 case CK_IntegralComplexToReal:
1448 case CK_IntegralComplexCast:
1449 case CK_IntegralComplexToFloatingComplex:
1450 case CK_ARCProduceObject:
1451 case CK_ARCConsumeObject:
1452 case CK_ARCReclaimReturnedObject:
1453 case CK_ARCExtendBlockObject:
1454 case CK_ZeroToOCLEvent:
1455 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1456 goto CheckNoBasePath;
1457
1458 case CK_Dependent:
1459 case CK_LValueToRValue:
1460 case CK_NoOp:
1461 case CK_AtomicToNonAtomic:
1462 case CK_NonAtomicToAtomic:
1463 case CK_PointerToBoolean:
1464 case CK_IntegralToBoolean:
1465 case CK_FloatingToBoolean:
1466 case CK_MemberPointerToBoolean:
1467 case CK_FloatingComplexToBoolean:
1468 case CK_IntegralComplexToBoolean:
1469 case CK_LValueBitCast: // -> bool&
1470 case CK_UserDefinedConversion: // operator bool()
1471 case CK_BuiltinFnToFnPtr:
1472 CheckNoBasePath:
1473 assert(path_empty() && "Cast kind should not have a base path!");
1474 break;
1475 }
1476 }
1477
getCastKindName() const1478 const char *CastExpr::getCastKindName() const {
1479 switch (getCastKind()) {
1480 case CK_Dependent:
1481 return "Dependent";
1482 case CK_BitCast:
1483 return "BitCast";
1484 case CK_LValueBitCast:
1485 return "LValueBitCast";
1486 case CK_LValueToRValue:
1487 return "LValueToRValue";
1488 case CK_NoOp:
1489 return "NoOp";
1490 case CK_BaseToDerived:
1491 return "BaseToDerived";
1492 case CK_DerivedToBase:
1493 return "DerivedToBase";
1494 case CK_UncheckedDerivedToBase:
1495 return "UncheckedDerivedToBase";
1496 case CK_Dynamic:
1497 return "Dynamic";
1498 case CK_ToUnion:
1499 return "ToUnion";
1500 case CK_ArrayToPointerDecay:
1501 return "ArrayToPointerDecay";
1502 case CK_FunctionToPointerDecay:
1503 return "FunctionToPointerDecay";
1504 case CK_NullToMemberPointer:
1505 return "NullToMemberPointer";
1506 case CK_NullToPointer:
1507 return "NullToPointer";
1508 case CK_BaseToDerivedMemberPointer:
1509 return "BaseToDerivedMemberPointer";
1510 case CK_DerivedToBaseMemberPointer:
1511 return "DerivedToBaseMemberPointer";
1512 case CK_ReinterpretMemberPointer:
1513 return "ReinterpretMemberPointer";
1514 case CK_UserDefinedConversion:
1515 return "UserDefinedConversion";
1516 case CK_ConstructorConversion:
1517 return "ConstructorConversion";
1518 case CK_IntegralToPointer:
1519 return "IntegralToPointer";
1520 case CK_PointerToIntegral:
1521 return "PointerToIntegral";
1522 case CK_PointerToBoolean:
1523 return "PointerToBoolean";
1524 case CK_ToVoid:
1525 return "ToVoid";
1526 case CK_VectorSplat:
1527 return "VectorSplat";
1528 case CK_IntegralCast:
1529 return "IntegralCast";
1530 case CK_IntegralToBoolean:
1531 return "IntegralToBoolean";
1532 case CK_IntegralToFloating:
1533 return "IntegralToFloating";
1534 case CK_FloatingToIntegral:
1535 return "FloatingToIntegral";
1536 case CK_FloatingCast:
1537 return "FloatingCast";
1538 case CK_FloatingToBoolean:
1539 return "FloatingToBoolean";
1540 case CK_MemberPointerToBoolean:
1541 return "MemberPointerToBoolean";
1542 case CK_CPointerToObjCPointerCast:
1543 return "CPointerToObjCPointerCast";
1544 case CK_BlockPointerToObjCPointerCast:
1545 return "BlockPointerToObjCPointerCast";
1546 case CK_AnyPointerToBlockPointerCast:
1547 return "AnyPointerToBlockPointerCast";
1548 case CK_ObjCObjectLValueCast:
1549 return "ObjCObjectLValueCast";
1550 case CK_FloatingRealToComplex:
1551 return "FloatingRealToComplex";
1552 case CK_FloatingComplexToReal:
1553 return "FloatingComplexToReal";
1554 case CK_FloatingComplexToBoolean:
1555 return "FloatingComplexToBoolean";
1556 case CK_FloatingComplexCast:
1557 return "FloatingComplexCast";
1558 case CK_FloatingComplexToIntegralComplex:
1559 return "FloatingComplexToIntegralComplex";
1560 case CK_IntegralRealToComplex:
1561 return "IntegralRealToComplex";
1562 case CK_IntegralComplexToReal:
1563 return "IntegralComplexToReal";
1564 case CK_IntegralComplexToBoolean:
1565 return "IntegralComplexToBoolean";
1566 case CK_IntegralComplexCast:
1567 return "IntegralComplexCast";
1568 case CK_IntegralComplexToFloatingComplex:
1569 return "IntegralComplexToFloatingComplex";
1570 case CK_ARCConsumeObject:
1571 return "ARCConsumeObject";
1572 case CK_ARCProduceObject:
1573 return "ARCProduceObject";
1574 case CK_ARCReclaimReturnedObject:
1575 return "ARCReclaimReturnedObject";
1576 case CK_ARCExtendBlockObject:
1577 return "ARCCExtendBlockObject";
1578 case CK_AtomicToNonAtomic:
1579 return "AtomicToNonAtomic";
1580 case CK_NonAtomicToAtomic:
1581 return "NonAtomicToAtomic";
1582 case CK_CopyAndAutoreleaseBlockObject:
1583 return "CopyAndAutoreleaseBlockObject";
1584 case CK_BuiltinFnToFnPtr:
1585 return "BuiltinFnToFnPtr";
1586 case CK_ZeroToOCLEvent:
1587 return "ZeroToOCLEvent";
1588 }
1589
1590 llvm_unreachable("Unhandled cast kind!");
1591 }
1592
getSubExprAsWritten()1593 Expr *CastExpr::getSubExprAsWritten() {
1594 Expr *SubExpr = 0;
1595 CastExpr *E = this;
1596 do {
1597 SubExpr = E->getSubExpr();
1598
1599 // Skip through reference binding to temporary.
1600 if (MaterializeTemporaryExpr *Materialize
1601 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1602 SubExpr = Materialize->GetTemporaryExpr();
1603
1604 // Skip any temporary bindings; they're implicit.
1605 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1606 SubExpr = Binder->getSubExpr();
1607
1608 // Conversions by constructor and conversion functions have a
1609 // subexpression describing the call; strip it off.
1610 if (E->getCastKind() == CK_ConstructorConversion)
1611 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1612 else if (E->getCastKind() == CK_UserDefinedConversion)
1613 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1614
1615 // If the subexpression we're left with is an implicit cast, look
1616 // through that, too.
1617 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1618
1619 return SubExpr;
1620 }
1621
path_buffer()1622 CXXBaseSpecifier **CastExpr::path_buffer() {
1623 switch (getStmtClass()) {
1624 #define ABSTRACT_STMT(x)
1625 #define CASTEXPR(Type, Base) \
1626 case Stmt::Type##Class: \
1627 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1628 #define STMT(Type, Base)
1629 #include "clang/AST/StmtNodes.inc"
1630 default:
1631 llvm_unreachable("non-cast expressions not possible here");
1632 }
1633 }
1634
setCastPath(const CXXCastPath & Path)1635 void CastExpr::setCastPath(const CXXCastPath &Path) {
1636 assert(Path.size() == path_size());
1637 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1638 }
1639
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1640 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1641 CastKind Kind, Expr *Operand,
1642 const CXXCastPath *BasePath,
1643 ExprValueKind VK) {
1644 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1645 void *Buffer =
1646 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1647 ImplicitCastExpr *E =
1648 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1649 if (PathSize) E->setCastPath(*BasePath);
1650 return E;
1651 }
1652
CreateEmpty(ASTContext & C,unsigned PathSize)1653 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1654 unsigned PathSize) {
1655 void *Buffer =
1656 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1657 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1658 }
1659
1660
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1661 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1662 ExprValueKind VK, CastKind K, Expr *Op,
1663 const CXXCastPath *BasePath,
1664 TypeSourceInfo *WrittenTy,
1665 SourceLocation L, SourceLocation R) {
1666 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1667 void *Buffer =
1668 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1669 CStyleCastExpr *E =
1670 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1671 if (PathSize) E->setCastPath(*BasePath);
1672 return E;
1673 }
1674
CreateEmpty(ASTContext & C,unsigned PathSize)1675 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1676 void *Buffer =
1677 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1678 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1679 }
1680
1681 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1682 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1683 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1684 switch (Op) {
1685 case BO_PtrMemD: return ".*";
1686 case BO_PtrMemI: return "->*";
1687 case BO_Mul: return "*";
1688 case BO_Div: return "/";
1689 case BO_Rem: return "%";
1690 case BO_Add: return "+";
1691 case BO_Sub: return "-";
1692 case BO_Shl: return "<<";
1693 case BO_Shr: return ">>";
1694 case BO_LT: return "<";
1695 case BO_GT: return ">";
1696 case BO_LE: return "<=";
1697 case BO_GE: return ">=";
1698 case BO_EQ: return "==";
1699 case BO_NE: return "!=";
1700 case BO_And: return "&";
1701 case BO_Xor: return "^";
1702 case BO_Or: return "|";
1703 case BO_LAnd: return "&&";
1704 case BO_LOr: return "||";
1705 case BO_Assign: return "=";
1706 case BO_MulAssign: return "*=";
1707 case BO_DivAssign: return "/=";
1708 case BO_RemAssign: return "%=";
1709 case BO_AddAssign: return "+=";
1710 case BO_SubAssign: return "-=";
1711 case BO_ShlAssign: return "<<=";
1712 case BO_ShrAssign: return ">>=";
1713 case BO_AndAssign: return "&=";
1714 case BO_XorAssign: return "^=";
1715 case BO_OrAssign: return "|=";
1716 case BO_Comma: return ",";
1717 }
1718
1719 llvm_unreachable("Invalid OpCode!");
1720 }
1721
1722 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1723 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1724 switch (OO) {
1725 default: llvm_unreachable("Not an overloadable binary operator");
1726 case OO_Plus: return BO_Add;
1727 case OO_Minus: return BO_Sub;
1728 case OO_Star: return BO_Mul;
1729 case OO_Slash: return BO_Div;
1730 case OO_Percent: return BO_Rem;
1731 case OO_Caret: return BO_Xor;
1732 case OO_Amp: return BO_And;
1733 case OO_Pipe: return BO_Or;
1734 case OO_Equal: return BO_Assign;
1735 case OO_Less: return BO_LT;
1736 case OO_Greater: return BO_GT;
1737 case OO_PlusEqual: return BO_AddAssign;
1738 case OO_MinusEqual: return BO_SubAssign;
1739 case OO_StarEqual: return BO_MulAssign;
1740 case OO_SlashEqual: return BO_DivAssign;
1741 case OO_PercentEqual: return BO_RemAssign;
1742 case OO_CaretEqual: return BO_XorAssign;
1743 case OO_AmpEqual: return BO_AndAssign;
1744 case OO_PipeEqual: return BO_OrAssign;
1745 case OO_LessLess: return BO_Shl;
1746 case OO_GreaterGreater: return BO_Shr;
1747 case OO_LessLessEqual: return BO_ShlAssign;
1748 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1749 case OO_EqualEqual: return BO_EQ;
1750 case OO_ExclaimEqual: return BO_NE;
1751 case OO_LessEqual: return BO_LE;
1752 case OO_GreaterEqual: return BO_GE;
1753 case OO_AmpAmp: return BO_LAnd;
1754 case OO_PipePipe: return BO_LOr;
1755 case OO_Comma: return BO_Comma;
1756 case OO_ArrowStar: return BO_PtrMemI;
1757 }
1758 }
1759
getOverloadedOperator(Opcode Opc)1760 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1761 static const OverloadedOperatorKind OverOps[] = {
1762 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1763 OO_Star, OO_Slash, OO_Percent,
1764 OO_Plus, OO_Minus,
1765 OO_LessLess, OO_GreaterGreater,
1766 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1767 OO_EqualEqual, OO_ExclaimEqual,
1768 OO_Amp,
1769 OO_Caret,
1770 OO_Pipe,
1771 OO_AmpAmp,
1772 OO_PipePipe,
1773 OO_Equal, OO_StarEqual,
1774 OO_SlashEqual, OO_PercentEqual,
1775 OO_PlusEqual, OO_MinusEqual,
1776 OO_LessLessEqual, OO_GreaterGreaterEqual,
1777 OO_AmpEqual, OO_CaretEqual,
1778 OO_PipeEqual,
1779 OO_Comma
1780 };
1781 return OverOps[Opc];
1782 }
1783
InitListExpr(ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1784 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1785 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1786 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1787 false, false),
1788 InitExprs(C, initExprs.size()),
1789 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1790 {
1791 sawArrayRangeDesignator(false);
1792 for (unsigned I = 0; I != initExprs.size(); ++I) {
1793 if (initExprs[I]->isTypeDependent())
1794 ExprBits.TypeDependent = true;
1795 if (initExprs[I]->isValueDependent())
1796 ExprBits.ValueDependent = true;
1797 if (initExprs[I]->isInstantiationDependent())
1798 ExprBits.InstantiationDependent = true;
1799 if (initExprs[I]->containsUnexpandedParameterPack())
1800 ExprBits.ContainsUnexpandedParameterPack = true;
1801 }
1802
1803 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1804 }
1805
reserveInits(ASTContext & C,unsigned NumInits)1806 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1807 if (NumInits > InitExprs.size())
1808 InitExprs.reserve(C, NumInits);
1809 }
1810
resizeInits(ASTContext & C,unsigned NumInits)1811 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1812 InitExprs.resize(C, NumInits, 0);
1813 }
1814
updateInit(ASTContext & C,unsigned Init,Expr * expr)1815 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1816 if (Init >= InitExprs.size()) {
1817 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1818 InitExprs.back() = expr;
1819 return 0;
1820 }
1821
1822 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1823 InitExprs[Init] = expr;
1824 return Result;
1825 }
1826
setArrayFiller(Expr * filler)1827 void InitListExpr::setArrayFiller(Expr *filler) {
1828 assert(!hasArrayFiller() && "Filler already set!");
1829 ArrayFillerOrUnionFieldInit = filler;
1830 // Fill out any "holes" in the array due to designated initializers.
1831 Expr **inits = getInits();
1832 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1833 if (inits[i] == 0)
1834 inits[i] = filler;
1835 }
1836
isStringLiteralInit() const1837 bool InitListExpr::isStringLiteralInit() const {
1838 if (getNumInits() != 1)
1839 return false;
1840 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1841 if (!AT || !AT->getElementType()->isIntegerType())
1842 return false;
1843 const Expr *Init = getInit(0)->IgnoreParens();
1844 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1845 }
1846
getLocStart() const1847 SourceLocation InitListExpr::getLocStart() const {
1848 if (InitListExpr *SyntacticForm = getSyntacticForm())
1849 return SyntacticForm->getLocStart();
1850 SourceLocation Beg = LBraceLoc;
1851 if (Beg.isInvalid()) {
1852 // Find the first non-null initializer.
1853 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1854 E = InitExprs.end();
1855 I != E; ++I) {
1856 if (Stmt *S = *I) {
1857 Beg = S->getLocStart();
1858 break;
1859 }
1860 }
1861 }
1862 return Beg;
1863 }
1864
getLocEnd() const1865 SourceLocation InitListExpr::getLocEnd() const {
1866 if (InitListExpr *SyntacticForm = getSyntacticForm())
1867 return SyntacticForm->getLocEnd();
1868 SourceLocation End = RBraceLoc;
1869 if (End.isInvalid()) {
1870 // Find the first non-null initializer from the end.
1871 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1872 E = InitExprs.rend();
1873 I != E; ++I) {
1874 if (Stmt *S = *I) {
1875 End = S->getLocEnd();
1876 break;
1877 }
1878 }
1879 }
1880 return End;
1881 }
1882
1883 /// getFunctionType - Return the underlying function type for this block.
1884 ///
getFunctionType() const1885 const FunctionProtoType *BlockExpr::getFunctionType() const {
1886 // The block pointer is never sugared, but the function type might be.
1887 return cast<BlockPointerType>(getType())
1888 ->getPointeeType()->castAs<FunctionProtoType>();
1889 }
1890
getCaretLocation() const1891 SourceLocation BlockExpr::getCaretLocation() const {
1892 return TheBlock->getCaretLocation();
1893 }
getBody() const1894 const Stmt *BlockExpr::getBody() const {
1895 return TheBlock->getBody();
1896 }
getBody()1897 Stmt *BlockExpr::getBody() {
1898 return TheBlock->getBody();
1899 }
1900
1901
1902 //===----------------------------------------------------------------------===//
1903 // Generic Expression Routines
1904 //===----------------------------------------------------------------------===//
1905
1906 /// isUnusedResultAWarning - Return true if this immediate expression should
1907 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1908 /// with location to warn on and the source range[s] to report with the
1909 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1910 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1911 SourceRange &R1, SourceRange &R2,
1912 ASTContext &Ctx) const {
1913 // Don't warn if the expr is type dependent. The type could end up
1914 // instantiating to void.
1915 if (isTypeDependent())
1916 return false;
1917
1918 switch (getStmtClass()) {
1919 default:
1920 if (getType()->isVoidType())
1921 return false;
1922 WarnE = this;
1923 Loc = getExprLoc();
1924 R1 = getSourceRange();
1925 return true;
1926 case ParenExprClass:
1927 return cast<ParenExpr>(this)->getSubExpr()->
1928 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1929 case GenericSelectionExprClass:
1930 return cast<GenericSelectionExpr>(this)->getResultExpr()->
1931 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1932 case ChooseExprClass:
1933 return cast<ChooseExpr>(this)->getChosenSubExpr()->
1934 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1935 case UnaryOperatorClass: {
1936 const UnaryOperator *UO = cast<UnaryOperator>(this);
1937
1938 switch (UO->getOpcode()) {
1939 case UO_Plus:
1940 case UO_Minus:
1941 case UO_AddrOf:
1942 case UO_Not:
1943 case UO_LNot:
1944 case UO_Deref:
1945 break;
1946 case UO_PostInc:
1947 case UO_PostDec:
1948 case UO_PreInc:
1949 case UO_PreDec: // ++/--
1950 return false; // Not a warning.
1951 case UO_Real:
1952 case UO_Imag:
1953 // accessing a piece of a volatile complex is a side-effect.
1954 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1955 .isVolatileQualified())
1956 return false;
1957 break;
1958 case UO_Extension:
1959 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1960 }
1961 WarnE = this;
1962 Loc = UO->getOperatorLoc();
1963 R1 = UO->getSubExpr()->getSourceRange();
1964 return true;
1965 }
1966 case BinaryOperatorClass: {
1967 const BinaryOperator *BO = cast<BinaryOperator>(this);
1968 switch (BO->getOpcode()) {
1969 default:
1970 break;
1971 // Consider the RHS of comma for side effects. LHS was checked by
1972 // Sema::CheckCommaOperands.
1973 case BO_Comma:
1974 // ((foo = <blah>), 0) is an idiom for hiding the result (and
1975 // lvalue-ness) of an assignment written in a macro.
1976 if (IntegerLiteral *IE =
1977 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1978 if (IE->getValue() == 0)
1979 return false;
1980 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1981 // Consider '||', '&&' to have side effects if the LHS or RHS does.
1982 case BO_LAnd:
1983 case BO_LOr:
1984 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1985 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1986 return false;
1987 break;
1988 }
1989 if (BO->isAssignmentOp())
1990 return false;
1991 WarnE = this;
1992 Loc = BO->getOperatorLoc();
1993 R1 = BO->getLHS()->getSourceRange();
1994 R2 = BO->getRHS()->getSourceRange();
1995 return true;
1996 }
1997 case CompoundAssignOperatorClass:
1998 case VAArgExprClass:
1999 case AtomicExprClass:
2000 return false;
2001
2002 case ConditionalOperatorClass: {
2003 // If only one of the LHS or RHS is a warning, the operator might
2004 // be being used for control flow. Only warn if both the LHS and
2005 // RHS are warnings.
2006 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2007 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2008 return false;
2009 if (!Exp->getLHS())
2010 return true;
2011 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2012 }
2013
2014 case MemberExprClass:
2015 WarnE = this;
2016 Loc = cast<MemberExpr>(this)->getMemberLoc();
2017 R1 = SourceRange(Loc, Loc);
2018 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2019 return true;
2020
2021 case ArraySubscriptExprClass:
2022 WarnE = this;
2023 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2024 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2025 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2026 return true;
2027
2028 case CXXOperatorCallExprClass: {
2029 // We warn about operator== and operator!= even when user-defined operator
2030 // overloads as there is no reasonable way to define these such that they
2031 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2032 // warning: these operators are commonly typo'ed, and so warning on them
2033 // provides additional value as well. If this list is updated,
2034 // DiagnoseUnusedComparison should be as well.
2035 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2036 if (Op->getOperator() == OO_EqualEqual ||
2037 Op->getOperator() == OO_ExclaimEqual) {
2038 WarnE = this;
2039 Loc = Op->getOperatorLoc();
2040 R1 = Op->getSourceRange();
2041 return true;
2042 }
2043
2044 // Fallthrough for generic call handling.
2045 }
2046 case CallExprClass:
2047 case CXXMemberCallExprClass:
2048 case UserDefinedLiteralClass: {
2049 // If this is a direct call, get the callee.
2050 const CallExpr *CE = cast<CallExpr>(this);
2051 if (const Decl *FD = CE->getCalleeDecl()) {
2052 // If the callee has attribute pure, const, or warn_unused_result, warn
2053 // about it. void foo() { strlen("bar"); } should warn.
2054 //
2055 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2056 // updated to match for QoI.
2057 if (FD->getAttr<WarnUnusedResultAttr>() ||
2058 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2059 WarnE = this;
2060 Loc = CE->getCallee()->getLocStart();
2061 R1 = CE->getCallee()->getSourceRange();
2062
2063 if (unsigned NumArgs = CE->getNumArgs())
2064 R2 = SourceRange(CE->getArg(0)->getLocStart(),
2065 CE->getArg(NumArgs-1)->getLocEnd());
2066 return true;
2067 }
2068 }
2069 return false;
2070 }
2071
2072 // If we don't know precisely what we're looking at, let's not warn.
2073 case UnresolvedLookupExprClass:
2074 case CXXUnresolvedConstructExprClass:
2075 return false;
2076
2077 case CXXTemporaryObjectExprClass:
2078 case CXXConstructExprClass: {
2079 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2080 if (Type->hasAttr<WarnUnusedAttr>()) {
2081 WarnE = this;
2082 Loc = getLocStart();
2083 R1 = getSourceRange();
2084 return true;
2085 }
2086 }
2087 return false;
2088 }
2089
2090 case ObjCMessageExprClass: {
2091 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2092 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2093 ME->isInstanceMessage() &&
2094 !ME->getType()->isVoidType() &&
2095 ME->getMethodFamily() == OMF_init) {
2096 WarnE = this;
2097 Loc = getExprLoc();
2098 R1 = ME->getSourceRange();
2099 return true;
2100 }
2101
2102 const ObjCMethodDecl *MD = ME->getMethodDecl();
2103 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2104 WarnE = this;
2105 Loc = getExprLoc();
2106 return true;
2107 }
2108 return false;
2109 }
2110
2111 case ObjCPropertyRefExprClass:
2112 WarnE = this;
2113 Loc = getExprLoc();
2114 R1 = getSourceRange();
2115 return true;
2116
2117 case PseudoObjectExprClass: {
2118 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2119
2120 // Only complain about things that have the form of a getter.
2121 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2122 isa<BinaryOperator>(PO->getSyntacticForm()))
2123 return false;
2124
2125 WarnE = this;
2126 Loc = getExprLoc();
2127 R1 = getSourceRange();
2128 return true;
2129 }
2130
2131 case StmtExprClass: {
2132 // Statement exprs don't logically have side effects themselves, but are
2133 // sometimes used in macros in ways that give them a type that is unused.
2134 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2135 // however, if the result of the stmt expr is dead, we don't want to emit a
2136 // warning.
2137 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2138 if (!CS->body_empty()) {
2139 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2140 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2141 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2142 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2143 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2144 }
2145
2146 if (getType()->isVoidType())
2147 return false;
2148 WarnE = this;
2149 Loc = cast<StmtExpr>(this)->getLParenLoc();
2150 R1 = getSourceRange();
2151 return true;
2152 }
2153 case CXXFunctionalCastExprClass:
2154 case CStyleCastExprClass: {
2155 // Ignore an explicit cast to void unless the operand is a non-trivial
2156 // volatile lvalue.
2157 const CastExpr *CE = cast<CastExpr>(this);
2158 if (CE->getCastKind() == CK_ToVoid) {
2159 if (CE->getSubExpr()->isGLValue() &&
2160 CE->getSubExpr()->getType().isVolatileQualified()) {
2161 const DeclRefExpr *DRE =
2162 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2163 if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2164 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2165 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2166 R1, R2, Ctx);
2167 }
2168 }
2169 return false;
2170 }
2171
2172 // If this is a cast to a constructor conversion, check the operand.
2173 // Otherwise, the result of the cast is unused.
2174 if (CE->getCastKind() == CK_ConstructorConversion)
2175 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2176
2177 WarnE = this;
2178 if (const CXXFunctionalCastExpr *CXXCE =
2179 dyn_cast<CXXFunctionalCastExpr>(this)) {
2180 Loc = CXXCE->getTypeBeginLoc();
2181 R1 = CXXCE->getSubExpr()->getSourceRange();
2182 } else {
2183 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2184 Loc = CStyleCE->getLParenLoc();
2185 R1 = CStyleCE->getSubExpr()->getSourceRange();
2186 }
2187 return true;
2188 }
2189 case ImplicitCastExprClass: {
2190 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2191
2192 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2193 if (ICE->getCastKind() == CK_LValueToRValue &&
2194 ICE->getSubExpr()->getType().isVolatileQualified())
2195 return false;
2196
2197 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2198 }
2199 case CXXDefaultArgExprClass:
2200 return (cast<CXXDefaultArgExpr>(this)
2201 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2202 case CXXDefaultInitExprClass:
2203 return (cast<CXXDefaultInitExpr>(this)
2204 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2205
2206 case CXXNewExprClass:
2207 // FIXME: In theory, there might be new expressions that don't have side
2208 // effects (e.g. a placement new with an uninitialized POD).
2209 case CXXDeleteExprClass:
2210 return false;
2211 case CXXBindTemporaryExprClass:
2212 return (cast<CXXBindTemporaryExpr>(this)
2213 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2214 case ExprWithCleanupsClass:
2215 return (cast<ExprWithCleanups>(this)
2216 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2217 }
2218 }
2219
2220 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2221 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2222 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2223 const Expr *E = IgnoreParens();
2224 switch (E->getStmtClass()) {
2225 default:
2226 return false;
2227 case ObjCIvarRefExprClass:
2228 return true;
2229 case Expr::UnaryOperatorClass:
2230 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2231 case ImplicitCastExprClass:
2232 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2233 case MaterializeTemporaryExprClass:
2234 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2235 ->isOBJCGCCandidate(Ctx);
2236 case CStyleCastExprClass:
2237 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2238 case DeclRefExprClass: {
2239 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2240
2241 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2242 if (VD->hasGlobalStorage())
2243 return true;
2244 QualType T = VD->getType();
2245 // dereferencing to a pointer is always a gc'able candidate,
2246 // unless it is __weak.
2247 return T->isPointerType() &&
2248 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2249 }
2250 return false;
2251 }
2252 case MemberExprClass: {
2253 const MemberExpr *M = cast<MemberExpr>(E);
2254 return M->getBase()->isOBJCGCCandidate(Ctx);
2255 }
2256 case ArraySubscriptExprClass:
2257 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2258 }
2259 }
2260
isBoundMemberFunction(ASTContext & Ctx) const2261 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2262 if (isTypeDependent())
2263 return false;
2264 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2265 }
2266
findBoundMemberType(const Expr * expr)2267 QualType Expr::findBoundMemberType(const Expr *expr) {
2268 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2269
2270 // Bound member expressions are always one of these possibilities:
2271 // x->m x.m x->*y x.*y
2272 // (possibly parenthesized)
2273
2274 expr = expr->IgnoreParens();
2275 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2276 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2277 return mem->getMemberDecl()->getType();
2278 }
2279
2280 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2281 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2282 ->getPointeeType();
2283 assert(type->isFunctionType());
2284 return type;
2285 }
2286
2287 assert(isa<UnresolvedMemberExpr>(expr));
2288 return QualType();
2289 }
2290
IgnoreParens()2291 Expr* Expr::IgnoreParens() {
2292 Expr* E = this;
2293 while (true) {
2294 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2295 E = P->getSubExpr();
2296 continue;
2297 }
2298 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2299 if (P->getOpcode() == UO_Extension) {
2300 E = P->getSubExpr();
2301 continue;
2302 }
2303 }
2304 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2305 if (!P->isResultDependent()) {
2306 E = P->getResultExpr();
2307 continue;
2308 }
2309 }
2310 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2311 if (!P->isConditionDependent()) {
2312 E = P->getChosenSubExpr();
2313 continue;
2314 }
2315 }
2316 return E;
2317 }
2318 }
2319
2320 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2321 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2322 Expr *Expr::IgnoreParenCasts() {
2323 Expr *E = this;
2324 while (true) {
2325 E = E->IgnoreParens();
2326 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2327 E = P->getSubExpr();
2328 continue;
2329 }
2330 if (MaterializeTemporaryExpr *Materialize
2331 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2332 E = Materialize->GetTemporaryExpr();
2333 continue;
2334 }
2335 if (SubstNonTypeTemplateParmExpr *NTTP
2336 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2337 E = NTTP->getReplacement();
2338 continue;
2339 }
2340 return E;
2341 }
2342 }
2343
2344 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2345 /// casts. This is intended purely as a temporary workaround for code
2346 /// that hasn't yet been rewritten to do the right thing about those
2347 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2348 Expr *Expr::IgnoreParenLValueCasts() {
2349 Expr *E = this;
2350 while (true) {
2351 E = E->IgnoreParens();
2352 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2353 if (P->getCastKind() == CK_LValueToRValue) {
2354 E = P->getSubExpr();
2355 continue;
2356 }
2357 } else if (MaterializeTemporaryExpr *Materialize
2358 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2359 E = Materialize->GetTemporaryExpr();
2360 continue;
2361 } else if (SubstNonTypeTemplateParmExpr *NTTP
2362 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2363 E = NTTP->getReplacement();
2364 continue;
2365 }
2366 break;
2367 }
2368 return E;
2369 }
2370
ignoreParenBaseCasts()2371 Expr *Expr::ignoreParenBaseCasts() {
2372 Expr *E = this;
2373 while (true) {
2374 E = E->IgnoreParens();
2375 if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2376 if (CE->getCastKind() == CK_DerivedToBase ||
2377 CE->getCastKind() == CK_UncheckedDerivedToBase ||
2378 CE->getCastKind() == CK_NoOp) {
2379 E = CE->getSubExpr();
2380 continue;
2381 }
2382 }
2383
2384 return E;
2385 }
2386 }
2387
IgnoreParenImpCasts()2388 Expr *Expr::IgnoreParenImpCasts() {
2389 Expr *E = this;
2390 while (true) {
2391 E = E->IgnoreParens();
2392 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2393 E = P->getSubExpr();
2394 continue;
2395 }
2396 if (MaterializeTemporaryExpr *Materialize
2397 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2398 E = Materialize->GetTemporaryExpr();
2399 continue;
2400 }
2401 if (SubstNonTypeTemplateParmExpr *NTTP
2402 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2403 E = NTTP->getReplacement();
2404 continue;
2405 }
2406 return E;
2407 }
2408 }
2409
IgnoreConversionOperator()2410 Expr *Expr::IgnoreConversionOperator() {
2411 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2412 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2413 return MCE->getImplicitObjectArgument();
2414 }
2415 return this;
2416 }
2417
2418 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2419 /// value (including ptr->int casts of the same size). Strip off any
2420 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2421 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2422 Expr *E = this;
2423 while (true) {
2424 E = E->IgnoreParens();
2425
2426 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2427 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2428 // ptr<->int casts of the same width. We also ignore all identity casts.
2429 Expr *SE = P->getSubExpr();
2430
2431 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2432 E = SE;
2433 continue;
2434 }
2435
2436 if ((E->getType()->isPointerType() ||
2437 E->getType()->isIntegralType(Ctx)) &&
2438 (SE->getType()->isPointerType() ||
2439 SE->getType()->isIntegralType(Ctx)) &&
2440 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2441 E = SE;
2442 continue;
2443 }
2444 }
2445
2446 if (SubstNonTypeTemplateParmExpr *NTTP
2447 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2448 E = NTTP->getReplacement();
2449 continue;
2450 }
2451
2452 return E;
2453 }
2454 }
2455
isDefaultArgument() const2456 bool Expr::isDefaultArgument() const {
2457 const Expr *E = this;
2458 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2459 E = M->GetTemporaryExpr();
2460
2461 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2462 E = ICE->getSubExprAsWritten();
2463
2464 return isa<CXXDefaultArgExpr>(E);
2465 }
2466
2467 /// \brief Skip over any no-op casts and any temporary-binding
2468 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2469 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2470 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2471 E = M->GetTemporaryExpr();
2472
2473 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2474 if (ICE->getCastKind() == CK_NoOp)
2475 E = ICE->getSubExpr();
2476 else
2477 break;
2478 }
2479
2480 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2481 E = BE->getSubExpr();
2482
2483 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2484 if (ICE->getCastKind() == CK_NoOp)
2485 E = ICE->getSubExpr();
2486 else
2487 break;
2488 }
2489
2490 return E->IgnoreParens();
2491 }
2492
2493 /// isTemporaryObject - Determines if this expression produces a
2494 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2495 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2496 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2497 return false;
2498
2499 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2500
2501 // Temporaries are by definition pr-values of class type.
2502 if (!E->Classify(C).isPRValue()) {
2503 // In this context, property reference is a message call and is pr-value.
2504 if (!isa<ObjCPropertyRefExpr>(E))
2505 return false;
2506 }
2507
2508 // Black-list a few cases which yield pr-values of class type that don't
2509 // refer to temporaries of that type:
2510
2511 // - implicit derived-to-base conversions
2512 if (isa<ImplicitCastExpr>(E)) {
2513 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2514 case CK_DerivedToBase:
2515 case CK_UncheckedDerivedToBase:
2516 return false;
2517 default:
2518 break;
2519 }
2520 }
2521
2522 // - member expressions (all)
2523 if (isa<MemberExpr>(E))
2524 return false;
2525
2526 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2527 if (BO->isPtrMemOp())
2528 return false;
2529
2530 // - opaque values (all)
2531 if (isa<OpaqueValueExpr>(E))
2532 return false;
2533
2534 return true;
2535 }
2536
isImplicitCXXThis() const2537 bool Expr::isImplicitCXXThis() const {
2538 const Expr *E = this;
2539
2540 // Strip away parentheses and casts we don't care about.
2541 while (true) {
2542 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2543 E = Paren->getSubExpr();
2544 continue;
2545 }
2546
2547 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2548 if (ICE->getCastKind() == CK_NoOp ||
2549 ICE->getCastKind() == CK_LValueToRValue ||
2550 ICE->getCastKind() == CK_DerivedToBase ||
2551 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2552 E = ICE->getSubExpr();
2553 continue;
2554 }
2555 }
2556
2557 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2558 if (UnOp->getOpcode() == UO_Extension) {
2559 E = UnOp->getSubExpr();
2560 continue;
2561 }
2562 }
2563
2564 if (const MaterializeTemporaryExpr *M
2565 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2566 E = M->GetTemporaryExpr();
2567 continue;
2568 }
2569
2570 break;
2571 }
2572
2573 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2574 return This->isImplicit();
2575
2576 return false;
2577 }
2578
2579 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2580 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2581 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2582 for (unsigned I = 0; I < Exprs.size(); ++I)
2583 if (Exprs[I]->isTypeDependent())
2584 return true;
2585
2586 return false;
2587 }
2588
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2589 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2590 // This function is attempting whether an expression is an initializer
2591 // which can be evaluated at compile-time. It very closely parallels
2592 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2593 // will lead to unexpected results. Like ConstExprEmitter, it falls back
2594 // to isEvaluatable most of the time.
2595 //
2596 // If we ever capture reference-binding directly in the AST, we can
2597 // kill the second parameter.
2598
2599 if (IsForRef) {
2600 EvalResult Result;
2601 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2602 }
2603
2604 switch (getStmtClass()) {
2605 default: break;
2606 case StringLiteralClass:
2607 case ObjCEncodeExprClass:
2608 return true;
2609 case CXXTemporaryObjectExprClass:
2610 case CXXConstructExprClass: {
2611 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2612
2613 if (CE->getConstructor()->isTrivial() &&
2614 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2615 // Trivial default constructor
2616 if (!CE->getNumArgs()) return true;
2617
2618 // Trivial copy constructor
2619 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2620 return CE->getArg(0)->isConstantInitializer(Ctx, false);
2621 }
2622
2623 break;
2624 }
2625 case CompoundLiteralExprClass: {
2626 // This handles gcc's extension that allows global initializers like
2627 // "struct x {int x;} x = (struct x) {};".
2628 // FIXME: This accepts other cases it shouldn't!
2629 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2630 return Exp->isConstantInitializer(Ctx, false);
2631 }
2632 case InitListExprClass: {
2633 // FIXME: This doesn't deal with fields with reference types correctly.
2634 // FIXME: This incorrectly allows pointers cast to integers to be assigned
2635 // to bitfields.
2636 const InitListExpr *ILE = cast<InitListExpr>(this);
2637 if (ILE->getType()->isArrayType()) {
2638 unsigned numInits = ILE->getNumInits();
2639 for (unsigned i = 0; i < numInits; i++) {
2640 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false))
2641 return false;
2642 }
2643 return true;
2644 }
2645
2646 if (ILE->getType()->isRecordType()) {
2647 unsigned ElementNo = 0;
2648 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2649 for (RecordDecl::field_iterator Field = RD->field_begin(),
2650 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
2651 // If this is a union, skip all the fields that aren't being initialized.
2652 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
2653 continue;
2654
2655 // Don't emit anonymous bitfields, they just affect layout.
2656 if (Field->isUnnamedBitfield())
2657 continue;
2658
2659 if (ElementNo < ILE->getNumInits()) {
2660 const Expr *Elt = ILE->getInit(ElementNo++);
2661 if (Field->isBitField()) {
2662 // Bitfields have to evaluate to an integer.
2663 llvm::APSInt ResultTmp;
2664 if (!Elt->EvaluateAsInt(ResultTmp, Ctx))
2665 return false;
2666 } else {
2667 bool RefType = Field->getType()->isReferenceType();
2668 if (!Elt->isConstantInitializer(Ctx, RefType))
2669 return false;
2670 }
2671 }
2672 }
2673 return true;
2674 }
2675
2676 break;
2677 }
2678 case ImplicitValueInitExprClass:
2679 return true;
2680 case ParenExprClass:
2681 return cast<ParenExpr>(this)->getSubExpr()
2682 ->isConstantInitializer(Ctx, IsForRef);
2683 case GenericSelectionExprClass:
2684 return cast<GenericSelectionExpr>(this)->getResultExpr()
2685 ->isConstantInitializer(Ctx, IsForRef);
2686 case ChooseExprClass:
2687 if (cast<ChooseExpr>(this)->isConditionDependent())
2688 return false;
2689 return cast<ChooseExpr>(this)->getChosenSubExpr()
2690 ->isConstantInitializer(Ctx, IsForRef);
2691 case UnaryOperatorClass: {
2692 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2693 if (Exp->getOpcode() == UO_Extension)
2694 return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2695 break;
2696 }
2697 case CXXFunctionalCastExprClass:
2698 case CXXStaticCastExprClass:
2699 case ImplicitCastExprClass:
2700 case CStyleCastExprClass:
2701 case ObjCBridgedCastExprClass:
2702 case CXXDynamicCastExprClass:
2703 case CXXReinterpretCastExprClass:
2704 case CXXConstCastExprClass: {
2705 const CastExpr *CE = cast<CastExpr>(this);
2706
2707 // Handle misc casts we want to ignore.
2708 if (CE->getCastKind() == CK_NoOp ||
2709 CE->getCastKind() == CK_LValueToRValue ||
2710 CE->getCastKind() == CK_ToUnion ||
2711 CE->getCastKind() == CK_ConstructorConversion ||
2712 CE->getCastKind() == CK_NonAtomicToAtomic ||
2713 CE->getCastKind() == CK_AtomicToNonAtomic)
2714 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2715
2716 break;
2717 }
2718 case MaterializeTemporaryExprClass:
2719 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2720 ->isConstantInitializer(Ctx, false);
2721
2722 case SubstNonTypeTemplateParmExprClass:
2723 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2724 ->isConstantInitializer(Ctx, false);
2725 case CXXDefaultArgExprClass:
2726 return cast<CXXDefaultArgExpr>(this)->getExpr()
2727 ->isConstantInitializer(Ctx, false);
2728 case CXXDefaultInitExprClass:
2729 return cast<CXXDefaultInitExpr>(this)->getExpr()
2730 ->isConstantInitializer(Ctx, false);
2731 }
2732 return isEvaluatable(Ctx);
2733 }
2734
HasSideEffects(const ASTContext & Ctx) const2735 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2736 if (isInstantiationDependent())
2737 return true;
2738
2739 switch (getStmtClass()) {
2740 case NoStmtClass:
2741 #define ABSTRACT_STMT(Type)
2742 #define STMT(Type, Base) case Type##Class:
2743 #define EXPR(Type, Base)
2744 #include "clang/AST/StmtNodes.inc"
2745 llvm_unreachable("unexpected Expr kind");
2746
2747 case DependentScopeDeclRefExprClass:
2748 case CXXUnresolvedConstructExprClass:
2749 case CXXDependentScopeMemberExprClass:
2750 case UnresolvedLookupExprClass:
2751 case UnresolvedMemberExprClass:
2752 case PackExpansionExprClass:
2753 case SubstNonTypeTemplateParmPackExprClass:
2754 case FunctionParmPackExprClass:
2755 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2756
2757 case DeclRefExprClass:
2758 case ObjCIvarRefExprClass:
2759 case PredefinedExprClass:
2760 case IntegerLiteralClass:
2761 case FloatingLiteralClass:
2762 case ImaginaryLiteralClass:
2763 case StringLiteralClass:
2764 case CharacterLiteralClass:
2765 case OffsetOfExprClass:
2766 case ImplicitValueInitExprClass:
2767 case UnaryExprOrTypeTraitExprClass:
2768 case AddrLabelExprClass:
2769 case GNUNullExprClass:
2770 case CXXBoolLiteralExprClass:
2771 case CXXNullPtrLiteralExprClass:
2772 case CXXThisExprClass:
2773 case CXXScalarValueInitExprClass:
2774 case TypeTraitExprClass:
2775 case UnaryTypeTraitExprClass:
2776 case BinaryTypeTraitExprClass:
2777 case ArrayTypeTraitExprClass:
2778 case ExpressionTraitExprClass:
2779 case CXXNoexceptExprClass:
2780 case SizeOfPackExprClass:
2781 case ObjCStringLiteralClass:
2782 case ObjCEncodeExprClass:
2783 case ObjCBoolLiteralExprClass:
2784 case CXXUuidofExprClass:
2785 case OpaqueValueExprClass:
2786 // These never have a side-effect.
2787 return false;
2788
2789 case CallExprClass:
2790 case MSPropertyRefExprClass:
2791 case CompoundAssignOperatorClass:
2792 case VAArgExprClass:
2793 case AtomicExprClass:
2794 case StmtExprClass:
2795 case CXXOperatorCallExprClass:
2796 case CXXMemberCallExprClass:
2797 case UserDefinedLiteralClass:
2798 case CXXThrowExprClass:
2799 case CXXNewExprClass:
2800 case CXXDeleteExprClass:
2801 case ExprWithCleanupsClass:
2802 case CXXBindTemporaryExprClass:
2803 case BlockExprClass:
2804 case CUDAKernelCallExprClass:
2805 // These always have a side-effect.
2806 return true;
2807
2808 case ParenExprClass:
2809 case ArraySubscriptExprClass:
2810 case MemberExprClass:
2811 case ConditionalOperatorClass:
2812 case BinaryConditionalOperatorClass:
2813 case CompoundLiteralExprClass:
2814 case ExtVectorElementExprClass:
2815 case DesignatedInitExprClass:
2816 case ParenListExprClass:
2817 case CXXPseudoDestructorExprClass:
2818 case CXXStdInitializerListExprClass:
2819 case SubstNonTypeTemplateParmExprClass:
2820 case MaterializeTemporaryExprClass:
2821 case ShuffleVectorExprClass:
2822 case AsTypeExprClass:
2823 // These have a side-effect if any subexpression does.
2824 break;
2825
2826 case UnaryOperatorClass:
2827 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2828 return true;
2829 break;
2830
2831 case BinaryOperatorClass:
2832 if (cast<BinaryOperator>(this)->isAssignmentOp())
2833 return true;
2834 break;
2835
2836 case InitListExprClass:
2837 // FIXME: The children for an InitListExpr doesn't include the array filler.
2838 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2839 if (E->HasSideEffects(Ctx))
2840 return true;
2841 break;
2842
2843 case GenericSelectionExprClass:
2844 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2845 HasSideEffects(Ctx);
2846
2847 case ChooseExprClass:
2848 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2849
2850 case CXXDefaultArgExprClass:
2851 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2852
2853 case CXXDefaultInitExprClass:
2854 if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2855 return E->HasSideEffects(Ctx);
2856 // If we've not yet parsed the initializer, assume it has side-effects.
2857 return true;
2858
2859 case CXXDynamicCastExprClass: {
2860 // A dynamic_cast expression has side-effects if it can throw.
2861 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2862 if (DCE->getTypeAsWritten()->isReferenceType() &&
2863 DCE->getCastKind() == CK_Dynamic)
2864 return true;
2865 } // Fall through.
2866 case ImplicitCastExprClass:
2867 case CStyleCastExprClass:
2868 case CXXStaticCastExprClass:
2869 case CXXReinterpretCastExprClass:
2870 case CXXConstCastExprClass:
2871 case CXXFunctionalCastExprClass: {
2872 const CastExpr *CE = cast<CastExpr>(this);
2873 if (CE->getCastKind() == CK_LValueToRValue &&
2874 CE->getSubExpr()->getType().isVolatileQualified())
2875 return true;
2876 break;
2877 }
2878
2879 case CXXTypeidExprClass:
2880 // typeid might throw if its subexpression is potentially-evaluated, so has
2881 // side-effects in that case whether or not its subexpression does.
2882 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2883
2884 case CXXConstructExprClass:
2885 case CXXTemporaryObjectExprClass: {
2886 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2887 if (!CE->getConstructor()->isTrivial())
2888 return true;
2889 // A trivial constructor does not add any side-effects of its own. Just look
2890 // at its arguments.
2891 break;
2892 }
2893
2894 case LambdaExprClass: {
2895 const LambdaExpr *LE = cast<LambdaExpr>(this);
2896 for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2897 E = LE->capture_end(); I != E; ++I)
2898 if (I->getCaptureKind() == LCK_ByCopy)
2899 // FIXME: Only has a side-effect if the variable is volatile or if
2900 // the copy would invoke a non-trivial copy constructor.
2901 return true;
2902 return false;
2903 }
2904
2905 case PseudoObjectExprClass: {
2906 // Only look for side-effects in the semantic form, and look past
2907 // OpaqueValueExpr bindings in that form.
2908 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2909 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2910 E = PO->semantics_end();
2911 I != E; ++I) {
2912 const Expr *Subexpr = *I;
2913 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2914 Subexpr = OVE->getSourceExpr();
2915 if (Subexpr->HasSideEffects(Ctx))
2916 return true;
2917 }
2918 return false;
2919 }
2920
2921 case ObjCBoxedExprClass:
2922 case ObjCArrayLiteralClass:
2923 case ObjCDictionaryLiteralClass:
2924 case ObjCMessageExprClass:
2925 case ObjCSelectorExprClass:
2926 case ObjCProtocolExprClass:
2927 case ObjCPropertyRefExprClass:
2928 case ObjCIsaExprClass:
2929 case ObjCIndirectCopyRestoreExprClass:
2930 case ObjCSubscriptRefExprClass:
2931 case ObjCBridgedCastExprClass:
2932 // FIXME: Classify these cases better.
2933 return true;
2934 }
2935
2936 // Recurse to children.
2937 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2938 if (const Stmt *S = *SubStmts)
2939 if (cast<Expr>(S)->HasSideEffects(Ctx))
2940 return true;
2941
2942 return false;
2943 }
2944
2945 namespace {
2946 /// \brief Look for a call to a non-trivial function within an expression.
2947 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2948 {
2949 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2950
2951 bool NonTrivial;
2952
2953 public:
NonTrivialCallFinder(ASTContext & Context)2954 explicit NonTrivialCallFinder(ASTContext &Context)
2955 : Inherited(Context), NonTrivial(false) { }
2956
hasNonTrivialCall() const2957 bool hasNonTrivialCall() const { return NonTrivial; }
2958
VisitCallExpr(CallExpr * E)2959 void VisitCallExpr(CallExpr *E) {
2960 if (CXXMethodDecl *Method
2961 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2962 if (Method->isTrivial()) {
2963 // Recurse to children of the call.
2964 Inherited::VisitStmt(E);
2965 return;
2966 }
2967 }
2968
2969 NonTrivial = true;
2970 }
2971
VisitCXXConstructExpr(CXXConstructExpr * E)2972 void VisitCXXConstructExpr(CXXConstructExpr *E) {
2973 if (E->getConstructor()->isTrivial()) {
2974 // Recurse to children of the call.
2975 Inherited::VisitStmt(E);
2976 return;
2977 }
2978
2979 NonTrivial = true;
2980 }
2981
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2982 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2983 if (E->getTemporary()->getDestructor()->isTrivial()) {
2984 Inherited::VisitStmt(E);
2985 return;
2986 }
2987
2988 NonTrivial = true;
2989 }
2990 };
2991 }
2992
hasNonTrivialCall(ASTContext & Ctx)2993 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2994 NonTrivialCallFinder Finder(Ctx);
2995 Finder.Visit(this);
2996 return Finder.hasNonTrivialCall();
2997 }
2998
2999 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3000 /// pointer constant or not, as well as the specific kind of constant detected.
3001 /// Null pointer constants can be integer constant expressions with the
3002 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3003 /// (a GNU extension).
3004 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3005 Expr::isNullPointerConstant(ASTContext &Ctx,
3006 NullPointerConstantValueDependence NPC) const {
3007 if (isValueDependent() && !Ctx.getLangOpts().CPlusPlus11) {
3008 switch (NPC) {
3009 case NPC_NeverValueDependent:
3010 llvm_unreachable("Unexpected value dependent expression!");
3011 case NPC_ValueDependentIsNull:
3012 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3013 return NPCK_ZeroExpression;
3014 else
3015 return NPCK_NotNull;
3016
3017 case NPC_ValueDependentIsNotNull:
3018 return NPCK_NotNull;
3019 }
3020 }
3021
3022 // Strip off a cast to void*, if it exists. Except in C++.
3023 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3024 if (!Ctx.getLangOpts().CPlusPlus) {
3025 // Check that it is a cast to void*.
3026 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3027 QualType Pointee = PT->getPointeeType();
3028 if (!Pointee.hasQualifiers() &&
3029 Pointee->isVoidType() && // to void*
3030 CE->getSubExpr()->getType()->isIntegerType()) // from int.
3031 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3032 }
3033 }
3034 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3035 // Ignore the ImplicitCastExpr type entirely.
3036 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3037 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3038 // Accept ((void*)0) as a null pointer constant, as many other
3039 // implementations do.
3040 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3041 } else if (const GenericSelectionExpr *GE =
3042 dyn_cast<GenericSelectionExpr>(this)) {
3043 if (GE->isResultDependent())
3044 return NPCK_NotNull;
3045 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3046 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3047 if (CE->isConditionDependent())
3048 return NPCK_NotNull;
3049 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3050 } else if (const CXXDefaultArgExpr *DefaultArg
3051 = dyn_cast<CXXDefaultArgExpr>(this)) {
3052 // See through default argument expressions.
3053 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3054 } else if (const CXXDefaultInitExpr *DefaultInit
3055 = dyn_cast<CXXDefaultInitExpr>(this)) {
3056 // See through default initializer expressions.
3057 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3058 } else if (isa<GNUNullExpr>(this)) {
3059 // The GNU __null extension is always a null pointer constant.
3060 return NPCK_GNUNull;
3061 } else if (const MaterializeTemporaryExpr *M
3062 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3063 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3064 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3065 if (const Expr *Source = OVE->getSourceExpr())
3066 return Source->isNullPointerConstant(Ctx, NPC);
3067 }
3068
3069 // C++11 nullptr_t is always a null pointer constant.
3070 if (getType()->isNullPtrType())
3071 return NPCK_CXX11_nullptr;
3072
3073 if (const RecordType *UT = getType()->getAsUnionType())
3074 if (!Ctx.getLangOpts().CPlusPlus11 &&
3075 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3076 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3077 const Expr *InitExpr = CLE->getInitializer();
3078 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3079 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3080 }
3081 // This expression must be an integer type.
3082 if (!getType()->isIntegerType() ||
3083 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3084 return NPCK_NotNull;
3085
3086 if (Ctx.getLangOpts().CPlusPlus11) {
3087 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3088 // value zero or a prvalue of type std::nullptr_t.
3089 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3090 return (Lit && !Lit->getValue()) ? NPCK_ZeroLiteral : NPCK_NotNull;
3091 } else {
3092 // If we have an integer constant expression, we need to *evaluate* it and
3093 // test for the value 0.
3094 if (!isIntegerConstantExpr(Ctx))
3095 return NPCK_NotNull;
3096 }
3097
3098 if (EvaluateKnownConstInt(Ctx) != 0)
3099 return NPCK_NotNull;
3100
3101 if (isa<IntegerLiteral>(this))
3102 return NPCK_ZeroLiteral;
3103 return NPCK_ZeroExpression;
3104 }
3105
3106 /// \brief If this expression is an l-value for an Objective C
3107 /// property, find the underlying property reference expression.
getObjCProperty() const3108 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3109 const Expr *E = this;
3110 while (true) {
3111 assert((E->getValueKind() == VK_LValue &&
3112 E->getObjectKind() == OK_ObjCProperty) &&
3113 "expression is not a property reference");
3114 E = E->IgnoreParenCasts();
3115 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3116 if (BO->getOpcode() == BO_Comma) {
3117 E = BO->getRHS();
3118 continue;
3119 }
3120 }
3121
3122 break;
3123 }
3124
3125 return cast<ObjCPropertyRefExpr>(E);
3126 }
3127
isObjCSelfExpr() const3128 bool Expr::isObjCSelfExpr() const {
3129 const Expr *E = IgnoreParenImpCasts();
3130
3131 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3132 if (!DRE)
3133 return false;
3134
3135 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3136 if (!Param)
3137 return false;
3138
3139 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3140 if (!M)
3141 return false;
3142
3143 return M->getSelfDecl() == Param;
3144 }
3145
getSourceBitField()3146 FieldDecl *Expr::getSourceBitField() {
3147 Expr *E = this->IgnoreParens();
3148
3149 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3150 if (ICE->getCastKind() == CK_LValueToRValue ||
3151 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3152 E = ICE->getSubExpr()->IgnoreParens();
3153 else
3154 break;
3155 }
3156
3157 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3158 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3159 if (Field->isBitField())
3160 return Field;
3161
3162 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3163 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3164 if (Ivar->isBitField())
3165 return Ivar;
3166
3167 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3168 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3169 if (Field->isBitField())
3170 return Field;
3171
3172 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3173 if (BinOp->isAssignmentOp() && BinOp->getLHS())
3174 return BinOp->getLHS()->getSourceBitField();
3175
3176 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3177 return BinOp->getRHS()->getSourceBitField();
3178 }
3179
3180 return 0;
3181 }
3182
refersToVectorElement() const3183 bool Expr::refersToVectorElement() const {
3184 const Expr *E = this->IgnoreParens();
3185
3186 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3187 if (ICE->getValueKind() != VK_RValue &&
3188 ICE->getCastKind() == CK_NoOp)
3189 E = ICE->getSubExpr()->IgnoreParens();
3190 else
3191 break;
3192 }
3193
3194 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3195 return ASE->getBase()->getType()->isVectorType();
3196
3197 if (isa<ExtVectorElementExpr>(E))
3198 return true;
3199
3200 return false;
3201 }
3202
3203 /// isArrow - Return true if the base expression is a pointer to vector,
3204 /// return false if the base expression is a vector.
isArrow() const3205 bool ExtVectorElementExpr::isArrow() const {
3206 return getBase()->getType()->isPointerType();
3207 }
3208
getNumElements() const3209 unsigned ExtVectorElementExpr::getNumElements() const {
3210 if (const VectorType *VT = getType()->getAs<VectorType>())
3211 return VT->getNumElements();
3212 return 1;
3213 }
3214
3215 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3216 bool ExtVectorElementExpr::containsDuplicateElements() const {
3217 // FIXME: Refactor this code to an accessor on the AST node which returns the
3218 // "type" of component access, and share with code below and in Sema.
3219 StringRef Comp = Accessor->getName();
3220
3221 // Halving swizzles do not contain duplicate elements.
3222 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3223 return false;
3224
3225 // Advance past s-char prefix on hex swizzles.
3226 if (Comp[0] == 's' || Comp[0] == 'S')
3227 Comp = Comp.substr(1);
3228
3229 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3230 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3231 return true;
3232
3233 return false;
3234 }
3235
3236 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const3237 void ExtVectorElementExpr::getEncodedElementAccess(
3238 SmallVectorImpl<unsigned> &Elts) const {
3239 StringRef Comp = Accessor->getName();
3240 if (Comp[0] == 's' || Comp[0] == 'S')
3241 Comp = Comp.substr(1);
3242
3243 bool isHi = Comp == "hi";
3244 bool isLo = Comp == "lo";
3245 bool isEven = Comp == "even";
3246 bool isOdd = Comp == "odd";
3247
3248 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3249 uint64_t Index;
3250
3251 if (isHi)
3252 Index = e + i;
3253 else if (isLo)
3254 Index = i;
3255 else if (isEven)
3256 Index = 2 * i;
3257 else if (isOdd)
3258 Index = 2 * i + 1;
3259 else
3260 Index = ExtVectorType::getAccessorIdx(Comp[i]);
3261
3262 Elts.push_back(Index);
3263 }
3264 }
3265
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3266 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3267 ExprValueKind VK,
3268 SourceLocation LBracLoc,
3269 SourceLocation SuperLoc,
3270 bool IsInstanceSuper,
3271 QualType SuperType,
3272 Selector Sel,
3273 ArrayRef<SourceLocation> SelLocs,
3274 SelectorLocationsKind SelLocsK,
3275 ObjCMethodDecl *Method,
3276 ArrayRef<Expr *> Args,
3277 SourceLocation RBracLoc,
3278 bool isImplicit)
3279 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3280 /*TypeDependent=*/false, /*ValueDependent=*/false,
3281 /*InstantiationDependent=*/false,
3282 /*ContainsUnexpandedParameterPack=*/false),
3283 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3284 : Sel.getAsOpaquePtr())),
3285 Kind(IsInstanceSuper? SuperInstance : SuperClass),
3286 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3287 SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3288 {
3289 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3290 setReceiverPointer(SuperType.getAsOpaquePtr());
3291 }
3292
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3293 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3294 ExprValueKind VK,
3295 SourceLocation LBracLoc,
3296 TypeSourceInfo *Receiver,
3297 Selector Sel,
3298 ArrayRef<SourceLocation> SelLocs,
3299 SelectorLocationsKind SelLocsK,
3300 ObjCMethodDecl *Method,
3301 ArrayRef<Expr *> Args,
3302 SourceLocation RBracLoc,
3303 bool isImplicit)
3304 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3305 T->isDependentType(), T->isInstantiationDependentType(),
3306 T->containsUnexpandedParameterPack()),
3307 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3308 : Sel.getAsOpaquePtr())),
3309 Kind(Class),
3310 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3311 LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3312 {
3313 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3314 setReceiverPointer(Receiver);
3315 }
3316
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3317 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3318 ExprValueKind VK,
3319 SourceLocation LBracLoc,
3320 Expr *Receiver,
3321 Selector Sel,
3322 ArrayRef<SourceLocation> SelLocs,
3323 SelectorLocationsKind SelLocsK,
3324 ObjCMethodDecl *Method,
3325 ArrayRef<Expr *> Args,
3326 SourceLocation RBracLoc,
3327 bool isImplicit)
3328 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3329 Receiver->isTypeDependent(),
3330 Receiver->isInstantiationDependent(),
3331 Receiver->containsUnexpandedParameterPack()),
3332 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3333 : Sel.getAsOpaquePtr())),
3334 Kind(Instance),
3335 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3336 LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3337 {
3338 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3339 setReceiverPointer(Receiver);
3340 }
3341
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)3342 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3343 ArrayRef<SourceLocation> SelLocs,
3344 SelectorLocationsKind SelLocsK) {
3345 setNumArgs(Args.size());
3346 Expr **MyArgs = getArgs();
3347 for (unsigned I = 0; I != Args.size(); ++I) {
3348 if (Args[I]->isTypeDependent())
3349 ExprBits.TypeDependent = true;
3350 if (Args[I]->isValueDependent())
3351 ExprBits.ValueDependent = true;
3352 if (Args[I]->isInstantiationDependent())
3353 ExprBits.InstantiationDependent = true;
3354 if (Args[I]->containsUnexpandedParameterPack())
3355 ExprBits.ContainsUnexpandedParameterPack = true;
3356
3357 MyArgs[I] = Args[I];
3358 }
3359
3360 SelLocsKind = SelLocsK;
3361 if (!isImplicit()) {
3362 if (SelLocsK == SelLoc_NonStandard)
3363 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3364 }
3365 }
3366
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3367 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3368 ExprValueKind VK,
3369 SourceLocation LBracLoc,
3370 SourceLocation SuperLoc,
3371 bool IsInstanceSuper,
3372 QualType SuperType,
3373 Selector Sel,
3374 ArrayRef<SourceLocation> SelLocs,
3375 ObjCMethodDecl *Method,
3376 ArrayRef<Expr *> Args,
3377 SourceLocation RBracLoc,
3378 bool isImplicit) {
3379 assert((!SelLocs.empty() || isImplicit) &&
3380 "No selector locs for non-implicit message");
3381 ObjCMessageExpr *Mem;
3382 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3383 if (isImplicit)
3384 Mem = alloc(Context, Args.size(), 0);
3385 else
3386 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3387 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3388 SuperType, Sel, SelLocs, SelLocsK,
3389 Method, Args, RBracLoc, isImplicit);
3390 }
3391
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3392 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3393 ExprValueKind VK,
3394 SourceLocation LBracLoc,
3395 TypeSourceInfo *Receiver,
3396 Selector Sel,
3397 ArrayRef<SourceLocation> SelLocs,
3398 ObjCMethodDecl *Method,
3399 ArrayRef<Expr *> Args,
3400 SourceLocation RBracLoc,
3401 bool isImplicit) {
3402 assert((!SelLocs.empty() || isImplicit) &&
3403 "No selector locs for non-implicit message");
3404 ObjCMessageExpr *Mem;
3405 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3406 if (isImplicit)
3407 Mem = alloc(Context, Args.size(), 0);
3408 else
3409 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3410 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3411 SelLocs, SelLocsK, Method, Args, RBracLoc,
3412 isImplicit);
3413 }
3414
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3415 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3416 ExprValueKind VK,
3417 SourceLocation LBracLoc,
3418 Expr *Receiver,
3419 Selector Sel,
3420 ArrayRef<SourceLocation> SelLocs,
3421 ObjCMethodDecl *Method,
3422 ArrayRef<Expr *> Args,
3423 SourceLocation RBracLoc,
3424 bool isImplicit) {
3425 assert((!SelLocs.empty() || isImplicit) &&
3426 "No selector locs for non-implicit message");
3427 ObjCMessageExpr *Mem;
3428 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3429 if (isImplicit)
3430 Mem = alloc(Context, Args.size(), 0);
3431 else
3432 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3433 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3434 SelLocs, SelLocsK, Method, Args, RBracLoc,
3435 isImplicit);
3436 }
3437
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)3438 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3439 unsigned NumArgs,
3440 unsigned NumStoredSelLocs) {
3441 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3442 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3443 }
3444
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)3445 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3446 ArrayRef<Expr *> Args,
3447 SourceLocation RBraceLoc,
3448 ArrayRef<SourceLocation> SelLocs,
3449 Selector Sel,
3450 SelectorLocationsKind &SelLocsK) {
3451 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3452 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3453 : 0;
3454 return alloc(C, Args.size(), NumStoredSelLocs);
3455 }
3456
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)3457 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3458 unsigned NumArgs,
3459 unsigned NumStoredSelLocs) {
3460 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3461 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3462 return (ObjCMessageExpr *)C.Allocate(Size,
3463 llvm::AlignOf<ObjCMessageExpr>::Alignment);
3464 }
3465
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const3466 void ObjCMessageExpr::getSelectorLocs(
3467 SmallVectorImpl<SourceLocation> &SelLocs) const {
3468 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3469 SelLocs.push_back(getSelectorLoc(i));
3470 }
3471
getReceiverRange() const3472 SourceRange ObjCMessageExpr::getReceiverRange() const {
3473 switch (getReceiverKind()) {
3474 case Instance:
3475 return getInstanceReceiver()->getSourceRange();
3476
3477 case Class:
3478 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3479
3480 case SuperInstance:
3481 case SuperClass:
3482 return getSuperLoc();
3483 }
3484
3485 llvm_unreachable("Invalid ReceiverKind!");
3486 }
3487
getSelector() const3488 Selector ObjCMessageExpr::getSelector() const {
3489 if (HasMethod)
3490 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3491 ->getSelector();
3492 return Selector(SelectorOrMethod);
3493 }
3494
getReceiverType() const3495 QualType ObjCMessageExpr::getReceiverType() const {
3496 switch (getReceiverKind()) {
3497 case Instance:
3498 return getInstanceReceiver()->getType();
3499 case Class:
3500 return getClassReceiver();
3501 case SuperInstance:
3502 case SuperClass:
3503 return getSuperType();
3504 }
3505
3506 llvm_unreachable("unexpected receiver kind");
3507 }
3508
getReceiverInterface() const3509 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3510 QualType T = getReceiverType();
3511
3512 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3513 return Ptr->getInterfaceDecl();
3514
3515 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3516 return Ty->getInterface();
3517
3518 return 0;
3519 }
3520
getBridgeKindName() const3521 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3522 switch (getBridgeKind()) {
3523 case OBC_Bridge:
3524 return "__bridge";
3525 case OBC_BridgeTransfer:
3526 return "__bridge_transfer";
3527 case OBC_BridgeRetained:
3528 return "__bridge_retained";
3529 }
3530
3531 llvm_unreachable("Invalid BridgeKind!");
3532 }
3533
ShuffleVectorExpr(ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3534 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3535 QualType Type, SourceLocation BLoc,
3536 SourceLocation RP)
3537 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3538 Type->isDependentType(), Type->isDependentType(),
3539 Type->isInstantiationDependentType(),
3540 Type->containsUnexpandedParameterPack()),
3541 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3542 {
3543 SubExprs = new (C) Stmt*[args.size()];
3544 for (unsigned i = 0; i != args.size(); i++) {
3545 if (args[i]->isTypeDependent())
3546 ExprBits.TypeDependent = true;
3547 if (args[i]->isValueDependent())
3548 ExprBits.ValueDependent = true;
3549 if (args[i]->isInstantiationDependent())
3550 ExprBits.InstantiationDependent = true;
3551 if (args[i]->containsUnexpandedParameterPack())
3552 ExprBits.ContainsUnexpandedParameterPack = true;
3553
3554 SubExprs[i] = args[i];
3555 }
3556 }
3557
setExprs(ASTContext & C,ArrayRef<Expr * > Exprs)3558 void ShuffleVectorExpr::setExprs(ASTContext &C, ArrayRef<Expr *> Exprs) {
3559 if (SubExprs) C.Deallocate(SubExprs);
3560
3561 this->NumExprs = Exprs.size();
3562 SubExprs = new (C) Stmt*[NumExprs];
3563 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3564 }
3565
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3566 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3567 SourceLocation GenericLoc, Expr *ControllingExpr,
3568 ArrayRef<TypeSourceInfo*> AssocTypes,
3569 ArrayRef<Expr*> AssocExprs,
3570 SourceLocation DefaultLoc,
3571 SourceLocation RParenLoc,
3572 bool ContainsUnexpandedParameterPack,
3573 unsigned ResultIndex)
3574 : Expr(GenericSelectionExprClass,
3575 AssocExprs[ResultIndex]->getType(),
3576 AssocExprs[ResultIndex]->getValueKind(),
3577 AssocExprs[ResultIndex]->getObjectKind(),
3578 AssocExprs[ResultIndex]->isTypeDependent(),
3579 AssocExprs[ResultIndex]->isValueDependent(),
3580 AssocExprs[ResultIndex]->isInstantiationDependent(),
3581 ContainsUnexpandedParameterPack),
3582 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3583 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3584 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3585 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3586 SubExprs[CONTROLLING] = ControllingExpr;
3587 assert(AssocTypes.size() == AssocExprs.size());
3588 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3589 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3590 }
3591
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3592 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3593 SourceLocation GenericLoc, Expr *ControllingExpr,
3594 ArrayRef<TypeSourceInfo*> AssocTypes,
3595 ArrayRef<Expr*> AssocExprs,
3596 SourceLocation DefaultLoc,
3597 SourceLocation RParenLoc,
3598 bool ContainsUnexpandedParameterPack)
3599 : Expr(GenericSelectionExprClass,
3600 Context.DependentTy,
3601 VK_RValue,
3602 OK_Ordinary,
3603 /*isTypeDependent=*/true,
3604 /*isValueDependent=*/true,
3605 /*isInstantiationDependent=*/true,
3606 ContainsUnexpandedParameterPack),
3607 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3608 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3609 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3610 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3611 SubExprs[CONTROLLING] = ControllingExpr;
3612 assert(AssocTypes.size() == AssocExprs.size());
3613 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3614 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3615 }
3616
3617 //===----------------------------------------------------------------------===//
3618 // DesignatedInitExpr
3619 //===----------------------------------------------------------------------===//
3620
getFieldName() const3621 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3622 assert(Kind == FieldDesignator && "Only valid on a field designator");
3623 if (Field.NameOrField & 0x01)
3624 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3625 else
3626 return getField()->getIdentifier();
3627 }
3628
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3629 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3630 unsigned NumDesignators,
3631 const Designator *Designators,
3632 SourceLocation EqualOrColonLoc,
3633 bool GNUSyntax,
3634 ArrayRef<Expr*> IndexExprs,
3635 Expr *Init)
3636 : Expr(DesignatedInitExprClass, Ty,
3637 Init->getValueKind(), Init->getObjectKind(),
3638 Init->isTypeDependent(), Init->isValueDependent(),
3639 Init->isInstantiationDependent(),
3640 Init->containsUnexpandedParameterPack()),
3641 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3642 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3643 this->Designators = new (C) Designator[NumDesignators];
3644
3645 // Record the initializer itself.
3646 child_range Child = children();
3647 *Child++ = Init;
3648
3649 // Copy the designators and their subexpressions, computing
3650 // value-dependence along the way.
3651 unsigned IndexIdx = 0;
3652 for (unsigned I = 0; I != NumDesignators; ++I) {
3653 this->Designators[I] = Designators[I];
3654
3655 if (this->Designators[I].isArrayDesignator()) {
3656 // Compute type- and value-dependence.
3657 Expr *Index = IndexExprs[IndexIdx];
3658 if (Index->isTypeDependent() || Index->isValueDependent())
3659 ExprBits.ValueDependent = true;
3660 if (Index->isInstantiationDependent())
3661 ExprBits.InstantiationDependent = true;
3662 // Propagate unexpanded parameter packs.
3663 if (Index->containsUnexpandedParameterPack())
3664 ExprBits.ContainsUnexpandedParameterPack = true;
3665
3666 // Copy the index expressions into permanent storage.
3667 *Child++ = IndexExprs[IndexIdx++];
3668 } else if (this->Designators[I].isArrayRangeDesignator()) {
3669 // Compute type- and value-dependence.
3670 Expr *Start = IndexExprs[IndexIdx];
3671 Expr *End = IndexExprs[IndexIdx + 1];
3672 if (Start->isTypeDependent() || Start->isValueDependent() ||
3673 End->isTypeDependent() || End->isValueDependent()) {
3674 ExprBits.ValueDependent = true;
3675 ExprBits.InstantiationDependent = true;
3676 } else if (Start->isInstantiationDependent() ||
3677 End->isInstantiationDependent()) {
3678 ExprBits.InstantiationDependent = true;
3679 }
3680
3681 // Propagate unexpanded parameter packs.
3682 if (Start->containsUnexpandedParameterPack() ||
3683 End->containsUnexpandedParameterPack())
3684 ExprBits.ContainsUnexpandedParameterPack = true;
3685
3686 // Copy the start/end expressions into permanent storage.
3687 *Child++ = IndexExprs[IndexIdx++];
3688 *Child++ = IndexExprs[IndexIdx++];
3689 }
3690 }
3691
3692 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3693 }
3694
3695 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3696 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3697 unsigned NumDesignators,
3698 ArrayRef<Expr*> IndexExprs,
3699 SourceLocation ColonOrEqualLoc,
3700 bool UsesColonSyntax, Expr *Init) {
3701 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3702 sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3703 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3704 ColonOrEqualLoc, UsesColonSyntax,
3705 IndexExprs, Init);
3706 }
3707
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3708 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3709 unsigned NumIndexExprs) {
3710 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3711 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3712 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3713 }
3714
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3715 void DesignatedInitExpr::setDesignators(ASTContext &C,
3716 const Designator *Desigs,
3717 unsigned NumDesigs) {
3718 Designators = new (C) Designator[NumDesigs];
3719 NumDesignators = NumDesigs;
3720 for (unsigned I = 0; I != NumDesigs; ++I)
3721 Designators[I] = Desigs[I];
3722 }
3723
getDesignatorsSourceRange() const3724 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3725 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3726 if (size() == 1)
3727 return DIE->getDesignator(0)->getSourceRange();
3728 return SourceRange(DIE->getDesignator(0)->getLocStart(),
3729 DIE->getDesignator(size()-1)->getLocEnd());
3730 }
3731
getLocStart() const3732 SourceLocation DesignatedInitExpr::getLocStart() const {
3733 SourceLocation StartLoc;
3734 Designator &First =
3735 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3736 if (First.isFieldDesignator()) {
3737 if (GNUSyntax)
3738 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3739 else
3740 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3741 } else
3742 StartLoc =
3743 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3744 return StartLoc;
3745 }
3746
getLocEnd() const3747 SourceLocation DesignatedInitExpr::getLocEnd() const {
3748 return getInit()->getLocEnd();
3749 }
3750
getArrayIndex(const Designator & D) const3751 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3752 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3753 char *Ptr = static_cast<char *>(
3754 const_cast<void *>(static_cast<const void *>(this)));
3755 Ptr += sizeof(DesignatedInitExpr);
3756 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3757 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3758 }
3759
getArrayRangeStart(const Designator & D) const3760 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3761 assert(D.Kind == Designator::ArrayRangeDesignator &&
3762 "Requires array range designator");
3763 char *Ptr = static_cast<char *>(
3764 const_cast<void *>(static_cast<const void *>(this)));
3765 Ptr += sizeof(DesignatedInitExpr);
3766 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3767 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3768 }
3769
getArrayRangeEnd(const Designator & D) const3770 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3771 assert(D.Kind == Designator::ArrayRangeDesignator &&
3772 "Requires array range designator");
3773 char *Ptr = static_cast<char *>(
3774 const_cast<void *>(static_cast<const void *>(this)));
3775 Ptr += sizeof(DesignatedInitExpr);
3776 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3777 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3778 }
3779
3780 /// \brief Replaces the designator at index @p Idx with the series
3781 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3782 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3783 const Designator *First,
3784 const Designator *Last) {
3785 unsigned NumNewDesignators = Last - First;
3786 if (NumNewDesignators == 0) {
3787 std::copy_backward(Designators + Idx + 1,
3788 Designators + NumDesignators,
3789 Designators + Idx);
3790 --NumNewDesignators;
3791 return;
3792 } else if (NumNewDesignators == 1) {
3793 Designators[Idx] = *First;
3794 return;
3795 }
3796
3797 Designator *NewDesignators
3798 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3799 std::copy(Designators, Designators + Idx, NewDesignators);
3800 std::copy(First, Last, NewDesignators + Idx);
3801 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3802 NewDesignators + Idx + NumNewDesignators);
3803 Designators = NewDesignators;
3804 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3805 }
3806
ParenListExpr(ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3807 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3808 ArrayRef<Expr*> exprs,
3809 SourceLocation rparenloc)
3810 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3811 false, false, false, false),
3812 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3813 Exprs = new (C) Stmt*[exprs.size()];
3814 for (unsigned i = 0; i != exprs.size(); ++i) {
3815 if (exprs[i]->isTypeDependent())
3816 ExprBits.TypeDependent = true;
3817 if (exprs[i]->isValueDependent())
3818 ExprBits.ValueDependent = true;
3819 if (exprs[i]->isInstantiationDependent())
3820 ExprBits.InstantiationDependent = true;
3821 if (exprs[i]->containsUnexpandedParameterPack())
3822 ExprBits.ContainsUnexpandedParameterPack = true;
3823
3824 Exprs[i] = exprs[i];
3825 }
3826 }
3827
findInCopyConstruct(const Expr * e)3828 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3829 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3830 e = ewc->getSubExpr();
3831 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3832 e = m->GetTemporaryExpr();
3833 e = cast<CXXConstructExpr>(e)->getArg(0);
3834 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3835 e = ice->getSubExpr();
3836 return cast<OpaqueValueExpr>(e);
3837 }
3838
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3839 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3840 unsigned numSemanticExprs) {
3841 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3842 (1 + numSemanticExprs) * sizeof(Expr*),
3843 llvm::alignOf<PseudoObjectExpr>());
3844 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3845 }
3846
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3847 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3848 : Expr(PseudoObjectExprClass, shell) {
3849 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3850 }
3851
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3852 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3853 ArrayRef<Expr*> semantics,
3854 unsigned resultIndex) {
3855 assert(syntax && "no syntactic expression!");
3856 assert(semantics.size() && "no semantic expressions!");
3857
3858 QualType type;
3859 ExprValueKind VK;
3860 if (resultIndex == NoResult) {
3861 type = C.VoidTy;
3862 VK = VK_RValue;
3863 } else {
3864 assert(resultIndex < semantics.size());
3865 type = semantics[resultIndex]->getType();
3866 VK = semantics[resultIndex]->getValueKind();
3867 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3868 }
3869
3870 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3871 (1 + semantics.size()) * sizeof(Expr*),
3872 llvm::alignOf<PseudoObjectExpr>());
3873 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3874 resultIndex);
3875 }
3876
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3877 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3878 Expr *syntax, ArrayRef<Expr*> semantics,
3879 unsigned resultIndex)
3880 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3881 /*filled in at end of ctor*/ false, false, false, false) {
3882 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3883 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3884
3885 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3886 Expr *E = (i == 0 ? syntax : semantics[i-1]);
3887 getSubExprsBuffer()[i] = E;
3888
3889 if (E->isTypeDependent())
3890 ExprBits.TypeDependent = true;
3891 if (E->isValueDependent())
3892 ExprBits.ValueDependent = true;
3893 if (E->isInstantiationDependent())
3894 ExprBits.InstantiationDependent = true;
3895 if (E->containsUnexpandedParameterPack())
3896 ExprBits.ContainsUnexpandedParameterPack = true;
3897
3898 if (isa<OpaqueValueExpr>(E))
3899 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3900 "opaque-value semantic expressions for pseudo-object "
3901 "operations must have sources");
3902 }
3903 }
3904
3905 //===----------------------------------------------------------------------===//
3906 // ExprIterator.
3907 //===----------------------------------------------------------------------===//
3908
operator [](size_t idx)3909 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3910 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3911 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3912 const Expr* ConstExprIterator::operator[](size_t idx) const {
3913 return cast<Expr>(I[idx]);
3914 }
operator *() const3915 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3916 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3917
3918 //===----------------------------------------------------------------------===//
3919 // Child Iterators for iterating over subexpressions/substatements
3920 //===----------------------------------------------------------------------===//
3921
3922 // UnaryExprOrTypeTraitExpr
children()3923 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3924 // If this is of a type and the type is a VLA type (and not a typedef), the
3925 // size expression of the VLA needs to be treated as an executable expression.
3926 // Why isn't this weirdness documented better in StmtIterator?
3927 if (isArgumentType()) {
3928 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3929 getArgumentType().getTypePtr()))
3930 return child_range(child_iterator(T), child_iterator());
3931 return child_range();
3932 }
3933 return child_range(&Argument.Ex, &Argument.Ex + 1);
3934 }
3935
3936 // ObjCMessageExpr
children()3937 Stmt::child_range ObjCMessageExpr::children() {
3938 Stmt **begin;
3939 if (getReceiverKind() == Instance)
3940 begin = reinterpret_cast<Stmt **>(this + 1);
3941 else
3942 begin = reinterpret_cast<Stmt **>(getArgs());
3943 return child_range(begin,
3944 reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3945 }
3946
ObjCArrayLiteral(ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3947 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
3948 QualType T, ObjCMethodDecl *Method,
3949 SourceRange SR)
3950 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3951 false, false, false, false),
3952 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3953 {
3954 Expr **SaveElements = getElements();
3955 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3956 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3957 ExprBits.ValueDependent = true;
3958 if (Elements[I]->isInstantiationDependent())
3959 ExprBits.InstantiationDependent = true;
3960 if (Elements[I]->containsUnexpandedParameterPack())
3961 ExprBits.ContainsUnexpandedParameterPack = true;
3962
3963 SaveElements[I] = Elements[I];
3964 }
3965 }
3966
Create(ASTContext & C,ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3967 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3968 ArrayRef<Expr *> Elements,
3969 QualType T, ObjCMethodDecl * Method,
3970 SourceRange SR) {
3971 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3972 + Elements.size() * sizeof(Expr *));
3973 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3974 }
3975
CreateEmpty(ASTContext & C,unsigned NumElements)3976 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3977 unsigned NumElements) {
3978
3979 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3980 + NumElements * sizeof(Expr *));
3981 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3982 }
3983
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3984 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3985 ArrayRef<ObjCDictionaryElement> VK,
3986 bool HasPackExpansions,
3987 QualType T, ObjCMethodDecl *method,
3988 SourceRange SR)
3989 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3990 false, false),
3991 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3992 DictWithObjectsMethod(method)
3993 {
3994 KeyValuePair *KeyValues = getKeyValues();
3995 ExpansionData *Expansions = getExpansionData();
3996 for (unsigned I = 0; I < NumElements; I++) {
3997 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3998 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3999 ExprBits.ValueDependent = true;
4000 if (VK[I].Key->isInstantiationDependent() ||
4001 VK[I].Value->isInstantiationDependent())
4002 ExprBits.InstantiationDependent = true;
4003 if (VK[I].EllipsisLoc.isInvalid() &&
4004 (VK[I].Key->containsUnexpandedParameterPack() ||
4005 VK[I].Value->containsUnexpandedParameterPack()))
4006 ExprBits.ContainsUnexpandedParameterPack = true;
4007
4008 KeyValues[I].Key = VK[I].Key;
4009 KeyValues[I].Value = VK[I].Value;
4010 if (Expansions) {
4011 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4012 if (VK[I].NumExpansions)
4013 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4014 else
4015 Expansions[I].NumExpansionsPlusOne = 0;
4016 }
4017 }
4018 }
4019
4020 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)4021 ObjCDictionaryLiteral::Create(ASTContext &C,
4022 ArrayRef<ObjCDictionaryElement> VK,
4023 bool HasPackExpansions,
4024 QualType T, ObjCMethodDecl *method,
4025 SourceRange SR) {
4026 unsigned ExpansionsSize = 0;
4027 if (HasPackExpansions)
4028 ExpansionsSize = sizeof(ExpansionData) * VK.size();
4029
4030 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4031 sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4032 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4033 }
4034
4035 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)4036 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
4037 bool HasPackExpansions) {
4038 unsigned ExpansionsSize = 0;
4039 if (HasPackExpansions)
4040 ExpansionsSize = sizeof(ExpansionData) * NumElements;
4041 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4042 sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4043 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4044 HasPackExpansions);
4045 }
4046
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)4047 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
4048 Expr *base,
4049 Expr *key, QualType T,
4050 ObjCMethodDecl *getMethod,
4051 ObjCMethodDecl *setMethod,
4052 SourceLocation RB) {
4053 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4054 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4055 OK_ObjCSubscript,
4056 getMethod, setMethod, RB);
4057 }
4058
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4059 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4060 QualType t, AtomicOp op, SourceLocation RP)
4061 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4062 false, false, false, false),
4063 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4064 {
4065 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4066 for (unsigned i = 0; i != args.size(); i++) {
4067 if (args[i]->isTypeDependent())
4068 ExprBits.TypeDependent = true;
4069 if (args[i]->isValueDependent())
4070 ExprBits.ValueDependent = true;
4071 if (args[i]->isInstantiationDependent())
4072 ExprBits.InstantiationDependent = true;
4073 if (args[i]->containsUnexpandedParameterPack())
4074 ExprBits.ContainsUnexpandedParameterPack = true;
4075
4076 SubExprs[i] = args[i];
4077 }
4078 }
4079
getNumSubExprs(AtomicOp Op)4080 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4081 switch (Op) {
4082 case AO__c11_atomic_init:
4083 case AO__c11_atomic_load:
4084 case AO__atomic_load_n:
4085 return 2;
4086
4087 case AO__c11_atomic_store:
4088 case AO__c11_atomic_exchange:
4089 case AO__atomic_load:
4090 case AO__atomic_store:
4091 case AO__atomic_store_n:
4092 case AO__atomic_exchange_n:
4093 case AO__c11_atomic_fetch_add:
4094 case AO__c11_atomic_fetch_sub:
4095 case AO__c11_atomic_fetch_and:
4096 case AO__c11_atomic_fetch_or:
4097 case AO__c11_atomic_fetch_xor:
4098 case AO__atomic_fetch_add:
4099 case AO__atomic_fetch_sub:
4100 case AO__atomic_fetch_and:
4101 case AO__atomic_fetch_or:
4102 case AO__atomic_fetch_xor:
4103 case AO__atomic_fetch_nand:
4104 case AO__atomic_add_fetch:
4105 case AO__atomic_sub_fetch:
4106 case AO__atomic_and_fetch:
4107 case AO__atomic_or_fetch:
4108 case AO__atomic_xor_fetch:
4109 case AO__atomic_nand_fetch:
4110 return 3;
4111
4112 case AO__atomic_exchange:
4113 return 4;
4114
4115 case AO__c11_atomic_compare_exchange_strong:
4116 case AO__c11_atomic_compare_exchange_weak:
4117 return 5;
4118
4119 case AO__atomic_compare_exchange:
4120 case AO__atomic_compare_exchange_n:
4121 return 6;
4122 }
4123 llvm_unreachable("unknown atomic op");
4124 }
4125