• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Sema/SemaDiagnostic.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37 
getBestDynamicClassType() const38 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
39   const Expr *E = ignoreParenBaseCasts();
40 
41   QualType DerivedType = E->getType();
42   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
43     DerivedType = PTy->getPointeeType();
44 
45   if (DerivedType->isDependentType())
46     return NULL;
47 
48   const RecordType *Ty = DerivedType->castAs<RecordType>();
49   Decl *D = Ty->getDecl();
50   return cast<CXXRecordDecl>(D);
51 }
52 
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const53 const Expr *Expr::skipRValueSubobjectAdjustments(
54     SmallVectorImpl<const Expr *> &CommaLHSs,
55     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
56   const Expr *E = this;
57   while (true) {
58     E = E->IgnoreParens();
59 
60     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
61       if ((CE->getCastKind() == CK_DerivedToBase ||
62            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
63           E->getType()->isRecordType()) {
64         E = CE->getSubExpr();
65         CXXRecordDecl *Derived
66           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
67         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
68         continue;
69       }
70 
71       if (CE->getCastKind() == CK_NoOp) {
72         E = CE->getSubExpr();
73         continue;
74       }
75     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
76       if (!ME->isArrow()) {
77         assert(ME->getBase()->getType()->isRecordType());
78         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
79           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
80             E = ME->getBase();
81             Adjustments.push_back(SubobjectAdjustment(Field));
82             continue;
83           }
84         }
85       }
86     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
87       if (BO->isPtrMemOp()) {
88         assert(BO->getRHS()->isRValue());
89         E = BO->getLHS();
90         const MemberPointerType *MPT =
91           BO->getRHS()->getType()->getAs<MemberPointerType>();
92         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
93         continue;
94       } else if (BO->getOpcode() == BO_Comma) {
95         CommaLHSs.push_back(BO->getLHS());
96         E = BO->getRHS();
97         continue;
98       }
99     }
100 
101     // Nothing changed.
102     break;
103   }
104   return E;
105 }
106 
107 const Expr *
findMaterializedTemporary(const MaterializeTemporaryExpr * & MTE) const108 Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
109   const Expr *E = this;
110 
111   // This might be a default initializer for a reference member. Walk over the
112   // wrapper node for that.
113   if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
114     E = DAE->getExpr();
115 
116   // Look through single-element init lists that claim to be lvalues. They're
117   // just syntactic wrappers in this case.
118   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
119     if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
120       E = ILE->getInit(0);
121       if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
122         E = DAE->getExpr();
123     }
124   }
125 
126   // Look through expressions for materialized temporaries (for now).
127   if (const MaterializeTemporaryExpr *M
128       = dyn_cast<MaterializeTemporaryExpr>(E)) {
129     MTE = M;
130     E = M->GetTemporaryExpr();
131   }
132 
133   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
134     E = DAE->getExpr();
135   return E;
136 }
137 
138 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
139 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
140 /// but also int expressions which are produced by things like comparisons in
141 /// C.
isKnownToHaveBooleanValue() const142 bool Expr::isKnownToHaveBooleanValue() const {
143   const Expr *E = IgnoreParens();
144 
145   // If this value has _Bool type, it is obvious 0/1.
146   if (E->getType()->isBooleanType()) return true;
147   // If this is a non-scalar-integer type, we don't care enough to try.
148   if (!E->getType()->isIntegralOrEnumerationType()) return false;
149 
150   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
151     switch (UO->getOpcode()) {
152     case UO_Plus:
153       return UO->getSubExpr()->isKnownToHaveBooleanValue();
154     default:
155       return false;
156     }
157   }
158 
159   // Only look through implicit casts.  If the user writes
160   // '(int) (a && b)' treat it as an arbitrary int.
161   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
162     return CE->getSubExpr()->isKnownToHaveBooleanValue();
163 
164   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
165     switch (BO->getOpcode()) {
166     default: return false;
167     case BO_LT:   // Relational operators.
168     case BO_GT:
169     case BO_LE:
170     case BO_GE:
171     case BO_EQ:   // Equality operators.
172     case BO_NE:
173     case BO_LAnd: // AND operator.
174     case BO_LOr:  // Logical OR operator.
175       return true;
176 
177     case BO_And:  // Bitwise AND operator.
178     case BO_Xor:  // Bitwise XOR operator.
179     case BO_Or:   // Bitwise OR operator.
180       // Handle things like (x==2)|(y==12).
181       return BO->getLHS()->isKnownToHaveBooleanValue() &&
182              BO->getRHS()->isKnownToHaveBooleanValue();
183 
184     case BO_Comma:
185     case BO_Assign:
186       return BO->getRHS()->isKnownToHaveBooleanValue();
187     }
188   }
189 
190   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
191     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
192            CO->getFalseExpr()->isKnownToHaveBooleanValue();
193 
194   return false;
195 }
196 
197 // Amusing macro metaprogramming hack: check whether a class provides
198 // a more specific implementation of getExprLoc().
199 //
200 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
201 namespace {
202   /// This implementation is used when a class provides a custom
203   /// implementation of getExprLoc.
204   template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)205   SourceLocation getExprLocImpl(const Expr *expr,
206                                 SourceLocation (T::*v)() const) {
207     return static_cast<const E*>(expr)->getExprLoc();
208   }
209 
210   /// This implementation is used when a class doesn't provide
211   /// a custom implementation of getExprLoc.  Overload resolution
212   /// should pick it over the implementation above because it's
213   /// more specialized according to function template partial ordering.
214   template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)215   SourceLocation getExprLocImpl(const Expr *expr,
216                                 SourceLocation (Expr::*v)() const) {
217     return static_cast<const E*>(expr)->getLocStart();
218   }
219 }
220 
getExprLoc() const221 SourceLocation Expr::getExprLoc() const {
222   switch (getStmtClass()) {
223   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
224 #define ABSTRACT_STMT(type)
225 #define STMT(type, base) \
226   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
227 #define EXPR(type, base) \
228   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
229 #include "clang/AST/StmtNodes.inc"
230   }
231   llvm_unreachable("unknown statement kind");
232 }
233 
234 //===----------------------------------------------------------------------===//
235 // Primary Expressions.
236 //===----------------------------------------------------------------------===//
237 
238 /// \brief Compute the type-, value-, and instantiation-dependence of a
239 /// declaration reference
240 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)241 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
242                                      bool &TypeDependent,
243                                      bool &ValueDependent,
244                                      bool &InstantiationDependent) {
245   TypeDependent = false;
246   ValueDependent = false;
247   InstantiationDependent = false;
248 
249   // (TD) C++ [temp.dep.expr]p3:
250   //   An id-expression is type-dependent if it contains:
251   //
252   // and
253   //
254   // (VD) C++ [temp.dep.constexpr]p2:
255   //  An identifier is value-dependent if it is:
256 
257   //  (TD)  - an identifier that was declared with dependent type
258   //  (VD)  - a name declared with a dependent type,
259   if (T->isDependentType()) {
260     TypeDependent = true;
261     ValueDependent = true;
262     InstantiationDependent = true;
263     return;
264   } else if (T->isInstantiationDependentType()) {
265     InstantiationDependent = true;
266   }
267 
268   //  (TD)  - a conversion-function-id that specifies a dependent type
269   if (D->getDeclName().getNameKind()
270                                 == DeclarationName::CXXConversionFunctionName) {
271     QualType T = D->getDeclName().getCXXNameType();
272     if (T->isDependentType()) {
273       TypeDependent = true;
274       ValueDependent = true;
275       InstantiationDependent = true;
276       return;
277     }
278 
279     if (T->isInstantiationDependentType())
280       InstantiationDependent = true;
281   }
282 
283   //  (VD)  - the name of a non-type template parameter,
284   if (isa<NonTypeTemplateParmDecl>(D)) {
285     ValueDependent = true;
286     InstantiationDependent = true;
287     return;
288   }
289 
290   //  (VD) - a constant with integral or enumeration type and is
291   //         initialized with an expression that is value-dependent.
292   //  (VD) - a constant with literal type and is initialized with an
293   //         expression that is value-dependent [C++11].
294   //  (VD) - FIXME: Missing from the standard:
295   //       -  an entity with reference type and is initialized with an
296   //          expression that is value-dependent [C++11]
297   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
298     if ((Ctx.getLangOpts().CPlusPlus11 ?
299            Var->getType()->isLiteralType(Ctx) :
300            Var->getType()->isIntegralOrEnumerationType()) &&
301         (Var->getType().isConstQualified() ||
302          Var->getType()->isReferenceType())) {
303       if (const Expr *Init = Var->getAnyInitializer())
304         if (Init->isValueDependent()) {
305           ValueDependent = true;
306           InstantiationDependent = true;
307         }
308     }
309 
310     // (VD) - FIXME: Missing from the standard:
311     //      -  a member function or a static data member of the current
312     //         instantiation
313     if (Var->isStaticDataMember() &&
314         Var->getDeclContext()->isDependentContext()) {
315       ValueDependent = true;
316       InstantiationDependent = true;
317     }
318 
319     return;
320   }
321 
322   // (VD) - FIXME: Missing from the standard:
323   //      -  a member function or a static data member of the current
324   //         instantiation
325   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
326     ValueDependent = true;
327     InstantiationDependent = true;
328   }
329 }
330 
computeDependence(ASTContext & Ctx)331 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
332   bool TypeDependent = false;
333   bool ValueDependent = false;
334   bool InstantiationDependent = false;
335   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
336                            ValueDependent, InstantiationDependent);
337 
338   // (TD) C++ [temp.dep.expr]p3:
339   //   An id-expression is type-dependent if it contains:
340   //
341   // and
342   //
343   // (VD) C++ [temp.dep.constexpr]p2:
344   //  An identifier is value-dependent if it is:
345   if (!TypeDependent && !ValueDependent &&
346       hasExplicitTemplateArgs() &&
347       TemplateSpecializationType::anyDependentTemplateArguments(
348                                                             getTemplateArgs(),
349                                                        getNumTemplateArgs(),
350                                                       InstantiationDependent)) {
351     TypeDependent = true;
352     ValueDependent = true;
353     InstantiationDependent = true;
354   }
355 
356   ExprBits.TypeDependent = TypeDependent;
357   ExprBits.ValueDependent = ValueDependent;
358   ExprBits.InstantiationDependent = InstantiationDependent;
359 
360   // Is the declaration a parameter pack?
361   if (getDecl()->isParameterPack())
362     ExprBits.ContainsUnexpandedParameterPack = true;
363 }
364 
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)365 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
366                          NestedNameSpecifierLoc QualifierLoc,
367                          SourceLocation TemplateKWLoc,
368                          ValueDecl *D, bool RefersToEnclosingLocal,
369                          const DeclarationNameInfo &NameInfo,
370                          NamedDecl *FoundD,
371                          const TemplateArgumentListInfo *TemplateArgs,
372                          QualType T, ExprValueKind VK)
373   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
374     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
375   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
376   if (QualifierLoc)
377     getInternalQualifierLoc() = QualifierLoc;
378   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
379   if (FoundD)
380     getInternalFoundDecl() = FoundD;
381   DeclRefExprBits.HasTemplateKWAndArgsInfo
382     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
383   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
384   if (TemplateArgs) {
385     bool Dependent = false;
386     bool InstantiationDependent = false;
387     bool ContainsUnexpandedParameterPack = false;
388     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
389                                                Dependent,
390                                                InstantiationDependent,
391                                                ContainsUnexpandedParameterPack);
392     if (InstantiationDependent)
393       setInstantiationDependent(true);
394   } else if (TemplateKWLoc.isValid()) {
395     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
396   }
397   DeclRefExprBits.HadMultipleCandidates = 0;
398 
399   computeDependence(Ctx);
400 }
401 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)402 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
403                                  NestedNameSpecifierLoc QualifierLoc,
404                                  SourceLocation TemplateKWLoc,
405                                  ValueDecl *D,
406                                  bool RefersToEnclosingLocal,
407                                  SourceLocation NameLoc,
408                                  QualType T,
409                                  ExprValueKind VK,
410                                  NamedDecl *FoundD,
411                                  const TemplateArgumentListInfo *TemplateArgs) {
412   return Create(Context, QualifierLoc, TemplateKWLoc, D,
413                 RefersToEnclosingLocal,
414                 DeclarationNameInfo(D->getDeclName(), NameLoc),
415                 T, VK, FoundD, TemplateArgs);
416 }
417 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)418 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
419                                  NestedNameSpecifierLoc QualifierLoc,
420                                  SourceLocation TemplateKWLoc,
421                                  ValueDecl *D,
422                                  bool RefersToEnclosingLocal,
423                                  const DeclarationNameInfo &NameInfo,
424                                  QualType T,
425                                  ExprValueKind VK,
426                                  NamedDecl *FoundD,
427                                  const TemplateArgumentListInfo *TemplateArgs) {
428   // Filter out cases where the found Decl is the same as the value refenenced.
429   if (D == FoundD)
430     FoundD = 0;
431 
432   std::size_t Size = sizeof(DeclRefExpr);
433   if (QualifierLoc)
434     Size += sizeof(NestedNameSpecifierLoc);
435   if (FoundD)
436     Size += sizeof(NamedDecl *);
437   if (TemplateArgs)
438     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
439   else if (TemplateKWLoc.isValid())
440     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
441 
442   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
443   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
444                                RefersToEnclosingLocal,
445                                NameInfo, FoundD, TemplateArgs, T, VK);
446 }
447 
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)448 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
449                                       bool HasQualifier,
450                                       bool HasFoundDecl,
451                                       bool HasTemplateKWAndArgsInfo,
452                                       unsigned NumTemplateArgs) {
453   std::size_t Size = sizeof(DeclRefExpr);
454   if (HasQualifier)
455     Size += sizeof(NestedNameSpecifierLoc);
456   if (HasFoundDecl)
457     Size += sizeof(NamedDecl *);
458   if (HasTemplateKWAndArgsInfo)
459     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
460 
461   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
462   return new (Mem) DeclRefExpr(EmptyShell());
463 }
464 
getLocStart() const465 SourceLocation DeclRefExpr::getLocStart() const {
466   if (hasQualifier())
467     return getQualifierLoc().getBeginLoc();
468   return getNameInfo().getLocStart();
469 }
getLocEnd() const470 SourceLocation DeclRefExpr::getLocEnd() const {
471   if (hasExplicitTemplateArgs())
472     return getRAngleLoc();
473   return getNameInfo().getLocEnd();
474 }
475 
476 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
477 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)478 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
479   ASTContext &Context = CurrentDecl->getASTContext();
480 
481   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
482     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
483       return FD->getNameAsString();
484 
485     SmallString<256> Name;
486     llvm::raw_svector_ostream Out(Name);
487 
488     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
489       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
490         Out << "virtual ";
491       if (MD->isStatic())
492         Out << "static ";
493     }
494 
495     PrintingPolicy Policy(Context.getLangOpts());
496     std::string Proto;
497     llvm::raw_string_ostream POut(Proto);
498     FD->printQualifiedName(POut, Policy);
499 
500     const FunctionDecl *Decl = FD;
501     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
502       Decl = Pattern;
503     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
504     const FunctionProtoType *FT = 0;
505     if (FD->hasWrittenPrototype())
506       FT = dyn_cast<FunctionProtoType>(AFT);
507 
508     POut << "(";
509     if (FT) {
510       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
511         if (i) POut << ", ";
512         POut << Decl->getParamDecl(i)->getType().stream(Policy);
513       }
514 
515       if (FT->isVariadic()) {
516         if (FD->getNumParams()) POut << ", ";
517         POut << "...";
518       }
519     }
520     POut << ")";
521 
522     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
523       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
524       if (FT->isConst())
525         POut << " const";
526       if (FT->isVolatile())
527         POut << " volatile";
528       RefQualifierKind Ref = MD->getRefQualifier();
529       if (Ref == RQ_LValue)
530         POut << " &";
531       else if (Ref == RQ_RValue)
532         POut << " &&";
533     }
534 
535     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
536     SpecsTy Specs;
537     const DeclContext *Ctx = FD->getDeclContext();
538     while (Ctx && isa<NamedDecl>(Ctx)) {
539       const ClassTemplateSpecializationDecl *Spec
540                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
541       if (Spec && !Spec->isExplicitSpecialization())
542         Specs.push_back(Spec);
543       Ctx = Ctx->getParent();
544     }
545 
546     std::string TemplateParams;
547     llvm::raw_string_ostream TOut(TemplateParams);
548     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
549          I != E; ++I) {
550       const TemplateParameterList *Params
551                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
552       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
553       assert(Params->size() == Args.size());
554       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
555         StringRef Param = Params->getParam(i)->getName();
556         if (Param.empty()) continue;
557         TOut << Param << " = ";
558         Args.get(i).print(Policy, TOut);
559         TOut << ", ";
560       }
561     }
562 
563     FunctionTemplateSpecializationInfo *FSI
564                                           = FD->getTemplateSpecializationInfo();
565     if (FSI && !FSI->isExplicitSpecialization()) {
566       const TemplateParameterList* Params
567                                   = FSI->getTemplate()->getTemplateParameters();
568       const TemplateArgumentList* Args = FSI->TemplateArguments;
569       assert(Params->size() == Args->size());
570       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
571         StringRef Param = Params->getParam(i)->getName();
572         if (Param.empty()) continue;
573         TOut << Param << " = ";
574         Args->get(i).print(Policy, TOut);
575         TOut << ", ";
576       }
577     }
578 
579     TOut.flush();
580     if (!TemplateParams.empty()) {
581       // remove the trailing comma and space
582       TemplateParams.resize(TemplateParams.size() - 2);
583       POut << " [" << TemplateParams << "]";
584     }
585 
586     POut.flush();
587 
588     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
589       AFT->getResultType().getAsStringInternal(Proto, Policy);
590 
591     Out << Proto;
592 
593     Out.flush();
594     return Name.str().str();
595   }
596   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
597     SmallString<256> Name;
598     llvm::raw_svector_ostream Out(Name);
599     Out << (MD->isInstanceMethod() ? '-' : '+');
600     Out << '[';
601 
602     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
603     // a null check to avoid a crash.
604     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
605       Out << *ID;
606 
607     if (const ObjCCategoryImplDecl *CID =
608         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
609       Out << '(' << *CID << ')';
610 
611     Out <<  ' ';
612     Out << MD->getSelector().getAsString();
613     Out <<  ']';
614 
615     Out.flush();
616     return Name.str().str();
617   }
618   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
619     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
620     return "top level";
621   }
622   return "";
623 }
624 
setIntValue(ASTContext & C,const llvm::APInt & Val)625 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
626   if (hasAllocation())
627     C.Deallocate(pVal);
628 
629   BitWidth = Val.getBitWidth();
630   unsigned NumWords = Val.getNumWords();
631   const uint64_t* Words = Val.getRawData();
632   if (NumWords > 1) {
633     pVal = new (C) uint64_t[NumWords];
634     std::copy(Words, Words + NumWords, pVal);
635   } else if (NumWords == 1)
636     VAL = Words[0];
637   else
638     VAL = 0;
639 }
640 
IntegerLiteral(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)641 IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
642                                QualType type, SourceLocation l)
643   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
644          false, false),
645     Loc(l) {
646   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
647   assert(V.getBitWidth() == C.getIntWidth(type) &&
648          "Integer type is not the correct size for constant.");
649   setValue(C, V);
650 }
651 
652 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)653 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
654                        QualType type, SourceLocation l) {
655   return new (C) IntegerLiteral(C, V, type, l);
656 }
657 
658 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)659 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
660   return new (C) IntegerLiteral(Empty);
661 }
662 
FloatingLiteral(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)663 FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
664                                  bool isexact, QualType Type, SourceLocation L)
665   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
666          false, false), Loc(L) {
667   setSemantics(V.getSemantics());
668   FloatingLiteralBits.IsExact = isexact;
669   setValue(C, V);
670 }
671 
FloatingLiteral(ASTContext & C,EmptyShell Empty)672 FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
673   : Expr(FloatingLiteralClass, Empty) {
674   setRawSemantics(IEEEhalf);
675   FloatingLiteralBits.IsExact = false;
676 }
677 
678 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)679 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
680                         bool isexact, QualType Type, SourceLocation L) {
681   return new (C) FloatingLiteral(C, V, isexact, Type, L);
682 }
683 
684 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)685 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
686   return new (C) FloatingLiteral(C, Empty);
687 }
688 
getSemantics() const689 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
690   switch(FloatingLiteralBits.Semantics) {
691   case IEEEhalf:
692     return llvm::APFloat::IEEEhalf;
693   case IEEEsingle:
694     return llvm::APFloat::IEEEsingle;
695   case IEEEdouble:
696     return llvm::APFloat::IEEEdouble;
697   case x87DoubleExtended:
698     return llvm::APFloat::x87DoubleExtended;
699   case IEEEquad:
700     return llvm::APFloat::IEEEquad;
701   case PPCDoubleDouble:
702     return llvm::APFloat::PPCDoubleDouble;
703   }
704   llvm_unreachable("Unrecognised floating semantics");
705 }
706 
setSemantics(const llvm::fltSemantics & Sem)707 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
708   if (&Sem == &llvm::APFloat::IEEEhalf)
709     FloatingLiteralBits.Semantics = IEEEhalf;
710   else if (&Sem == &llvm::APFloat::IEEEsingle)
711     FloatingLiteralBits.Semantics = IEEEsingle;
712   else if (&Sem == &llvm::APFloat::IEEEdouble)
713     FloatingLiteralBits.Semantics = IEEEdouble;
714   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
715     FloatingLiteralBits.Semantics = x87DoubleExtended;
716   else if (&Sem == &llvm::APFloat::IEEEquad)
717     FloatingLiteralBits.Semantics = IEEEquad;
718   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
719     FloatingLiteralBits.Semantics = PPCDoubleDouble;
720   else
721     llvm_unreachable("Unknown floating semantics");
722 }
723 
724 /// getValueAsApproximateDouble - This returns the value as an inaccurate
725 /// double.  Note that this may cause loss of precision, but is useful for
726 /// debugging dumps, etc.
getValueAsApproximateDouble() const727 double FloatingLiteral::getValueAsApproximateDouble() const {
728   llvm::APFloat V = getValue();
729   bool ignored;
730   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
731             &ignored);
732   return V.convertToDouble();
733 }
734 
mapCharByteWidth(TargetInfo const & target,StringKind k)735 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
736   int CharByteWidth = 0;
737   switch(k) {
738     case Ascii:
739     case UTF8:
740       CharByteWidth = target.getCharWidth();
741       break;
742     case Wide:
743       CharByteWidth = target.getWCharWidth();
744       break;
745     case UTF16:
746       CharByteWidth = target.getChar16Width();
747       break;
748     case UTF32:
749       CharByteWidth = target.getChar32Width();
750       break;
751   }
752   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
753   CharByteWidth /= 8;
754   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
755          && "character byte widths supported are 1, 2, and 4 only");
756   return CharByteWidth;
757 }
758 
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)759 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
760                                      StringKind Kind, bool Pascal, QualType Ty,
761                                      const SourceLocation *Loc,
762                                      unsigned NumStrs) {
763   // Allocate enough space for the StringLiteral plus an array of locations for
764   // any concatenated string tokens.
765   void *Mem = C.Allocate(sizeof(StringLiteral)+
766                          sizeof(SourceLocation)*(NumStrs-1),
767                          llvm::alignOf<StringLiteral>());
768   StringLiteral *SL = new (Mem) StringLiteral(Ty);
769 
770   // OPTIMIZE: could allocate this appended to the StringLiteral.
771   SL->setString(C,Str,Kind,Pascal);
772 
773   SL->TokLocs[0] = Loc[0];
774   SL->NumConcatenated = NumStrs;
775 
776   if (NumStrs != 1)
777     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
778   return SL;
779 }
780 
CreateEmpty(ASTContext & C,unsigned NumStrs)781 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
782   void *Mem = C.Allocate(sizeof(StringLiteral)+
783                          sizeof(SourceLocation)*(NumStrs-1),
784                          llvm::alignOf<StringLiteral>());
785   StringLiteral *SL = new (Mem) StringLiteral(QualType());
786   SL->CharByteWidth = 0;
787   SL->Length = 0;
788   SL->NumConcatenated = NumStrs;
789   return SL;
790 }
791 
outputString(raw_ostream & OS) const792 void StringLiteral::outputString(raw_ostream &OS) const {
793   switch (getKind()) {
794   case Ascii: break; // no prefix.
795   case Wide:  OS << 'L'; break;
796   case UTF8:  OS << "u8"; break;
797   case UTF16: OS << 'u'; break;
798   case UTF32: OS << 'U'; break;
799   }
800   OS << '"';
801   static const char Hex[] = "0123456789ABCDEF";
802 
803   unsigned LastSlashX = getLength();
804   for (unsigned I = 0, N = getLength(); I != N; ++I) {
805     switch (uint32_t Char = getCodeUnit(I)) {
806     default:
807       // FIXME: Convert UTF-8 back to codepoints before rendering.
808 
809       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
810       // Leave invalid surrogates alone; we'll use \x for those.
811       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
812           Char <= 0xdbff) {
813         uint32_t Trail = getCodeUnit(I + 1);
814         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
815           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
816           ++I;
817         }
818       }
819 
820       if (Char > 0xff) {
821         // If this is a wide string, output characters over 0xff using \x
822         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
823         // codepoint: use \x escapes for invalid codepoints.
824         if (getKind() == Wide ||
825             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
826           // FIXME: Is this the best way to print wchar_t?
827           OS << "\\x";
828           int Shift = 28;
829           while ((Char >> Shift) == 0)
830             Shift -= 4;
831           for (/**/; Shift >= 0; Shift -= 4)
832             OS << Hex[(Char >> Shift) & 15];
833           LastSlashX = I;
834           break;
835         }
836 
837         if (Char > 0xffff)
838           OS << "\\U00"
839              << Hex[(Char >> 20) & 15]
840              << Hex[(Char >> 16) & 15];
841         else
842           OS << "\\u";
843         OS << Hex[(Char >> 12) & 15]
844            << Hex[(Char >>  8) & 15]
845            << Hex[(Char >>  4) & 15]
846            << Hex[(Char >>  0) & 15];
847         break;
848       }
849 
850       // If we used \x... for the previous character, and this character is a
851       // hexadecimal digit, prevent it being slurped as part of the \x.
852       if (LastSlashX + 1 == I) {
853         switch (Char) {
854           case '0': case '1': case '2': case '3': case '4':
855           case '5': case '6': case '7': case '8': case '9':
856           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
857           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
858             OS << "\"\"";
859         }
860       }
861 
862       assert(Char <= 0xff &&
863              "Characters above 0xff should already have been handled.");
864 
865       if (isPrintable(Char))
866         OS << (char)Char;
867       else  // Output anything hard as an octal escape.
868         OS << '\\'
869            << (char)('0' + ((Char >> 6) & 7))
870            << (char)('0' + ((Char >> 3) & 7))
871            << (char)('0' + ((Char >> 0) & 7));
872       break;
873     // Handle some common non-printable cases to make dumps prettier.
874     case '\\': OS << "\\\\"; break;
875     case '"': OS << "\\\""; break;
876     case '\n': OS << "\\n"; break;
877     case '\t': OS << "\\t"; break;
878     case '\a': OS << "\\a"; break;
879     case '\b': OS << "\\b"; break;
880     }
881   }
882   OS << '"';
883 }
884 
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)885 void StringLiteral::setString(ASTContext &C, StringRef Str,
886                               StringKind Kind, bool IsPascal) {
887   //FIXME: we assume that the string data comes from a target that uses the same
888   // code unit size and endianess for the type of string.
889   this->Kind = Kind;
890   this->IsPascal = IsPascal;
891 
892   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
893   assert((Str.size()%CharByteWidth == 0)
894          && "size of data must be multiple of CharByteWidth");
895   Length = Str.size()/CharByteWidth;
896 
897   switch(CharByteWidth) {
898     case 1: {
899       char *AStrData = new (C) char[Length];
900       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
901       StrData.asChar = AStrData;
902       break;
903     }
904     case 2: {
905       uint16_t *AStrData = new (C) uint16_t[Length];
906       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
907       StrData.asUInt16 = AStrData;
908       break;
909     }
910     case 4: {
911       uint32_t *AStrData = new (C) uint32_t[Length];
912       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
913       StrData.asUInt32 = AStrData;
914       break;
915     }
916     default:
917       assert(false && "unsupported CharByteWidth");
918   }
919 }
920 
921 /// getLocationOfByte - Return a source location that points to the specified
922 /// byte of this string literal.
923 ///
924 /// Strings are amazingly complex.  They can be formed from multiple tokens and
925 /// can have escape sequences in them in addition to the usual trigraph and
926 /// escaped newline business.  This routine handles this complexity.
927 ///
928 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const929 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
930                   const LangOptions &Features, const TargetInfo &Target) const {
931   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
932          "Only narrow string literals are currently supported");
933 
934   // Loop over all of the tokens in this string until we find the one that
935   // contains the byte we're looking for.
936   unsigned TokNo = 0;
937   while (1) {
938     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
939     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
940 
941     // Get the spelling of the string so that we can get the data that makes up
942     // the string literal, not the identifier for the macro it is potentially
943     // expanded through.
944     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
945 
946     // Re-lex the token to get its length and original spelling.
947     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
948     bool Invalid = false;
949     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
950     if (Invalid)
951       return StrTokSpellingLoc;
952 
953     const char *StrData = Buffer.data()+LocInfo.second;
954 
955     // Create a lexer starting at the beginning of this token.
956     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
957                    Buffer.begin(), StrData, Buffer.end());
958     Token TheTok;
959     TheLexer.LexFromRawLexer(TheTok);
960 
961     // Use the StringLiteralParser to compute the length of the string in bytes.
962     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
963     unsigned TokNumBytes = SLP.GetStringLength();
964 
965     // If the byte is in this token, return the location of the byte.
966     if (ByteNo < TokNumBytes ||
967         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
968       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
969 
970       // Now that we know the offset of the token in the spelling, use the
971       // preprocessor to get the offset in the original source.
972       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
973     }
974 
975     // Move to the next string token.
976     ++TokNo;
977     ByteNo -= TokNumBytes;
978   }
979 }
980 
981 
982 
983 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
984 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)985 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
986   switch (Op) {
987   case UO_PostInc: return "++";
988   case UO_PostDec: return "--";
989   case UO_PreInc:  return "++";
990   case UO_PreDec:  return "--";
991   case UO_AddrOf:  return "&";
992   case UO_Deref:   return "*";
993   case UO_Plus:    return "+";
994   case UO_Minus:   return "-";
995   case UO_Not:     return "~";
996   case UO_LNot:    return "!";
997   case UO_Real:    return "__real";
998   case UO_Imag:    return "__imag";
999   case UO_Extension: return "__extension__";
1000   }
1001   llvm_unreachable("Unknown unary operator");
1002 }
1003 
1004 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1005 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1006   switch (OO) {
1007   default: llvm_unreachable("No unary operator for overloaded function");
1008   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1009   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1010   case OO_Amp:        return UO_AddrOf;
1011   case OO_Star:       return UO_Deref;
1012   case OO_Plus:       return UO_Plus;
1013   case OO_Minus:      return UO_Minus;
1014   case OO_Tilde:      return UO_Not;
1015   case OO_Exclaim:    return UO_LNot;
1016   }
1017 }
1018 
getOverloadedOperator(Opcode Opc)1019 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1020   switch (Opc) {
1021   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1022   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1023   case UO_AddrOf: return OO_Amp;
1024   case UO_Deref: return OO_Star;
1025   case UO_Plus: return OO_Plus;
1026   case UO_Minus: return OO_Minus;
1027   case UO_Not: return OO_Tilde;
1028   case UO_LNot: return OO_Exclaim;
1029   default: return OO_None;
1030   }
1031 }
1032 
1033 
1034 //===----------------------------------------------------------------------===//
1035 // Postfix Operators.
1036 //===----------------------------------------------------------------------===//
1037 
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1038 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1039                    ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
1040                    SourceLocation rparenloc)
1041   : Expr(SC, t, VK, OK_Ordinary,
1042          fn->isTypeDependent(),
1043          fn->isValueDependent(),
1044          fn->isInstantiationDependent(),
1045          fn->containsUnexpandedParameterPack()),
1046     NumArgs(args.size()) {
1047 
1048   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1049   SubExprs[FN] = fn;
1050   for (unsigned i = 0; i != args.size(); ++i) {
1051     if (args[i]->isTypeDependent())
1052       ExprBits.TypeDependent = true;
1053     if (args[i]->isValueDependent())
1054       ExprBits.ValueDependent = true;
1055     if (args[i]->isInstantiationDependent())
1056       ExprBits.InstantiationDependent = true;
1057     if (args[i]->containsUnexpandedParameterPack())
1058       ExprBits.ContainsUnexpandedParameterPack = true;
1059 
1060     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1061   }
1062 
1063   CallExprBits.NumPreArgs = NumPreArgs;
1064   RParenLoc = rparenloc;
1065 }
1066 
CallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1067 CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1068                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
1069   : Expr(CallExprClass, t, VK, OK_Ordinary,
1070          fn->isTypeDependent(),
1071          fn->isValueDependent(),
1072          fn->isInstantiationDependent(),
1073          fn->containsUnexpandedParameterPack()),
1074     NumArgs(args.size()) {
1075 
1076   SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1077   SubExprs[FN] = fn;
1078   for (unsigned i = 0; i != args.size(); ++i) {
1079     if (args[i]->isTypeDependent())
1080       ExprBits.TypeDependent = true;
1081     if (args[i]->isValueDependent())
1082       ExprBits.ValueDependent = true;
1083     if (args[i]->isInstantiationDependent())
1084       ExprBits.InstantiationDependent = true;
1085     if (args[i]->containsUnexpandedParameterPack())
1086       ExprBits.ContainsUnexpandedParameterPack = true;
1087 
1088     SubExprs[i+PREARGS_START] = args[i];
1089   }
1090 
1091   CallExprBits.NumPreArgs = 0;
1092   RParenLoc = rparenloc;
1093 }
1094 
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)1095 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
1096   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1097   // FIXME: Why do we allocate this?
1098   SubExprs = new (C) Stmt*[PREARGS_START];
1099   CallExprBits.NumPreArgs = 0;
1100 }
1101 
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1102 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1103                    EmptyShell Empty)
1104   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1105   // FIXME: Why do we allocate this?
1106   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1107   CallExprBits.NumPreArgs = NumPreArgs;
1108 }
1109 
getCalleeDecl()1110 Decl *CallExpr::getCalleeDecl() {
1111   Expr *CEE = getCallee()->IgnoreParenImpCasts();
1112 
1113   while (SubstNonTypeTemplateParmExpr *NTTP
1114                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1115     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1116   }
1117 
1118   // If we're calling a dereference, look at the pointer instead.
1119   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1120     if (BO->isPtrMemOp())
1121       CEE = BO->getRHS()->IgnoreParenCasts();
1122   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1123     if (UO->getOpcode() == UO_Deref)
1124       CEE = UO->getSubExpr()->IgnoreParenCasts();
1125   }
1126   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1127     return DRE->getDecl();
1128   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1129     return ME->getMemberDecl();
1130 
1131   return 0;
1132 }
1133 
getDirectCallee()1134 FunctionDecl *CallExpr::getDirectCallee() {
1135   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1136 }
1137 
1138 /// setNumArgs - This changes the number of arguments present in this call.
1139 /// Any orphaned expressions are deleted by this, and any new operands are set
1140 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)1141 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1142   // No change, just return.
1143   if (NumArgs == getNumArgs()) return;
1144 
1145   // If shrinking # arguments, just delete the extras and forgot them.
1146   if (NumArgs < getNumArgs()) {
1147     this->NumArgs = NumArgs;
1148     return;
1149   }
1150 
1151   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1152   unsigned NumPreArgs = getNumPreArgs();
1153   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1154   // Copy over args.
1155   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1156     NewSubExprs[i] = SubExprs[i];
1157   // Null out new args.
1158   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1159        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1160     NewSubExprs[i] = 0;
1161 
1162   if (SubExprs) C.Deallocate(SubExprs);
1163   SubExprs = NewSubExprs;
1164   this->NumArgs = NumArgs;
1165 }
1166 
1167 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1168 /// not, return 0.
isBuiltinCall() const1169 unsigned CallExpr::isBuiltinCall() const {
1170   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1171   // function. As a result, we try and obtain the DeclRefExpr from the
1172   // ImplicitCastExpr.
1173   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1174   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1175     return 0;
1176 
1177   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1178   if (!DRE)
1179     return 0;
1180 
1181   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1182   if (!FDecl)
1183     return 0;
1184 
1185   if (!FDecl->getIdentifier())
1186     return 0;
1187 
1188   return FDecl->getBuiltinID();
1189 }
1190 
isUnevaluatedBuiltinCall(ASTContext & Ctx) const1191 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1192   if (unsigned BI = isBuiltinCall())
1193     return Ctx.BuiltinInfo.isUnevaluated(BI);
1194   return false;
1195 }
1196 
getCallReturnType() const1197 QualType CallExpr::getCallReturnType() const {
1198   QualType CalleeType = getCallee()->getType();
1199   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1200     CalleeType = FnTypePtr->getPointeeType();
1201   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1202     CalleeType = BPT->getPointeeType();
1203   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1204     // This should never be overloaded and so should never return null.
1205     CalleeType = Expr::findBoundMemberType(getCallee());
1206 
1207   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1208   return FnType->getResultType();
1209 }
1210 
getLocStart() const1211 SourceLocation CallExpr::getLocStart() const {
1212   if (isa<CXXOperatorCallExpr>(this))
1213     return cast<CXXOperatorCallExpr>(this)->getLocStart();
1214 
1215   SourceLocation begin = getCallee()->getLocStart();
1216   if (begin.isInvalid() && getNumArgs() > 0)
1217     begin = getArg(0)->getLocStart();
1218   return begin;
1219 }
getLocEnd() const1220 SourceLocation CallExpr::getLocEnd() const {
1221   if (isa<CXXOperatorCallExpr>(this))
1222     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1223 
1224   SourceLocation end = getRParenLoc();
1225   if (end.isInvalid() && getNumArgs() > 0)
1226     end = getArg(getNumArgs() - 1)->getLocEnd();
1227   return end;
1228 }
1229 
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1230 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1231                                    SourceLocation OperatorLoc,
1232                                    TypeSourceInfo *tsi,
1233                                    ArrayRef<OffsetOfNode> comps,
1234                                    ArrayRef<Expr*> exprs,
1235                                    SourceLocation RParenLoc) {
1236   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1237                          sizeof(OffsetOfNode) * comps.size() +
1238                          sizeof(Expr*) * exprs.size());
1239 
1240   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1241                                 RParenLoc);
1242 }
1243 
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1244 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1245                                         unsigned numComps, unsigned numExprs) {
1246   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1247                          sizeof(OffsetOfNode) * numComps +
1248                          sizeof(Expr*) * numExprs);
1249   return new (Mem) OffsetOfExpr(numComps, numExprs);
1250 }
1251 
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1252 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1253                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1254                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1255                            SourceLocation RParenLoc)
1256   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1257          /*TypeDependent=*/false,
1258          /*ValueDependent=*/tsi->getType()->isDependentType(),
1259          tsi->getType()->isInstantiationDependentType(),
1260          tsi->getType()->containsUnexpandedParameterPack()),
1261     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1262     NumComps(comps.size()), NumExprs(exprs.size())
1263 {
1264   for (unsigned i = 0; i != comps.size(); ++i) {
1265     setComponent(i, comps[i]);
1266   }
1267 
1268   for (unsigned i = 0; i != exprs.size(); ++i) {
1269     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1270       ExprBits.ValueDependent = true;
1271     if (exprs[i]->containsUnexpandedParameterPack())
1272       ExprBits.ContainsUnexpandedParameterPack = true;
1273 
1274     setIndexExpr(i, exprs[i]);
1275   }
1276 }
1277 
getFieldName() const1278 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1279   assert(getKind() == Field || getKind() == Identifier);
1280   if (getKind() == Field)
1281     return getField()->getIdentifier();
1282 
1283   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1284 }
1285 
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1286 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1287                                NestedNameSpecifierLoc QualifierLoc,
1288                                SourceLocation TemplateKWLoc,
1289                                ValueDecl *memberdecl,
1290                                DeclAccessPair founddecl,
1291                                DeclarationNameInfo nameinfo,
1292                                const TemplateArgumentListInfo *targs,
1293                                QualType ty,
1294                                ExprValueKind vk,
1295                                ExprObjectKind ok) {
1296   std::size_t Size = sizeof(MemberExpr);
1297 
1298   bool hasQualOrFound = (QualifierLoc ||
1299                          founddecl.getDecl() != memberdecl ||
1300                          founddecl.getAccess() != memberdecl->getAccess());
1301   if (hasQualOrFound)
1302     Size += sizeof(MemberNameQualifier);
1303 
1304   if (targs)
1305     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1306   else if (TemplateKWLoc.isValid())
1307     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1308 
1309   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1310   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1311                                        ty, vk, ok);
1312 
1313   if (hasQualOrFound) {
1314     // FIXME: Wrong. We should be looking at the member declaration we found.
1315     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1316       E->setValueDependent(true);
1317       E->setTypeDependent(true);
1318       E->setInstantiationDependent(true);
1319     }
1320     else if (QualifierLoc &&
1321              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1322       E->setInstantiationDependent(true);
1323 
1324     E->HasQualifierOrFoundDecl = true;
1325 
1326     MemberNameQualifier *NQ = E->getMemberQualifier();
1327     NQ->QualifierLoc = QualifierLoc;
1328     NQ->FoundDecl = founddecl;
1329   }
1330 
1331   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1332 
1333   if (targs) {
1334     bool Dependent = false;
1335     bool InstantiationDependent = false;
1336     bool ContainsUnexpandedParameterPack = false;
1337     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1338                                                   Dependent,
1339                                                   InstantiationDependent,
1340                                              ContainsUnexpandedParameterPack);
1341     if (InstantiationDependent)
1342       E->setInstantiationDependent(true);
1343   } else if (TemplateKWLoc.isValid()) {
1344     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1345   }
1346 
1347   return E;
1348 }
1349 
getLocStart() const1350 SourceLocation MemberExpr::getLocStart() const {
1351   if (isImplicitAccess()) {
1352     if (hasQualifier())
1353       return getQualifierLoc().getBeginLoc();
1354     return MemberLoc;
1355   }
1356 
1357   // FIXME: We don't want this to happen. Rather, we should be able to
1358   // detect all kinds of implicit accesses more cleanly.
1359   SourceLocation BaseStartLoc = getBase()->getLocStart();
1360   if (BaseStartLoc.isValid())
1361     return BaseStartLoc;
1362   return MemberLoc;
1363 }
getLocEnd() const1364 SourceLocation MemberExpr::getLocEnd() const {
1365   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1366   if (hasExplicitTemplateArgs())
1367     EndLoc = getRAngleLoc();
1368   else if (EndLoc.isInvalid())
1369     EndLoc = getBase()->getLocEnd();
1370   return EndLoc;
1371 }
1372 
CheckCastConsistency() const1373 void CastExpr::CheckCastConsistency() const {
1374   switch (getCastKind()) {
1375   case CK_DerivedToBase:
1376   case CK_UncheckedDerivedToBase:
1377   case CK_DerivedToBaseMemberPointer:
1378   case CK_BaseToDerived:
1379   case CK_BaseToDerivedMemberPointer:
1380     assert(!path_empty() && "Cast kind should have a base path!");
1381     break;
1382 
1383   case CK_CPointerToObjCPointerCast:
1384     assert(getType()->isObjCObjectPointerType());
1385     assert(getSubExpr()->getType()->isPointerType());
1386     goto CheckNoBasePath;
1387 
1388   case CK_BlockPointerToObjCPointerCast:
1389     assert(getType()->isObjCObjectPointerType());
1390     assert(getSubExpr()->getType()->isBlockPointerType());
1391     goto CheckNoBasePath;
1392 
1393   case CK_ReinterpretMemberPointer:
1394     assert(getType()->isMemberPointerType());
1395     assert(getSubExpr()->getType()->isMemberPointerType());
1396     goto CheckNoBasePath;
1397 
1398   case CK_BitCast:
1399     // Arbitrary casts to C pointer types count as bitcasts.
1400     // Otherwise, we should only have block and ObjC pointer casts
1401     // here if they stay within the type kind.
1402     if (!getType()->isPointerType()) {
1403       assert(getType()->isObjCObjectPointerType() ==
1404              getSubExpr()->getType()->isObjCObjectPointerType());
1405       assert(getType()->isBlockPointerType() ==
1406              getSubExpr()->getType()->isBlockPointerType());
1407     }
1408     goto CheckNoBasePath;
1409 
1410   case CK_AnyPointerToBlockPointerCast:
1411     assert(getType()->isBlockPointerType());
1412     assert(getSubExpr()->getType()->isAnyPointerType() &&
1413            !getSubExpr()->getType()->isBlockPointerType());
1414     goto CheckNoBasePath;
1415 
1416   case CK_CopyAndAutoreleaseBlockObject:
1417     assert(getType()->isBlockPointerType());
1418     assert(getSubExpr()->getType()->isBlockPointerType());
1419     goto CheckNoBasePath;
1420 
1421   case CK_FunctionToPointerDecay:
1422     assert(getType()->isPointerType());
1423     assert(getSubExpr()->getType()->isFunctionType());
1424     goto CheckNoBasePath;
1425 
1426   // These should not have an inheritance path.
1427   case CK_Dynamic:
1428   case CK_ToUnion:
1429   case CK_ArrayToPointerDecay:
1430   case CK_NullToMemberPointer:
1431   case CK_NullToPointer:
1432   case CK_ConstructorConversion:
1433   case CK_IntegralToPointer:
1434   case CK_PointerToIntegral:
1435   case CK_ToVoid:
1436   case CK_VectorSplat:
1437   case CK_IntegralCast:
1438   case CK_IntegralToFloating:
1439   case CK_FloatingToIntegral:
1440   case CK_FloatingCast:
1441   case CK_ObjCObjectLValueCast:
1442   case CK_FloatingRealToComplex:
1443   case CK_FloatingComplexToReal:
1444   case CK_FloatingComplexCast:
1445   case CK_FloatingComplexToIntegralComplex:
1446   case CK_IntegralRealToComplex:
1447   case CK_IntegralComplexToReal:
1448   case CK_IntegralComplexCast:
1449   case CK_IntegralComplexToFloatingComplex:
1450   case CK_ARCProduceObject:
1451   case CK_ARCConsumeObject:
1452   case CK_ARCReclaimReturnedObject:
1453   case CK_ARCExtendBlockObject:
1454   case CK_ZeroToOCLEvent:
1455     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1456     goto CheckNoBasePath;
1457 
1458   case CK_Dependent:
1459   case CK_LValueToRValue:
1460   case CK_NoOp:
1461   case CK_AtomicToNonAtomic:
1462   case CK_NonAtomicToAtomic:
1463   case CK_PointerToBoolean:
1464   case CK_IntegralToBoolean:
1465   case CK_FloatingToBoolean:
1466   case CK_MemberPointerToBoolean:
1467   case CK_FloatingComplexToBoolean:
1468   case CK_IntegralComplexToBoolean:
1469   case CK_LValueBitCast:            // -> bool&
1470   case CK_UserDefinedConversion:    // operator bool()
1471   case CK_BuiltinFnToFnPtr:
1472   CheckNoBasePath:
1473     assert(path_empty() && "Cast kind should not have a base path!");
1474     break;
1475   }
1476 }
1477 
getCastKindName() const1478 const char *CastExpr::getCastKindName() const {
1479   switch (getCastKind()) {
1480   case CK_Dependent:
1481     return "Dependent";
1482   case CK_BitCast:
1483     return "BitCast";
1484   case CK_LValueBitCast:
1485     return "LValueBitCast";
1486   case CK_LValueToRValue:
1487     return "LValueToRValue";
1488   case CK_NoOp:
1489     return "NoOp";
1490   case CK_BaseToDerived:
1491     return "BaseToDerived";
1492   case CK_DerivedToBase:
1493     return "DerivedToBase";
1494   case CK_UncheckedDerivedToBase:
1495     return "UncheckedDerivedToBase";
1496   case CK_Dynamic:
1497     return "Dynamic";
1498   case CK_ToUnion:
1499     return "ToUnion";
1500   case CK_ArrayToPointerDecay:
1501     return "ArrayToPointerDecay";
1502   case CK_FunctionToPointerDecay:
1503     return "FunctionToPointerDecay";
1504   case CK_NullToMemberPointer:
1505     return "NullToMemberPointer";
1506   case CK_NullToPointer:
1507     return "NullToPointer";
1508   case CK_BaseToDerivedMemberPointer:
1509     return "BaseToDerivedMemberPointer";
1510   case CK_DerivedToBaseMemberPointer:
1511     return "DerivedToBaseMemberPointer";
1512   case CK_ReinterpretMemberPointer:
1513     return "ReinterpretMemberPointer";
1514   case CK_UserDefinedConversion:
1515     return "UserDefinedConversion";
1516   case CK_ConstructorConversion:
1517     return "ConstructorConversion";
1518   case CK_IntegralToPointer:
1519     return "IntegralToPointer";
1520   case CK_PointerToIntegral:
1521     return "PointerToIntegral";
1522   case CK_PointerToBoolean:
1523     return "PointerToBoolean";
1524   case CK_ToVoid:
1525     return "ToVoid";
1526   case CK_VectorSplat:
1527     return "VectorSplat";
1528   case CK_IntegralCast:
1529     return "IntegralCast";
1530   case CK_IntegralToBoolean:
1531     return "IntegralToBoolean";
1532   case CK_IntegralToFloating:
1533     return "IntegralToFloating";
1534   case CK_FloatingToIntegral:
1535     return "FloatingToIntegral";
1536   case CK_FloatingCast:
1537     return "FloatingCast";
1538   case CK_FloatingToBoolean:
1539     return "FloatingToBoolean";
1540   case CK_MemberPointerToBoolean:
1541     return "MemberPointerToBoolean";
1542   case CK_CPointerToObjCPointerCast:
1543     return "CPointerToObjCPointerCast";
1544   case CK_BlockPointerToObjCPointerCast:
1545     return "BlockPointerToObjCPointerCast";
1546   case CK_AnyPointerToBlockPointerCast:
1547     return "AnyPointerToBlockPointerCast";
1548   case CK_ObjCObjectLValueCast:
1549     return "ObjCObjectLValueCast";
1550   case CK_FloatingRealToComplex:
1551     return "FloatingRealToComplex";
1552   case CK_FloatingComplexToReal:
1553     return "FloatingComplexToReal";
1554   case CK_FloatingComplexToBoolean:
1555     return "FloatingComplexToBoolean";
1556   case CK_FloatingComplexCast:
1557     return "FloatingComplexCast";
1558   case CK_FloatingComplexToIntegralComplex:
1559     return "FloatingComplexToIntegralComplex";
1560   case CK_IntegralRealToComplex:
1561     return "IntegralRealToComplex";
1562   case CK_IntegralComplexToReal:
1563     return "IntegralComplexToReal";
1564   case CK_IntegralComplexToBoolean:
1565     return "IntegralComplexToBoolean";
1566   case CK_IntegralComplexCast:
1567     return "IntegralComplexCast";
1568   case CK_IntegralComplexToFloatingComplex:
1569     return "IntegralComplexToFloatingComplex";
1570   case CK_ARCConsumeObject:
1571     return "ARCConsumeObject";
1572   case CK_ARCProduceObject:
1573     return "ARCProduceObject";
1574   case CK_ARCReclaimReturnedObject:
1575     return "ARCReclaimReturnedObject";
1576   case CK_ARCExtendBlockObject:
1577     return "ARCCExtendBlockObject";
1578   case CK_AtomicToNonAtomic:
1579     return "AtomicToNonAtomic";
1580   case CK_NonAtomicToAtomic:
1581     return "NonAtomicToAtomic";
1582   case CK_CopyAndAutoreleaseBlockObject:
1583     return "CopyAndAutoreleaseBlockObject";
1584   case CK_BuiltinFnToFnPtr:
1585     return "BuiltinFnToFnPtr";
1586   case CK_ZeroToOCLEvent:
1587     return "ZeroToOCLEvent";
1588   }
1589 
1590   llvm_unreachable("Unhandled cast kind!");
1591 }
1592 
getSubExprAsWritten()1593 Expr *CastExpr::getSubExprAsWritten() {
1594   Expr *SubExpr = 0;
1595   CastExpr *E = this;
1596   do {
1597     SubExpr = E->getSubExpr();
1598 
1599     // Skip through reference binding to temporary.
1600     if (MaterializeTemporaryExpr *Materialize
1601                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1602       SubExpr = Materialize->GetTemporaryExpr();
1603 
1604     // Skip any temporary bindings; they're implicit.
1605     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1606       SubExpr = Binder->getSubExpr();
1607 
1608     // Conversions by constructor and conversion functions have a
1609     // subexpression describing the call; strip it off.
1610     if (E->getCastKind() == CK_ConstructorConversion)
1611       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1612     else if (E->getCastKind() == CK_UserDefinedConversion)
1613       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1614 
1615     // If the subexpression we're left with is an implicit cast, look
1616     // through that, too.
1617   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1618 
1619   return SubExpr;
1620 }
1621 
path_buffer()1622 CXXBaseSpecifier **CastExpr::path_buffer() {
1623   switch (getStmtClass()) {
1624 #define ABSTRACT_STMT(x)
1625 #define CASTEXPR(Type, Base) \
1626   case Stmt::Type##Class: \
1627     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1628 #define STMT(Type, Base)
1629 #include "clang/AST/StmtNodes.inc"
1630   default:
1631     llvm_unreachable("non-cast expressions not possible here");
1632   }
1633 }
1634 
setCastPath(const CXXCastPath & Path)1635 void CastExpr::setCastPath(const CXXCastPath &Path) {
1636   assert(Path.size() == path_size());
1637   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1638 }
1639 
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1640 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1641                                            CastKind Kind, Expr *Operand,
1642                                            const CXXCastPath *BasePath,
1643                                            ExprValueKind VK) {
1644   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1645   void *Buffer =
1646     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1647   ImplicitCastExpr *E =
1648     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1649   if (PathSize) E->setCastPath(*BasePath);
1650   return E;
1651 }
1652 
CreateEmpty(ASTContext & C,unsigned PathSize)1653 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1654                                                 unsigned PathSize) {
1655   void *Buffer =
1656     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1657   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1658 }
1659 
1660 
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1661 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1662                                        ExprValueKind VK, CastKind K, Expr *Op,
1663                                        const CXXCastPath *BasePath,
1664                                        TypeSourceInfo *WrittenTy,
1665                                        SourceLocation L, SourceLocation R) {
1666   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1667   void *Buffer =
1668     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1669   CStyleCastExpr *E =
1670     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1671   if (PathSize) E->setCastPath(*BasePath);
1672   return E;
1673 }
1674 
CreateEmpty(ASTContext & C,unsigned PathSize)1675 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1676   void *Buffer =
1677     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1678   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1679 }
1680 
1681 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1682 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1683 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1684   switch (Op) {
1685   case BO_PtrMemD:   return ".*";
1686   case BO_PtrMemI:   return "->*";
1687   case BO_Mul:       return "*";
1688   case BO_Div:       return "/";
1689   case BO_Rem:       return "%";
1690   case BO_Add:       return "+";
1691   case BO_Sub:       return "-";
1692   case BO_Shl:       return "<<";
1693   case BO_Shr:       return ">>";
1694   case BO_LT:        return "<";
1695   case BO_GT:        return ">";
1696   case BO_LE:        return "<=";
1697   case BO_GE:        return ">=";
1698   case BO_EQ:        return "==";
1699   case BO_NE:        return "!=";
1700   case BO_And:       return "&";
1701   case BO_Xor:       return "^";
1702   case BO_Or:        return "|";
1703   case BO_LAnd:      return "&&";
1704   case BO_LOr:       return "||";
1705   case BO_Assign:    return "=";
1706   case BO_MulAssign: return "*=";
1707   case BO_DivAssign: return "/=";
1708   case BO_RemAssign: return "%=";
1709   case BO_AddAssign: return "+=";
1710   case BO_SubAssign: return "-=";
1711   case BO_ShlAssign: return "<<=";
1712   case BO_ShrAssign: return ">>=";
1713   case BO_AndAssign: return "&=";
1714   case BO_XorAssign: return "^=";
1715   case BO_OrAssign:  return "|=";
1716   case BO_Comma:     return ",";
1717   }
1718 
1719   llvm_unreachable("Invalid OpCode!");
1720 }
1721 
1722 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1723 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1724   switch (OO) {
1725   default: llvm_unreachable("Not an overloadable binary operator");
1726   case OO_Plus: return BO_Add;
1727   case OO_Minus: return BO_Sub;
1728   case OO_Star: return BO_Mul;
1729   case OO_Slash: return BO_Div;
1730   case OO_Percent: return BO_Rem;
1731   case OO_Caret: return BO_Xor;
1732   case OO_Amp: return BO_And;
1733   case OO_Pipe: return BO_Or;
1734   case OO_Equal: return BO_Assign;
1735   case OO_Less: return BO_LT;
1736   case OO_Greater: return BO_GT;
1737   case OO_PlusEqual: return BO_AddAssign;
1738   case OO_MinusEqual: return BO_SubAssign;
1739   case OO_StarEqual: return BO_MulAssign;
1740   case OO_SlashEqual: return BO_DivAssign;
1741   case OO_PercentEqual: return BO_RemAssign;
1742   case OO_CaretEqual: return BO_XorAssign;
1743   case OO_AmpEqual: return BO_AndAssign;
1744   case OO_PipeEqual: return BO_OrAssign;
1745   case OO_LessLess: return BO_Shl;
1746   case OO_GreaterGreater: return BO_Shr;
1747   case OO_LessLessEqual: return BO_ShlAssign;
1748   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1749   case OO_EqualEqual: return BO_EQ;
1750   case OO_ExclaimEqual: return BO_NE;
1751   case OO_LessEqual: return BO_LE;
1752   case OO_GreaterEqual: return BO_GE;
1753   case OO_AmpAmp: return BO_LAnd;
1754   case OO_PipePipe: return BO_LOr;
1755   case OO_Comma: return BO_Comma;
1756   case OO_ArrowStar: return BO_PtrMemI;
1757   }
1758 }
1759 
getOverloadedOperator(Opcode Opc)1760 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1761   static const OverloadedOperatorKind OverOps[] = {
1762     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1763     OO_Star, OO_Slash, OO_Percent,
1764     OO_Plus, OO_Minus,
1765     OO_LessLess, OO_GreaterGreater,
1766     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1767     OO_EqualEqual, OO_ExclaimEqual,
1768     OO_Amp,
1769     OO_Caret,
1770     OO_Pipe,
1771     OO_AmpAmp,
1772     OO_PipePipe,
1773     OO_Equal, OO_StarEqual,
1774     OO_SlashEqual, OO_PercentEqual,
1775     OO_PlusEqual, OO_MinusEqual,
1776     OO_LessLessEqual, OO_GreaterGreaterEqual,
1777     OO_AmpEqual, OO_CaretEqual,
1778     OO_PipeEqual,
1779     OO_Comma
1780   };
1781   return OverOps[Opc];
1782 }
1783 
InitListExpr(ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1784 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1785                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1786   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1787          false, false),
1788     InitExprs(C, initExprs.size()),
1789     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1790 {
1791   sawArrayRangeDesignator(false);
1792   for (unsigned I = 0; I != initExprs.size(); ++I) {
1793     if (initExprs[I]->isTypeDependent())
1794       ExprBits.TypeDependent = true;
1795     if (initExprs[I]->isValueDependent())
1796       ExprBits.ValueDependent = true;
1797     if (initExprs[I]->isInstantiationDependent())
1798       ExprBits.InstantiationDependent = true;
1799     if (initExprs[I]->containsUnexpandedParameterPack())
1800       ExprBits.ContainsUnexpandedParameterPack = true;
1801   }
1802 
1803   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1804 }
1805 
reserveInits(ASTContext & C,unsigned NumInits)1806 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1807   if (NumInits > InitExprs.size())
1808     InitExprs.reserve(C, NumInits);
1809 }
1810 
resizeInits(ASTContext & C,unsigned NumInits)1811 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1812   InitExprs.resize(C, NumInits, 0);
1813 }
1814 
updateInit(ASTContext & C,unsigned Init,Expr * expr)1815 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1816   if (Init >= InitExprs.size()) {
1817     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1818     InitExprs.back() = expr;
1819     return 0;
1820   }
1821 
1822   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1823   InitExprs[Init] = expr;
1824   return Result;
1825 }
1826 
setArrayFiller(Expr * filler)1827 void InitListExpr::setArrayFiller(Expr *filler) {
1828   assert(!hasArrayFiller() && "Filler already set!");
1829   ArrayFillerOrUnionFieldInit = filler;
1830   // Fill out any "holes" in the array due to designated initializers.
1831   Expr **inits = getInits();
1832   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1833     if (inits[i] == 0)
1834       inits[i] = filler;
1835 }
1836 
isStringLiteralInit() const1837 bool InitListExpr::isStringLiteralInit() const {
1838   if (getNumInits() != 1)
1839     return false;
1840   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1841   if (!AT || !AT->getElementType()->isIntegerType())
1842     return false;
1843   const Expr *Init = getInit(0)->IgnoreParens();
1844   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1845 }
1846 
getLocStart() const1847 SourceLocation InitListExpr::getLocStart() const {
1848   if (InitListExpr *SyntacticForm = getSyntacticForm())
1849     return SyntacticForm->getLocStart();
1850   SourceLocation Beg = LBraceLoc;
1851   if (Beg.isInvalid()) {
1852     // Find the first non-null initializer.
1853     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1854                                      E = InitExprs.end();
1855       I != E; ++I) {
1856       if (Stmt *S = *I) {
1857         Beg = S->getLocStart();
1858         break;
1859       }
1860     }
1861   }
1862   return Beg;
1863 }
1864 
getLocEnd() const1865 SourceLocation InitListExpr::getLocEnd() const {
1866   if (InitListExpr *SyntacticForm = getSyntacticForm())
1867     return SyntacticForm->getLocEnd();
1868   SourceLocation End = RBraceLoc;
1869   if (End.isInvalid()) {
1870     // Find the first non-null initializer from the end.
1871     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1872          E = InitExprs.rend();
1873          I != E; ++I) {
1874       if (Stmt *S = *I) {
1875         End = S->getLocEnd();
1876         break;
1877       }
1878     }
1879   }
1880   return End;
1881 }
1882 
1883 /// getFunctionType - Return the underlying function type for this block.
1884 ///
getFunctionType() const1885 const FunctionProtoType *BlockExpr::getFunctionType() const {
1886   // The block pointer is never sugared, but the function type might be.
1887   return cast<BlockPointerType>(getType())
1888            ->getPointeeType()->castAs<FunctionProtoType>();
1889 }
1890 
getCaretLocation() const1891 SourceLocation BlockExpr::getCaretLocation() const {
1892   return TheBlock->getCaretLocation();
1893 }
getBody() const1894 const Stmt *BlockExpr::getBody() const {
1895   return TheBlock->getBody();
1896 }
getBody()1897 Stmt *BlockExpr::getBody() {
1898   return TheBlock->getBody();
1899 }
1900 
1901 
1902 //===----------------------------------------------------------------------===//
1903 // Generic Expression Routines
1904 //===----------------------------------------------------------------------===//
1905 
1906 /// isUnusedResultAWarning - Return true if this immediate expression should
1907 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1908 /// with location to warn on and the source range[s] to report with the
1909 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1910 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1911                                   SourceRange &R1, SourceRange &R2,
1912                                   ASTContext &Ctx) const {
1913   // Don't warn if the expr is type dependent. The type could end up
1914   // instantiating to void.
1915   if (isTypeDependent())
1916     return false;
1917 
1918   switch (getStmtClass()) {
1919   default:
1920     if (getType()->isVoidType())
1921       return false;
1922     WarnE = this;
1923     Loc = getExprLoc();
1924     R1 = getSourceRange();
1925     return true;
1926   case ParenExprClass:
1927     return cast<ParenExpr>(this)->getSubExpr()->
1928       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1929   case GenericSelectionExprClass:
1930     return cast<GenericSelectionExpr>(this)->getResultExpr()->
1931       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1932   case ChooseExprClass:
1933     return cast<ChooseExpr>(this)->getChosenSubExpr()->
1934       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1935   case UnaryOperatorClass: {
1936     const UnaryOperator *UO = cast<UnaryOperator>(this);
1937 
1938     switch (UO->getOpcode()) {
1939     case UO_Plus:
1940     case UO_Minus:
1941     case UO_AddrOf:
1942     case UO_Not:
1943     case UO_LNot:
1944     case UO_Deref:
1945       break;
1946     case UO_PostInc:
1947     case UO_PostDec:
1948     case UO_PreInc:
1949     case UO_PreDec:                 // ++/--
1950       return false;  // Not a warning.
1951     case UO_Real:
1952     case UO_Imag:
1953       // accessing a piece of a volatile complex is a side-effect.
1954       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1955           .isVolatileQualified())
1956         return false;
1957       break;
1958     case UO_Extension:
1959       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1960     }
1961     WarnE = this;
1962     Loc = UO->getOperatorLoc();
1963     R1 = UO->getSubExpr()->getSourceRange();
1964     return true;
1965   }
1966   case BinaryOperatorClass: {
1967     const BinaryOperator *BO = cast<BinaryOperator>(this);
1968     switch (BO->getOpcode()) {
1969       default:
1970         break;
1971       // Consider the RHS of comma for side effects. LHS was checked by
1972       // Sema::CheckCommaOperands.
1973       case BO_Comma:
1974         // ((foo = <blah>), 0) is an idiom for hiding the result (and
1975         // lvalue-ness) of an assignment written in a macro.
1976         if (IntegerLiteral *IE =
1977               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1978           if (IE->getValue() == 0)
1979             return false;
1980         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1981       // Consider '||', '&&' to have side effects if the LHS or RHS does.
1982       case BO_LAnd:
1983       case BO_LOr:
1984         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1985             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1986           return false;
1987         break;
1988     }
1989     if (BO->isAssignmentOp())
1990       return false;
1991     WarnE = this;
1992     Loc = BO->getOperatorLoc();
1993     R1 = BO->getLHS()->getSourceRange();
1994     R2 = BO->getRHS()->getSourceRange();
1995     return true;
1996   }
1997   case CompoundAssignOperatorClass:
1998   case VAArgExprClass:
1999   case AtomicExprClass:
2000     return false;
2001 
2002   case ConditionalOperatorClass: {
2003     // If only one of the LHS or RHS is a warning, the operator might
2004     // be being used for control flow. Only warn if both the LHS and
2005     // RHS are warnings.
2006     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2007     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2008       return false;
2009     if (!Exp->getLHS())
2010       return true;
2011     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2012   }
2013 
2014   case MemberExprClass:
2015     WarnE = this;
2016     Loc = cast<MemberExpr>(this)->getMemberLoc();
2017     R1 = SourceRange(Loc, Loc);
2018     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2019     return true;
2020 
2021   case ArraySubscriptExprClass:
2022     WarnE = this;
2023     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2024     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2025     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2026     return true;
2027 
2028   case CXXOperatorCallExprClass: {
2029     // We warn about operator== and operator!= even when user-defined operator
2030     // overloads as there is no reasonable way to define these such that they
2031     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2032     // warning: these operators are commonly typo'ed, and so warning on them
2033     // provides additional value as well. If this list is updated,
2034     // DiagnoseUnusedComparison should be as well.
2035     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2036     if (Op->getOperator() == OO_EqualEqual ||
2037         Op->getOperator() == OO_ExclaimEqual) {
2038       WarnE = this;
2039       Loc = Op->getOperatorLoc();
2040       R1 = Op->getSourceRange();
2041       return true;
2042     }
2043 
2044     // Fallthrough for generic call handling.
2045   }
2046   case CallExprClass:
2047   case CXXMemberCallExprClass:
2048   case UserDefinedLiteralClass: {
2049     // If this is a direct call, get the callee.
2050     const CallExpr *CE = cast<CallExpr>(this);
2051     if (const Decl *FD = CE->getCalleeDecl()) {
2052       // If the callee has attribute pure, const, or warn_unused_result, warn
2053       // about it. void foo() { strlen("bar"); } should warn.
2054       //
2055       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2056       // updated to match for QoI.
2057       if (FD->getAttr<WarnUnusedResultAttr>() ||
2058           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2059         WarnE = this;
2060         Loc = CE->getCallee()->getLocStart();
2061         R1 = CE->getCallee()->getSourceRange();
2062 
2063         if (unsigned NumArgs = CE->getNumArgs())
2064           R2 = SourceRange(CE->getArg(0)->getLocStart(),
2065                            CE->getArg(NumArgs-1)->getLocEnd());
2066         return true;
2067       }
2068     }
2069     return false;
2070   }
2071 
2072   // If we don't know precisely what we're looking at, let's not warn.
2073   case UnresolvedLookupExprClass:
2074   case CXXUnresolvedConstructExprClass:
2075     return false;
2076 
2077   case CXXTemporaryObjectExprClass:
2078   case CXXConstructExprClass: {
2079     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2080       if (Type->hasAttr<WarnUnusedAttr>()) {
2081         WarnE = this;
2082         Loc = getLocStart();
2083         R1 = getSourceRange();
2084         return true;
2085       }
2086     }
2087     return false;
2088   }
2089 
2090   case ObjCMessageExprClass: {
2091     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2092     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2093         ME->isInstanceMessage() &&
2094         !ME->getType()->isVoidType() &&
2095         ME->getMethodFamily() == OMF_init) {
2096       WarnE = this;
2097       Loc = getExprLoc();
2098       R1 = ME->getSourceRange();
2099       return true;
2100     }
2101 
2102     const ObjCMethodDecl *MD = ME->getMethodDecl();
2103     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2104       WarnE = this;
2105       Loc = getExprLoc();
2106       return true;
2107     }
2108     return false;
2109   }
2110 
2111   case ObjCPropertyRefExprClass:
2112     WarnE = this;
2113     Loc = getExprLoc();
2114     R1 = getSourceRange();
2115     return true;
2116 
2117   case PseudoObjectExprClass: {
2118     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2119 
2120     // Only complain about things that have the form of a getter.
2121     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2122         isa<BinaryOperator>(PO->getSyntacticForm()))
2123       return false;
2124 
2125     WarnE = this;
2126     Loc = getExprLoc();
2127     R1 = getSourceRange();
2128     return true;
2129   }
2130 
2131   case StmtExprClass: {
2132     // Statement exprs don't logically have side effects themselves, but are
2133     // sometimes used in macros in ways that give them a type that is unused.
2134     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2135     // however, if the result of the stmt expr is dead, we don't want to emit a
2136     // warning.
2137     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2138     if (!CS->body_empty()) {
2139       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2140         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2141       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2142         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2143           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2144     }
2145 
2146     if (getType()->isVoidType())
2147       return false;
2148     WarnE = this;
2149     Loc = cast<StmtExpr>(this)->getLParenLoc();
2150     R1 = getSourceRange();
2151     return true;
2152   }
2153   case CXXFunctionalCastExprClass:
2154   case CStyleCastExprClass: {
2155     // Ignore an explicit cast to void unless the operand is a non-trivial
2156     // volatile lvalue.
2157     const CastExpr *CE = cast<CastExpr>(this);
2158     if (CE->getCastKind() == CK_ToVoid) {
2159       if (CE->getSubExpr()->isGLValue() &&
2160           CE->getSubExpr()->getType().isVolatileQualified()) {
2161         const DeclRefExpr *DRE =
2162             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2163         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2164               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2165           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2166                                                           R1, R2, Ctx);
2167         }
2168       }
2169       return false;
2170     }
2171 
2172     // If this is a cast to a constructor conversion, check the operand.
2173     // Otherwise, the result of the cast is unused.
2174     if (CE->getCastKind() == CK_ConstructorConversion)
2175       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2176 
2177     WarnE = this;
2178     if (const CXXFunctionalCastExpr *CXXCE =
2179             dyn_cast<CXXFunctionalCastExpr>(this)) {
2180       Loc = CXXCE->getTypeBeginLoc();
2181       R1 = CXXCE->getSubExpr()->getSourceRange();
2182     } else {
2183       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2184       Loc = CStyleCE->getLParenLoc();
2185       R1 = CStyleCE->getSubExpr()->getSourceRange();
2186     }
2187     return true;
2188   }
2189   case ImplicitCastExprClass: {
2190     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2191 
2192     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2193     if (ICE->getCastKind() == CK_LValueToRValue &&
2194         ICE->getSubExpr()->getType().isVolatileQualified())
2195       return false;
2196 
2197     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2198   }
2199   case CXXDefaultArgExprClass:
2200     return (cast<CXXDefaultArgExpr>(this)
2201             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2202   case CXXDefaultInitExprClass:
2203     return (cast<CXXDefaultInitExpr>(this)
2204             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2205 
2206   case CXXNewExprClass:
2207     // FIXME: In theory, there might be new expressions that don't have side
2208     // effects (e.g. a placement new with an uninitialized POD).
2209   case CXXDeleteExprClass:
2210     return false;
2211   case CXXBindTemporaryExprClass:
2212     return (cast<CXXBindTemporaryExpr>(this)
2213             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2214   case ExprWithCleanupsClass:
2215     return (cast<ExprWithCleanups>(this)
2216             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2217   }
2218 }
2219 
2220 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2221 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2222 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2223   const Expr *E = IgnoreParens();
2224   switch (E->getStmtClass()) {
2225   default:
2226     return false;
2227   case ObjCIvarRefExprClass:
2228     return true;
2229   case Expr::UnaryOperatorClass:
2230     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2231   case ImplicitCastExprClass:
2232     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2233   case MaterializeTemporaryExprClass:
2234     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2235                                                       ->isOBJCGCCandidate(Ctx);
2236   case CStyleCastExprClass:
2237     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2238   case DeclRefExprClass: {
2239     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2240 
2241     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2242       if (VD->hasGlobalStorage())
2243         return true;
2244       QualType T = VD->getType();
2245       // dereferencing to a  pointer is always a gc'able candidate,
2246       // unless it is __weak.
2247       return T->isPointerType() &&
2248              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2249     }
2250     return false;
2251   }
2252   case MemberExprClass: {
2253     const MemberExpr *M = cast<MemberExpr>(E);
2254     return M->getBase()->isOBJCGCCandidate(Ctx);
2255   }
2256   case ArraySubscriptExprClass:
2257     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2258   }
2259 }
2260 
isBoundMemberFunction(ASTContext & Ctx) const2261 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2262   if (isTypeDependent())
2263     return false;
2264   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2265 }
2266 
findBoundMemberType(const Expr * expr)2267 QualType Expr::findBoundMemberType(const Expr *expr) {
2268   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2269 
2270   // Bound member expressions are always one of these possibilities:
2271   //   x->m      x.m      x->*y      x.*y
2272   // (possibly parenthesized)
2273 
2274   expr = expr->IgnoreParens();
2275   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2276     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2277     return mem->getMemberDecl()->getType();
2278   }
2279 
2280   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2281     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2282                       ->getPointeeType();
2283     assert(type->isFunctionType());
2284     return type;
2285   }
2286 
2287   assert(isa<UnresolvedMemberExpr>(expr));
2288   return QualType();
2289 }
2290 
IgnoreParens()2291 Expr* Expr::IgnoreParens() {
2292   Expr* E = this;
2293   while (true) {
2294     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2295       E = P->getSubExpr();
2296       continue;
2297     }
2298     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2299       if (P->getOpcode() == UO_Extension) {
2300         E = P->getSubExpr();
2301         continue;
2302       }
2303     }
2304     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2305       if (!P->isResultDependent()) {
2306         E = P->getResultExpr();
2307         continue;
2308       }
2309     }
2310     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2311       if (!P->isConditionDependent()) {
2312         E = P->getChosenSubExpr();
2313         continue;
2314       }
2315     }
2316     return E;
2317   }
2318 }
2319 
2320 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2321 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2322 Expr *Expr::IgnoreParenCasts() {
2323   Expr *E = this;
2324   while (true) {
2325     E = E->IgnoreParens();
2326     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2327       E = P->getSubExpr();
2328       continue;
2329     }
2330     if (MaterializeTemporaryExpr *Materialize
2331                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2332       E = Materialize->GetTemporaryExpr();
2333       continue;
2334     }
2335     if (SubstNonTypeTemplateParmExpr *NTTP
2336                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2337       E = NTTP->getReplacement();
2338       continue;
2339     }
2340     return E;
2341   }
2342 }
2343 
2344 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2345 /// casts.  This is intended purely as a temporary workaround for code
2346 /// that hasn't yet been rewritten to do the right thing about those
2347 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2348 Expr *Expr::IgnoreParenLValueCasts() {
2349   Expr *E = this;
2350   while (true) {
2351     E = E->IgnoreParens();
2352     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2353       if (P->getCastKind() == CK_LValueToRValue) {
2354         E = P->getSubExpr();
2355         continue;
2356       }
2357     } else if (MaterializeTemporaryExpr *Materialize
2358                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2359       E = Materialize->GetTemporaryExpr();
2360       continue;
2361     } else if (SubstNonTypeTemplateParmExpr *NTTP
2362                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2363       E = NTTP->getReplacement();
2364       continue;
2365     }
2366     break;
2367   }
2368   return E;
2369 }
2370 
ignoreParenBaseCasts()2371 Expr *Expr::ignoreParenBaseCasts() {
2372   Expr *E = this;
2373   while (true) {
2374     E = E->IgnoreParens();
2375     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2376       if (CE->getCastKind() == CK_DerivedToBase ||
2377           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2378           CE->getCastKind() == CK_NoOp) {
2379         E = CE->getSubExpr();
2380         continue;
2381       }
2382     }
2383 
2384     return E;
2385   }
2386 }
2387 
IgnoreParenImpCasts()2388 Expr *Expr::IgnoreParenImpCasts() {
2389   Expr *E = this;
2390   while (true) {
2391     E = E->IgnoreParens();
2392     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2393       E = P->getSubExpr();
2394       continue;
2395     }
2396     if (MaterializeTemporaryExpr *Materialize
2397                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2398       E = Materialize->GetTemporaryExpr();
2399       continue;
2400     }
2401     if (SubstNonTypeTemplateParmExpr *NTTP
2402                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2403       E = NTTP->getReplacement();
2404       continue;
2405     }
2406     return E;
2407   }
2408 }
2409 
IgnoreConversionOperator()2410 Expr *Expr::IgnoreConversionOperator() {
2411   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2412     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2413       return MCE->getImplicitObjectArgument();
2414   }
2415   return this;
2416 }
2417 
2418 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2419 /// value (including ptr->int casts of the same size).  Strip off any
2420 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2421 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2422   Expr *E = this;
2423   while (true) {
2424     E = E->IgnoreParens();
2425 
2426     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2427       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2428       // ptr<->int casts of the same width.  We also ignore all identity casts.
2429       Expr *SE = P->getSubExpr();
2430 
2431       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2432         E = SE;
2433         continue;
2434       }
2435 
2436       if ((E->getType()->isPointerType() ||
2437            E->getType()->isIntegralType(Ctx)) &&
2438           (SE->getType()->isPointerType() ||
2439            SE->getType()->isIntegralType(Ctx)) &&
2440           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2441         E = SE;
2442         continue;
2443       }
2444     }
2445 
2446     if (SubstNonTypeTemplateParmExpr *NTTP
2447                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2448       E = NTTP->getReplacement();
2449       continue;
2450     }
2451 
2452     return E;
2453   }
2454 }
2455 
isDefaultArgument() const2456 bool Expr::isDefaultArgument() const {
2457   const Expr *E = this;
2458   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2459     E = M->GetTemporaryExpr();
2460 
2461   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2462     E = ICE->getSubExprAsWritten();
2463 
2464   return isa<CXXDefaultArgExpr>(E);
2465 }
2466 
2467 /// \brief Skip over any no-op casts and any temporary-binding
2468 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2469 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2470   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2471     E = M->GetTemporaryExpr();
2472 
2473   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2474     if (ICE->getCastKind() == CK_NoOp)
2475       E = ICE->getSubExpr();
2476     else
2477       break;
2478   }
2479 
2480   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2481     E = BE->getSubExpr();
2482 
2483   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2484     if (ICE->getCastKind() == CK_NoOp)
2485       E = ICE->getSubExpr();
2486     else
2487       break;
2488   }
2489 
2490   return E->IgnoreParens();
2491 }
2492 
2493 /// isTemporaryObject - Determines if this expression produces a
2494 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2495 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2496   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2497     return false;
2498 
2499   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2500 
2501   // Temporaries are by definition pr-values of class type.
2502   if (!E->Classify(C).isPRValue()) {
2503     // In this context, property reference is a message call and is pr-value.
2504     if (!isa<ObjCPropertyRefExpr>(E))
2505       return false;
2506   }
2507 
2508   // Black-list a few cases which yield pr-values of class type that don't
2509   // refer to temporaries of that type:
2510 
2511   // - implicit derived-to-base conversions
2512   if (isa<ImplicitCastExpr>(E)) {
2513     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2514     case CK_DerivedToBase:
2515     case CK_UncheckedDerivedToBase:
2516       return false;
2517     default:
2518       break;
2519     }
2520   }
2521 
2522   // - member expressions (all)
2523   if (isa<MemberExpr>(E))
2524     return false;
2525 
2526   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2527     if (BO->isPtrMemOp())
2528       return false;
2529 
2530   // - opaque values (all)
2531   if (isa<OpaqueValueExpr>(E))
2532     return false;
2533 
2534   return true;
2535 }
2536 
isImplicitCXXThis() const2537 bool Expr::isImplicitCXXThis() const {
2538   const Expr *E = this;
2539 
2540   // Strip away parentheses and casts we don't care about.
2541   while (true) {
2542     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2543       E = Paren->getSubExpr();
2544       continue;
2545     }
2546 
2547     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2548       if (ICE->getCastKind() == CK_NoOp ||
2549           ICE->getCastKind() == CK_LValueToRValue ||
2550           ICE->getCastKind() == CK_DerivedToBase ||
2551           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2552         E = ICE->getSubExpr();
2553         continue;
2554       }
2555     }
2556 
2557     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2558       if (UnOp->getOpcode() == UO_Extension) {
2559         E = UnOp->getSubExpr();
2560         continue;
2561       }
2562     }
2563 
2564     if (const MaterializeTemporaryExpr *M
2565                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2566       E = M->GetTemporaryExpr();
2567       continue;
2568     }
2569 
2570     break;
2571   }
2572 
2573   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2574     return This->isImplicit();
2575 
2576   return false;
2577 }
2578 
2579 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2580 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2581 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2582   for (unsigned I = 0; I < Exprs.size(); ++I)
2583     if (Exprs[I]->isTypeDependent())
2584       return true;
2585 
2586   return false;
2587 }
2588 
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2589 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2590   // This function is attempting whether an expression is an initializer
2591   // which can be evaluated at compile-time. It very closely parallels
2592   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2593   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2594   // to isEvaluatable most of the time.
2595   //
2596   // If we ever capture reference-binding directly in the AST, we can
2597   // kill the second parameter.
2598 
2599   if (IsForRef) {
2600     EvalResult Result;
2601     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2602   }
2603 
2604   switch (getStmtClass()) {
2605   default: break;
2606   case StringLiteralClass:
2607   case ObjCEncodeExprClass:
2608     return true;
2609   case CXXTemporaryObjectExprClass:
2610   case CXXConstructExprClass: {
2611     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2612 
2613     if (CE->getConstructor()->isTrivial() &&
2614         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2615       // Trivial default constructor
2616       if (!CE->getNumArgs()) return true;
2617 
2618       // Trivial copy constructor
2619       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2620       return CE->getArg(0)->isConstantInitializer(Ctx, false);
2621     }
2622 
2623     break;
2624   }
2625   case CompoundLiteralExprClass: {
2626     // This handles gcc's extension that allows global initializers like
2627     // "struct x {int x;} x = (struct x) {};".
2628     // FIXME: This accepts other cases it shouldn't!
2629     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2630     return Exp->isConstantInitializer(Ctx, false);
2631   }
2632   case InitListExprClass: {
2633     // FIXME: This doesn't deal with fields with reference types correctly.
2634     // FIXME: This incorrectly allows pointers cast to integers to be assigned
2635     // to bitfields.
2636     const InitListExpr *ILE = cast<InitListExpr>(this);
2637     if (ILE->getType()->isArrayType()) {
2638       unsigned numInits = ILE->getNumInits();
2639       for (unsigned i = 0; i < numInits; i++) {
2640         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false))
2641           return false;
2642       }
2643       return true;
2644     }
2645 
2646     if (ILE->getType()->isRecordType()) {
2647       unsigned ElementNo = 0;
2648       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2649       for (RecordDecl::field_iterator Field = RD->field_begin(),
2650            FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
2651         // If this is a union, skip all the fields that aren't being initialized.
2652         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
2653           continue;
2654 
2655         // Don't emit anonymous bitfields, they just affect layout.
2656         if (Field->isUnnamedBitfield())
2657           continue;
2658 
2659         if (ElementNo < ILE->getNumInits()) {
2660           const Expr *Elt = ILE->getInit(ElementNo++);
2661           if (Field->isBitField()) {
2662             // Bitfields have to evaluate to an integer.
2663             llvm::APSInt ResultTmp;
2664             if (!Elt->EvaluateAsInt(ResultTmp, Ctx))
2665               return false;
2666           } else {
2667             bool RefType = Field->getType()->isReferenceType();
2668             if (!Elt->isConstantInitializer(Ctx, RefType))
2669               return false;
2670           }
2671         }
2672       }
2673       return true;
2674     }
2675 
2676     break;
2677   }
2678   case ImplicitValueInitExprClass:
2679     return true;
2680   case ParenExprClass:
2681     return cast<ParenExpr>(this)->getSubExpr()
2682       ->isConstantInitializer(Ctx, IsForRef);
2683   case GenericSelectionExprClass:
2684     return cast<GenericSelectionExpr>(this)->getResultExpr()
2685       ->isConstantInitializer(Ctx, IsForRef);
2686   case ChooseExprClass:
2687     if (cast<ChooseExpr>(this)->isConditionDependent())
2688       return false;
2689     return cast<ChooseExpr>(this)->getChosenSubExpr()
2690       ->isConstantInitializer(Ctx, IsForRef);
2691   case UnaryOperatorClass: {
2692     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2693     if (Exp->getOpcode() == UO_Extension)
2694       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2695     break;
2696   }
2697   case CXXFunctionalCastExprClass:
2698   case CXXStaticCastExprClass:
2699   case ImplicitCastExprClass:
2700   case CStyleCastExprClass:
2701   case ObjCBridgedCastExprClass:
2702   case CXXDynamicCastExprClass:
2703   case CXXReinterpretCastExprClass:
2704   case CXXConstCastExprClass: {
2705     const CastExpr *CE = cast<CastExpr>(this);
2706 
2707     // Handle misc casts we want to ignore.
2708     if (CE->getCastKind() == CK_NoOp ||
2709         CE->getCastKind() == CK_LValueToRValue ||
2710         CE->getCastKind() == CK_ToUnion ||
2711         CE->getCastKind() == CK_ConstructorConversion ||
2712         CE->getCastKind() == CK_NonAtomicToAtomic ||
2713         CE->getCastKind() == CK_AtomicToNonAtomic)
2714       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2715 
2716     break;
2717   }
2718   case MaterializeTemporaryExprClass:
2719     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2720                                             ->isConstantInitializer(Ctx, false);
2721 
2722   case SubstNonTypeTemplateParmExprClass:
2723     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2724                                             ->isConstantInitializer(Ctx, false);
2725   case CXXDefaultArgExprClass:
2726     return cast<CXXDefaultArgExpr>(this)->getExpr()
2727                                             ->isConstantInitializer(Ctx, false);
2728   case CXXDefaultInitExprClass:
2729     return cast<CXXDefaultInitExpr>(this)->getExpr()
2730                                             ->isConstantInitializer(Ctx, false);
2731   }
2732   return isEvaluatable(Ctx);
2733 }
2734 
HasSideEffects(const ASTContext & Ctx) const2735 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2736   if (isInstantiationDependent())
2737     return true;
2738 
2739   switch (getStmtClass()) {
2740   case NoStmtClass:
2741   #define ABSTRACT_STMT(Type)
2742   #define STMT(Type, Base) case Type##Class:
2743   #define EXPR(Type, Base)
2744   #include "clang/AST/StmtNodes.inc"
2745     llvm_unreachable("unexpected Expr kind");
2746 
2747   case DependentScopeDeclRefExprClass:
2748   case CXXUnresolvedConstructExprClass:
2749   case CXXDependentScopeMemberExprClass:
2750   case UnresolvedLookupExprClass:
2751   case UnresolvedMemberExprClass:
2752   case PackExpansionExprClass:
2753   case SubstNonTypeTemplateParmPackExprClass:
2754   case FunctionParmPackExprClass:
2755     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2756 
2757   case DeclRefExprClass:
2758   case ObjCIvarRefExprClass:
2759   case PredefinedExprClass:
2760   case IntegerLiteralClass:
2761   case FloatingLiteralClass:
2762   case ImaginaryLiteralClass:
2763   case StringLiteralClass:
2764   case CharacterLiteralClass:
2765   case OffsetOfExprClass:
2766   case ImplicitValueInitExprClass:
2767   case UnaryExprOrTypeTraitExprClass:
2768   case AddrLabelExprClass:
2769   case GNUNullExprClass:
2770   case CXXBoolLiteralExprClass:
2771   case CXXNullPtrLiteralExprClass:
2772   case CXXThisExprClass:
2773   case CXXScalarValueInitExprClass:
2774   case TypeTraitExprClass:
2775   case UnaryTypeTraitExprClass:
2776   case BinaryTypeTraitExprClass:
2777   case ArrayTypeTraitExprClass:
2778   case ExpressionTraitExprClass:
2779   case CXXNoexceptExprClass:
2780   case SizeOfPackExprClass:
2781   case ObjCStringLiteralClass:
2782   case ObjCEncodeExprClass:
2783   case ObjCBoolLiteralExprClass:
2784   case CXXUuidofExprClass:
2785   case OpaqueValueExprClass:
2786     // These never have a side-effect.
2787     return false;
2788 
2789   case CallExprClass:
2790   case MSPropertyRefExprClass:
2791   case CompoundAssignOperatorClass:
2792   case VAArgExprClass:
2793   case AtomicExprClass:
2794   case StmtExprClass:
2795   case CXXOperatorCallExprClass:
2796   case CXXMemberCallExprClass:
2797   case UserDefinedLiteralClass:
2798   case CXXThrowExprClass:
2799   case CXXNewExprClass:
2800   case CXXDeleteExprClass:
2801   case ExprWithCleanupsClass:
2802   case CXXBindTemporaryExprClass:
2803   case BlockExprClass:
2804   case CUDAKernelCallExprClass:
2805     // These always have a side-effect.
2806     return true;
2807 
2808   case ParenExprClass:
2809   case ArraySubscriptExprClass:
2810   case MemberExprClass:
2811   case ConditionalOperatorClass:
2812   case BinaryConditionalOperatorClass:
2813   case CompoundLiteralExprClass:
2814   case ExtVectorElementExprClass:
2815   case DesignatedInitExprClass:
2816   case ParenListExprClass:
2817   case CXXPseudoDestructorExprClass:
2818   case CXXStdInitializerListExprClass:
2819   case SubstNonTypeTemplateParmExprClass:
2820   case MaterializeTemporaryExprClass:
2821   case ShuffleVectorExprClass:
2822   case AsTypeExprClass:
2823     // These have a side-effect if any subexpression does.
2824     break;
2825 
2826   case UnaryOperatorClass:
2827     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2828       return true;
2829     break;
2830 
2831   case BinaryOperatorClass:
2832     if (cast<BinaryOperator>(this)->isAssignmentOp())
2833       return true;
2834     break;
2835 
2836   case InitListExprClass:
2837     // FIXME: The children for an InitListExpr doesn't include the array filler.
2838     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2839       if (E->HasSideEffects(Ctx))
2840         return true;
2841     break;
2842 
2843   case GenericSelectionExprClass:
2844     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2845         HasSideEffects(Ctx);
2846 
2847   case ChooseExprClass:
2848     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2849 
2850   case CXXDefaultArgExprClass:
2851     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2852 
2853   case CXXDefaultInitExprClass:
2854     if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2855       return E->HasSideEffects(Ctx);
2856     // If we've not yet parsed the initializer, assume it has side-effects.
2857     return true;
2858 
2859   case CXXDynamicCastExprClass: {
2860     // A dynamic_cast expression has side-effects if it can throw.
2861     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2862     if (DCE->getTypeAsWritten()->isReferenceType() &&
2863         DCE->getCastKind() == CK_Dynamic)
2864       return true;
2865   } // Fall through.
2866   case ImplicitCastExprClass:
2867   case CStyleCastExprClass:
2868   case CXXStaticCastExprClass:
2869   case CXXReinterpretCastExprClass:
2870   case CXXConstCastExprClass:
2871   case CXXFunctionalCastExprClass: {
2872     const CastExpr *CE = cast<CastExpr>(this);
2873     if (CE->getCastKind() == CK_LValueToRValue &&
2874         CE->getSubExpr()->getType().isVolatileQualified())
2875       return true;
2876     break;
2877   }
2878 
2879   case CXXTypeidExprClass:
2880     // typeid might throw if its subexpression is potentially-evaluated, so has
2881     // side-effects in that case whether or not its subexpression does.
2882     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2883 
2884   case CXXConstructExprClass:
2885   case CXXTemporaryObjectExprClass: {
2886     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2887     if (!CE->getConstructor()->isTrivial())
2888       return true;
2889     // A trivial constructor does not add any side-effects of its own. Just look
2890     // at its arguments.
2891     break;
2892   }
2893 
2894   case LambdaExprClass: {
2895     const LambdaExpr *LE = cast<LambdaExpr>(this);
2896     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2897                                       E = LE->capture_end(); I != E; ++I)
2898       if (I->getCaptureKind() == LCK_ByCopy)
2899         // FIXME: Only has a side-effect if the variable is volatile or if
2900         // the copy would invoke a non-trivial copy constructor.
2901         return true;
2902     return false;
2903   }
2904 
2905   case PseudoObjectExprClass: {
2906     // Only look for side-effects in the semantic form, and look past
2907     // OpaqueValueExpr bindings in that form.
2908     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2909     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2910                                                     E = PO->semantics_end();
2911          I != E; ++I) {
2912       const Expr *Subexpr = *I;
2913       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2914         Subexpr = OVE->getSourceExpr();
2915       if (Subexpr->HasSideEffects(Ctx))
2916         return true;
2917     }
2918     return false;
2919   }
2920 
2921   case ObjCBoxedExprClass:
2922   case ObjCArrayLiteralClass:
2923   case ObjCDictionaryLiteralClass:
2924   case ObjCMessageExprClass:
2925   case ObjCSelectorExprClass:
2926   case ObjCProtocolExprClass:
2927   case ObjCPropertyRefExprClass:
2928   case ObjCIsaExprClass:
2929   case ObjCIndirectCopyRestoreExprClass:
2930   case ObjCSubscriptRefExprClass:
2931   case ObjCBridgedCastExprClass:
2932     // FIXME: Classify these cases better.
2933     return true;
2934   }
2935 
2936   // Recurse to children.
2937   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2938     if (const Stmt *S = *SubStmts)
2939       if (cast<Expr>(S)->HasSideEffects(Ctx))
2940         return true;
2941 
2942   return false;
2943 }
2944 
2945 namespace {
2946   /// \brief Look for a call to a non-trivial function within an expression.
2947   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2948   {
2949     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2950 
2951     bool NonTrivial;
2952 
2953   public:
NonTrivialCallFinder(ASTContext & Context)2954     explicit NonTrivialCallFinder(ASTContext &Context)
2955       : Inherited(Context), NonTrivial(false) { }
2956 
hasNonTrivialCall() const2957     bool hasNonTrivialCall() const { return NonTrivial; }
2958 
VisitCallExpr(CallExpr * E)2959     void VisitCallExpr(CallExpr *E) {
2960       if (CXXMethodDecl *Method
2961           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2962         if (Method->isTrivial()) {
2963           // Recurse to children of the call.
2964           Inherited::VisitStmt(E);
2965           return;
2966         }
2967       }
2968 
2969       NonTrivial = true;
2970     }
2971 
VisitCXXConstructExpr(CXXConstructExpr * E)2972     void VisitCXXConstructExpr(CXXConstructExpr *E) {
2973       if (E->getConstructor()->isTrivial()) {
2974         // Recurse to children of the call.
2975         Inherited::VisitStmt(E);
2976         return;
2977       }
2978 
2979       NonTrivial = true;
2980     }
2981 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2982     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2983       if (E->getTemporary()->getDestructor()->isTrivial()) {
2984         Inherited::VisitStmt(E);
2985         return;
2986       }
2987 
2988       NonTrivial = true;
2989     }
2990   };
2991 }
2992 
hasNonTrivialCall(ASTContext & Ctx)2993 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2994   NonTrivialCallFinder Finder(Ctx);
2995   Finder.Visit(this);
2996   return Finder.hasNonTrivialCall();
2997 }
2998 
2999 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3000 /// pointer constant or not, as well as the specific kind of constant detected.
3001 /// Null pointer constants can be integer constant expressions with the
3002 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3003 /// (a GNU extension).
3004 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3005 Expr::isNullPointerConstant(ASTContext &Ctx,
3006                             NullPointerConstantValueDependence NPC) const {
3007   if (isValueDependent() && !Ctx.getLangOpts().CPlusPlus11) {
3008     switch (NPC) {
3009     case NPC_NeverValueDependent:
3010       llvm_unreachable("Unexpected value dependent expression!");
3011     case NPC_ValueDependentIsNull:
3012       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3013         return NPCK_ZeroExpression;
3014       else
3015         return NPCK_NotNull;
3016 
3017     case NPC_ValueDependentIsNotNull:
3018       return NPCK_NotNull;
3019     }
3020   }
3021 
3022   // Strip off a cast to void*, if it exists. Except in C++.
3023   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3024     if (!Ctx.getLangOpts().CPlusPlus) {
3025       // Check that it is a cast to void*.
3026       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3027         QualType Pointee = PT->getPointeeType();
3028         if (!Pointee.hasQualifiers() &&
3029             Pointee->isVoidType() &&                              // to void*
3030             CE->getSubExpr()->getType()->isIntegerType())         // from int.
3031           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3032       }
3033     }
3034   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3035     // Ignore the ImplicitCastExpr type entirely.
3036     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3037   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3038     // Accept ((void*)0) as a null pointer constant, as many other
3039     // implementations do.
3040     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3041   } else if (const GenericSelectionExpr *GE =
3042                dyn_cast<GenericSelectionExpr>(this)) {
3043     if (GE->isResultDependent())
3044       return NPCK_NotNull;
3045     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3046   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3047     if (CE->isConditionDependent())
3048       return NPCK_NotNull;
3049     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3050   } else if (const CXXDefaultArgExpr *DefaultArg
3051                = dyn_cast<CXXDefaultArgExpr>(this)) {
3052     // See through default argument expressions.
3053     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3054   } else if (const CXXDefaultInitExpr *DefaultInit
3055                = dyn_cast<CXXDefaultInitExpr>(this)) {
3056     // See through default initializer expressions.
3057     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3058   } else if (isa<GNUNullExpr>(this)) {
3059     // The GNU __null extension is always a null pointer constant.
3060     return NPCK_GNUNull;
3061   } else if (const MaterializeTemporaryExpr *M
3062                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3063     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3064   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3065     if (const Expr *Source = OVE->getSourceExpr())
3066       return Source->isNullPointerConstant(Ctx, NPC);
3067   }
3068 
3069   // C++11 nullptr_t is always a null pointer constant.
3070   if (getType()->isNullPtrType())
3071     return NPCK_CXX11_nullptr;
3072 
3073   if (const RecordType *UT = getType()->getAsUnionType())
3074     if (!Ctx.getLangOpts().CPlusPlus11 &&
3075         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3076       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3077         const Expr *InitExpr = CLE->getInitializer();
3078         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3079           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3080       }
3081   // This expression must be an integer type.
3082   if (!getType()->isIntegerType() ||
3083       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3084     return NPCK_NotNull;
3085 
3086   if (Ctx.getLangOpts().CPlusPlus11) {
3087     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3088     // value zero or a prvalue of type std::nullptr_t.
3089     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3090     return (Lit && !Lit->getValue()) ? NPCK_ZeroLiteral : NPCK_NotNull;
3091   } else {
3092     // If we have an integer constant expression, we need to *evaluate* it and
3093     // test for the value 0.
3094     if (!isIntegerConstantExpr(Ctx))
3095       return NPCK_NotNull;
3096   }
3097 
3098   if (EvaluateKnownConstInt(Ctx) != 0)
3099     return NPCK_NotNull;
3100 
3101   if (isa<IntegerLiteral>(this))
3102     return NPCK_ZeroLiteral;
3103   return NPCK_ZeroExpression;
3104 }
3105 
3106 /// \brief If this expression is an l-value for an Objective C
3107 /// property, find the underlying property reference expression.
getObjCProperty() const3108 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3109   const Expr *E = this;
3110   while (true) {
3111     assert((E->getValueKind() == VK_LValue &&
3112             E->getObjectKind() == OK_ObjCProperty) &&
3113            "expression is not a property reference");
3114     E = E->IgnoreParenCasts();
3115     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3116       if (BO->getOpcode() == BO_Comma) {
3117         E = BO->getRHS();
3118         continue;
3119       }
3120     }
3121 
3122     break;
3123   }
3124 
3125   return cast<ObjCPropertyRefExpr>(E);
3126 }
3127 
isObjCSelfExpr() const3128 bool Expr::isObjCSelfExpr() const {
3129   const Expr *E = IgnoreParenImpCasts();
3130 
3131   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3132   if (!DRE)
3133     return false;
3134 
3135   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3136   if (!Param)
3137     return false;
3138 
3139   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3140   if (!M)
3141     return false;
3142 
3143   return M->getSelfDecl() == Param;
3144 }
3145 
getSourceBitField()3146 FieldDecl *Expr::getSourceBitField() {
3147   Expr *E = this->IgnoreParens();
3148 
3149   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3150     if (ICE->getCastKind() == CK_LValueToRValue ||
3151         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3152       E = ICE->getSubExpr()->IgnoreParens();
3153     else
3154       break;
3155   }
3156 
3157   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3158     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3159       if (Field->isBitField())
3160         return Field;
3161 
3162   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3163     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3164       if (Ivar->isBitField())
3165         return Ivar;
3166 
3167   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3168     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3169       if (Field->isBitField())
3170         return Field;
3171 
3172   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3173     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3174       return BinOp->getLHS()->getSourceBitField();
3175 
3176     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3177       return BinOp->getRHS()->getSourceBitField();
3178   }
3179 
3180   return 0;
3181 }
3182 
refersToVectorElement() const3183 bool Expr::refersToVectorElement() const {
3184   const Expr *E = this->IgnoreParens();
3185 
3186   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3187     if (ICE->getValueKind() != VK_RValue &&
3188         ICE->getCastKind() == CK_NoOp)
3189       E = ICE->getSubExpr()->IgnoreParens();
3190     else
3191       break;
3192   }
3193 
3194   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3195     return ASE->getBase()->getType()->isVectorType();
3196 
3197   if (isa<ExtVectorElementExpr>(E))
3198     return true;
3199 
3200   return false;
3201 }
3202 
3203 /// isArrow - Return true if the base expression is a pointer to vector,
3204 /// return false if the base expression is a vector.
isArrow() const3205 bool ExtVectorElementExpr::isArrow() const {
3206   return getBase()->getType()->isPointerType();
3207 }
3208 
getNumElements() const3209 unsigned ExtVectorElementExpr::getNumElements() const {
3210   if (const VectorType *VT = getType()->getAs<VectorType>())
3211     return VT->getNumElements();
3212   return 1;
3213 }
3214 
3215 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3216 bool ExtVectorElementExpr::containsDuplicateElements() const {
3217   // FIXME: Refactor this code to an accessor on the AST node which returns the
3218   // "type" of component access, and share with code below and in Sema.
3219   StringRef Comp = Accessor->getName();
3220 
3221   // Halving swizzles do not contain duplicate elements.
3222   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3223     return false;
3224 
3225   // Advance past s-char prefix on hex swizzles.
3226   if (Comp[0] == 's' || Comp[0] == 'S')
3227     Comp = Comp.substr(1);
3228 
3229   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3230     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3231         return true;
3232 
3233   return false;
3234 }
3235 
3236 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const3237 void ExtVectorElementExpr::getEncodedElementAccess(
3238                                   SmallVectorImpl<unsigned> &Elts) const {
3239   StringRef Comp = Accessor->getName();
3240   if (Comp[0] == 's' || Comp[0] == 'S')
3241     Comp = Comp.substr(1);
3242 
3243   bool isHi =   Comp == "hi";
3244   bool isLo =   Comp == "lo";
3245   bool isEven = Comp == "even";
3246   bool isOdd  = Comp == "odd";
3247 
3248   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3249     uint64_t Index;
3250 
3251     if (isHi)
3252       Index = e + i;
3253     else if (isLo)
3254       Index = i;
3255     else if (isEven)
3256       Index = 2 * i;
3257     else if (isOdd)
3258       Index = 2 * i + 1;
3259     else
3260       Index = ExtVectorType::getAccessorIdx(Comp[i]);
3261 
3262     Elts.push_back(Index);
3263   }
3264 }
3265 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3266 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3267                                  ExprValueKind VK,
3268                                  SourceLocation LBracLoc,
3269                                  SourceLocation SuperLoc,
3270                                  bool IsInstanceSuper,
3271                                  QualType SuperType,
3272                                  Selector Sel,
3273                                  ArrayRef<SourceLocation> SelLocs,
3274                                  SelectorLocationsKind SelLocsK,
3275                                  ObjCMethodDecl *Method,
3276                                  ArrayRef<Expr *> Args,
3277                                  SourceLocation RBracLoc,
3278                                  bool isImplicit)
3279   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3280          /*TypeDependent=*/false, /*ValueDependent=*/false,
3281          /*InstantiationDependent=*/false,
3282          /*ContainsUnexpandedParameterPack=*/false),
3283     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3284                                                        : Sel.getAsOpaquePtr())),
3285     Kind(IsInstanceSuper? SuperInstance : SuperClass),
3286     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3287     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3288 {
3289   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3290   setReceiverPointer(SuperType.getAsOpaquePtr());
3291 }
3292 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3293 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3294                                  ExprValueKind VK,
3295                                  SourceLocation LBracLoc,
3296                                  TypeSourceInfo *Receiver,
3297                                  Selector Sel,
3298                                  ArrayRef<SourceLocation> SelLocs,
3299                                  SelectorLocationsKind SelLocsK,
3300                                  ObjCMethodDecl *Method,
3301                                  ArrayRef<Expr *> Args,
3302                                  SourceLocation RBracLoc,
3303                                  bool isImplicit)
3304   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3305          T->isDependentType(), T->isInstantiationDependentType(),
3306          T->containsUnexpandedParameterPack()),
3307     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3308                                                        : Sel.getAsOpaquePtr())),
3309     Kind(Class),
3310     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3311     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3312 {
3313   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3314   setReceiverPointer(Receiver);
3315 }
3316 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3317 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3318                                  ExprValueKind VK,
3319                                  SourceLocation LBracLoc,
3320                                  Expr *Receiver,
3321                                  Selector Sel,
3322                                  ArrayRef<SourceLocation> SelLocs,
3323                                  SelectorLocationsKind SelLocsK,
3324                                  ObjCMethodDecl *Method,
3325                                  ArrayRef<Expr *> Args,
3326                                  SourceLocation RBracLoc,
3327                                  bool isImplicit)
3328   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3329          Receiver->isTypeDependent(),
3330          Receiver->isInstantiationDependent(),
3331          Receiver->containsUnexpandedParameterPack()),
3332     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3333                                                        : Sel.getAsOpaquePtr())),
3334     Kind(Instance),
3335     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3336     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3337 {
3338   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3339   setReceiverPointer(Receiver);
3340 }
3341 
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)3342 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3343                                          ArrayRef<SourceLocation> SelLocs,
3344                                          SelectorLocationsKind SelLocsK) {
3345   setNumArgs(Args.size());
3346   Expr **MyArgs = getArgs();
3347   for (unsigned I = 0; I != Args.size(); ++I) {
3348     if (Args[I]->isTypeDependent())
3349       ExprBits.TypeDependent = true;
3350     if (Args[I]->isValueDependent())
3351       ExprBits.ValueDependent = true;
3352     if (Args[I]->isInstantiationDependent())
3353       ExprBits.InstantiationDependent = true;
3354     if (Args[I]->containsUnexpandedParameterPack())
3355       ExprBits.ContainsUnexpandedParameterPack = true;
3356 
3357     MyArgs[I] = Args[I];
3358   }
3359 
3360   SelLocsKind = SelLocsK;
3361   if (!isImplicit()) {
3362     if (SelLocsK == SelLoc_NonStandard)
3363       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3364   }
3365 }
3366 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3367 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3368                                          ExprValueKind VK,
3369                                          SourceLocation LBracLoc,
3370                                          SourceLocation SuperLoc,
3371                                          bool IsInstanceSuper,
3372                                          QualType SuperType,
3373                                          Selector Sel,
3374                                          ArrayRef<SourceLocation> SelLocs,
3375                                          ObjCMethodDecl *Method,
3376                                          ArrayRef<Expr *> Args,
3377                                          SourceLocation RBracLoc,
3378                                          bool isImplicit) {
3379   assert((!SelLocs.empty() || isImplicit) &&
3380          "No selector locs for non-implicit message");
3381   ObjCMessageExpr *Mem;
3382   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3383   if (isImplicit)
3384     Mem = alloc(Context, Args.size(), 0);
3385   else
3386     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3387   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3388                                    SuperType, Sel, SelLocs, SelLocsK,
3389                                    Method, Args, RBracLoc, isImplicit);
3390 }
3391 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3392 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3393                                          ExprValueKind VK,
3394                                          SourceLocation LBracLoc,
3395                                          TypeSourceInfo *Receiver,
3396                                          Selector Sel,
3397                                          ArrayRef<SourceLocation> SelLocs,
3398                                          ObjCMethodDecl *Method,
3399                                          ArrayRef<Expr *> Args,
3400                                          SourceLocation RBracLoc,
3401                                          bool isImplicit) {
3402   assert((!SelLocs.empty() || isImplicit) &&
3403          "No selector locs for non-implicit message");
3404   ObjCMessageExpr *Mem;
3405   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3406   if (isImplicit)
3407     Mem = alloc(Context, Args.size(), 0);
3408   else
3409     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3410   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3411                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3412                                    isImplicit);
3413 }
3414 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3415 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3416                                          ExprValueKind VK,
3417                                          SourceLocation LBracLoc,
3418                                          Expr *Receiver,
3419                                          Selector Sel,
3420                                          ArrayRef<SourceLocation> SelLocs,
3421                                          ObjCMethodDecl *Method,
3422                                          ArrayRef<Expr *> Args,
3423                                          SourceLocation RBracLoc,
3424                                          bool isImplicit) {
3425   assert((!SelLocs.empty() || isImplicit) &&
3426          "No selector locs for non-implicit message");
3427   ObjCMessageExpr *Mem;
3428   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3429   if (isImplicit)
3430     Mem = alloc(Context, Args.size(), 0);
3431   else
3432     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3433   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3434                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3435                                    isImplicit);
3436 }
3437 
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)3438 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3439                                               unsigned NumArgs,
3440                                               unsigned NumStoredSelLocs) {
3441   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3442   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3443 }
3444 
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)3445 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3446                                         ArrayRef<Expr *> Args,
3447                                         SourceLocation RBraceLoc,
3448                                         ArrayRef<SourceLocation> SelLocs,
3449                                         Selector Sel,
3450                                         SelectorLocationsKind &SelLocsK) {
3451   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3452   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3453                                                                : 0;
3454   return alloc(C, Args.size(), NumStoredSelLocs);
3455 }
3456 
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)3457 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3458                                         unsigned NumArgs,
3459                                         unsigned NumStoredSelLocs) {
3460   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3461     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3462   return (ObjCMessageExpr *)C.Allocate(Size,
3463                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
3464 }
3465 
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const3466 void ObjCMessageExpr::getSelectorLocs(
3467                                SmallVectorImpl<SourceLocation> &SelLocs) const {
3468   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3469     SelLocs.push_back(getSelectorLoc(i));
3470 }
3471 
getReceiverRange() const3472 SourceRange ObjCMessageExpr::getReceiverRange() const {
3473   switch (getReceiverKind()) {
3474   case Instance:
3475     return getInstanceReceiver()->getSourceRange();
3476 
3477   case Class:
3478     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3479 
3480   case SuperInstance:
3481   case SuperClass:
3482     return getSuperLoc();
3483   }
3484 
3485   llvm_unreachable("Invalid ReceiverKind!");
3486 }
3487 
getSelector() const3488 Selector ObjCMessageExpr::getSelector() const {
3489   if (HasMethod)
3490     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3491                                                                ->getSelector();
3492   return Selector(SelectorOrMethod);
3493 }
3494 
getReceiverType() const3495 QualType ObjCMessageExpr::getReceiverType() const {
3496   switch (getReceiverKind()) {
3497   case Instance:
3498     return getInstanceReceiver()->getType();
3499   case Class:
3500     return getClassReceiver();
3501   case SuperInstance:
3502   case SuperClass:
3503     return getSuperType();
3504   }
3505 
3506   llvm_unreachable("unexpected receiver kind");
3507 }
3508 
getReceiverInterface() const3509 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3510   QualType T = getReceiverType();
3511 
3512   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3513     return Ptr->getInterfaceDecl();
3514 
3515   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3516     return Ty->getInterface();
3517 
3518   return 0;
3519 }
3520 
getBridgeKindName() const3521 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3522   switch (getBridgeKind()) {
3523   case OBC_Bridge:
3524     return "__bridge";
3525   case OBC_BridgeTransfer:
3526     return "__bridge_transfer";
3527   case OBC_BridgeRetained:
3528     return "__bridge_retained";
3529   }
3530 
3531   llvm_unreachable("Invalid BridgeKind!");
3532 }
3533 
ShuffleVectorExpr(ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3534 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3535                                      QualType Type, SourceLocation BLoc,
3536                                      SourceLocation RP)
3537    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3538           Type->isDependentType(), Type->isDependentType(),
3539           Type->isInstantiationDependentType(),
3540           Type->containsUnexpandedParameterPack()),
3541      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3542 {
3543   SubExprs = new (C) Stmt*[args.size()];
3544   for (unsigned i = 0; i != args.size(); i++) {
3545     if (args[i]->isTypeDependent())
3546       ExprBits.TypeDependent = true;
3547     if (args[i]->isValueDependent())
3548       ExprBits.ValueDependent = true;
3549     if (args[i]->isInstantiationDependent())
3550       ExprBits.InstantiationDependent = true;
3551     if (args[i]->containsUnexpandedParameterPack())
3552       ExprBits.ContainsUnexpandedParameterPack = true;
3553 
3554     SubExprs[i] = args[i];
3555   }
3556 }
3557 
setExprs(ASTContext & C,ArrayRef<Expr * > Exprs)3558 void ShuffleVectorExpr::setExprs(ASTContext &C, ArrayRef<Expr *> Exprs) {
3559   if (SubExprs) C.Deallocate(SubExprs);
3560 
3561   this->NumExprs = Exprs.size();
3562   SubExprs = new (C) Stmt*[NumExprs];
3563   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3564 }
3565 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3566 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3567                                SourceLocation GenericLoc, Expr *ControllingExpr,
3568                                ArrayRef<TypeSourceInfo*> AssocTypes,
3569                                ArrayRef<Expr*> AssocExprs,
3570                                SourceLocation DefaultLoc,
3571                                SourceLocation RParenLoc,
3572                                bool ContainsUnexpandedParameterPack,
3573                                unsigned ResultIndex)
3574   : Expr(GenericSelectionExprClass,
3575          AssocExprs[ResultIndex]->getType(),
3576          AssocExprs[ResultIndex]->getValueKind(),
3577          AssocExprs[ResultIndex]->getObjectKind(),
3578          AssocExprs[ResultIndex]->isTypeDependent(),
3579          AssocExprs[ResultIndex]->isValueDependent(),
3580          AssocExprs[ResultIndex]->isInstantiationDependent(),
3581          ContainsUnexpandedParameterPack),
3582     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3583     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3584     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3585     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3586   SubExprs[CONTROLLING] = ControllingExpr;
3587   assert(AssocTypes.size() == AssocExprs.size());
3588   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3589   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3590 }
3591 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3592 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3593                                SourceLocation GenericLoc, Expr *ControllingExpr,
3594                                ArrayRef<TypeSourceInfo*> AssocTypes,
3595                                ArrayRef<Expr*> AssocExprs,
3596                                SourceLocation DefaultLoc,
3597                                SourceLocation RParenLoc,
3598                                bool ContainsUnexpandedParameterPack)
3599   : Expr(GenericSelectionExprClass,
3600          Context.DependentTy,
3601          VK_RValue,
3602          OK_Ordinary,
3603          /*isTypeDependent=*/true,
3604          /*isValueDependent=*/true,
3605          /*isInstantiationDependent=*/true,
3606          ContainsUnexpandedParameterPack),
3607     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3608     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3609     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3610     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3611   SubExprs[CONTROLLING] = ControllingExpr;
3612   assert(AssocTypes.size() == AssocExprs.size());
3613   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3614   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3615 }
3616 
3617 //===----------------------------------------------------------------------===//
3618 //  DesignatedInitExpr
3619 //===----------------------------------------------------------------------===//
3620 
getFieldName() const3621 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3622   assert(Kind == FieldDesignator && "Only valid on a field designator");
3623   if (Field.NameOrField & 0x01)
3624     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3625   else
3626     return getField()->getIdentifier();
3627 }
3628 
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3629 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3630                                        unsigned NumDesignators,
3631                                        const Designator *Designators,
3632                                        SourceLocation EqualOrColonLoc,
3633                                        bool GNUSyntax,
3634                                        ArrayRef<Expr*> IndexExprs,
3635                                        Expr *Init)
3636   : Expr(DesignatedInitExprClass, Ty,
3637          Init->getValueKind(), Init->getObjectKind(),
3638          Init->isTypeDependent(), Init->isValueDependent(),
3639          Init->isInstantiationDependent(),
3640          Init->containsUnexpandedParameterPack()),
3641     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3642     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3643   this->Designators = new (C) Designator[NumDesignators];
3644 
3645   // Record the initializer itself.
3646   child_range Child = children();
3647   *Child++ = Init;
3648 
3649   // Copy the designators and their subexpressions, computing
3650   // value-dependence along the way.
3651   unsigned IndexIdx = 0;
3652   for (unsigned I = 0; I != NumDesignators; ++I) {
3653     this->Designators[I] = Designators[I];
3654 
3655     if (this->Designators[I].isArrayDesignator()) {
3656       // Compute type- and value-dependence.
3657       Expr *Index = IndexExprs[IndexIdx];
3658       if (Index->isTypeDependent() || Index->isValueDependent())
3659         ExprBits.ValueDependent = true;
3660       if (Index->isInstantiationDependent())
3661         ExprBits.InstantiationDependent = true;
3662       // Propagate unexpanded parameter packs.
3663       if (Index->containsUnexpandedParameterPack())
3664         ExprBits.ContainsUnexpandedParameterPack = true;
3665 
3666       // Copy the index expressions into permanent storage.
3667       *Child++ = IndexExprs[IndexIdx++];
3668     } else if (this->Designators[I].isArrayRangeDesignator()) {
3669       // Compute type- and value-dependence.
3670       Expr *Start = IndexExprs[IndexIdx];
3671       Expr *End = IndexExprs[IndexIdx + 1];
3672       if (Start->isTypeDependent() || Start->isValueDependent() ||
3673           End->isTypeDependent() || End->isValueDependent()) {
3674         ExprBits.ValueDependent = true;
3675         ExprBits.InstantiationDependent = true;
3676       } else if (Start->isInstantiationDependent() ||
3677                  End->isInstantiationDependent()) {
3678         ExprBits.InstantiationDependent = true;
3679       }
3680 
3681       // Propagate unexpanded parameter packs.
3682       if (Start->containsUnexpandedParameterPack() ||
3683           End->containsUnexpandedParameterPack())
3684         ExprBits.ContainsUnexpandedParameterPack = true;
3685 
3686       // Copy the start/end expressions into permanent storage.
3687       *Child++ = IndexExprs[IndexIdx++];
3688       *Child++ = IndexExprs[IndexIdx++];
3689     }
3690   }
3691 
3692   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3693 }
3694 
3695 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3696 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3697                            unsigned NumDesignators,
3698                            ArrayRef<Expr*> IndexExprs,
3699                            SourceLocation ColonOrEqualLoc,
3700                            bool UsesColonSyntax, Expr *Init) {
3701   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3702                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3703   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3704                                       ColonOrEqualLoc, UsesColonSyntax,
3705                                       IndexExprs, Init);
3706 }
3707 
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3708 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3709                                                     unsigned NumIndexExprs) {
3710   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3711                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3712   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3713 }
3714 
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3715 void DesignatedInitExpr::setDesignators(ASTContext &C,
3716                                         const Designator *Desigs,
3717                                         unsigned NumDesigs) {
3718   Designators = new (C) Designator[NumDesigs];
3719   NumDesignators = NumDesigs;
3720   for (unsigned I = 0; I != NumDesigs; ++I)
3721     Designators[I] = Desigs[I];
3722 }
3723 
getDesignatorsSourceRange() const3724 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3725   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3726   if (size() == 1)
3727     return DIE->getDesignator(0)->getSourceRange();
3728   return SourceRange(DIE->getDesignator(0)->getLocStart(),
3729                      DIE->getDesignator(size()-1)->getLocEnd());
3730 }
3731 
getLocStart() const3732 SourceLocation DesignatedInitExpr::getLocStart() const {
3733   SourceLocation StartLoc;
3734   Designator &First =
3735     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3736   if (First.isFieldDesignator()) {
3737     if (GNUSyntax)
3738       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3739     else
3740       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3741   } else
3742     StartLoc =
3743       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3744   return StartLoc;
3745 }
3746 
getLocEnd() const3747 SourceLocation DesignatedInitExpr::getLocEnd() const {
3748   return getInit()->getLocEnd();
3749 }
3750 
getArrayIndex(const Designator & D) const3751 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3752   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3753   char *Ptr = static_cast<char *>(
3754                   const_cast<void *>(static_cast<const void *>(this)));
3755   Ptr += sizeof(DesignatedInitExpr);
3756   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3757   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3758 }
3759 
getArrayRangeStart(const Designator & D) const3760 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3761   assert(D.Kind == Designator::ArrayRangeDesignator &&
3762          "Requires array range designator");
3763   char *Ptr = static_cast<char *>(
3764                   const_cast<void *>(static_cast<const void *>(this)));
3765   Ptr += sizeof(DesignatedInitExpr);
3766   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3767   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3768 }
3769 
getArrayRangeEnd(const Designator & D) const3770 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3771   assert(D.Kind == Designator::ArrayRangeDesignator &&
3772          "Requires array range designator");
3773   char *Ptr = static_cast<char *>(
3774                   const_cast<void *>(static_cast<const void *>(this)));
3775   Ptr += sizeof(DesignatedInitExpr);
3776   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3777   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3778 }
3779 
3780 /// \brief Replaces the designator at index @p Idx with the series
3781 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3782 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3783                                           const Designator *First,
3784                                           const Designator *Last) {
3785   unsigned NumNewDesignators = Last - First;
3786   if (NumNewDesignators == 0) {
3787     std::copy_backward(Designators + Idx + 1,
3788                        Designators + NumDesignators,
3789                        Designators + Idx);
3790     --NumNewDesignators;
3791     return;
3792   } else if (NumNewDesignators == 1) {
3793     Designators[Idx] = *First;
3794     return;
3795   }
3796 
3797   Designator *NewDesignators
3798     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3799   std::copy(Designators, Designators + Idx, NewDesignators);
3800   std::copy(First, Last, NewDesignators + Idx);
3801   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3802             NewDesignators + Idx + NumNewDesignators);
3803   Designators = NewDesignators;
3804   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3805 }
3806 
ParenListExpr(ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3807 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3808                              ArrayRef<Expr*> exprs,
3809                              SourceLocation rparenloc)
3810   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3811          false, false, false, false),
3812     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3813   Exprs = new (C) Stmt*[exprs.size()];
3814   for (unsigned i = 0; i != exprs.size(); ++i) {
3815     if (exprs[i]->isTypeDependent())
3816       ExprBits.TypeDependent = true;
3817     if (exprs[i]->isValueDependent())
3818       ExprBits.ValueDependent = true;
3819     if (exprs[i]->isInstantiationDependent())
3820       ExprBits.InstantiationDependent = true;
3821     if (exprs[i]->containsUnexpandedParameterPack())
3822       ExprBits.ContainsUnexpandedParameterPack = true;
3823 
3824     Exprs[i] = exprs[i];
3825   }
3826 }
3827 
findInCopyConstruct(const Expr * e)3828 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3829   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3830     e = ewc->getSubExpr();
3831   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3832     e = m->GetTemporaryExpr();
3833   e = cast<CXXConstructExpr>(e)->getArg(0);
3834   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3835     e = ice->getSubExpr();
3836   return cast<OpaqueValueExpr>(e);
3837 }
3838 
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3839 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3840                                            unsigned numSemanticExprs) {
3841   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3842                                     (1 + numSemanticExprs) * sizeof(Expr*),
3843                                   llvm::alignOf<PseudoObjectExpr>());
3844   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3845 }
3846 
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3847 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3848   : Expr(PseudoObjectExprClass, shell) {
3849   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3850 }
3851 
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3852 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3853                                            ArrayRef<Expr*> semantics,
3854                                            unsigned resultIndex) {
3855   assert(syntax && "no syntactic expression!");
3856   assert(semantics.size() && "no semantic expressions!");
3857 
3858   QualType type;
3859   ExprValueKind VK;
3860   if (resultIndex == NoResult) {
3861     type = C.VoidTy;
3862     VK = VK_RValue;
3863   } else {
3864     assert(resultIndex < semantics.size());
3865     type = semantics[resultIndex]->getType();
3866     VK = semantics[resultIndex]->getValueKind();
3867     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3868   }
3869 
3870   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3871                               (1 + semantics.size()) * sizeof(Expr*),
3872                             llvm::alignOf<PseudoObjectExpr>());
3873   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3874                                       resultIndex);
3875 }
3876 
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3877 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3878                                    Expr *syntax, ArrayRef<Expr*> semantics,
3879                                    unsigned resultIndex)
3880   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3881          /*filled in at end of ctor*/ false, false, false, false) {
3882   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3883   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3884 
3885   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3886     Expr *E = (i == 0 ? syntax : semantics[i-1]);
3887     getSubExprsBuffer()[i] = E;
3888 
3889     if (E->isTypeDependent())
3890       ExprBits.TypeDependent = true;
3891     if (E->isValueDependent())
3892       ExprBits.ValueDependent = true;
3893     if (E->isInstantiationDependent())
3894       ExprBits.InstantiationDependent = true;
3895     if (E->containsUnexpandedParameterPack())
3896       ExprBits.ContainsUnexpandedParameterPack = true;
3897 
3898     if (isa<OpaqueValueExpr>(E))
3899       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3900              "opaque-value semantic expressions for pseudo-object "
3901              "operations must have sources");
3902   }
3903 }
3904 
3905 //===----------------------------------------------------------------------===//
3906 //  ExprIterator.
3907 //===----------------------------------------------------------------------===//
3908 
operator [](size_t idx)3909 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3910 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3911 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3912 const Expr* ConstExprIterator::operator[](size_t idx) const {
3913   return cast<Expr>(I[idx]);
3914 }
operator *() const3915 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3916 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3917 
3918 //===----------------------------------------------------------------------===//
3919 //  Child Iterators for iterating over subexpressions/substatements
3920 //===----------------------------------------------------------------------===//
3921 
3922 // UnaryExprOrTypeTraitExpr
children()3923 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3924   // If this is of a type and the type is a VLA type (and not a typedef), the
3925   // size expression of the VLA needs to be treated as an executable expression.
3926   // Why isn't this weirdness documented better in StmtIterator?
3927   if (isArgumentType()) {
3928     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3929                                    getArgumentType().getTypePtr()))
3930       return child_range(child_iterator(T), child_iterator());
3931     return child_range();
3932   }
3933   return child_range(&Argument.Ex, &Argument.Ex + 1);
3934 }
3935 
3936 // ObjCMessageExpr
children()3937 Stmt::child_range ObjCMessageExpr::children() {
3938   Stmt **begin;
3939   if (getReceiverKind() == Instance)
3940     begin = reinterpret_cast<Stmt **>(this + 1);
3941   else
3942     begin = reinterpret_cast<Stmt **>(getArgs());
3943   return child_range(begin,
3944                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3945 }
3946 
ObjCArrayLiteral(ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3947 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
3948                                    QualType T, ObjCMethodDecl *Method,
3949                                    SourceRange SR)
3950   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3951          false, false, false, false),
3952     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3953 {
3954   Expr **SaveElements = getElements();
3955   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3956     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3957       ExprBits.ValueDependent = true;
3958     if (Elements[I]->isInstantiationDependent())
3959       ExprBits.InstantiationDependent = true;
3960     if (Elements[I]->containsUnexpandedParameterPack())
3961       ExprBits.ContainsUnexpandedParameterPack = true;
3962 
3963     SaveElements[I] = Elements[I];
3964   }
3965 }
3966 
Create(ASTContext & C,ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3967 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3968                                            ArrayRef<Expr *> Elements,
3969                                            QualType T, ObjCMethodDecl * Method,
3970                                            SourceRange SR) {
3971   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3972                          + Elements.size() * sizeof(Expr *));
3973   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3974 }
3975 
CreateEmpty(ASTContext & C,unsigned NumElements)3976 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3977                                                 unsigned NumElements) {
3978 
3979   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3980                          + NumElements * sizeof(Expr *));
3981   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3982 }
3983 
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3984 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3985                                              ArrayRef<ObjCDictionaryElement> VK,
3986                                              bool HasPackExpansions,
3987                                              QualType T, ObjCMethodDecl *method,
3988                                              SourceRange SR)
3989   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3990          false, false),
3991     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3992     DictWithObjectsMethod(method)
3993 {
3994   KeyValuePair *KeyValues = getKeyValues();
3995   ExpansionData *Expansions = getExpansionData();
3996   for (unsigned I = 0; I < NumElements; I++) {
3997     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3998         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3999       ExprBits.ValueDependent = true;
4000     if (VK[I].Key->isInstantiationDependent() ||
4001         VK[I].Value->isInstantiationDependent())
4002       ExprBits.InstantiationDependent = true;
4003     if (VK[I].EllipsisLoc.isInvalid() &&
4004         (VK[I].Key->containsUnexpandedParameterPack() ||
4005          VK[I].Value->containsUnexpandedParameterPack()))
4006       ExprBits.ContainsUnexpandedParameterPack = true;
4007 
4008     KeyValues[I].Key = VK[I].Key;
4009     KeyValues[I].Value = VK[I].Value;
4010     if (Expansions) {
4011       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4012       if (VK[I].NumExpansions)
4013         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4014       else
4015         Expansions[I].NumExpansionsPlusOne = 0;
4016     }
4017   }
4018 }
4019 
4020 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)4021 ObjCDictionaryLiteral::Create(ASTContext &C,
4022                               ArrayRef<ObjCDictionaryElement> VK,
4023                               bool HasPackExpansions,
4024                               QualType T, ObjCMethodDecl *method,
4025                               SourceRange SR) {
4026   unsigned ExpansionsSize = 0;
4027   if (HasPackExpansions)
4028     ExpansionsSize = sizeof(ExpansionData) * VK.size();
4029 
4030   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4031                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4032   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4033 }
4034 
4035 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)4036 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
4037                                    bool HasPackExpansions) {
4038   unsigned ExpansionsSize = 0;
4039   if (HasPackExpansions)
4040     ExpansionsSize = sizeof(ExpansionData) * NumElements;
4041   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4042                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4043   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4044                                          HasPackExpansions);
4045 }
4046 
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)4047 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
4048                                                    Expr *base,
4049                                                    Expr *key, QualType T,
4050                                                    ObjCMethodDecl *getMethod,
4051                                                    ObjCMethodDecl *setMethod,
4052                                                    SourceLocation RB) {
4053   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4054   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4055                                         OK_ObjCSubscript,
4056                                         getMethod, setMethod, RB);
4057 }
4058 
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4059 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4060                        QualType t, AtomicOp op, SourceLocation RP)
4061   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4062          false, false, false, false),
4063     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4064 {
4065   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4066   for (unsigned i = 0; i != args.size(); i++) {
4067     if (args[i]->isTypeDependent())
4068       ExprBits.TypeDependent = true;
4069     if (args[i]->isValueDependent())
4070       ExprBits.ValueDependent = true;
4071     if (args[i]->isInstantiationDependent())
4072       ExprBits.InstantiationDependent = true;
4073     if (args[i]->containsUnexpandedParameterPack())
4074       ExprBits.ContainsUnexpandedParameterPack = true;
4075 
4076     SubExprs[i] = args[i];
4077   }
4078 }
4079 
getNumSubExprs(AtomicOp Op)4080 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4081   switch (Op) {
4082   case AO__c11_atomic_init:
4083   case AO__c11_atomic_load:
4084   case AO__atomic_load_n:
4085     return 2;
4086 
4087   case AO__c11_atomic_store:
4088   case AO__c11_atomic_exchange:
4089   case AO__atomic_load:
4090   case AO__atomic_store:
4091   case AO__atomic_store_n:
4092   case AO__atomic_exchange_n:
4093   case AO__c11_atomic_fetch_add:
4094   case AO__c11_atomic_fetch_sub:
4095   case AO__c11_atomic_fetch_and:
4096   case AO__c11_atomic_fetch_or:
4097   case AO__c11_atomic_fetch_xor:
4098   case AO__atomic_fetch_add:
4099   case AO__atomic_fetch_sub:
4100   case AO__atomic_fetch_and:
4101   case AO__atomic_fetch_or:
4102   case AO__atomic_fetch_xor:
4103   case AO__atomic_fetch_nand:
4104   case AO__atomic_add_fetch:
4105   case AO__atomic_sub_fetch:
4106   case AO__atomic_and_fetch:
4107   case AO__atomic_or_fetch:
4108   case AO__atomic_xor_fetch:
4109   case AO__atomic_nand_fetch:
4110     return 3;
4111 
4112   case AO__atomic_exchange:
4113     return 4;
4114 
4115   case AO__c11_atomic_compare_exchange_strong:
4116   case AO__c11_atomic_compare_exchange_weak:
4117     return 5;
4118 
4119   case AO__atomic_compare_exchange:
4120   case AO__atomic_compare_exchange_n:
4121     return 6;
4122   }
4123   llvm_unreachable("unknown atomic op");
4124 }
4125