1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 // * A success/failure flag indicating whether constant folding was successful.
15 // This is the 'bool' return value used by most of the code in this file. A
16 // 'false' return value indicates that constant folding has failed, and any
17 // appropriate diagnostic has already been produced.
18 //
19 // * An evaluated result, valid only if constant folding has not failed.
20 //
21 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 // where it is possible to determine the evaluated result regardless.
24 //
25 // * A set of notes indicating why the evaluation was not a constant expression
26 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 // too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54
55 static bool IsGlobalLValue(APValue::LValueBase B);
56
57 namespace {
58 struct LValue;
59 struct CallStackFrame;
60 struct EvalInfo;
61
getType(APValue::LValueBase B)62 static QualType getType(APValue::LValueBase B) {
63 if (!B) return QualType();
64 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65 return D->getType();
66
67 const Expr *Base = B.get<const Expr*>();
68
69 // For a materialized temporary, the type of the temporary we materialized
70 // may not be the type of the expression.
71 if (const MaterializeTemporaryExpr *MTE =
72 dyn_cast<MaterializeTemporaryExpr>(Base)) {
73 SmallVector<const Expr *, 2> CommaLHSs;
74 SmallVector<SubobjectAdjustment, 2> Adjustments;
75 const Expr *Temp = MTE->GetTemporaryExpr();
76 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77 Adjustments);
78 // Keep any cv-qualifiers from the reference if we generated a temporary
79 // for it.
80 if (Inner != Temp)
81 return Inner->getType();
82 }
83
84 return Base->getType();
85 }
86
87 /// Get an LValue path entry, which is known to not be an array index, as a
88 /// field or base class.
89 static
getAsBaseOrMember(APValue::LValuePathEntry E)90 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91 APValue::BaseOrMemberType Value;
92 Value.setFromOpaqueValue(E.BaseOrMember);
93 return Value;
94 }
95
96 /// Get an LValue path entry, which is known to not be an array index, as a
97 /// field declaration.
getAsField(APValue::LValuePathEntry E)98 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100 }
101 /// Get an LValue path entry, which is known to not be an array index, as a
102 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)103 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105 }
106 /// Determine whether this LValue path entry for a base class names a virtual
107 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)108 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109 return getAsBaseOrMember(E).getInt();
110 }
111
112 /// Find the path length and type of the most-derived subobject in the given
113 /// path, and find the size of the containing array, if any.
114 static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)115 unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116 ArrayRef<APValue::LValuePathEntry> Path,
117 uint64_t &ArraySize, QualType &Type) {
118 unsigned MostDerivedLength = 0;
119 Type = Base;
120 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121 if (Type->isArrayType()) {
122 const ConstantArrayType *CAT =
123 cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124 Type = CAT->getElementType();
125 ArraySize = CAT->getSize().getZExtValue();
126 MostDerivedLength = I + 1;
127 } else if (Type->isAnyComplexType()) {
128 const ComplexType *CT = Type->castAs<ComplexType>();
129 Type = CT->getElementType();
130 ArraySize = 2;
131 MostDerivedLength = I + 1;
132 } else if (const FieldDecl *FD = getAsField(Path[I])) {
133 Type = FD->getType();
134 ArraySize = 0;
135 MostDerivedLength = I + 1;
136 } else {
137 // Path[I] describes a base class.
138 ArraySize = 0;
139 }
140 }
141 return MostDerivedLength;
142 }
143
144 // The order of this enum is important for diagnostics.
145 enum CheckSubobjectKind {
146 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147 CSK_This, CSK_Real, CSK_Imag
148 };
149
150 /// A path from a glvalue to a subobject of that glvalue.
151 struct SubobjectDesignator {
152 /// True if the subobject was named in a manner not supported by C++11. Such
153 /// lvalues can still be folded, but they are not core constant expressions
154 /// and we cannot perform lvalue-to-rvalue conversions on them.
155 bool Invalid : 1;
156
157 /// Is this a pointer one past the end of an object?
158 bool IsOnePastTheEnd : 1;
159
160 /// The length of the path to the most-derived object of which this is a
161 /// subobject.
162 unsigned MostDerivedPathLength : 30;
163
164 /// The size of the array of which the most-derived object is an element, or
165 /// 0 if the most-derived object is not an array element.
166 uint64_t MostDerivedArraySize;
167
168 /// The type of the most derived object referred to by this address.
169 QualType MostDerivedType;
170
171 typedef APValue::LValuePathEntry PathEntry;
172
173 /// The entries on the path from the glvalue to the designated subobject.
174 SmallVector<PathEntry, 8> Entries;
175
SubobjectDesignator__anon383178e60111::SubobjectDesignator176 SubobjectDesignator() : Invalid(true) {}
177
SubobjectDesignator__anon383178e60111::SubobjectDesignator178 explicit SubobjectDesignator(QualType T)
179 : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180 MostDerivedArraySize(0), MostDerivedType(T) {}
181
SubobjectDesignator__anon383178e60111::SubobjectDesignator182 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184 MostDerivedPathLength(0), MostDerivedArraySize(0) {
185 if (!Invalid) {
186 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187 ArrayRef<PathEntry> VEntries = V.getLValuePath();
188 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189 if (V.getLValueBase())
190 MostDerivedPathLength =
191 findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192 V.getLValuePath(), MostDerivedArraySize,
193 MostDerivedType);
194 }
195 }
196
setInvalid__anon383178e60111::SubobjectDesignator197 void setInvalid() {
198 Invalid = true;
199 Entries.clear();
200 }
201
202 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon383178e60111::SubobjectDesignator203 bool isOnePastTheEnd() const {
204 if (IsOnePastTheEnd)
205 return true;
206 if (MostDerivedArraySize &&
207 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208 return true;
209 return false;
210 }
211
212 /// Check that this refers to a valid subobject.
isValidSubobject__anon383178e60111::SubobjectDesignator213 bool isValidSubobject() const {
214 if (Invalid)
215 return false;
216 return !isOnePastTheEnd();
217 }
218 /// Check that this refers to a valid subobject, and if not, produce a
219 /// relevant diagnostic and set the designator as invalid.
220 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221
222 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon383178e60111::SubobjectDesignator223 void addArrayUnchecked(const ConstantArrayType *CAT) {
224 PathEntry Entry;
225 Entry.ArrayIndex = 0;
226 Entries.push_back(Entry);
227
228 // This is a most-derived object.
229 MostDerivedType = CAT->getElementType();
230 MostDerivedArraySize = CAT->getSize().getZExtValue();
231 MostDerivedPathLength = Entries.size();
232 }
233 /// Update this designator to refer to the given base or member of this
234 /// object.
addDeclUnchecked__anon383178e60111::SubobjectDesignator235 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236 PathEntry Entry;
237 APValue::BaseOrMemberType Value(D, Virtual);
238 Entry.BaseOrMember = Value.getOpaqueValue();
239 Entries.push_back(Entry);
240
241 // If this isn't a base class, it's a new most-derived object.
242 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243 MostDerivedType = FD->getType();
244 MostDerivedArraySize = 0;
245 MostDerivedPathLength = Entries.size();
246 }
247 }
248 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon383178e60111::SubobjectDesignator249 void addComplexUnchecked(QualType EltTy, bool Imag) {
250 PathEntry Entry;
251 Entry.ArrayIndex = Imag;
252 Entries.push_back(Entry);
253
254 // This is technically a most-derived object, though in practice this
255 // is unlikely to matter.
256 MostDerivedType = EltTy;
257 MostDerivedArraySize = 2;
258 MostDerivedPathLength = Entries.size();
259 }
260 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261 /// Add N to the address of this subobject.
adjustIndex__anon383178e60111::SubobjectDesignator262 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263 if (Invalid) return;
264 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265 Entries.back().ArrayIndex += N;
266 if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267 diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268 setInvalid();
269 }
270 return;
271 }
272 // [expr.add]p4: For the purposes of these operators, a pointer to a
273 // nonarray object behaves the same as a pointer to the first element of
274 // an array of length one with the type of the object as its element type.
275 if (IsOnePastTheEnd && N == (uint64_t)-1)
276 IsOnePastTheEnd = false;
277 else if (!IsOnePastTheEnd && N == 1)
278 IsOnePastTheEnd = true;
279 else if (N != 0) {
280 diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281 setInvalid();
282 }
283 }
284 };
285
286 /// A stack frame in the constexpr call stack.
287 struct CallStackFrame {
288 EvalInfo &Info;
289
290 /// Parent - The caller of this stack frame.
291 CallStackFrame *Caller;
292
293 /// CallLoc - The location of the call expression for this call.
294 SourceLocation CallLoc;
295
296 /// Callee - The function which was called.
297 const FunctionDecl *Callee;
298
299 /// Index - The call index of this call.
300 unsigned Index;
301
302 /// This - The binding for the this pointer in this call, if any.
303 const LValue *This;
304
305 /// ParmBindings - Parameter bindings for this function call, indexed by
306 /// parameters' function scope indices.
307 APValue *Arguments;
308
309 // Note that we intentionally use std::map here so that references to
310 // values are stable.
311 typedef std::map<const void*, APValue> MapTy;
312 typedef MapTy::const_iterator temp_iterator;
313 /// Temporaries - Temporary lvalues materialized within this stack frame.
314 MapTy Temporaries;
315
316 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317 const FunctionDecl *Callee, const LValue *This,
318 APValue *Arguments);
319 ~CallStackFrame();
320
getTemporary__anon383178e60111::CallStackFrame321 APValue *getTemporary(const void *Key) {
322 MapTy::iterator I = Temporaries.find(Key);
323 return I == Temporaries.end() ? 0 : &I->second;
324 }
325 APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
326 };
327
328 /// Temporarily override 'this'.
329 class ThisOverrideRAII {
330 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)331 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
332 : Frame(Frame), OldThis(Frame.This) {
333 if (Enable)
334 Frame.This = NewThis;
335 }
~ThisOverrideRAII()336 ~ThisOverrideRAII() {
337 Frame.This = OldThis;
338 }
339 private:
340 CallStackFrame &Frame;
341 const LValue *OldThis;
342 };
343
344 /// A partial diagnostic which we might know in advance that we are not going
345 /// to emit.
346 class OptionalDiagnostic {
347 PartialDiagnostic *Diag;
348
349 public:
OptionalDiagnostic(PartialDiagnostic * Diag=0)350 explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
351
352 template<typename T>
operator <<(const T & v)353 OptionalDiagnostic &operator<<(const T &v) {
354 if (Diag)
355 *Diag << v;
356 return *this;
357 }
358
operator <<(const APSInt & I)359 OptionalDiagnostic &operator<<(const APSInt &I) {
360 if (Diag) {
361 SmallVector<char, 32> Buffer;
362 I.toString(Buffer);
363 *Diag << StringRef(Buffer.data(), Buffer.size());
364 }
365 return *this;
366 }
367
operator <<(const APFloat & F)368 OptionalDiagnostic &operator<<(const APFloat &F) {
369 if (Diag) {
370 SmallVector<char, 32> Buffer;
371 F.toString(Buffer);
372 *Diag << StringRef(Buffer.data(), Buffer.size());
373 }
374 return *this;
375 }
376 };
377
378 /// A cleanup, and a flag indicating whether it is lifetime-extended.
379 class Cleanup {
380 llvm::PointerIntPair<APValue*, 1, bool> Value;
381
382 public:
Cleanup(APValue * Val,bool IsLifetimeExtended)383 Cleanup(APValue *Val, bool IsLifetimeExtended)
384 : Value(Val, IsLifetimeExtended) {}
385
isLifetimeExtended() const386 bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()387 void endLifetime() {
388 *Value.getPointer() = APValue();
389 }
390 };
391
392 /// EvalInfo - This is a private struct used by the evaluator to capture
393 /// information about a subexpression as it is folded. It retains information
394 /// about the AST context, but also maintains information about the folded
395 /// expression.
396 ///
397 /// If an expression could be evaluated, it is still possible it is not a C
398 /// "integer constant expression" or constant expression. If not, this struct
399 /// captures information about how and why not.
400 ///
401 /// One bit of information passed *into* the request for constant folding
402 /// indicates whether the subexpression is "evaluated" or not according to C
403 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
404 /// evaluate the expression regardless of what the RHS is, but C only allows
405 /// certain things in certain situations.
406 struct EvalInfo {
407 ASTContext &Ctx;
408
409 /// EvalStatus - Contains information about the evaluation.
410 Expr::EvalStatus &EvalStatus;
411
412 /// CurrentCall - The top of the constexpr call stack.
413 CallStackFrame *CurrentCall;
414
415 /// CallStackDepth - The number of calls in the call stack right now.
416 unsigned CallStackDepth;
417
418 /// NextCallIndex - The next call index to assign.
419 unsigned NextCallIndex;
420
421 /// StepsLeft - The remaining number of evaluation steps we're permitted
422 /// to perform. This is essentially a limit for the number of statements
423 /// we will evaluate.
424 unsigned StepsLeft;
425
426 /// BottomFrame - The frame in which evaluation started. This must be
427 /// initialized after CurrentCall and CallStackDepth.
428 CallStackFrame BottomFrame;
429
430 /// A stack of values whose lifetimes end at the end of some surrounding
431 /// evaluation frame.
432 llvm::SmallVector<Cleanup, 16> CleanupStack;
433
434 /// EvaluatingDecl - This is the declaration whose initializer is being
435 /// evaluated, if any.
436 APValue::LValueBase EvaluatingDecl;
437
438 /// EvaluatingDeclValue - This is the value being constructed for the
439 /// declaration whose initializer is being evaluated, if any.
440 APValue *EvaluatingDeclValue;
441
442 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
443 /// notes attached to it will also be stored, otherwise they will not be.
444 bool HasActiveDiagnostic;
445
446 /// CheckingPotentialConstantExpression - Are we checking whether the
447 /// expression is a potential constant expression? If so, some diagnostics
448 /// are suppressed.
449 bool CheckingPotentialConstantExpression;
450
451 bool IntOverflowCheckMode;
452
EvalInfo__anon383178e60111::EvalInfo453 EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
454 bool OverflowCheckMode = false)
455 : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
456 CallStackDepth(0), NextCallIndex(1),
457 StepsLeft(getLangOpts().ConstexprStepLimit),
458 BottomFrame(*this, SourceLocation(), 0, 0, 0),
459 EvaluatingDecl((const ValueDecl*)0), EvaluatingDeclValue(0),
460 HasActiveDiagnostic(false), CheckingPotentialConstantExpression(false),
461 IntOverflowCheckMode(OverflowCheckMode) {}
462
setEvaluatingDecl__anon383178e60111::EvalInfo463 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
464 EvaluatingDecl = Base;
465 EvaluatingDeclValue = &Value;
466 }
467
getLangOpts__anon383178e60111::EvalInfo468 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
469
CheckCallLimit__anon383178e60111::EvalInfo470 bool CheckCallLimit(SourceLocation Loc) {
471 // Don't perform any constexpr calls (other than the call we're checking)
472 // when checking a potential constant expression.
473 if (CheckingPotentialConstantExpression && CallStackDepth > 1)
474 return false;
475 if (NextCallIndex == 0) {
476 // NextCallIndex has wrapped around.
477 Diag(Loc, diag::note_constexpr_call_limit_exceeded);
478 return false;
479 }
480 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
481 return true;
482 Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
483 << getLangOpts().ConstexprCallDepth;
484 return false;
485 }
486
getCallFrame__anon383178e60111::EvalInfo487 CallStackFrame *getCallFrame(unsigned CallIndex) {
488 assert(CallIndex && "no call index in getCallFrame");
489 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
490 // be null in this loop.
491 CallStackFrame *Frame = CurrentCall;
492 while (Frame->Index > CallIndex)
493 Frame = Frame->Caller;
494 return (Frame->Index == CallIndex) ? Frame : 0;
495 }
496
nextStep__anon383178e60111::EvalInfo497 bool nextStep(const Stmt *S) {
498 if (!StepsLeft) {
499 Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
500 return false;
501 }
502 --StepsLeft;
503 return true;
504 }
505
506 private:
507 /// Add a diagnostic to the diagnostics list.
addDiag__anon383178e60111::EvalInfo508 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
509 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
510 EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
511 return EvalStatus.Diag->back().second;
512 }
513
514 /// Add notes containing a call stack to the current point of evaluation.
515 void addCallStack(unsigned Limit);
516
517 public:
518 /// Diagnose that the evaluation cannot be folded.
Diag__anon383178e60111::EvalInfo519 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
520 = diag::note_invalid_subexpr_in_const_expr,
521 unsigned ExtraNotes = 0) {
522 // If we have a prior diagnostic, it will be noting that the expression
523 // isn't a constant expression. This diagnostic is more important.
524 // FIXME: We might want to show both diagnostics to the user.
525 if (EvalStatus.Diag) {
526 unsigned CallStackNotes = CallStackDepth - 1;
527 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
528 if (Limit)
529 CallStackNotes = std::min(CallStackNotes, Limit + 1);
530 if (CheckingPotentialConstantExpression)
531 CallStackNotes = 0;
532
533 HasActiveDiagnostic = true;
534 EvalStatus.Diag->clear();
535 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
536 addDiag(Loc, DiagId);
537 if (!CheckingPotentialConstantExpression)
538 addCallStack(Limit);
539 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
540 }
541 HasActiveDiagnostic = false;
542 return OptionalDiagnostic();
543 }
544
Diag__anon383178e60111::EvalInfo545 OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
546 = diag::note_invalid_subexpr_in_const_expr,
547 unsigned ExtraNotes = 0) {
548 if (EvalStatus.Diag)
549 return Diag(E->getExprLoc(), DiagId, ExtraNotes);
550 HasActiveDiagnostic = false;
551 return OptionalDiagnostic();
552 }
553
getIntOverflowCheckMode__anon383178e60111::EvalInfo554 bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
555
556 /// Diagnose that the evaluation does not produce a C++11 core constant
557 /// expression.
558 template<typename LocArg>
CCEDiag__anon383178e60111::EvalInfo559 OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
560 = diag::note_invalid_subexpr_in_const_expr,
561 unsigned ExtraNotes = 0) {
562 // Don't override a previous diagnostic.
563 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
564 HasActiveDiagnostic = false;
565 return OptionalDiagnostic();
566 }
567 return Diag(Loc, DiagId, ExtraNotes);
568 }
569
570 /// Add a note to a prior diagnostic.
Note__anon383178e60111::EvalInfo571 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
572 if (!HasActiveDiagnostic)
573 return OptionalDiagnostic();
574 return OptionalDiagnostic(&addDiag(Loc, DiagId));
575 }
576
577 /// Add a stack of notes to a prior diagnostic.
addNotes__anon383178e60111::EvalInfo578 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
579 if (HasActiveDiagnostic) {
580 EvalStatus.Diag->insert(EvalStatus.Diag->end(),
581 Diags.begin(), Diags.end());
582 }
583 }
584
585 /// Should we continue evaluation as much as possible after encountering a
586 /// construct which can't be folded?
keepEvaluatingAfterFailure__anon383178e60111::EvalInfo587 bool keepEvaluatingAfterFailure() {
588 // Should return true in IntOverflowCheckMode, so that we check for
589 // overflow even if some subexpressions can't be evaluated as constants.
590 return StepsLeft && (IntOverflowCheckMode ||
591 (CheckingPotentialConstantExpression &&
592 EvalStatus.Diag && EvalStatus.Diag->empty()));
593 }
594 };
595
596 /// Object used to treat all foldable expressions as constant expressions.
597 struct FoldConstant {
598 bool Enabled;
599
FoldConstant__anon383178e60111::FoldConstant600 explicit FoldConstant(EvalInfo &Info)
601 : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
602 !Info.EvalStatus.HasSideEffects) {
603 }
604 // Treat the value we've computed since this object was created as constant.
Fold__anon383178e60111::FoldConstant605 void Fold(EvalInfo &Info) {
606 if (Enabled && !Info.EvalStatus.Diag->empty() &&
607 !Info.EvalStatus.HasSideEffects)
608 Info.EvalStatus.Diag->clear();
609 }
610 };
611
612 /// RAII object used to suppress diagnostics and side-effects from a
613 /// speculative evaluation.
614 class SpeculativeEvaluationRAII {
615 EvalInfo &Info;
616 Expr::EvalStatus Old;
617
618 public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=0)619 SpeculativeEvaluationRAII(EvalInfo &Info,
620 SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
621 : Info(Info), Old(Info.EvalStatus) {
622 Info.EvalStatus.Diag = NewDiag;
623 }
~SpeculativeEvaluationRAII()624 ~SpeculativeEvaluationRAII() {
625 Info.EvalStatus = Old;
626 }
627 };
628
629 /// RAII object wrapping a full-expression or block scope, and handling
630 /// the ending of the lifetime of temporaries created within it.
631 template<bool IsFullExpression>
632 class ScopeRAII {
633 EvalInfo &Info;
634 unsigned OldStackSize;
635 public:
ScopeRAII(EvalInfo & Info)636 ScopeRAII(EvalInfo &Info)
637 : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()638 ~ScopeRAII() {
639 // Body moved to a static method to encourage the compiler to inline away
640 // instances of this class.
641 cleanup(Info, OldStackSize);
642 }
643 private:
cleanup(EvalInfo & Info,unsigned OldStackSize)644 static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
645 unsigned NewEnd = OldStackSize;
646 for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
647 I != N; ++I) {
648 if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
649 // Full-expression cleanup of a lifetime-extended temporary: nothing
650 // to do, just move this cleanup to the right place in the stack.
651 std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
652 ++NewEnd;
653 } else {
654 // End the lifetime of the object.
655 Info.CleanupStack[I].endLifetime();
656 }
657 }
658 Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
659 Info.CleanupStack.end());
660 }
661 };
662 typedef ScopeRAII<false> BlockScopeRAII;
663 typedef ScopeRAII<true> FullExpressionRAII;
664 }
665
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)666 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
667 CheckSubobjectKind CSK) {
668 if (Invalid)
669 return false;
670 if (isOnePastTheEnd()) {
671 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
672 << CSK;
673 setInvalid();
674 return false;
675 }
676 return true;
677 }
678
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)679 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
680 const Expr *E, uint64_t N) {
681 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
682 Info.CCEDiag(E, diag::note_constexpr_array_index)
683 << static_cast<int>(N) << /*array*/ 0
684 << static_cast<unsigned>(MostDerivedArraySize);
685 else
686 Info.CCEDiag(E, diag::note_constexpr_array_index)
687 << static_cast<int>(N) << /*non-array*/ 1;
688 setInvalid();
689 }
690
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)691 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
692 const FunctionDecl *Callee, const LValue *This,
693 APValue *Arguments)
694 : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
695 Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
696 Info.CurrentCall = this;
697 ++Info.CallStackDepth;
698 }
699
~CallStackFrame()700 CallStackFrame::~CallStackFrame() {
701 assert(Info.CurrentCall == this && "calls retired out of order");
702 --Info.CallStackDepth;
703 Info.CurrentCall = Caller;
704 }
705
createTemporary(const void * Key,bool IsLifetimeExtended)706 APValue &CallStackFrame::createTemporary(const void *Key,
707 bool IsLifetimeExtended) {
708 APValue &Result = Temporaries[Key];
709 assert(Result.isUninit() && "temporary created multiple times");
710 Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
711 return Result;
712 }
713
714 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
715
addCallStack(unsigned Limit)716 void EvalInfo::addCallStack(unsigned Limit) {
717 // Determine which calls to skip, if any.
718 unsigned ActiveCalls = CallStackDepth - 1;
719 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
720 if (Limit && Limit < ActiveCalls) {
721 SkipStart = Limit / 2 + Limit % 2;
722 SkipEnd = ActiveCalls - Limit / 2;
723 }
724
725 // Walk the call stack and add the diagnostics.
726 unsigned CallIdx = 0;
727 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
728 Frame = Frame->Caller, ++CallIdx) {
729 // Skip this call?
730 if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
731 if (CallIdx == SkipStart) {
732 // Note that we're skipping calls.
733 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
734 << unsigned(ActiveCalls - Limit);
735 }
736 continue;
737 }
738
739 SmallVector<char, 128> Buffer;
740 llvm::raw_svector_ostream Out(Buffer);
741 describeCall(Frame, Out);
742 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
743 }
744 }
745
746 namespace {
747 struct ComplexValue {
748 private:
749 bool IsInt;
750
751 public:
752 APSInt IntReal, IntImag;
753 APFloat FloatReal, FloatImag;
754
ComplexValue__anon383178e60211::ComplexValue755 ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
756
makeComplexFloat__anon383178e60211::ComplexValue757 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon383178e60211::ComplexValue758 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon383178e60211::ComplexValue759 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon383178e60211::ComplexValue760 APFloat &getComplexFloatImag() { return FloatImag; }
761
makeComplexInt__anon383178e60211::ComplexValue762 void makeComplexInt() { IsInt = true; }
isComplexInt__anon383178e60211::ComplexValue763 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon383178e60211::ComplexValue764 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon383178e60211::ComplexValue765 APSInt &getComplexIntImag() { return IntImag; }
766
moveInto__anon383178e60211::ComplexValue767 void moveInto(APValue &v) const {
768 if (isComplexFloat())
769 v = APValue(FloatReal, FloatImag);
770 else
771 v = APValue(IntReal, IntImag);
772 }
setFrom__anon383178e60211::ComplexValue773 void setFrom(const APValue &v) {
774 assert(v.isComplexFloat() || v.isComplexInt());
775 if (v.isComplexFloat()) {
776 makeComplexFloat();
777 FloatReal = v.getComplexFloatReal();
778 FloatImag = v.getComplexFloatImag();
779 } else {
780 makeComplexInt();
781 IntReal = v.getComplexIntReal();
782 IntImag = v.getComplexIntImag();
783 }
784 }
785 };
786
787 struct LValue {
788 APValue::LValueBase Base;
789 CharUnits Offset;
790 unsigned CallIndex;
791 SubobjectDesignator Designator;
792
getLValueBase__anon383178e60211::LValue793 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon383178e60211::LValue794 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon383178e60211::LValue795 const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon383178e60211::LValue796 unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon383178e60211::LValue797 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon383178e60211::LValue798 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
799
moveInto__anon383178e60211::LValue800 void moveInto(APValue &V) const {
801 if (Designator.Invalid)
802 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
803 else
804 V = APValue(Base, Offset, Designator.Entries,
805 Designator.IsOnePastTheEnd, CallIndex);
806 }
setFrom__anon383178e60211::LValue807 void setFrom(ASTContext &Ctx, const APValue &V) {
808 assert(V.isLValue());
809 Base = V.getLValueBase();
810 Offset = V.getLValueOffset();
811 CallIndex = V.getLValueCallIndex();
812 Designator = SubobjectDesignator(Ctx, V);
813 }
814
set__anon383178e60211::LValue815 void set(APValue::LValueBase B, unsigned I = 0) {
816 Base = B;
817 Offset = CharUnits::Zero();
818 CallIndex = I;
819 Designator = SubobjectDesignator(getType(B));
820 }
821
822 // Check that this LValue is not based on a null pointer. If it is, produce
823 // a diagnostic and mark the designator as invalid.
checkNullPointer__anon383178e60211::LValue824 bool checkNullPointer(EvalInfo &Info, const Expr *E,
825 CheckSubobjectKind CSK) {
826 if (Designator.Invalid)
827 return false;
828 if (!Base) {
829 Info.CCEDiag(E, diag::note_constexpr_null_subobject)
830 << CSK;
831 Designator.setInvalid();
832 return false;
833 }
834 return true;
835 }
836
837 // Check this LValue refers to an object. If not, set the designator to be
838 // invalid and emit a diagnostic.
checkSubobject__anon383178e60211::LValue839 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
840 // Outside C++11, do not build a designator referring to a subobject of
841 // any object: we won't use such a designator for anything.
842 if (!Info.getLangOpts().CPlusPlus11)
843 Designator.setInvalid();
844 return checkNullPointer(Info, E, CSK) &&
845 Designator.checkSubobject(Info, E, CSK);
846 }
847
addDecl__anon383178e60211::LValue848 void addDecl(EvalInfo &Info, const Expr *E,
849 const Decl *D, bool Virtual = false) {
850 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
851 Designator.addDeclUnchecked(D, Virtual);
852 }
addArray__anon383178e60211::LValue853 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
854 if (checkSubobject(Info, E, CSK_ArrayToPointer))
855 Designator.addArrayUnchecked(CAT);
856 }
addComplex__anon383178e60211::LValue857 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
858 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
859 Designator.addComplexUnchecked(EltTy, Imag);
860 }
adjustIndex__anon383178e60211::LValue861 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
862 if (checkNullPointer(Info, E, CSK_ArrayIndex))
863 Designator.adjustIndex(Info, E, N);
864 }
865 };
866
867 struct MemberPtr {
MemberPtr__anon383178e60211::MemberPtr868 MemberPtr() {}
MemberPtr__anon383178e60211::MemberPtr869 explicit MemberPtr(const ValueDecl *Decl) :
870 DeclAndIsDerivedMember(Decl, false), Path() {}
871
872 /// The member or (direct or indirect) field referred to by this member
873 /// pointer, or 0 if this is a null member pointer.
getDecl__anon383178e60211::MemberPtr874 const ValueDecl *getDecl() const {
875 return DeclAndIsDerivedMember.getPointer();
876 }
877 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon383178e60211::MemberPtr878 bool isDerivedMember() const {
879 return DeclAndIsDerivedMember.getInt();
880 }
881 /// Get the class which the declaration actually lives in.
getContainingRecord__anon383178e60211::MemberPtr882 const CXXRecordDecl *getContainingRecord() const {
883 return cast<CXXRecordDecl>(
884 DeclAndIsDerivedMember.getPointer()->getDeclContext());
885 }
886
moveInto__anon383178e60211::MemberPtr887 void moveInto(APValue &V) const {
888 V = APValue(getDecl(), isDerivedMember(), Path);
889 }
setFrom__anon383178e60211::MemberPtr890 void setFrom(const APValue &V) {
891 assert(V.isMemberPointer());
892 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
893 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
894 Path.clear();
895 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
896 Path.insert(Path.end(), P.begin(), P.end());
897 }
898
899 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
900 /// whether the member is a member of some class derived from the class type
901 /// of the member pointer.
902 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
903 /// Path - The path of base/derived classes from the member declaration's
904 /// class (exclusive) to the class type of the member pointer (inclusive).
905 SmallVector<const CXXRecordDecl*, 4> Path;
906
907 /// Perform a cast towards the class of the Decl (either up or down the
908 /// hierarchy).
castBack__anon383178e60211::MemberPtr909 bool castBack(const CXXRecordDecl *Class) {
910 assert(!Path.empty());
911 const CXXRecordDecl *Expected;
912 if (Path.size() >= 2)
913 Expected = Path[Path.size() - 2];
914 else
915 Expected = getContainingRecord();
916 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
917 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
918 // if B does not contain the original member and is not a base or
919 // derived class of the class containing the original member, the result
920 // of the cast is undefined.
921 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
922 // (D::*). We consider that to be a language defect.
923 return false;
924 }
925 Path.pop_back();
926 return true;
927 }
928 /// Perform a base-to-derived member pointer cast.
castToDerived__anon383178e60211::MemberPtr929 bool castToDerived(const CXXRecordDecl *Derived) {
930 if (!getDecl())
931 return true;
932 if (!isDerivedMember()) {
933 Path.push_back(Derived);
934 return true;
935 }
936 if (!castBack(Derived))
937 return false;
938 if (Path.empty())
939 DeclAndIsDerivedMember.setInt(false);
940 return true;
941 }
942 /// Perform a derived-to-base member pointer cast.
castToBase__anon383178e60211::MemberPtr943 bool castToBase(const CXXRecordDecl *Base) {
944 if (!getDecl())
945 return true;
946 if (Path.empty())
947 DeclAndIsDerivedMember.setInt(true);
948 if (isDerivedMember()) {
949 Path.push_back(Base);
950 return true;
951 }
952 return castBack(Base);
953 }
954 };
955
956 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)957 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
958 if (!LHS.getDecl() || !RHS.getDecl())
959 return !LHS.getDecl() && !RHS.getDecl();
960 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
961 return false;
962 return LHS.Path == RHS.Path;
963 }
964 }
965
966 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
967 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
968 const LValue &This, const Expr *E,
969 bool AllowNonLiteralTypes = false);
970 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
971 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
972 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
973 EvalInfo &Info);
974 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
975 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
976 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
977 EvalInfo &Info);
978 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
979 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
980 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
981
982 //===----------------------------------------------------------------------===//
983 // Misc utilities
984 //===----------------------------------------------------------------------===//
985
986 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)987 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
988 unsigned ArgIndex = 0;
989 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
990 !isa<CXXConstructorDecl>(Frame->Callee) &&
991 cast<CXXMethodDecl>(Frame->Callee)->isInstance();
992
993 if (!IsMemberCall)
994 Out << *Frame->Callee << '(';
995
996 if (Frame->This && IsMemberCall) {
997 APValue Val;
998 Frame->This->moveInto(Val);
999 Val.printPretty(Out, Frame->Info.Ctx,
1000 Frame->This->Designator.MostDerivedType);
1001 // FIXME: Add parens around Val if needed.
1002 Out << "->" << *Frame->Callee << '(';
1003 IsMemberCall = false;
1004 }
1005
1006 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1007 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1008 if (ArgIndex > (unsigned)IsMemberCall)
1009 Out << ", ";
1010
1011 const ParmVarDecl *Param = *I;
1012 const APValue &Arg = Frame->Arguments[ArgIndex];
1013 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1014
1015 if (ArgIndex == 0 && IsMemberCall)
1016 Out << "->" << *Frame->Callee << '(';
1017 }
1018
1019 Out << ')';
1020 }
1021
1022 /// Evaluate an expression to see if it had side-effects, and discard its
1023 /// result.
1024 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1025 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1026 APValue Scratch;
1027 if (!Evaluate(Scratch, Info, E)) {
1028 Info.EvalStatus.HasSideEffects = true;
1029 return Info.keepEvaluatingAfterFailure();
1030 }
1031 return true;
1032 }
1033
1034 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1035 /// return its existing value.
getExtValue(const APSInt & Value)1036 static int64_t getExtValue(const APSInt &Value) {
1037 return Value.isSigned() ? Value.getSExtValue()
1038 : static_cast<int64_t>(Value.getZExtValue());
1039 }
1040
1041 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1042 static bool IsStringLiteralCall(const CallExpr *E) {
1043 unsigned Builtin = E->isBuiltinCall();
1044 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1045 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1046 }
1047
IsGlobalLValue(APValue::LValueBase B)1048 static bool IsGlobalLValue(APValue::LValueBase B) {
1049 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1050 // constant expression of pointer type that evaluates to...
1051
1052 // ... a null pointer value, or a prvalue core constant expression of type
1053 // std::nullptr_t.
1054 if (!B) return true;
1055
1056 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1057 // ... the address of an object with static storage duration,
1058 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1059 return VD->hasGlobalStorage();
1060 // ... the address of a function,
1061 return isa<FunctionDecl>(D);
1062 }
1063
1064 const Expr *E = B.get<const Expr*>();
1065 switch (E->getStmtClass()) {
1066 default:
1067 return false;
1068 case Expr::CompoundLiteralExprClass: {
1069 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1070 return CLE->isFileScope() && CLE->isLValue();
1071 }
1072 case Expr::MaterializeTemporaryExprClass:
1073 // A materialized temporary might have been lifetime-extended to static
1074 // storage duration.
1075 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1076 // A string literal has static storage duration.
1077 case Expr::StringLiteralClass:
1078 case Expr::PredefinedExprClass:
1079 case Expr::ObjCStringLiteralClass:
1080 case Expr::ObjCEncodeExprClass:
1081 case Expr::CXXTypeidExprClass:
1082 case Expr::CXXUuidofExprClass:
1083 return true;
1084 case Expr::CallExprClass:
1085 return IsStringLiteralCall(cast<CallExpr>(E));
1086 // For GCC compatibility, &&label has static storage duration.
1087 case Expr::AddrLabelExprClass:
1088 return true;
1089 // A Block literal expression may be used as the initialization value for
1090 // Block variables at global or local static scope.
1091 case Expr::BlockExprClass:
1092 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1093 case Expr::ImplicitValueInitExprClass:
1094 // FIXME:
1095 // We can never form an lvalue with an implicit value initialization as its
1096 // base through expression evaluation, so these only appear in one case: the
1097 // implicit variable declaration we invent when checking whether a constexpr
1098 // constructor can produce a constant expression. We must assume that such
1099 // an expression might be a global lvalue.
1100 return true;
1101 }
1102 }
1103
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1104 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1105 assert(Base && "no location for a null lvalue");
1106 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1107 if (VD)
1108 Info.Note(VD->getLocation(), diag::note_declared_at);
1109 else
1110 Info.Note(Base.get<const Expr*>()->getExprLoc(),
1111 diag::note_constexpr_temporary_here);
1112 }
1113
1114 /// Check that this reference or pointer core constant expression is a valid
1115 /// value for an address or reference constant expression. Return true if we
1116 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1117 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1118 QualType Type, const LValue &LVal) {
1119 bool IsReferenceType = Type->isReferenceType();
1120
1121 APValue::LValueBase Base = LVal.getLValueBase();
1122 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1123
1124 // Check that the object is a global. Note that the fake 'this' object we
1125 // manufacture when checking potential constant expressions is conservatively
1126 // assumed to be global here.
1127 if (!IsGlobalLValue(Base)) {
1128 if (Info.getLangOpts().CPlusPlus11) {
1129 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1130 Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1131 << IsReferenceType << !Designator.Entries.empty()
1132 << !!VD << VD;
1133 NoteLValueLocation(Info, Base);
1134 } else {
1135 Info.Diag(Loc);
1136 }
1137 // Don't allow references to temporaries to escape.
1138 return false;
1139 }
1140 assert((Info.CheckingPotentialConstantExpression ||
1141 LVal.getLValueCallIndex() == 0) &&
1142 "have call index for global lvalue");
1143
1144 // Check if this is a thread-local variable.
1145 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1146 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1147 if (Var->getTLSKind())
1148 return false;
1149 }
1150 }
1151
1152 // Allow address constant expressions to be past-the-end pointers. This is
1153 // an extension: the standard requires them to point to an object.
1154 if (!IsReferenceType)
1155 return true;
1156
1157 // A reference constant expression must refer to an object.
1158 if (!Base) {
1159 // FIXME: diagnostic
1160 Info.CCEDiag(Loc);
1161 return true;
1162 }
1163
1164 // Does this refer one past the end of some object?
1165 if (Designator.isOnePastTheEnd()) {
1166 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1167 Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1168 << !Designator.Entries.empty() << !!VD << VD;
1169 NoteLValueLocation(Info, Base);
1170 }
1171
1172 return true;
1173 }
1174
1175 /// Check that this core constant expression is of literal type, and if not,
1176 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=0)1177 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1178 const LValue *This = 0) {
1179 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1180 return true;
1181
1182 // C++1y: A constant initializer for an object o [...] may also invoke
1183 // constexpr constructors for o and its subobjects even if those objects
1184 // are of non-literal class types.
1185 if (Info.getLangOpts().CPlusPlus1y && This &&
1186 Info.EvaluatingDecl == This->getLValueBase())
1187 return true;
1188
1189 // Prvalue constant expressions must be of literal types.
1190 if (Info.getLangOpts().CPlusPlus11)
1191 Info.Diag(E, diag::note_constexpr_nonliteral)
1192 << E->getType();
1193 else
1194 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1195 return false;
1196 }
1197
1198 /// Check that this core constant expression value is a valid value for a
1199 /// constant expression. If not, report an appropriate diagnostic. Does not
1200 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1201 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1202 QualType Type, const APValue &Value) {
1203 if (Value.isUninit()) {
1204 Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1205 << true << Type;
1206 return false;
1207 }
1208
1209 // Core issue 1454: For a literal constant expression of array or class type,
1210 // each subobject of its value shall have been initialized by a constant
1211 // expression.
1212 if (Value.isArray()) {
1213 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1214 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1215 if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1216 Value.getArrayInitializedElt(I)))
1217 return false;
1218 }
1219 if (!Value.hasArrayFiller())
1220 return true;
1221 return CheckConstantExpression(Info, DiagLoc, EltTy,
1222 Value.getArrayFiller());
1223 }
1224 if (Value.isUnion() && Value.getUnionField()) {
1225 return CheckConstantExpression(Info, DiagLoc,
1226 Value.getUnionField()->getType(),
1227 Value.getUnionValue());
1228 }
1229 if (Value.isStruct()) {
1230 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1231 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1232 unsigned BaseIndex = 0;
1233 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1234 End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1235 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1236 Value.getStructBase(BaseIndex)))
1237 return false;
1238 }
1239 }
1240 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1241 I != E; ++I) {
1242 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1243 Value.getStructField(I->getFieldIndex())))
1244 return false;
1245 }
1246 }
1247
1248 if (Value.isLValue()) {
1249 LValue LVal;
1250 LVal.setFrom(Info.Ctx, Value);
1251 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1252 }
1253
1254 // Everything else is fine.
1255 return true;
1256 }
1257
GetLValueBaseDecl(const LValue & LVal)1258 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1259 return LVal.Base.dyn_cast<const ValueDecl*>();
1260 }
1261
IsLiteralLValue(const LValue & Value)1262 static bool IsLiteralLValue(const LValue &Value) {
1263 if (Value.CallIndex)
1264 return false;
1265 const Expr *E = Value.Base.dyn_cast<const Expr*>();
1266 return E && !isa<MaterializeTemporaryExpr>(E);
1267 }
1268
IsWeakLValue(const LValue & Value)1269 static bool IsWeakLValue(const LValue &Value) {
1270 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1271 return Decl && Decl->isWeak();
1272 }
1273
EvalPointerValueAsBool(const APValue & Value,bool & Result)1274 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1275 // A null base expression indicates a null pointer. These are always
1276 // evaluatable, and they are false unless the offset is zero.
1277 if (!Value.getLValueBase()) {
1278 Result = !Value.getLValueOffset().isZero();
1279 return true;
1280 }
1281
1282 // We have a non-null base. These are generally known to be true, but if it's
1283 // a weak declaration it can be null at runtime.
1284 Result = true;
1285 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1286 return !Decl || !Decl->isWeak();
1287 }
1288
HandleConversionToBool(const APValue & Val,bool & Result)1289 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1290 switch (Val.getKind()) {
1291 case APValue::Uninitialized:
1292 return false;
1293 case APValue::Int:
1294 Result = Val.getInt().getBoolValue();
1295 return true;
1296 case APValue::Float:
1297 Result = !Val.getFloat().isZero();
1298 return true;
1299 case APValue::ComplexInt:
1300 Result = Val.getComplexIntReal().getBoolValue() ||
1301 Val.getComplexIntImag().getBoolValue();
1302 return true;
1303 case APValue::ComplexFloat:
1304 Result = !Val.getComplexFloatReal().isZero() ||
1305 !Val.getComplexFloatImag().isZero();
1306 return true;
1307 case APValue::LValue:
1308 return EvalPointerValueAsBool(Val, Result);
1309 case APValue::MemberPointer:
1310 Result = Val.getMemberPointerDecl();
1311 return true;
1312 case APValue::Vector:
1313 case APValue::Array:
1314 case APValue::Struct:
1315 case APValue::Union:
1316 case APValue::AddrLabelDiff:
1317 return false;
1318 }
1319
1320 llvm_unreachable("unknown APValue kind");
1321 }
1322
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1323 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1324 EvalInfo &Info) {
1325 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1326 APValue Val;
1327 if (!Evaluate(Val, Info, E))
1328 return false;
1329 return HandleConversionToBool(Val, Result);
1330 }
1331
1332 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1333 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1334 const T &SrcValue, QualType DestType) {
1335 Info.CCEDiag(E, diag::note_constexpr_overflow)
1336 << SrcValue << DestType;
1337 }
1338
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1339 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1340 QualType SrcType, const APFloat &Value,
1341 QualType DestType, APSInt &Result) {
1342 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1343 // Determine whether we are converting to unsigned or signed.
1344 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1345
1346 Result = APSInt(DestWidth, !DestSigned);
1347 bool ignored;
1348 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1349 & APFloat::opInvalidOp)
1350 HandleOverflow(Info, E, Value, DestType);
1351 return true;
1352 }
1353
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1354 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1355 QualType SrcType, QualType DestType,
1356 APFloat &Result) {
1357 APFloat Value = Result;
1358 bool ignored;
1359 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1360 APFloat::rmNearestTiesToEven, &ignored)
1361 & APFloat::opOverflow)
1362 HandleOverflow(Info, E, Value, DestType);
1363 return true;
1364 }
1365
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1366 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1367 QualType DestType, QualType SrcType,
1368 APSInt &Value) {
1369 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1370 APSInt Result = Value;
1371 // Figure out if this is a truncate, extend or noop cast.
1372 // If the input is signed, do a sign extend, noop, or truncate.
1373 Result = Result.extOrTrunc(DestWidth);
1374 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1375 return Result;
1376 }
1377
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1378 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1379 QualType SrcType, const APSInt &Value,
1380 QualType DestType, APFloat &Result) {
1381 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1382 if (Result.convertFromAPInt(Value, Value.isSigned(),
1383 APFloat::rmNearestTiesToEven)
1384 & APFloat::opOverflow)
1385 HandleOverflow(Info, E, Value, DestType);
1386 return true;
1387 }
1388
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1389 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1390 APValue &Value, const FieldDecl *FD) {
1391 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1392
1393 if (!Value.isInt()) {
1394 // Trying to store a pointer-cast-to-integer into a bitfield.
1395 // FIXME: In this case, we should provide the diagnostic for casting
1396 // a pointer to an integer.
1397 assert(Value.isLValue() && "integral value neither int nor lvalue?");
1398 Info.Diag(E);
1399 return false;
1400 }
1401
1402 APSInt &Int = Value.getInt();
1403 unsigned OldBitWidth = Int.getBitWidth();
1404 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1405 if (NewBitWidth < OldBitWidth)
1406 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1407 return true;
1408 }
1409
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1410 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1411 llvm::APInt &Res) {
1412 APValue SVal;
1413 if (!Evaluate(SVal, Info, E))
1414 return false;
1415 if (SVal.isInt()) {
1416 Res = SVal.getInt();
1417 return true;
1418 }
1419 if (SVal.isFloat()) {
1420 Res = SVal.getFloat().bitcastToAPInt();
1421 return true;
1422 }
1423 if (SVal.isVector()) {
1424 QualType VecTy = E->getType();
1425 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1426 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1427 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1428 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1429 Res = llvm::APInt::getNullValue(VecSize);
1430 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1431 APValue &Elt = SVal.getVectorElt(i);
1432 llvm::APInt EltAsInt;
1433 if (Elt.isInt()) {
1434 EltAsInt = Elt.getInt();
1435 } else if (Elt.isFloat()) {
1436 EltAsInt = Elt.getFloat().bitcastToAPInt();
1437 } else {
1438 // Don't try to handle vectors of anything other than int or float
1439 // (not sure if it's possible to hit this case).
1440 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1441 return false;
1442 }
1443 unsigned BaseEltSize = EltAsInt.getBitWidth();
1444 if (BigEndian)
1445 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1446 else
1447 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1448 }
1449 return true;
1450 }
1451 // Give up if the input isn't an int, float, or vector. For example, we
1452 // reject "(v4i16)(intptr_t)&a".
1453 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1454 return false;
1455 }
1456
1457 /// Perform the given integer operation, which is known to need at most BitWidth
1458 /// bits, and check for overflow in the original type (if that type was not an
1459 /// unsigned type).
1460 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)1461 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1462 const APSInt &LHS, const APSInt &RHS,
1463 unsigned BitWidth, Operation Op) {
1464 if (LHS.isUnsigned())
1465 return Op(LHS, RHS);
1466
1467 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1468 APSInt Result = Value.trunc(LHS.getBitWidth());
1469 if (Result.extend(BitWidth) != Value) {
1470 if (Info.getIntOverflowCheckMode())
1471 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1472 diag::warn_integer_constant_overflow)
1473 << Result.toString(10) << E->getType();
1474 else
1475 HandleOverflow(Info, E, Value, E->getType());
1476 }
1477 return Result;
1478 }
1479
1480 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1481 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1482 BinaryOperatorKind Opcode, APSInt RHS,
1483 APSInt &Result) {
1484 switch (Opcode) {
1485 default:
1486 Info.Diag(E);
1487 return false;
1488 case BO_Mul:
1489 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1490 std::multiplies<APSInt>());
1491 return true;
1492 case BO_Add:
1493 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1494 std::plus<APSInt>());
1495 return true;
1496 case BO_Sub:
1497 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1498 std::minus<APSInt>());
1499 return true;
1500 case BO_And: Result = LHS & RHS; return true;
1501 case BO_Xor: Result = LHS ^ RHS; return true;
1502 case BO_Or: Result = LHS | RHS; return true;
1503 case BO_Div:
1504 case BO_Rem:
1505 if (RHS == 0) {
1506 Info.Diag(E, diag::note_expr_divide_by_zero);
1507 return false;
1508 }
1509 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1510 if (RHS.isNegative() && RHS.isAllOnesValue() &&
1511 LHS.isSigned() && LHS.isMinSignedValue())
1512 HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1513 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1514 return true;
1515 case BO_Shl: {
1516 if (Info.getLangOpts().OpenCL)
1517 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1518 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1519 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1520 RHS.isUnsigned());
1521 else if (RHS.isSigned() && RHS.isNegative()) {
1522 // During constant-folding, a negative shift is an opposite shift. Such
1523 // a shift is not a constant expression.
1524 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1525 RHS = -RHS;
1526 goto shift_right;
1527 }
1528 shift_left:
1529 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1530 // the shifted type.
1531 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1532 if (SA != RHS) {
1533 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1534 << RHS << E->getType() << LHS.getBitWidth();
1535 } else if (LHS.isSigned()) {
1536 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1537 // operand, and must not overflow the corresponding unsigned type.
1538 if (LHS.isNegative())
1539 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1540 else if (LHS.countLeadingZeros() < SA)
1541 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1542 }
1543 Result = LHS << SA;
1544 return true;
1545 }
1546 case BO_Shr: {
1547 if (Info.getLangOpts().OpenCL)
1548 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1549 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1550 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1551 RHS.isUnsigned());
1552 else if (RHS.isSigned() && RHS.isNegative()) {
1553 // During constant-folding, a negative shift is an opposite shift. Such a
1554 // shift is not a constant expression.
1555 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1556 RHS = -RHS;
1557 goto shift_left;
1558 }
1559 shift_right:
1560 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1561 // shifted type.
1562 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1563 if (SA != RHS)
1564 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1565 << RHS << E->getType() << LHS.getBitWidth();
1566 Result = LHS >> SA;
1567 return true;
1568 }
1569
1570 case BO_LT: Result = LHS < RHS; return true;
1571 case BO_GT: Result = LHS > RHS; return true;
1572 case BO_LE: Result = LHS <= RHS; return true;
1573 case BO_GE: Result = LHS >= RHS; return true;
1574 case BO_EQ: Result = LHS == RHS; return true;
1575 case BO_NE: Result = LHS != RHS; return true;
1576 }
1577 }
1578
1579 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1580 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1581 APFloat &LHS, BinaryOperatorKind Opcode,
1582 const APFloat &RHS) {
1583 switch (Opcode) {
1584 default:
1585 Info.Diag(E);
1586 return false;
1587 case BO_Mul:
1588 LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1589 break;
1590 case BO_Add:
1591 LHS.add(RHS, APFloat::rmNearestTiesToEven);
1592 break;
1593 case BO_Sub:
1594 LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1595 break;
1596 case BO_Div:
1597 LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1598 break;
1599 }
1600
1601 if (LHS.isInfinity() || LHS.isNaN())
1602 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1603 return true;
1604 }
1605
1606 /// Cast an lvalue referring to a base subobject to a derived class, by
1607 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1608 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1609 const RecordDecl *TruncatedType,
1610 unsigned TruncatedElements) {
1611 SubobjectDesignator &D = Result.Designator;
1612
1613 // Check we actually point to a derived class object.
1614 if (TruncatedElements == D.Entries.size())
1615 return true;
1616 assert(TruncatedElements >= D.MostDerivedPathLength &&
1617 "not casting to a derived class");
1618 if (!Result.checkSubobject(Info, E, CSK_Derived))
1619 return false;
1620
1621 // Truncate the path to the subobject, and remove any derived-to-base offsets.
1622 const RecordDecl *RD = TruncatedType;
1623 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1624 if (RD->isInvalidDecl()) return false;
1625 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1626 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1627 if (isVirtualBaseClass(D.Entries[I]))
1628 Result.Offset -= Layout.getVBaseClassOffset(Base);
1629 else
1630 Result.Offset -= Layout.getBaseClassOffset(Base);
1631 RD = Base;
1632 }
1633 D.Entries.resize(TruncatedElements);
1634 return true;
1635 }
1636
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=0)1637 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1638 const CXXRecordDecl *Derived,
1639 const CXXRecordDecl *Base,
1640 const ASTRecordLayout *RL = 0) {
1641 if (!RL) {
1642 if (Derived->isInvalidDecl()) return false;
1643 RL = &Info.Ctx.getASTRecordLayout(Derived);
1644 }
1645
1646 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1647 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1648 return true;
1649 }
1650
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1651 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1652 const CXXRecordDecl *DerivedDecl,
1653 const CXXBaseSpecifier *Base) {
1654 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1655
1656 if (!Base->isVirtual())
1657 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1658
1659 SubobjectDesignator &D = Obj.Designator;
1660 if (D.Invalid)
1661 return false;
1662
1663 // Extract most-derived object and corresponding type.
1664 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1665 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1666 return false;
1667
1668 // Find the virtual base class.
1669 if (DerivedDecl->isInvalidDecl()) return false;
1670 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1671 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1672 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1673 return true;
1674 }
1675
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1676 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1677 QualType Type, LValue &Result) {
1678 for (CastExpr::path_const_iterator PathI = E->path_begin(),
1679 PathE = E->path_end();
1680 PathI != PathE; ++PathI) {
1681 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1682 *PathI))
1683 return false;
1684 Type = (*PathI)->getType();
1685 }
1686 return true;
1687 }
1688
1689 /// Update LVal to refer to the given field, which must be a member of the type
1690 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=0)1691 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1692 const FieldDecl *FD,
1693 const ASTRecordLayout *RL = 0) {
1694 if (!RL) {
1695 if (FD->getParent()->isInvalidDecl()) return false;
1696 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1697 }
1698
1699 unsigned I = FD->getFieldIndex();
1700 LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1701 LVal.addDecl(Info, E, FD);
1702 return true;
1703 }
1704
1705 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1706 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1707 LValue &LVal,
1708 const IndirectFieldDecl *IFD) {
1709 for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1710 CE = IFD->chain_end(); C != CE; ++C)
1711 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1712 return false;
1713 return true;
1714 }
1715
1716 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1717 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1718 QualType Type, CharUnits &Size) {
1719 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1720 // extension.
1721 if (Type->isVoidType() || Type->isFunctionType()) {
1722 Size = CharUnits::One();
1723 return true;
1724 }
1725
1726 if (!Type->isConstantSizeType()) {
1727 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1728 // FIXME: Better diagnostic.
1729 Info.Diag(Loc);
1730 return false;
1731 }
1732
1733 Size = Info.Ctx.getTypeSizeInChars(Type);
1734 return true;
1735 }
1736
1737 /// Update a pointer value to model pointer arithmetic.
1738 /// \param Info - Information about the ongoing evaluation.
1739 /// \param E - The expression being evaluated, for diagnostic purposes.
1740 /// \param LVal - The pointer value to be updated.
1741 /// \param EltTy - The pointee type represented by LVal.
1742 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1743 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1744 LValue &LVal, QualType EltTy,
1745 int64_t Adjustment) {
1746 CharUnits SizeOfPointee;
1747 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1748 return false;
1749
1750 // Compute the new offset in the appropriate width.
1751 LVal.Offset += Adjustment * SizeOfPointee;
1752 LVal.adjustIndex(Info, E, Adjustment);
1753 return true;
1754 }
1755
1756 /// Update an lvalue to refer to a component of a complex number.
1757 /// \param Info - Information about the ongoing evaluation.
1758 /// \param LVal - The lvalue to be updated.
1759 /// \param EltTy - The complex number's component type.
1760 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1761 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1762 LValue &LVal, QualType EltTy,
1763 bool Imag) {
1764 if (Imag) {
1765 CharUnits SizeOfComponent;
1766 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1767 return false;
1768 LVal.Offset += SizeOfComponent;
1769 }
1770 LVal.addComplex(Info, E, EltTy, Imag);
1771 return true;
1772 }
1773
1774 /// Try to evaluate the initializer for a variable declaration.
1775 ///
1776 /// \param Info Information about the ongoing evaluation.
1777 /// \param E An expression to be used when printing diagnostics.
1778 /// \param VD The variable whose initializer should be obtained.
1779 /// \param Frame The frame in which the variable was created. Must be null
1780 /// if this variable is not local to the evaluation.
1781 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)1782 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1783 const VarDecl *VD, CallStackFrame *Frame,
1784 APValue *&Result) {
1785 // If this is a parameter to an active constexpr function call, perform
1786 // argument substitution.
1787 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1788 // Assume arguments of a potential constant expression are unknown
1789 // constant expressions.
1790 if (Info.CheckingPotentialConstantExpression)
1791 return false;
1792 if (!Frame || !Frame->Arguments) {
1793 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1794 return false;
1795 }
1796 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1797 return true;
1798 }
1799
1800 // If this is a local variable, dig out its value.
1801 if (Frame) {
1802 Result = Frame->getTemporary(VD);
1803 assert(Result && "missing value for local variable");
1804 return true;
1805 }
1806
1807 // Dig out the initializer, and use the declaration which it's attached to.
1808 const Expr *Init = VD->getAnyInitializer(VD);
1809 if (!Init || Init->isValueDependent()) {
1810 // If we're checking a potential constant expression, the variable could be
1811 // initialized later.
1812 if (!Info.CheckingPotentialConstantExpression)
1813 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1814 return false;
1815 }
1816
1817 // If we're currently evaluating the initializer of this declaration, use that
1818 // in-flight value.
1819 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1820 Result = Info.EvaluatingDeclValue;
1821 return true;
1822 }
1823
1824 // Never evaluate the initializer of a weak variable. We can't be sure that
1825 // this is the definition which will be used.
1826 if (VD->isWeak()) {
1827 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1828 return false;
1829 }
1830
1831 // Check that we can fold the initializer. In C++, we will have already done
1832 // this in the cases where it matters for conformance.
1833 SmallVector<PartialDiagnosticAt, 8> Notes;
1834 if (!VD->evaluateValue(Notes)) {
1835 Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1836 Notes.size() + 1) << VD;
1837 Info.Note(VD->getLocation(), diag::note_declared_at);
1838 Info.addNotes(Notes);
1839 return false;
1840 } else if (!VD->checkInitIsICE()) {
1841 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1842 Notes.size() + 1) << VD;
1843 Info.Note(VD->getLocation(), diag::note_declared_at);
1844 Info.addNotes(Notes);
1845 }
1846
1847 Result = VD->getEvaluatedValue();
1848 return true;
1849 }
1850
IsConstNonVolatile(QualType T)1851 static bool IsConstNonVolatile(QualType T) {
1852 Qualifiers Quals = T.getQualifiers();
1853 return Quals.hasConst() && !Quals.hasVolatile();
1854 }
1855
1856 /// Get the base index of the given base class within an APValue representing
1857 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)1858 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1859 const CXXRecordDecl *Base) {
1860 Base = Base->getCanonicalDecl();
1861 unsigned Index = 0;
1862 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1863 E = Derived->bases_end(); I != E; ++I, ++Index) {
1864 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1865 return Index;
1866 }
1867
1868 llvm_unreachable("base class missing from derived class's bases list");
1869 }
1870
1871 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)1872 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1873 uint64_t Index) {
1874 // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1875 const StringLiteral *S = cast<StringLiteral>(Lit);
1876 const ConstantArrayType *CAT =
1877 Info.Ctx.getAsConstantArrayType(S->getType());
1878 assert(CAT && "string literal isn't an array");
1879 QualType CharType = CAT->getElementType();
1880 assert(CharType->isIntegerType() && "unexpected character type");
1881
1882 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1883 CharType->isUnsignedIntegerType());
1884 if (Index < S->getLength())
1885 Value = S->getCodeUnit(Index);
1886 return Value;
1887 }
1888
1889 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)1890 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
1891 APValue &Result) {
1892 const StringLiteral *S = cast<StringLiteral>(Lit);
1893 const ConstantArrayType *CAT =
1894 Info.Ctx.getAsConstantArrayType(S->getType());
1895 assert(CAT && "string literal isn't an array");
1896 QualType CharType = CAT->getElementType();
1897 assert(CharType->isIntegerType() && "unexpected character type");
1898
1899 unsigned Elts = CAT->getSize().getZExtValue();
1900 Result = APValue(APValue::UninitArray(),
1901 std::min(S->getLength(), Elts), Elts);
1902 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1903 CharType->isUnsignedIntegerType());
1904 if (Result.hasArrayFiller())
1905 Result.getArrayFiller() = APValue(Value);
1906 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
1907 Value = S->getCodeUnit(I);
1908 Result.getArrayInitializedElt(I) = APValue(Value);
1909 }
1910 }
1911
1912 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)1913 static void expandArray(APValue &Array, unsigned Index) {
1914 unsigned Size = Array.getArraySize();
1915 assert(Index < Size);
1916
1917 // Always at least double the number of elements for which we store a value.
1918 unsigned OldElts = Array.getArrayInitializedElts();
1919 unsigned NewElts = std::max(Index+1, OldElts * 2);
1920 NewElts = std::min(Size, std::max(NewElts, 8u));
1921
1922 // Copy the data across.
1923 APValue NewValue(APValue::UninitArray(), NewElts, Size);
1924 for (unsigned I = 0; I != OldElts; ++I)
1925 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
1926 for (unsigned I = OldElts; I != NewElts; ++I)
1927 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
1928 if (NewValue.hasArrayFiller())
1929 NewValue.getArrayFiller() = Array.getArrayFiller();
1930 Array.swap(NewValue);
1931 }
1932
1933 /// Kinds of access we can perform on an object, for diagnostics.
1934 enum AccessKinds {
1935 AK_Read,
1936 AK_Assign,
1937 AK_Increment,
1938 AK_Decrement
1939 };
1940
1941 /// A handle to a complete object (an object that is not a subobject of
1942 /// another object).
1943 struct CompleteObject {
1944 /// The value of the complete object.
1945 APValue *Value;
1946 /// The type of the complete object.
1947 QualType Type;
1948
CompleteObjectCompleteObject1949 CompleteObject() : Value(0) {}
CompleteObjectCompleteObject1950 CompleteObject(APValue *Value, QualType Type)
1951 : Value(Value), Type(Type) {
1952 assert(Value && "missing value for complete object");
1953 }
1954
operator boolCompleteObject1955 LLVM_EXPLICIT operator bool() const { return Value; }
1956 };
1957
1958 /// Find the designated sub-object of an rvalue.
1959 template<typename SubobjectHandler>
1960 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)1961 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
1962 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
1963 if (Sub.Invalid)
1964 // A diagnostic will have already been produced.
1965 return handler.failed();
1966 if (Sub.isOnePastTheEnd()) {
1967 if (Info.getLangOpts().CPlusPlus11)
1968 Info.Diag(E, diag::note_constexpr_access_past_end)
1969 << handler.AccessKind;
1970 else
1971 Info.Diag(E);
1972 return handler.failed();
1973 }
1974
1975 APValue *O = Obj.Value;
1976 QualType ObjType = Obj.Type;
1977 const FieldDecl *LastField = 0;
1978
1979 // Walk the designator's path to find the subobject.
1980 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
1981 if (O->isUninit()) {
1982 if (!Info.CheckingPotentialConstantExpression)
1983 Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
1984 return handler.failed();
1985 }
1986
1987 if (I == N) {
1988 if (!handler.found(*O, ObjType))
1989 return false;
1990
1991 // If we modified a bit-field, truncate it to the right width.
1992 if (handler.AccessKind != AK_Read &&
1993 LastField && LastField->isBitField() &&
1994 !truncateBitfieldValue(Info, E, *O, LastField))
1995 return false;
1996
1997 return true;
1998 }
1999
2000 LastField = 0;
2001 if (ObjType->isArrayType()) {
2002 // Next subobject is an array element.
2003 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2004 assert(CAT && "vla in literal type?");
2005 uint64_t Index = Sub.Entries[I].ArrayIndex;
2006 if (CAT->getSize().ule(Index)) {
2007 // Note, it should not be possible to form a pointer with a valid
2008 // designator which points more than one past the end of the array.
2009 if (Info.getLangOpts().CPlusPlus11)
2010 Info.Diag(E, diag::note_constexpr_access_past_end)
2011 << handler.AccessKind;
2012 else
2013 Info.Diag(E);
2014 return handler.failed();
2015 }
2016
2017 ObjType = CAT->getElementType();
2018
2019 // An array object is represented as either an Array APValue or as an
2020 // LValue which refers to a string literal.
2021 if (O->isLValue()) {
2022 assert(I == N - 1 && "extracting subobject of character?");
2023 assert(!O->hasLValuePath() || O->getLValuePath().empty());
2024 if (handler.AccessKind != AK_Read)
2025 expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2026 *O);
2027 else
2028 return handler.foundString(*O, ObjType, Index);
2029 }
2030
2031 if (O->getArrayInitializedElts() > Index)
2032 O = &O->getArrayInitializedElt(Index);
2033 else if (handler.AccessKind != AK_Read) {
2034 expandArray(*O, Index);
2035 O = &O->getArrayInitializedElt(Index);
2036 } else
2037 O = &O->getArrayFiller();
2038 } else if (ObjType->isAnyComplexType()) {
2039 // Next subobject is a complex number.
2040 uint64_t Index = Sub.Entries[I].ArrayIndex;
2041 if (Index > 1) {
2042 if (Info.getLangOpts().CPlusPlus11)
2043 Info.Diag(E, diag::note_constexpr_access_past_end)
2044 << handler.AccessKind;
2045 else
2046 Info.Diag(E);
2047 return handler.failed();
2048 }
2049
2050 bool WasConstQualified = ObjType.isConstQualified();
2051 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2052 if (WasConstQualified)
2053 ObjType.addConst();
2054
2055 assert(I == N - 1 && "extracting subobject of scalar?");
2056 if (O->isComplexInt()) {
2057 return handler.found(Index ? O->getComplexIntImag()
2058 : O->getComplexIntReal(), ObjType);
2059 } else {
2060 assert(O->isComplexFloat());
2061 return handler.found(Index ? O->getComplexFloatImag()
2062 : O->getComplexFloatReal(), ObjType);
2063 }
2064 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2065 if (Field->isMutable() && handler.AccessKind == AK_Read) {
2066 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2067 << Field;
2068 Info.Note(Field->getLocation(), diag::note_declared_at);
2069 return handler.failed();
2070 }
2071
2072 // Next subobject is a class, struct or union field.
2073 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2074 if (RD->isUnion()) {
2075 const FieldDecl *UnionField = O->getUnionField();
2076 if (!UnionField ||
2077 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2078 Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2079 << handler.AccessKind << Field << !UnionField << UnionField;
2080 return handler.failed();
2081 }
2082 O = &O->getUnionValue();
2083 } else
2084 O = &O->getStructField(Field->getFieldIndex());
2085
2086 bool WasConstQualified = ObjType.isConstQualified();
2087 ObjType = Field->getType();
2088 if (WasConstQualified && !Field->isMutable())
2089 ObjType.addConst();
2090
2091 if (ObjType.isVolatileQualified()) {
2092 if (Info.getLangOpts().CPlusPlus) {
2093 // FIXME: Include a description of the path to the volatile subobject.
2094 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2095 << handler.AccessKind << 2 << Field;
2096 Info.Note(Field->getLocation(), diag::note_declared_at);
2097 } else {
2098 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2099 }
2100 return handler.failed();
2101 }
2102
2103 LastField = Field;
2104 } else {
2105 // Next subobject is a base class.
2106 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2107 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2108 O = &O->getStructBase(getBaseIndex(Derived, Base));
2109
2110 bool WasConstQualified = ObjType.isConstQualified();
2111 ObjType = Info.Ctx.getRecordType(Base);
2112 if (WasConstQualified)
2113 ObjType.addConst();
2114 }
2115 }
2116 }
2117
2118 namespace {
2119 struct ExtractSubobjectHandler {
2120 EvalInfo &Info;
2121 APValue &Result;
2122
2123 static const AccessKinds AccessKind = AK_Read;
2124
2125 typedef bool result_type;
failed__anon383178e60311::ExtractSubobjectHandler2126 bool failed() { return false; }
found__anon383178e60311::ExtractSubobjectHandler2127 bool found(APValue &Subobj, QualType SubobjType) {
2128 Result = Subobj;
2129 return true;
2130 }
found__anon383178e60311::ExtractSubobjectHandler2131 bool found(APSInt &Value, QualType SubobjType) {
2132 Result = APValue(Value);
2133 return true;
2134 }
found__anon383178e60311::ExtractSubobjectHandler2135 bool found(APFloat &Value, QualType SubobjType) {
2136 Result = APValue(Value);
2137 return true;
2138 }
foundString__anon383178e60311::ExtractSubobjectHandler2139 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2140 Result = APValue(extractStringLiteralCharacter(
2141 Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2142 return true;
2143 }
2144 };
2145 } // end anonymous namespace
2146
2147 const AccessKinds ExtractSubobjectHandler::AccessKind;
2148
2149 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2150 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2151 const CompleteObject &Obj,
2152 const SubobjectDesignator &Sub,
2153 APValue &Result) {
2154 ExtractSubobjectHandler Handler = { Info, Result };
2155 return findSubobject(Info, E, Obj, Sub, Handler);
2156 }
2157
2158 namespace {
2159 struct ModifySubobjectHandler {
2160 EvalInfo &Info;
2161 APValue &NewVal;
2162 const Expr *E;
2163
2164 typedef bool result_type;
2165 static const AccessKinds AccessKind = AK_Assign;
2166
checkConst__anon383178e60411::ModifySubobjectHandler2167 bool checkConst(QualType QT) {
2168 // Assigning to a const object has undefined behavior.
2169 if (QT.isConstQualified()) {
2170 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2171 return false;
2172 }
2173 return true;
2174 }
2175
failed__anon383178e60411::ModifySubobjectHandler2176 bool failed() { return false; }
found__anon383178e60411::ModifySubobjectHandler2177 bool found(APValue &Subobj, QualType SubobjType) {
2178 if (!checkConst(SubobjType))
2179 return false;
2180 // We've been given ownership of NewVal, so just swap it in.
2181 Subobj.swap(NewVal);
2182 return true;
2183 }
found__anon383178e60411::ModifySubobjectHandler2184 bool found(APSInt &Value, QualType SubobjType) {
2185 if (!checkConst(SubobjType))
2186 return false;
2187 if (!NewVal.isInt()) {
2188 // Maybe trying to write a cast pointer value into a complex?
2189 Info.Diag(E);
2190 return false;
2191 }
2192 Value = NewVal.getInt();
2193 return true;
2194 }
found__anon383178e60411::ModifySubobjectHandler2195 bool found(APFloat &Value, QualType SubobjType) {
2196 if (!checkConst(SubobjType))
2197 return false;
2198 Value = NewVal.getFloat();
2199 return true;
2200 }
foundString__anon383178e60411::ModifySubobjectHandler2201 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2202 llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2203 }
2204 };
2205 } // end anonymous namespace
2206
2207 const AccessKinds ModifySubobjectHandler::AccessKind;
2208
2209 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2210 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2211 const CompleteObject &Obj,
2212 const SubobjectDesignator &Sub,
2213 APValue &NewVal) {
2214 ModifySubobjectHandler Handler = { Info, NewVal, E };
2215 return findSubobject(Info, E, Obj, Sub, Handler);
2216 }
2217
2218 /// Find the position where two subobject designators diverge, or equivalently
2219 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2220 static unsigned FindDesignatorMismatch(QualType ObjType,
2221 const SubobjectDesignator &A,
2222 const SubobjectDesignator &B,
2223 bool &WasArrayIndex) {
2224 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2225 for (/**/; I != N; ++I) {
2226 if (!ObjType.isNull() &&
2227 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2228 // Next subobject is an array element.
2229 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2230 WasArrayIndex = true;
2231 return I;
2232 }
2233 if (ObjType->isAnyComplexType())
2234 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2235 else
2236 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2237 } else {
2238 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2239 WasArrayIndex = false;
2240 return I;
2241 }
2242 if (const FieldDecl *FD = getAsField(A.Entries[I]))
2243 // Next subobject is a field.
2244 ObjType = FD->getType();
2245 else
2246 // Next subobject is a base class.
2247 ObjType = QualType();
2248 }
2249 }
2250 WasArrayIndex = false;
2251 return I;
2252 }
2253
2254 /// Determine whether the given subobject designators refer to elements of the
2255 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2256 static bool AreElementsOfSameArray(QualType ObjType,
2257 const SubobjectDesignator &A,
2258 const SubobjectDesignator &B) {
2259 if (A.Entries.size() != B.Entries.size())
2260 return false;
2261
2262 bool IsArray = A.MostDerivedArraySize != 0;
2263 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2264 // A is a subobject of the array element.
2265 return false;
2266
2267 // If A (and B) designates an array element, the last entry will be the array
2268 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2269 // of length 1' case, and the entire path must match.
2270 bool WasArrayIndex;
2271 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2272 return CommonLength >= A.Entries.size() - IsArray;
2273 }
2274
2275 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2276 CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2277 const LValue &LVal, QualType LValType) {
2278 if (!LVal.Base) {
2279 Info.Diag(E, diag::note_constexpr_access_null) << AK;
2280 return CompleteObject();
2281 }
2282
2283 CallStackFrame *Frame = 0;
2284 if (LVal.CallIndex) {
2285 Frame = Info.getCallFrame(LVal.CallIndex);
2286 if (!Frame) {
2287 Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2288 << AK << LVal.Base.is<const ValueDecl*>();
2289 NoteLValueLocation(Info, LVal.Base);
2290 return CompleteObject();
2291 }
2292 }
2293
2294 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2295 // is not a constant expression (even if the object is non-volatile). We also
2296 // apply this rule to C++98, in order to conform to the expected 'volatile'
2297 // semantics.
2298 if (LValType.isVolatileQualified()) {
2299 if (Info.getLangOpts().CPlusPlus)
2300 Info.Diag(E, diag::note_constexpr_access_volatile_type)
2301 << AK << LValType;
2302 else
2303 Info.Diag(E);
2304 return CompleteObject();
2305 }
2306
2307 // Compute value storage location and type of base object.
2308 APValue *BaseVal = 0;
2309 QualType BaseType = getType(LVal.Base);
2310
2311 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2312 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2313 // In C++11, constexpr, non-volatile variables initialized with constant
2314 // expressions are constant expressions too. Inside constexpr functions,
2315 // parameters are constant expressions even if they're non-const.
2316 // In C++1y, objects local to a constant expression (those with a Frame) are
2317 // both readable and writable inside constant expressions.
2318 // In C, such things can also be folded, although they are not ICEs.
2319 const VarDecl *VD = dyn_cast<VarDecl>(D);
2320 if (VD) {
2321 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2322 VD = VDef;
2323 }
2324 if (!VD || VD->isInvalidDecl()) {
2325 Info.Diag(E);
2326 return CompleteObject();
2327 }
2328
2329 // Accesses of volatile-qualified objects are not allowed.
2330 if (BaseType.isVolatileQualified()) {
2331 if (Info.getLangOpts().CPlusPlus) {
2332 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2333 << AK << 1 << VD;
2334 Info.Note(VD->getLocation(), diag::note_declared_at);
2335 } else {
2336 Info.Diag(E);
2337 }
2338 return CompleteObject();
2339 }
2340
2341 // Unless we're looking at a local variable or argument in a constexpr call,
2342 // the variable we're reading must be const.
2343 if (!Frame) {
2344 if (Info.getLangOpts().CPlusPlus1y &&
2345 VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2346 // OK, we can read and modify an object if we're in the process of
2347 // evaluating its initializer, because its lifetime began in this
2348 // evaluation.
2349 } else if (AK != AK_Read) {
2350 // All the remaining cases only permit reading.
2351 Info.Diag(E, diag::note_constexpr_modify_global);
2352 return CompleteObject();
2353 } else if (VD->isConstexpr()) {
2354 // OK, we can read this variable.
2355 } else if (BaseType->isIntegralOrEnumerationType()) {
2356 if (!BaseType.isConstQualified()) {
2357 if (Info.getLangOpts().CPlusPlus) {
2358 Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2359 Info.Note(VD->getLocation(), diag::note_declared_at);
2360 } else {
2361 Info.Diag(E);
2362 }
2363 return CompleteObject();
2364 }
2365 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2366 // We support folding of const floating-point types, in order to make
2367 // static const data members of such types (supported as an extension)
2368 // more useful.
2369 if (Info.getLangOpts().CPlusPlus11) {
2370 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2371 Info.Note(VD->getLocation(), diag::note_declared_at);
2372 } else {
2373 Info.CCEDiag(E);
2374 }
2375 } else {
2376 // FIXME: Allow folding of values of any literal type in all languages.
2377 if (Info.getLangOpts().CPlusPlus11) {
2378 Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2379 Info.Note(VD->getLocation(), diag::note_declared_at);
2380 } else {
2381 Info.Diag(E);
2382 }
2383 return CompleteObject();
2384 }
2385 }
2386
2387 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2388 return CompleteObject();
2389 } else {
2390 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2391
2392 if (!Frame) {
2393 if (const MaterializeTemporaryExpr *MTE =
2394 dyn_cast<MaterializeTemporaryExpr>(Base)) {
2395 assert(MTE->getStorageDuration() == SD_Static &&
2396 "should have a frame for a non-global materialized temporary");
2397
2398 // Per C++1y [expr.const]p2:
2399 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2400 // - a [...] glvalue of integral or enumeration type that refers to
2401 // a non-volatile const object [...]
2402 // [...]
2403 // - a [...] glvalue of literal type that refers to a non-volatile
2404 // object whose lifetime began within the evaluation of e.
2405 //
2406 // C++11 misses the 'began within the evaluation of e' check and
2407 // instead allows all temporaries, including things like:
2408 // int &&r = 1;
2409 // int x = ++r;
2410 // constexpr int k = r;
2411 // Therefore we use the C++1y rules in C++11 too.
2412 const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2413 const ValueDecl *ED = MTE->getExtendingDecl();
2414 if (!(BaseType.isConstQualified() &&
2415 BaseType->isIntegralOrEnumerationType()) &&
2416 !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2417 Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2418 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2419 return CompleteObject();
2420 }
2421
2422 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2423 assert(BaseVal && "got reference to unevaluated temporary");
2424 } else {
2425 Info.Diag(E);
2426 return CompleteObject();
2427 }
2428 } else {
2429 BaseVal = Frame->getTemporary(Base);
2430 assert(BaseVal && "missing value for temporary");
2431 }
2432
2433 // Volatile temporary objects cannot be accessed in constant expressions.
2434 if (BaseType.isVolatileQualified()) {
2435 if (Info.getLangOpts().CPlusPlus) {
2436 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2437 << AK << 0;
2438 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2439 } else {
2440 Info.Diag(E);
2441 }
2442 return CompleteObject();
2443 }
2444 }
2445
2446 // During the construction of an object, it is not yet 'const'.
2447 // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2448 // and this doesn't do quite the right thing for const subobjects of the
2449 // object under construction.
2450 if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2451 BaseType = Info.Ctx.getCanonicalType(BaseType);
2452 BaseType.removeLocalConst();
2453 }
2454
2455 // In C++1y, we can't safely access any mutable state when checking a
2456 // potential constant expression.
2457 if (Frame && Info.getLangOpts().CPlusPlus1y &&
2458 Info.CheckingPotentialConstantExpression)
2459 return CompleteObject();
2460
2461 return CompleteObject(BaseVal, BaseType);
2462 }
2463
2464 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2465 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2466 /// glvalue referred to by an entity of reference type.
2467 ///
2468 /// \param Info - Information about the ongoing evaluation.
2469 /// \param Conv - The expression for which we are performing the conversion.
2470 /// Used for diagnostics.
2471 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2472 /// case of a non-class type).
2473 /// \param LVal - The glvalue on which we are attempting to perform this action.
2474 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2475 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2476 QualType Type,
2477 const LValue &LVal, APValue &RVal) {
2478 if (LVal.Designator.Invalid)
2479 return false;
2480
2481 // Check for special cases where there is no existing APValue to look at.
2482 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2483 if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2484 !Type.isVolatileQualified()) {
2485 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2486 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2487 // initializer until now for such expressions. Such an expression can't be
2488 // an ICE in C, so this only matters for fold.
2489 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2490 if (Type.isVolatileQualified()) {
2491 Info.Diag(Conv);
2492 return false;
2493 }
2494 APValue Lit;
2495 if (!Evaluate(Lit, Info, CLE->getInitializer()))
2496 return false;
2497 CompleteObject LitObj(&Lit, Base->getType());
2498 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2499 } else if (isa<StringLiteral>(Base)) {
2500 // We represent a string literal array as an lvalue pointing at the
2501 // corresponding expression, rather than building an array of chars.
2502 // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2503 APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2504 CompleteObject StrObj(&Str, Base->getType());
2505 return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2506 }
2507 }
2508
2509 CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2510 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2511 }
2512
2513 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2514 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2515 QualType LValType, APValue &Val) {
2516 if (LVal.Designator.Invalid)
2517 return false;
2518
2519 if (!Info.getLangOpts().CPlusPlus1y) {
2520 Info.Diag(E);
2521 return false;
2522 }
2523
2524 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2525 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2526 }
2527
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2528 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2529 return T->isSignedIntegerType() &&
2530 Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2531 }
2532
2533 namespace {
2534 struct CompoundAssignSubobjectHandler {
2535 EvalInfo &Info;
2536 const Expr *E;
2537 QualType PromotedLHSType;
2538 BinaryOperatorKind Opcode;
2539 const APValue &RHS;
2540
2541 static const AccessKinds AccessKind = AK_Assign;
2542
2543 typedef bool result_type;
2544
checkConst__anon383178e60511::CompoundAssignSubobjectHandler2545 bool checkConst(QualType QT) {
2546 // Assigning to a const object has undefined behavior.
2547 if (QT.isConstQualified()) {
2548 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2549 return false;
2550 }
2551 return true;
2552 }
2553
failed__anon383178e60511::CompoundAssignSubobjectHandler2554 bool failed() { return false; }
found__anon383178e60511::CompoundAssignSubobjectHandler2555 bool found(APValue &Subobj, QualType SubobjType) {
2556 switch (Subobj.getKind()) {
2557 case APValue::Int:
2558 return found(Subobj.getInt(), SubobjType);
2559 case APValue::Float:
2560 return found(Subobj.getFloat(), SubobjType);
2561 case APValue::ComplexInt:
2562 case APValue::ComplexFloat:
2563 // FIXME: Implement complex compound assignment.
2564 Info.Diag(E);
2565 return false;
2566 case APValue::LValue:
2567 return foundPointer(Subobj, SubobjType);
2568 default:
2569 // FIXME: can this happen?
2570 Info.Diag(E);
2571 return false;
2572 }
2573 }
found__anon383178e60511::CompoundAssignSubobjectHandler2574 bool found(APSInt &Value, QualType SubobjType) {
2575 if (!checkConst(SubobjType))
2576 return false;
2577
2578 if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2579 // We don't support compound assignment on integer-cast-to-pointer
2580 // values.
2581 Info.Diag(E);
2582 return false;
2583 }
2584
2585 APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2586 SubobjType, Value);
2587 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2588 return false;
2589 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2590 return true;
2591 }
found__anon383178e60511::CompoundAssignSubobjectHandler2592 bool found(APFloat &Value, QualType SubobjType) {
2593 return checkConst(SubobjType) &&
2594 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2595 Value) &&
2596 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2597 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2598 }
foundPointer__anon383178e60511::CompoundAssignSubobjectHandler2599 bool foundPointer(APValue &Subobj, QualType SubobjType) {
2600 if (!checkConst(SubobjType))
2601 return false;
2602
2603 QualType PointeeType;
2604 if (const PointerType *PT = SubobjType->getAs<PointerType>())
2605 PointeeType = PT->getPointeeType();
2606
2607 if (PointeeType.isNull() || !RHS.isInt() ||
2608 (Opcode != BO_Add && Opcode != BO_Sub)) {
2609 Info.Diag(E);
2610 return false;
2611 }
2612
2613 int64_t Offset = getExtValue(RHS.getInt());
2614 if (Opcode == BO_Sub)
2615 Offset = -Offset;
2616
2617 LValue LVal;
2618 LVal.setFrom(Info.Ctx, Subobj);
2619 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2620 return false;
2621 LVal.moveInto(Subobj);
2622 return true;
2623 }
foundString__anon383178e60511::CompoundAssignSubobjectHandler2624 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2625 llvm_unreachable("shouldn't encounter string elements here");
2626 }
2627 };
2628 } // end anonymous namespace
2629
2630 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2631
2632 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)2633 static bool handleCompoundAssignment(
2634 EvalInfo &Info, const Expr *E,
2635 const LValue &LVal, QualType LValType, QualType PromotedLValType,
2636 BinaryOperatorKind Opcode, const APValue &RVal) {
2637 if (LVal.Designator.Invalid)
2638 return false;
2639
2640 if (!Info.getLangOpts().CPlusPlus1y) {
2641 Info.Diag(E);
2642 return false;
2643 }
2644
2645 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2646 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2647 RVal };
2648 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2649 }
2650
2651 namespace {
2652 struct IncDecSubobjectHandler {
2653 EvalInfo &Info;
2654 const Expr *E;
2655 AccessKinds AccessKind;
2656 APValue *Old;
2657
2658 typedef bool result_type;
2659
checkConst__anon383178e60611::IncDecSubobjectHandler2660 bool checkConst(QualType QT) {
2661 // Assigning to a const object has undefined behavior.
2662 if (QT.isConstQualified()) {
2663 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2664 return false;
2665 }
2666 return true;
2667 }
2668
failed__anon383178e60611::IncDecSubobjectHandler2669 bool failed() { return false; }
found__anon383178e60611::IncDecSubobjectHandler2670 bool found(APValue &Subobj, QualType SubobjType) {
2671 // Stash the old value. Also clear Old, so we don't clobber it later
2672 // if we're post-incrementing a complex.
2673 if (Old) {
2674 *Old = Subobj;
2675 Old = 0;
2676 }
2677
2678 switch (Subobj.getKind()) {
2679 case APValue::Int:
2680 return found(Subobj.getInt(), SubobjType);
2681 case APValue::Float:
2682 return found(Subobj.getFloat(), SubobjType);
2683 case APValue::ComplexInt:
2684 return found(Subobj.getComplexIntReal(),
2685 SubobjType->castAs<ComplexType>()->getElementType()
2686 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2687 case APValue::ComplexFloat:
2688 return found(Subobj.getComplexFloatReal(),
2689 SubobjType->castAs<ComplexType>()->getElementType()
2690 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2691 case APValue::LValue:
2692 return foundPointer(Subobj, SubobjType);
2693 default:
2694 // FIXME: can this happen?
2695 Info.Diag(E);
2696 return false;
2697 }
2698 }
found__anon383178e60611::IncDecSubobjectHandler2699 bool found(APSInt &Value, QualType SubobjType) {
2700 if (!checkConst(SubobjType))
2701 return false;
2702
2703 if (!SubobjType->isIntegerType()) {
2704 // We don't support increment / decrement on integer-cast-to-pointer
2705 // values.
2706 Info.Diag(E);
2707 return false;
2708 }
2709
2710 if (Old) *Old = APValue(Value);
2711
2712 // bool arithmetic promotes to int, and the conversion back to bool
2713 // doesn't reduce mod 2^n, so special-case it.
2714 if (SubobjType->isBooleanType()) {
2715 if (AccessKind == AK_Increment)
2716 Value = 1;
2717 else
2718 Value = !Value;
2719 return true;
2720 }
2721
2722 bool WasNegative = Value.isNegative();
2723 if (AccessKind == AK_Increment) {
2724 ++Value;
2725
2726 if (!WasNegative && Value.isNegative() &&
2727 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2728 APSInt ActualValue(Value, /*IsUnsigned*/true);
2729 HandleOverflow(Info, E, ActualValue, SubobjType);
2730 }
2731 } else {
2732 --Value;
2733
2734 if (WasNegative && !Value.isNegative() &&
2735 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2736 unsigned BitWidth = Value.getBitWidth();
2737 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2738 ActualValue.setBit(BitWidth);
2739 HandleOverflow(Info, E, ActualValue, SubobjType);
2740 }
2741 }
2742 return true;
2743 }
found__anon383178e60611::IncDecSubobjectHandler2744 bool found(APFloat &Value, QualType SubobjType) {
2745 if (!checkConst(SubobjType))
2746 return false;
2747
2748 if (Old) *Old = APValue(Value);
2749
2750 APFloat One(Value.getSemantics(), 1);
2751 if (AccessKind == AK_Increment)
2752 Value.add(One, APFloat::rmNearestTiesToEven);
2753 else
2754 Value.subtract(One, APFloat::rmNearestTiesToEven);
2755 return true;
2756 }
foundPointer__anon383178e60611::IncDecSubobjectHandler2757 bool foundPointer(APValue &Subobj, QualType SubobjType) {
2758 if (!checkConst(SubobjType))
2759 return false;
2760
2761 QualType PointeeType;
2762 if (const PointerType *PT = SubobjType->getAs<PointerType>())
2763 PointeeType = PT->getPointeeType();
2764 else {
2765 Info.Diag(E);
2766 return false;
2767 }
2768
2769 LValue LVal;
2770 LVal.setFrom(Info.Ctx, Subobj);
2771 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2772 AccessKind == AK_Increment ? 1 : -1))
2773 return false;
2774 LVal.moveInto(Subobj);
2775 return true;
2776 }
foundString__anon383178e60611::IncDecSubobjectHandler2777 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2778 llvm_unreachable("shouldn't encounter string elements here");
2779 }
2780 };
2781 } // end anonymous namespace
2782
2783 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)2784 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2785 QualType LValType, bool IsIncrement, APValue *Old) {
2786 if (LVal.Designator.Invalid)
2787 return false;
2788
2789 if (!Info.getLangOpts().CPlusPlus1y) {
2790 Info.Diag(E);
2791 return false;
2792 }
2793
2794 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2795 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2796 IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2797 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2798 }
2799
2800 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)2801 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2802 LValue &This) {
2803 if (Object->getType()->isPointerType())
2804 return EvaluatePointer(Object, This, Info);
2805
2806 if (Object->isGLValue())
2807 return EvaluateLValue(Object, This, Info);
2808
2809 if (Object->getType()->isLiteralType(Info.Ctx))
2810 return EvaluateTemporary(Object, This, Info);
2811
2812 return false;
2813 }
2814
2815 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
2816 /// lvalue referring to the result.
2817 ///
2818 /// \param Info - Information about the ongoing evaluation.
2819 /// \param LV - An lvalue referring to the base of the member pointer.
2820 /// \param RHS - The member pointer expression.
2821 /// \param IncludeMember - Specifies whether the member itself is included in
2822 /// the resulting LValue subobject designator. This is not possible when
2823 /// creating a bound member function.
2824 /// \return The field or method declaration to which the member pointer refers,
2825 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)2826 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2827 QualType LVType,
2828 LValue &LV,
2829 const Expr *RHS,
2830 bool IncludeMember = true) {
2831 MemberPtr MemPtr;
2832 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2833 return 0;
2834
2835 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2836 // member value, the behavior is undefined.
2837 if (!MemPtr.getDecl()) {
2838 // FIXME: Specific diagnostic.
2839 Info.Diag(RHS);
2840 return 0;
2841 }
2842
2843 if (MemPtr.isDerivedMember()) {
2844 // This is a member of some derived class. Truncate LV appropriately.
2845 // The end of the derived-to-base path for the base object must match the
2846 // derived-to-base path for the member pointer.
2847 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2848 LV.Designator.Entries.size()) {
2849 Info.Diag(RHS);
2850 return 0;
2851 }
2852 unsigned PathLengthToMember =
2853 LV.Designator.Entries.size() - MemPtr.Path.size();
2854 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
2855 const CXXRecordDecl *LVDecl = getAsBaseClass(
2856 LV.Designator.Entries[PathLengthToMember + I]);
2857 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
2858 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
2859 Info.Diag(RHS);
2860 return 0;
2861 }
2862 }
2863
2864 // Truncate the lvalue to the appropriate derived class.
2865 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
2866 PathLengthToMember))
2867 return 0;
2868 } else if (!MemPtr.Path.empty()) {
2869 // Extend the LValue path with the member pointer's path.
2870 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
2871 MemPtr.Path.size() + IncludeMember);
2872
2873 // Walk down to the appropriate base class.
2874 if (const PointerType *PT = LVType->getAs<PointerType>())
2875 LVType = PT->getPointeeType();
2876 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
2877 assert(RD && "member pointer access on non-class-type expression");
2878 // The first class in the path is that of the lvalue.
2879 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
2880 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
2881 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
2882 return 0;
2883 RD = Base;
2884 }
2885 // Finally cast to the class containing the member.
2886 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
2887 MemPtr.getContainingRecord()))
2888 return 0;
2889 }
2890
2891 // Add the member. Note that we cannot build bound member functions here.
2892 if (IncludeMember) {
2893 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
2894 if (!HandleLValueMember(Info, RHS, LV, FD))
2895 return 0;
2896 } else if (const IndirectFieldDecl *IFD =
2897 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
2898 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
2899 return 0;
2900 } else {
2901 llvm_unreachable("can't construct reference to bound member function");
2902 }
2903 }
2904
2905 return MemPtr.getDecl();
2906 }
2907
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)2908 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2909 const BinaryOperator *BO,
2910 LValue &LV,
2911 bool IncludeMember = true) {
2912 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
2913
2914 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
2915 if (Info.keepEvaluatingAfterFailure()) {
2916 MemberPtr MemPtr;
2917 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
2918 }
2919 return 0;
2920 }
2921
2922 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
2923 BO->getRHS(), IncludeMember);
2924 }
2925
2926 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
2927 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)2928 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2929 LValue &Result) {
2930 SubobjectDesignator &D = Result.Designator;
2931 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2932 return false;
2933
2934 QualType TargetQT = E->getType();
2935 if (const PointerType *PT = TargetQT->getAs<PointerType>())
2936 TargetQT = PT->getPointeeType();
2937
2938 // Check this cast lands within the final derived-to-base subobject path.
2939 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2940 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2941 << D.MostDerivedType << TargetQT;
2942 return false;
2943 }
2944
2945 // Check the type of the final cast. We don't need to check the path,
2946 // since a cast can only be formed if the path is unique.
2947 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2948 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2949 const CXXRecordDecl *FinalType;
2950 if (NewEntriesSize == D.MostDerivedPathLength)
2951 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2952 else
2953 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2954 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2955 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2956 << D.MostDerivedType << TargetQT;
2957 return false;
2958 }
2959
2960 // Truncate the lvalue to the appropriate derived class.
2961 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2962 }
2963
2964 namespace {
2965 enum EvalStmtResult {
2966 /// Evaluation failed.
2967 ESR_Failed,
2968 /// Hit a 'return' statement.
2969 ESR_Returned,
2970 /// Evaluation succeeded.
2971 ESR_Succeeded,
2972 /// Hit a 'continue' statement.
2973 ESR_Continue,
2974 /// Hit a 'break' statement.
2975 ESR_Break,
2976 /// Still scanning for 'case' or 'default' statement.
2977 ESR_CaseNotFound
2978 };
2979 }
2980
EvaluateDecl(EvalInfo & Info,const Decl * D)2981 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
2982 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2983 // We don't need to evaluate the initializer for a static local.
2984 if (!VD->hasLocalStorage())
2985 return true;
2986
2987 LValue Result;
2988 Result.set(VD, Info.CurrentCall->Index);
2989 APValue &Val = Info.CurrentCall->createTemporary(VD, true);
2990
2991 if (!VD->getInit()) {
2992 Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
2993 << false << VD->getType();
2994 Val = APValue();
2995 return false;
2996 }
2997
2998 if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
2999 // Wipe out any partially-computed value, to allow tracking that this
3000 // evaluation failed.
3001 Val = APValue();
3002 return false;
3003 }
3004 }
3005
3006 return true;
3007 }
3008
3009 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3010 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3011 const Expr *Cond, bool &Result) {
3012 FullExpressionRAII Scope(Info);
3013 if (CondDecl && !EvaluateDecl(Info, CondDecl))
3014 return false;
3015 return EvaluateAsBooleanCondition(Cond, Result, Info);
3016 }
3017
3018 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3019 const Stmt *S, const SwitchCase *SC = 0);
3020
3021 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(APValue & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=0)3022 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3023 const Stmt *Body,
3024 const SwitchCase *Case = 0) {
3025 BlockScopeRAII Scope(Info);
3026 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3027 case ESR_Break:
3028 return ESR_Succeeded;
3029 case ESR_Succeeded:
3030 case ESR_Continue:
3031 return ESR_Continue;
3032 case ESR_Failed:
3033 case ESR_Returned:
3034 case ESR_CaseNotFound:
3035 return ESR;
3036 }
3037 llvm_unreachable("Invalid EvalStmtResult!");
3038 }
3039
3040 /// Evaluate a switch statement.
EvaluateSwitch(APValue & Result,EvalInfo & Info,const SwitchStmt * SS)3041 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3042 const SwitchStmt *SS) {
3043 BlockScopeRAII Scope(Info);
3044
3045 // Evaluate the switch condition.
3046 APSInt Value;
3047 {
3048 FullExpressionRAII Scope(Info);
3049 if (SS->getConditionVariable() &&
3050 !EvaluateDecl(Info, SS->getConditionVariable()))
3051 return ESR_Failed;
3052 if (!EvaluateInteger(SS->getCond(), Value, Info))
3053 return ESR_Failed;
3054 }
3055
3056 // Find the switch case corresponding to the value of the condition.
3057 // FIXME: Cache this lookup.
3058 const SwitchCase *Found = 0;
3059 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3060 SC = SC->getNextSwitchCase()) {
3061 if (isa<DefaultStmt>(SC)) {
3062 Found = SC;
3063 continue;
3064 }
3065
3066 const CaseStmt *CS = cast<CaseStmt>(SC);
3067 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3068 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3069 : LHS;
3070 if (LHS <= Value && Value <= RHS) {
3071 Found = SC;
3072 break;
3073 }
3074 }
3075
3076 if (!Found)
3077 return ESR_Succeeded;
3078
3079 // Search the switch body for the switch case and evaluate it from there.
3080 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3081 case ESR_Break:
3082 return ESR_Succeeded;
3083 case ESR_Succeeded:
3084 case ESR_Continue:
3085 case ESR_Failed:
3086 case ESR_Returned:
3087 return ESR;
3088 case ESR_CaseNotFound:
3089 // This can only happen if the switch case is nested within a statement
3090 // expression. We have no intention of supporting that.
3091 Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3092 return ESR_Failed;
3093 }
3094 llvm_unreachable("Invalid EvalStmtResult!");
3095 }
3096
3097 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3098 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3099 const Stmt *S, const SwitchCase *Case) {
3100 if (!Info.nextStep(S))
3101 return ESR_Failed;
3102
3103 // If we're hunting down a 'case' or 'default' label, recurse through
3104 // substatements until we hit the label.
3105 if (Case) {
3106 // FIXME: We don't start the lifetime of objects whose initialization we
3107 // jump over. However, such objects must be of class type with a trivial
3108 // default constructor that initialize all subobjects, so must be empty,
3109 // so this almost never matters.
3110 switch (S->getStmtClass()) {
3111 case Stmt::CompoundStmtClass:
3112 // FIXME: Precompute which substatement of a compound statement we
3113 // would jump to, and go straight there rather than performing a
3114 // linear scan each time.
3115 case Stmt::LabelStmtClass:
3116 case Stmt::AttributedStmtClass:
3117 case Stmt::DoStmtClass:
3118 break;
3119
3120 case Stmt::CaseStmtClass:
3121 case Stmt::DefaultStmtClass:
3122 if (Case == S)
3123 Case = 0;
3124 break;
3125
3126 case Stmt::IfStmtClass: {
3127 // FIXME: Precompute which side of an 'if' we would jump to, and go
3128 // straight there rather than scanning both sides.
3129 const IfStmt *IS = cast<IfStmt>(S);
3130
3131 // Wrap the evaluation in a block scope, in case it's a DeclStmt
3132 // preceded by our switch label.
3133 BlockScopeRAII Scope(Info);
3134
3135 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3136 if (ESR != ESR_CaseNotFound || !IS->getElse())
3137 return ESR;
3138 return EvaluateStmt(Result, Info, IS->getElse(), Case);
3139 }
3140
3141 case Stmt::WhileStmtClass: {
3142 EvalStmtResult ESR =
3143 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3144 if (ESR != ESR_Continue)
3145 return ESR;
3146 break;
3147 }
3148
3149 case Stmt::ForStmtClass: {
3150 const ForStmt *FS = cast<ForStmt>(S);
3151 EvalStmtResult ESR =
3152 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3153 if (ESR != ESR_Continue)
3154 return ESR;
3155 if (FS->getInc()) {
3156 FullExpressionRAII IncScope(Info);
3157 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3158 return ESR_Failed;
3159 }
3160 break;
3161 }
3162
3163 case Stmt::DeclStmtClass:
3164 // FIXME: If the variable has initialization that can't be jumped over,
3165 // bail out of any immediately-surrounding compound-statement too.
3166 default:
3167 return ESR_CaseNotFound;
3168 }
3169 }
3170
3171 switch (S->getStmtClass()) {
3172 default:
3173 if (const Expr *E = dyn_cast<Expr>(S)) {
3174 // Don't bother evaluating beyond an expression-statement which couldn't
3175 // be evaluated.
3176 FullExpressionRAII Scope(Info);
3177 if (!EvaluateIgnoredValue(Info, E))
3178 return ESR_Failed;
3179 return ESR_Succeeded;
3180 }
3181
3182 Info.Diag(S->getLocStart());
3183 return ESR_Failed;
3184
3185 case Stmt::NullStmtClass:
3186 return ESR_Succeeded;
3187
3188 case Stmt::DeclStmtClass: {
3189 const DeclStmt *DS = cast<DeclStmt>(S);
3190 for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
3191 DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
3192 // Each declaration initialization is its own full-expression.
3193 // FIXME: This isn't quite right; if we're performing aggregate
3194 // initialization, each braced subexpression is its own full-expression.
3195 FullExpressionRAII Scope(Info);
3196 if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
3197 return ESR_Failed;
3198 }
3199 return ESR_Succeeded;
3200 }
3201
3202 case Stmt::ReturnStmtClass: {
3203 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3204 FullExpressionRAII Scope(Info);
3205 if (RetExpr && !Evaluate(Result, Info, RetExpr))
3206 return ESR_Failed;
3207 return ESR_Returned;
3208 }
3209
3210 case Stmt::CompoundStmtClass: {
3211 BlockScopeRAII Scope(Info);
3212
3213 const CompoundStmt *CS = cast<CompoundStmt>(S);
3214 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
3215 BE = CS->body_end(); BI != BE; ++BI) {
3216 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI, Case);
3217 if (ESR == ESR_Succeeded)
3218 Case = 0;
3219 else if (ESR != ESR_CaseNotFound)
3220 return ESR;
3221 }
3222 return Case ? ESR_CaseNotFound : ESR_Succeeded;
3223 }
3224
3225 case Stmt::IfStmtClass: {
3226 const IfStmt *IS = cast<IfStmt>(S);
3227
3228 // Evaluate the condition, as either a var decl or as an expression.
3229 BlockScopeRAII Scope(Info);
3230 bool Cond;
3231 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3232 return ESR_Failed;
3233
3234 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3235 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3236 if (ESR != ESR_Succeeded)
3237 return ESR;
3238 }
3239 return ESR_Succeeded;
3240 }
3241
3242 case Stmt::WhileStmtClass: {
3243 const WhileStmt *WS = cast<WhileStmt>(S);
3244 while (true) {
3245 BlockScopeRAII Scope(Info);
3246 bool Continue;
3247 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3248 Continue))
3249 return ESR_Failed;
3250 if (!Continue)
3251 break;
3252
3253 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3254 if (ESR != ESR_Continue)
3255 return ESR;
3256 }
3257 return ESR_Succeeded;
3258 }
3259
3260 case Stmt::DoStmtClass: {
3261 const DoStmt *DS = cast<DoStmt>(S);
3262 bool Continue;
3263 do {
3264 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3265 if (ESR != ESR_Continue)
3266 return ESR;
3267 Case = 0;
3268
3269 FullExpressionRAII CondScope(Info);
3270 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3271 return ESR_Failed;
3272 } while (Continue);
3273 return ESR_Succeeded;
3274 }
3275
3276 case Stmt::ForStmtClass: {
3277 const ForStmt *FS = cast<ForStmt>(S);
3278 BlockScopeRAII Scope(Info);
3279 if (FS->getInit()) {
3280 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3281 if (ESR != ESR_Succeeded)
3282 return ESR;
3283 }
3284 while (true) {
3285 BlockScopeRAII Scope(Info);
3286 bool Continue = true;
3287 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3288 FS->getCond(), Continue))
3289 return ESR_Failed;
3290 if (!Continue)
3291 break;
3292
3293 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3294 if (ESR != ESR_Continue)
3295 return ESR;
3296
3297 if (FS->getInc()) {
3298 FullExpressionRAII IncScope(Info);
3299 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3300 return ESR_Failed;
3301 }
3302 }
3303 return ESR_Succeeded;
3304 }
3305
3306 case Stmt::CXXForRangeStmtClass: {
3307 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3308 BlockScopeRAII Scope(Info);
3309
3310 // Initialize the __range variable.
3311 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3312 if (ESR != ESR_Succeeded)
3313 return ESR;
3314
3315 // Create the __begin and __end iterators.
3316 ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3317 if (ESR != ESR_Succeeded)
3318 return ESR;
3319
3320 while (true) {
3321 // Condition: __begin != __end.
3322 {
3323 bool Continue = true;
3324 FullExpressionRAII CondExpr(Info);
3325 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3326 return ESR_Failed;
3327 if (!Continue)
3328 break;
3329 }
3330
3331 // User's variable declaration, initialized by *__begin.
3332 BlockScopeRAII InnerScope(Info);
3333 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3334 if (ESR != ESR_Succeeded)
3335 return ESR;
3336
3337 // Loop body.
3338 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3339 if (ESR != ESR_Continue)
3340 return ESR;
3341
3342 // Increment: ++__begin
3343 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3344 return ESR_Failed;
3345 }
3346
3347 return ESR_Succeeded;
3348 }
3349
3350 case Stmt::SwitchStmtClass:
3351 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3352
3353 case Stmt::ContinueStmtClass:
3354 return ESR_Continue;
3355
3356 case Stmt::BreakStmtClass:
3357 return ESR_Break;
3358
3359 case Stmt::LabelStmtClass:
3360 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3361
3362 case Stmt::AttributedStmtClass:
3363 // As a general principle, C++11 attributes can be ignored without
3364 // any semantic impact.
3365 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3366 Case);
3367
3368 case Stmt::CaseStmtClass:
3369 case Stmt::DefaultStmtClass:
3370 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3371 }
3372 }
3373
3374 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3375 /// default constructor. If so, we'll fold it whether or not it's marked as
3376 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3377 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3378 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3379 const CXXConstructorDecl *CD,
3380 bool IsValueInitialization) {
3381 if (!CD->isTrivial() || !CD->isDefaultConstructor())
3382 return false;
3383
3384 // Value-initialization does not call a trivial default constructor, so such a
3385 // call is a core constant expression whether or not the constructor is
3386 // constexpr.
3387 if (!CD->isConstexpr() && !IsValueInitialization) {
3388 if (Info.getLangOpts().CPlusPlus11) {
3389 // FIXME: If DiagDecl is an implicitly-declared special member function,
3390 // we should be much more explicit about why it's not constexpr.
3391 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3392 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3393 Info.Note(CD->getLocation(), diag::note_declared_at);
3394 } else {
3395 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3396 }
3397 }
3398 return true;
3399 }
3400
3401 /// CheckConstexprFunction - Check that a function can be called in a constant
3402 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)3403 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3404 const FunctionDecl *Declaration,
3405 const FunctionDecl *Definition) {
3406 // Potential constant expressions can contain calls to declared, but not yet
3407 // defined, constexpr functions.
3408 if (Info.CheckingPotentialConstantExpression && !Definition &&
3409 Declaration->isConstexpr())
3410 return false;
3411
3412 // Bail out with no diagnostic if the function declaration itself is invalid.
3413 // We will have produced a relevant diagnostic while parsing it.
3414 if (Declaration->isInvalidDecl())
3415 return false;
3416
3417 // Can we evaluate this function call?
3418 if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3419 return true;
3420
3421 if (Info.getLangOpts().CPlusPlus11) {
3422 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3423 // FIXME: If DiagDecl is an implicitly-declared special member function, we
3424 // should be much more explicit about why it's not constexpr.
3425 Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3426 << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3427 << DiagDecl;
3428 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3429 } else {
3430 Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3431 }
3432 return false;
3433 }
3434
3435 namespace {
3436 typedef SmallVector<APValue, 8> ArgVector;
3437 }
3438
3439 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3440 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3441 EvalInfo &Info) {
3442 bool Success = true;
3443 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3444 I != E; ++I) {
3445 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3446 // If we're checking for a potential constant expression, evaluate all
3447 // initializers even if some of them fail.
3448 if (!Info.keepEvaluatingAfterFailure())
3449 return false;
3450 Success = false;
3451 }
3452 }
3453 return Success;
3454 }
3455
3456 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)3457 static bool HandleFunctionCall(SourceLocation CallLoc,
3458 const FunctionDecl *Callee, const LValue *This,
3459 ArrayRef<const Expr*> Args, const Stmt *Body,
3460 EvalInfo &Info, APValue &Result) {
3461 ArgVector ArgValues(Args.size());
3462 if (!EvaluateArgs(Args, ArgValues, Info))
3463 return false;
3464
3465 if (!Info.CheckCallLimit(CallLoc))
3466 return false;
3467
3468 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3469
3470 // For a trivial copy or move assignment, perform an APValue copy. This is
3471 // essential for unions, where the operations performed by the assignment
3472 // operator cannot be represented as statements.
3473 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3474 if (MD && MD->isDefaulted() && MD->isTrivial()) {
3475 assert(This &&
3476 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3477 LValue RHS;
3478 RHS.setFrom(Info.Ctx, ArgValues[0]);
3479 APValue RHSValue;
3480 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3481 RHS, RHSValue))
3482 return false;
3483 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3484 RHSValue))
3485 return false;
3486 This->moveInto(Result);
3487 return true;
3488 }
3489
3490 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3491 if (ESR == ESR_Succeeded) {
3492 if (Callee->getResultType()->isVoidType())
3493 return true;
3494 Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3495 }
3496 return ESR == ESR_Returned;
3497 }
3498
3499 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3500 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3501 ArrayRef<const Expr*> Args,
3502 const CXXConstructorDecl *Definition,
3503 EvalInfo &Info, APValue &Result) {
3504 ArgVector ArgValues(Args.size());
3505 if (!EvaluateArgs(Args, ArgValues, Info))
3506 return false;
3507
3508 if (!Info.CheckCallLimit(CallLoc))
3509 return false;
3510
3511 const CXXRecordDecl *RD = Definition->getParent();
3512 if (RD->getNumVBases()) {
3513 Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3514 return false;
3515 }
3516
3517 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3518
3519 // If it's a delegating constructor, just delegate.
3520 if (Definition->isDelegatingConstructor()) {
3521 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3522 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3523 return false;
3524 return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3525 }
3526
3527 // For a trivial copy or move constructor, perform an APValue copy. This is
3528 // essential for unions, where the operations performed by the constructor
3529 // cannot be represented by ctor-initializers.
3530 if (Definition->isDefaulted() &&
3531 ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3532 (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3533 LValue RHS;
3534 RHS.setFrom(Info.Ctx, ArgValues[0]);
3535 return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3536 RHS, Result);
3537 }
3538
3539 // Reserve space for the struct members.
3540 if (!RD->isUnion() && Result.isUninit())
3541 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3542 std::distance(RD->field_begin(), RD->field_end()));
3543
3544 if (RD->isInvalidDecl()) return false;
3545 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3546
3547 // A scope for temporaries lifetime-extended by reference members.
3548 BlockScopeRAII LifetimeExtendedScope(Info);
3549
3550 bool Success = true;
3551 unsigned BasesSeen = 0;
3552 #ifndef NDEBUG
3553 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3554 #endif
3555 for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
3556 E = Definition->init_end(); I != E; ++I) {
3557 LValue Subobject = This;
3558 APValue *Value = &Result;
3559
3560 // Determine the subobject to initialize.
3561 FieldDecl *FD = 0;
3562 if ((*I)->isBaseInitializer()) {
3563 QualType BaseType((*I)->getBaseClass(), 0);
3564 #ifndef NDEBUG
3565 // Non-virtual base classes are initialized in the order in the class
3566 // definition. We have already checked for virtual base classes.
3567 assert(!BaseIt->isVirtual() && "virtual base for literal type");
3568 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3569 "base class initializers not in expected order");
3570 ++BaseIt;
3571 #endif
3572 if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
3573 BaseType->getAsCXXRecordDecl(), &Layout))
3574 return false;
3575 Value = &Result.getStructBase(BasesSeen++);
3576 } else if ((FD = (*I)->getMember())) {
3577 if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
3578 return false;
3579 if (RD->isUnion()) {
3580 Result = APValue(FD);
3581 Value = &Result.getUnionValue();
3582 } else {
3583 Value = &Result.getStructField(FD->getFieldIndex());
3584 }
3585 } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
3586 // Walk the indirect field decl's chain to find the object to initialize,
3587 // and make sure we've initialized every step along it.
3588 for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
3589 CE = IFD->chain_end();
3590 C != CE; ++C) {
3591 FD = cast<FieldDecl>(*C);
3592 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3593 // Switch the union field if it differs. This happens if we had
3594 // preceding zero-initialization, and we're now initializing a union
3595 // subobject other than the first.
3596 // FIXME: In this case, the values of the other subobjects are
3597 // specified, since zero-initialization sets all padding bits to zero.
3598 if (Value->isUninit() ||
3599 (Value->isUnion() && Value->getUnionField() != FD)) {
3600 if (CD->isUnion())
3601 *Value = APValue(FD);
3602 else
3603 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3604 std::distance(CD->field_begin(), CD->field_end()));
3605 }
3606 if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
3607 return false;
3608 if (CD->isUnion())
3609 Value = &Value->getUnionValue();
3610 else
3611 Value = &Value->getStructField(FD->getFieldIndex());
3612 }
3613 } else {
3614 llvm_unreachable("unknown base initializer kind");
3615 }
3616
3617 FullExpressionRAII InitScope(Info);
3618 if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit()) ||
3619 (FD && FD->isBitField() && !truncateBitfieldValue(Info, (*I)->getInit(),
3620 *Value, FD))) {
3621 // If we're checking for a potential constant expression, evaluate all
3622 // initializers even if some of them fail.
3623 if (!Info.keepEvaluatingAfterFailure())
3624 return false;
3625 Success = false;
3626 }
3627 }
3628
3629 return Success &&
3630 EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3631 }
3632
3633 //===----------------------------------------------------------------------===//
3634 // Generic Evaluation
3635 //===----------------------------------------------------------------------===//
3636 namespace {
3637
3638 // FIXME: RetTy is always bool. Remove it.
3639 template <class Derived, typename RetTy=bool>
3640 class ExprEvaluatorBase
3641 : public ConstStmtVisitor<Derived, RetTy> {
3642 private:
DerivedSuccess(const APValue & V,const Expr * E)3643 RetTy DerivedSuccess(const APValue &V, const Expr *E) {
3644 return static_cast<Derived*>(this)->Success(V, E);
3645 }
DerivedZeroInitialization(const Expr * E)3646 RetTy DerivedZeroInitialization(const Expr *E) {
3647 return static_cast<Derived*>(this)->ZeroInitialization(E);
3648 }
3649
3650 // Check whether a conditional operator with a non-constant condition is a
3651 // potential constant expression. If neither arm is a potential constant
3652 // expression, then the conditional operator is not either.
3653 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)3654 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3655 assert(Info.CheckingPotentialConstantExpression);
3656
3657 // Speculatively evaluate both arms.
3658 {
3659 SmallVector<PartialDiagnosticAt, 8> Diag;
3660 SpeculativeEvaluationRAII Speculate(Info, &Diag);
3661
3662 StmtVisitorTy::Visit(E->getFalseExpr());
3663 if (Diag.empty())
3664 return;
3665
3666 Diag.clear();
3667 StmtVisitorTy::Visit(E->getTrueExpr());
3668 if (Diag.empty())
3669 return;
3670 }
3671
3672 Error(E, diag::note_constexpr_conditional_never_const);
3673 }
3674
3675
3676 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)3677 bool HandleConditionalOperator(const ConditionalOperator *E) {
3678 bool BoolResult;
3679 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3680 if (Info.CheckingPotentialConstantExpression)
3681 CheckPotentialConstantConditional(E);
3682 return false;
3683 }
3684
3685 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3686 return StmtVisitorTy::Visit(EvalExpr);
3687 }
3688
3689 protected:
3690 EvalInfo &Info;
3691 typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
3692 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3693
CCEDiag(const Expr * E,diag::kind D)3694 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3695 return Info.CCEDiag(E, D);
3696 }
3697
ZeroInitialization(const Expr * E)3698 RetTy ZeroInitialization(const Expr *E) { return Error(E); }
3699
3700 public:
ExprEvaluatorBase(EvalInfo & Info)3701 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3702
getEvalInfo()3703 EvalInfo &getEvalInfo() { return Info; }
3704
3705 /// Report an evaluation error. This should only be called when an error is
3706 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)3707 bool Error(const Expr *E, diag::kind D) {
3708 Info.Diag(E, D);
3709 return false;
3710 }
Error(const Expr * E)3711 bool Error(const Expr *E) {
3712 return Error(E, diag::note_invalid_subexpr_in_const_expr);
3713 }
3714
VisitStmt(const Stmt *)3715 RetTy VisitStmt(const Stmt *) {
3716 llvm_unreachable("Expression evaluator should not be called on stmts");
3717 }
VisitExpr(const Expr * E)3718 RetTy VisitExpr(const Expr *E) {
3719 return Error(E);
3720 }
3721
VisitParenExpr(const ParenExpr * E)3722 RetTy VisitParenExpr(const ParenExpr *E)
3723 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)3724 RetTy VisitUnaryExtension(const UnaryOperator *E)
3725 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)3726 RetTy VisitUnaryPlus(const UnaryOperator *E)
3727 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)3728 RetTy VisitChooseExpr(const ChooseExpr *E)
3729 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)3730 RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3731 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)3732 RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3733 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)3734 RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3735 { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)3736 RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E)
3737 { return StmtVisitorTy::Visit(E->getExpr()); }
3738 // We cannot create any objects for which cleanups are required, so there is
3739 // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)3740 RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
3741 { return StmtVisitorTy::Visit(E->getSubExpr()); }
3742
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)3743 RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3744 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3745 return static_cast<Derived*>(this)->VisitCastExpr(E);
3746 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)3747 RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3748 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3749 return static_cast<Derived*>(this)->VisitCastExpr(E);
3750 }
3751
VisitBinaryOperator(const BinaryOperator * E)3752 RetTy VisitBinaryOperator(const BinaryOperator *E) {
3753 switch (E->getOpcode()) {
3754 default:
3755 return Error(E);
3756
3757 case BO_Comma:
3758 VisitIgnoredValue(E->getLHS());
3759 return StmtVisitorTy::Visit(E->getRHS());
3760
3761 case BO_PtrMemD:
3762 case BO_PtrMemI: {
3763 LValue Obj;
3764 if (!HandleMemberPointerAccess(Info, E, Obj))
3765 return false;
3766 APValue Result;
3767 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3768 return false;
3769 return DerivedSuccess(Result, E);
3770 }
3771 }
3772 }
3773
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)3774 RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3775 // Evaluate and cache the common expression. We treat it as a temporary,
3776 // even though it's not quite the same thing.
3777 if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
3778 Info, E->getCommon()))
3779 return false;
3780
3781 return HandleConditionalOperator(E);
3782 }
3783
VisitConditionalOperator(const ConditionalOperator * E)3784 RetTy VisitConditionalOperator(const ConditionalOperator *E) {
3785 bool IsBcpCall = false;
3786 // If the condition (ignoring parens) is a __builtin_constant_p call,
3787 // the result is a constant expression if it can be folded without
3788 // side-effects. This is an important GNU extension. See GCC PR38377
3789 // for discussion.
3790 if (const CallExpr *CallCE =
3791 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3792 if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
3793 IsBcpCall = true;
3794
3795 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3796 // constant expression; we can't check whether it's potentially foldable.
3797 if (Info.CheckingPotentialConstantExpression && IsBcpCall)
3798 return false;
3799
3800 FoldConstant Fold(Info);
3801
3802 if (!HandleConditionalOperator(E))
3803 return false;
3804
3805 if (IsBcpCall)
3806 Fold.Fold(Info);
3807
3808 return true;
3809 }
3810
VisitOpaqueValueExpr(const OpaqueValueExpr * E)3811 RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3812 if (APValue *Value = Info.CurrentCall->getTemporary(E))
3813 return DerivedSuccess(*Value, E);
3814
3815 const Expr *Source = E->getSourceExpr();
3816 if (!Source)
3817 return Error(E);
3818 if (Source == E) { // sanity checking.
3819 assert(0 && "OpaqueValueExpr recursively refers to itself");
3820 return Error(E);
3821 }
3822 return StmtVisitorTy::Visit(Source);
3823 }
3824
VisitCallExpr(const CallExpr * E)3825 RetTy VisitCallExpr(const CallExpr *E) {
3826 const Expr *Callee = E->getCallee()->IgnoreParens();
3827 QualType CalleeType = Callee->getType();
3828
3829 const FunctionDecl *FD = 0;
3830 LValue *This = 0, ThisVal;
3831 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3832 bool HasQualifier = false;
3833
3834 // Extract function decl and 'this' pointer from the callee.
3835 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3836 const ValueDecl *Member = 0;
3837 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3838 // Explicit bound member calls, such as x.f() or p->g();
3839 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3840 return false;
3841 Member = ME->getMemberDecl();
3842 This = &ThisVal;
3843 HasQualifier = ME->hasQualifier();
3844 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3845 // Indirect bound member calls ('.*' or '->*').
3846 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3847 if (!Member) return false;
3848 This = &ThisVal;
3849 } else
3850 return Error(Callee);
3851
3852 FD = dyn_cast<FunctionDecl>(Member);
3853 if (!FD)
3854 return Error(Callee);
3855 } else if (CalleeType->isFunctionPointerType()) {
3856 LValue Call;
3857 if (!EvaluatePointer(Callee, Call, Info))
3858 return false;
3859
3860 if (!Call.getLValueOffset().isZero())
3861 return Error(Callee);
3862 FD = dyn_cast_or_null<FunctionDecl>(
3863 Call.getLValueBase().dyn_cast<const ValueDecl*>());
3864 if (!FD)
3865 return Error(Callee);
3866
3867 // Overloaded operator calls to member functions are represented as normal
3868 // calls with '*this' as the first argument.
3869 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3870 if (MD && !MD->isStatic()) {
3871 // FIXME: When selecting an implicit conversion for an overloaded
3872 // operator delete, we sometimes try to evaluate calls to conversion
3873 // operators without a 'this' parameter!
3874 if (Args.empty())
3875 return Error(E);
3876
3877 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
3878 return false;
3879 This = &ThisVal;
3880 Args = Args.slice(1);
3881 }
3882
3883 // Don't call function pointers which have been cast to some other type.
3884 if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
3885 return Error(E);
3886 } else
3887 return Error(E);
3888
3889 if (This && !This->checkSubobject(Info, E, CSK_This))
3890 return false;
3891
3892 // DR1358 allows virtual constexpr functions in some cases. Don't allow
3893 // calls to such functions in constant expressions.
3894 if (This && !HasQualifier &&
3895 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
3896 return Error(E, diag::note_constexpr_virtual_call);
3897
3898 const FunctionDecl *Definition = 0;
3899 Stmt *Body = FD->getBody(Definition);
3900 APValue Result;
3901
3902 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
3903 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
3904 Info, Result))
3905 return false;
3906
3907 return DerivedSuccess(Result, E);
3908 }
3909
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)3910 RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
3911 return StmtVisitorTy::Visit(E->getInitializer());
3912 }
VisitInitListExpr(const InitListExpr * E)3913 RetTy VisitInitListExpr(const InitListExpr *E) {
3914 if (E->getNumInits() == 0)
3915 return DerivedZeroInitialization(E);
3916 if (E->getNumInits() == 1)
3917 return StmtVisitorTy::Visit(E->getInit(0));
3918 return Error(E);
3919 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)3920 RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
3921 return DerivedZeroInitialization(E);
3922 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)3923 RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
3924 return DerivedZeroInitialization(E);
3925 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)3926 RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
3927 return DerivedZeroInitialization(E);
3928 }
3929
3930 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)3931 RetTy VisitMemberExpr(const MemberExpr *E) {
3932 assert(!E->isArrow() && "missing call to bound member function?");
3933
3934 APValue Val;
3935 if (!Evaluate(Val, Info, E->getBase()))
3936 return false;
3937
3938 QualType BaseTy = E->getBase()->getType();
3939
3940 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
3941 if (!FD) return Error(E);
3942 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
3943 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
3944 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
3945
3946 CompleteObject Obj(&Val, BaseTy);
3947 SubobjectDesignator Designator(BaseTy);
3948 Designator.addDeclUnchecked(FD);
3949
3950 APValue Result;
3951 return extractSubobject(Info, E, Obj, Designator, Result) &&
3952 DerivedSuccess(Result, E);
3953 }
3954
VisitCastExpr(const CastExpr * E)3955 RetTy VisitCastExpr(const CastExpr *E) {
3956 switch (E->getCastKind()) {
3957 default:
3958 break;
3959
3960 case CK_AtomicToNonAtomic: {
3961 APValue AtomicVal;
3962 if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
3963 return false;
3964 return DerivedSuccess(AtomicVal, E);
3965 }
3966
3967 case CK_NoOp:
3968 case CK_UserDefinedConversion:
3969 return StmtVisitorTy::Visit(E->getSubExpr());
3970
3971 case CK_LValueToRValue: {
3972 LValue LVal;
3973 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
3974 return false;
3975 APValue RVal;
3976 // Note, we use the subexpression's type in order to retain cv-qualifiers.
3977 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
3978 LVal, RVal))
3979 return false;
3980 return DerivedSuccess(RVal, E);
3981 }
3982 }
3983
3984 return Error(E);
3985 }
3986
VisitUnaryPostInc(const UnaryOperator * UO)3987 RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
3988 return VisitUnaryPostIncDec(UO);
3989 }
VisitUnaryPostDec(const UnaryOperator * UO)3990 RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
3991 return VisitUnaryPostIncDec(UO);
3992 }
VisitUnaryPostIncDec(const UnaryOperator * UO)3993 RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
3994 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
3995 return Error(UO);
3996
3997 LValue LVal;
3998 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
3999 return false;
4000 APValue RVal;
4001 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4002 UO->isIncrementOp(), &RVal))
4003 return false;
4004 return DerivedSuccess(RVal, UO);
4005 }
4006
VisitStmtExpr(const StmtExpr * E)4007 RetTy VisitStmtExpr(const StmtExpr *E) {
4008 // We will have checked the full-expressions inside the statement expression
4009 // when they were completed, and don't need to check them again now.
4010 if (Info.getIntOverflowCheckMode())
4011 return Error(E);
4012
4013 BlockScopeRAII Scope(Info);
4014 const CompoundStmt *CS = E->getSubStmt();
4015 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4016 BE = CS->body_end();
4017 /**/; ++BI) {
4018 if (BI + 1 == BE) {
4019 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4020 if (!FinalExpr) {
4021 Info.Diag((*BI)->getLocStart(),
4022 diag::note_constexpr_stmt_expr_unsupported);
4023 return false;
4024 }
4025 return this->Visit(FinalExpr);
4026 }
4027
4028 APValue ReturnValue;
4029 EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4030 if (ESR != ESR_Succeeded) {
4031 // FIXME: If the statement-expression terminated due to 'return',
4032 // 'break', or 'continue', it would be nice to propagate that to
4033 // the outer statement evaluation rather than bailing out.
4034 if (ESR != ESR_Failed)
4035 Info.Diag((*BI)->getLocStart(),
4036 diag::note_constexpr_stmt_expr_unsupported);
4037 return false;
4038 }
4039 }
4040 }
4041
4042 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4043 void VisitIgnoredValue(const Expr *E) {
4044 EvaluateIgnoredValue(Info, E);
4045 }
4046 };
4047
4048 }
4049
4050 //===----------------------------------------------------------------------===//
4051 // Common base class for lvalue and temporary evaluation.
4052 //===----------------------------------------------------------------------===//
4053 namespace {
4054 template<class Derived>
4055 class LValueExprEvaluatorBase
4056 : public ExprEvaluatorBase<Derived, bool> {
4057 protected:
4058 LValue &Result;
4059 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4060 typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
4061
Success(APValue::LValueBase B)4062 bool Success(APValue::LValueBase B) {
4063 Result.set(B);
4064 return true;
4065 }
4066
4067 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4068 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4069 ExprEvaluatorBaseTy(Info), Result(Result) {}
4070
Success(const APValue & V,const Expr * E)4071 bool Success(const APValue &V, const Expr *E) {
4072 Result.setFrom(this->Info.Ctx, V);
4073 return true;
4074 }
4075
VisitMemberExpr(const MemberExpr * E)4076 bool VisitMemberExpr(const MemberExpr *E) {
4077 // Handle non-static data members.
4078 QualType BaseTy;
4079 if (E->isArrow()) {
4080 if (!EvaluatePointer(E->getBase(), Result, this->Info))
4081 return false;
4082 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4083 } else if (E->getBase()->isRValue()) {
4084 assert(E->getBase()->getType()->isRecordType());
4085 if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4086 return false;
4087 BaseTy = E->getBase()->getType();
4088 } else {
4089 if (!this->Visit(E->getBase()))
4090 return false;
4091 BaseTy = E->getBase()->getType();
4092 }
4093
4094 const ValueDecl *MD = E->getMemberDecl();
4095 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4096 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4097 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4098 (void)BaseTy;
4099 if (!HandleLValueMember(this->Info, E, Result, FD))
4100 return false;
4101 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4102 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4103 return false;
4104 } else
4105 return this->Error(E);
4106
4107 if (MD->getType()->isReferenceType()) {
4108 APValue RefValue;
4109 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4110 RefValue))
4111 return false;
4112 return Success(RefValue, E);
4113 }
4114 return true;
4115 }
4116
VisitBinaryOperator(const BinaryOperator * E)4117 bool VisitBinaryOperator(const BinaryOperator *E) {
4118 switch (E->getOpcode()) {
4119 default:
4120 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4121
4122 case BO_PtrMemD:
4123 case BO_PtrMemI:
4124 return HandleMemberPointerAccess(this->Info, E, Result);
4125 }
4126 }
4127
VisitCastExpr(const CastExpr * E)4128 bool VisitCastExpr(const CastExpr *E) {
4129 switch (E->getCastKind()) {
4130 default:
4131 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4132
4133 case CK_DerivedToBase:
4134 case CK_UncheckedDerivedToBase:
4135 if (!this->Visit(E->getSubExpr()))
4136 return false;
4137
4138 // Now figure out the necessary offset to add to the base LV to get from
4139 // the derived class to the base class.
4140 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4141 Result);
4142 }
4143 }
4144 };
4145 }
4146
4147 //===----------------------------------------------------------------------===//
4148 // LValue Evaluation
4149 //
4150 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4151 // function designators (in C), decl references to void objects (in C), and
4152 // temporaries (if building with -Wno-address-of-temporary).
4153 //
4154 // LValue evaluation produces values comprising a base expression of one of the
4155 // following types:
4156 // - Declarations
4157 // * VarDecl
4158 // * FunctionDecl
4159 // - Literals
4160 // * CompoundLiteralExpr in C
4161 // * StringLiteral
4162 // * CXXTypeidExpr
4163 // * PredefinedExpr
4164 // * ObjCStringLiteralExpr
4165 // * ObjCEncodeExpr
4166 // * AddrLabelExpr
4167 // * BlockExpr
4168 // * CallExpr for a MakeStringConstant builtin
4169 // - Locals and temporaries
4170 // * MaterializeTemporaryExpr
4171 // * Any Expr, with a CallIndex indicating the function in which the temporary
4172 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
4173 // from the AST (FIXME).
4174 // * A MaterializeTemporaryExpr that has static storage duration, with no
4175 // CallIndex, for a lifetime-extended temporary.
4176 // plus an offset in bytes.
4177 //===----------------------------------------------------------------------===//
4178 namespace {
4179 class LValueExprEvaluator
4180 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4181 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4182 LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4183 LValueExprEvaluatorBaseTy(Info, Result) {}
4184
4185 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4186 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4187
4188 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4189 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4190 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4191 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4192 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4193 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4194 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4195 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4196 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4197 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4198 bool VisitUnaryDeref(const UnaryOperator *E);
4199 bool VisitUnaryReal(const UnaryOperator *E);
4200 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4201 bool VisitUnaryPreInc(const UnaryOperator *UO) {
4202 return VisitUnaryPreIncDec(UO);
4203 }
VisitUnaryPreDec(const UnaryOperator * UO)4204 bool VisitUnaryPreDec(const UnaryOperator *UO) {
4205 return VisitUnaryPreIncDec(UO);
4206 }
4207 bool VisitBinAssign(const BinaryOperator *BO);
4208 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4209
VisitCastExpr(const CastExpr * E)4210 bool VisitCastExpr(const CastExpr *E) {
4211 switch (E->getCastKind()) {
4212 default:
4213 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4214
4215 case CK_LValueBitCast:
4216 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4217 if (!Visit(E->getSubExpr()))
4218 return false;
4219 Result.Designator.setInvalid();
4220 return true;
4221
4222 case CK_BaseToDerived:
4223 if (!Visit(E->getSubExpr()))
4224 return false;
4225 return HandleBaseToDerivedCast(Info, E, Result);
4226 }
4227 }
4228 };
4229 } // end anonymous namespace
4230
4231 /// Evaluate an expression as an lvalue. This can be legitimately called on
4232 /// expressions which are not glvalues, in two cases:
4233 /// * function designators in C, and
4234 /// * "extern void" objects
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4235 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4236 assert(E->isGLValue() || E->getType()->isFunctionType() ||
4237 E->getType()->isVoidType());
4238 return LValueExprEvaluator(Info, Result).Visit(E);
4239 }
4240
VisitDeclRefExpr(const DeclRefExpr * E)4241 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4242 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4243 return Success(FD);
4244 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4245 return VisitVarDecl(E, VD);
4246 return Error(E);
4247 }
4248
VisitVarDecl(const Expr * E,const VarDecl * VD)4249 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4250 CallStackFrame *Frame = 0;
4251 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4252 Frame = Info.CurrentCall;
4253
4254 if (!VD->getType()->isReferenceType()) {
4255 if (Frame) {
4256 Result.set(VD, Frame->Index);
4257 return true;
4258 }
4259 return Success(VD);
4260 }
4261
4262 APValue *V;
4263 if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4264 return false;
4265 if (V->isUninit()) {
4266 if (!Info.CheckingPotentialConstantExpression)
4267 Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4268 return false;
4269 }
4270 return Success(*V, E);
4271 }
4272
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4273 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4274 const MaterializeTemporaryExpr *E) {
4275 // Walk through the expression to find the materialized temporary itself.
4276 SmallVector<const Expr *, 2> CommaLHSs;
4277 SmallVector<SubobjectAdjustment, 2> Adjustments;
4278 const Expr *Inner = E->GetTemporaryExpr()->
4279 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4280
4281 // If we passed any comma operators, evaluate their LHSs.
4282 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4283 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4284 return false;
4285
4286 // A materialized temporary with static storage duration can appear within the
4287 // result of a constant expression evaluation, so we need to preserve its
4288 // value for use outside this evaluation.
4289 APValue *Value;
4290 if (E->getStorageDuration() == SD_Static) {
4291 Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4292 *Value = APValue();
4293 Result.set(E);
4294 } else {
4295 Value = &Info.CurrentCall->
4296 createTemporary(E, E->getStorageDuration() == SD_Automatic);
4297 Result.set(E, Info.CurrentCall->Index);
4298 }
4299
4300 QualType Type = Inner->getType();
4301
4302 // Materialize the temporary itself.
4303 if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4304 (E->getStorageDuration() == SD_Static &&
4305 !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4306 *Value = APValue();
4307 return false;
4308 }
4309
4310 // Adjust our lvalue to refer to the desired subobject.
4311 for (unsigned I = Adjustments.size(); I != 0; /**/) {
4312 --I;
4313 switch (Adjustments[I].Kind) {
4314 case SubobjectAdjustment::DerivedToBaseAdjustment:
4315 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4316 Type, Result))
4317 return false;
4318 Type = Adjustments[I].DerivedToBase.BasePath->getType();
4319 break;
4320
4321 case SubobjectAdjustment::FieldAdjustment:
4322 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4323 return false;
4324 Type = Adjustments[I].Field->getType();
4325 break;
4326
4327 case SubobjectAdjustment::MemberPointerAdjustment:
4328 if (!HandleMemberPointerAccess(this->Info, Type, Result,
4329 Adjustments[I].Ptr.RHS))
4330 return false;
4331 Type = Adjustments[I].Ptr.MPT->getPointeeType();
4332 break;
4333 }
4334 }
4335
4336 return true;
4337 }
4338
4339 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4340 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4341 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4342 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4343 // only see this when folding in C, so there's no standard to follow here.
4344 return Success(E);
4345 }
4346
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4347 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4348 if (!E->isPotentiallyEvaluated())
4349 return Success(E);
4350
4351 Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4352 << E->getExprOperand()->getType()
4353 << E->getExprOperand()->getSourceRange();
4354 return false;
4355 }
4356
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4357 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4358 return Success(E);
4359 }
4360
VisitMemberExpr(const MemberExpr * E)4361 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4362 // Handle static data members.
4363 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4364 VisitIgnoredValue(E->getBase());
4365 return VisitVarDecl(E, VD);
4366 }
4367
4368 // Handle static member functions.
4369 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4370 if (MD->isStatic()) {
4371 VisitIgnoredValue(E->getBase());
4372 return Success(MD);
4373 }
4374 }
4375
4376 // Handle non-static data members.
4377 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4378 }
4379
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4380 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4381 // FIXME: Deal with vectors as array subscript bases.
4382 if (E->getBase()->getType()->isVectorType())
4383 return Error(E);
4384
4385 if (!EvaluatePointer(E->getBase(), Result, Info))
4386 return false;
4387
4388 APSInt Index;
4389 if (!EvaluateInteger(E->getIdx(), Index, Info))
4390 return false;
4391
4392 return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4393 getExtValue(Index));
4394 }
4395
VisitUnaryDeref(const UnaryOperator * E)4396 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4397 return EvaluatePointer(E->getSubExpr(), Result, Info);
4398 }
4399
VisitUnaryReal(const UnaryOperator * E)4400 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4401 if (!Visit(E->getSubExpr()))
4402 return false;
4403 // __real is a no-op on scalar lvalues.
4404 if (E->getSubExpr()->getType()->isAnyComplexType())
4405 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4406 return true;
4407 }
4408
VisitUnaryImag(const UnaryOperator * E)4409 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4410 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4411 "lvalue __imag__ on scalar?");
4412 if (!Visit(E->getSubExpr()))
4413 return false;
4414 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4415 return true;
4416 }
4417
VisitUnaryPreIncDec(const UnaryOperator * UO)4418 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4419 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4420 return Error(UO);
4421
4422 if (!this->Visit(UO->getSubExpr()))
4423 return false;
4424
4425 return handleIncDec(
4426 this->Info, UO, Result, UO->getSubExpr()->getType(),
4427 UO->isIncrementOp(), 0);
4428 }
4429
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4430 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4431 const CompoundAssignOperator *CAO) {
4432 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4433 return Error(CAO);
4434
4435 APValue RHS;
4436
4437 // The overall lvalue result is the result of evaluating the LHS.
4438 if (!this->Visit(CAO->getLHS())) {
4439 if (Info.keepEvaluatingAfterFailure())
4440 Evaluate(RHS, this->Info, CAO->getRHS());
4441 return false;
4442 }
4443
4444 if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4445 return false;
4446
4447 return handleCompoundAssignment(
4448 this->Info, CAO,
4449 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4450 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4451 }
4452
VisitBinAssign(const BinaryOperator * E)4453 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4454 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4455 return Error(E);
4456
4457 APValue NewVal;
4458
4459 if (!this->Visit(E->getLHS())) {
4460 if (Info.keepEvaluatingAfterFailure())
4461 Evaluate(NewVal, this->Info, E->getRHS());
4462 return false;
4463 }
4464
4465 if (!Evaluate(NewVal, this->Info, E->getRHS()))
4466 return false;
4467
4468 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4469 NewVal);
4470 }
4471
4472 //===----------------------------------------------------------------------===//
4473 // Pointer Evaluation
4474 //===----------------------------------------------------------------------===//
4475
4476 namespace {
4477 class PointerExprEvaluator
4478 : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
4479 LValue &Result;
4480
Success(const Expr * E)4481 bool Success(const Expr *E) {
4482 Result.set(E);
4483 return true;
4484 }
4485 public:
4486
PointerExprEvaluator(EvalInfo & info,LValue & Result)4487 PointerExprEvaluator(EvalInfo &info, LValue &Result)
4488 : ExprEvaluatorBaseTy(info), Result(Result) {}
4489
Success(const APValue & V,const Expr * E)4490 bool Success(const APValue &V, const Expr *E) {
4491 Result.setFrom(Info.Ctx, V);
4492 return true;
4493 }
ZeroInitialization(const Expr * E)4494 bool ZeroInitialization(const Expr *E) {
4495 return Success((Expr*)0);
4496 }
4497
4498 bool VisitBinaryOperator(const BinaryOperator *E);
4499 bool VisitCastExpr(const CastExpr* E);
4500 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)4501 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4502 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)4503 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4504 { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)4505 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4506 { return Success(E); }
4507 bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)4508 bool VisitBlockExpr(const BlockExpr *E) {
4509 if (!E->getBlockDecl()->hasCaptures())
4510 return Success(E);
4511 return Error(E);
4512 }
VisitCXXThisExpr(const CXXThisExpr * E)4513 bool VisitCXXThisExpr(const CXXThisExpr *E) {
4514 // Can't look at 'this' when checking a potential constant expression.
4515 if (Info.CheckingPotentialConstantExpression)
4516 return false;
4517 if (!Info.CurrentCall->This)
4518 return Error(E);
4519 Result = *Info.CurrentCall->This;
4520 return true;
4521 }
4522
4523 // FIXME: Missing: @protocol, @selector
4524 };
4525 } // end anonymous namespace
4526
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)4527 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4528 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4529 return PointerExprEvaluator(Info, Result).Visit(E);
4530 }
4531
VisitBinaryOperator(const BinaryOperator * E)4532 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4533 if (E->getOpcode() != BO_Add &&
4534 E->getOpcode() != BO_Sub)
4535 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4536
4537 const Expr *PExp = E->getLHS();
4538 const Expr *IExp = E->getRHS();
4539 if (IExp->getType()->isPointerType())
4540 std::swap(PExp, IExp);
4541
4542 bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4543 if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4544 return false;
4545
4546 llvm::APSInt Offset;
4547 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4548 return false;
4549
4550 int64_t AdditionalOffset = getExtValue(Offset);
4551 if (E->getOpcode() == BO_Sub)
4552 AdditionalOffset = -AdditionalOffset;
4553
4554 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4555 return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4556 AdditionalOffset);
4557 }
4558
VisitUnaryAddrOf(const UnaryOperator * E)4559 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4560 return EvaluateLValue(E->getSubExpr(), Result, Info);
4561 }
4562
VisitCastExpr(const CastExpr * E)4563 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4564 const Expr* SubExpr = E->getSubExpr();
4565
4566 switch (E->getCastKind()) {
4567 default:
4568 break;
4569
4570 case CK_BitCast:
4571 case CK_CPointerToObjCPointerCast:
4572 case CK_BlockPointerToObjCPointerCast:
4573 case CK_AnyPointerToBlockPointerCast:
4574 if (!Visit(SubExpr))
4575 return false;
4576 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4577 // permitted in constant expressions in C++11. Bitcasts from cv void* are
4578 // also static_casts, but we disallow them as a resolution to DR1312.
4579 if (!E->getType()->isVoidPointerType()) {
4580 Result.Designator.setInvalid();
4581 if (SubExpr->getType()->isVoidPointerType())
4582 CCEDiag(E, diag::note_constexpr_invalid_cast)
4583 << 3 << SubExpr->getType();
4584 else
4585 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4586 }
4587 return true;
4588
4589 case CK_DerivedToBase:
4590 case CK_UncheckedDerivedToBase:
4591 if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4592 return false;
4593 if (!Result.Base && Result.Offset.isZero())
4594 return true;
4595
4596 // Now figure out the necessary offset to add to the base LV to get from
4597 // the derived class to the base class.
4598 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4599 castAs<PointerType>()->getPointeeType(),
4600 Result);
4601
4602 case CK_BaseToDerived:
4603 if (!Visit(E->getSubExpr()))
4604 return false;
4605 if (!Result.Base && Result.Offset.isZero())
4606 return true;
4607 return HandleBaseToDerivedCast(Info, E, Result);
4608
4609 case CK_NullToPointer:
4610 VisitIgnoredValue(E->getSubExpr());
4611 return ZeroInitialization(E);
4612
4613 case CK_IntegralToPointer: {
4614 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4615
4616 APValue Value;
4617 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4618 break;
4619
4620 if (Value.isInt()) {
4621 unsigned Size = Info.Ctx.getTypeSize(E->getType());
4622 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4623 Result.Base = (Expr*)0;
4624 Result.Offset = CharUnits::fromQuantity(N);
4625 Result.CallIndex = 0;
4626 Result.Designator.setInvalid();
4627 return true;
4628 } else {
4629 // Cast is of an lvalue, no need to change value.
4630 Result.setFrom(Info.Ctx, Value);
4631 return true;
4632 }
4633 }
4634 case CK_ArrayToPointerDecay:
4635 if (SubExpr->isGLValue()) {
4636 if (!EvaluateLValue(SubExpr, Result, Info))
4637 return false;
4638 } else {
4639 Result.set(SubExpr, Info.CurrentCall->Index);
4640 if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4641 Info, Result, SubExpr))
4642 return false;
4643 }
4644 // The result is a pointer to the first element of the array.
4645 if (const ConstantArrayType *CAT
4646 = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4647 Result.addArray(Info, E, CAT);
4648 else
4649 Result.Designator.setInvalid();
4650 return true;
4651
4652 case CK_FunctionToPointerDecay:
4653 return EvaluateLValue(SubExpr, Result, Info);
4654 }
4655
4656 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4657 }
4658
VisitCallExpr(const CallExpr * E)4659 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4660 if (IsStringLiteralCall(E))
4661 return Success(E);
4662
4663 switch (E->isBuiltinCall()) {
4664 case Builtin::BI__builtin_addressof:
4665 return EvaluateLValue(E->getArg(0), Result, Info);
4666
4667 default:
4668 return ExprEvaluatorBaseTy::VisitCallExpr(E);
4669 }
4670 }
4671
4672 //===----------------------------------------------------------------------===//
4673 // Member Pointer Evaluation
4674 //===----------------------------------------------------------------------===//
4675
4676 namespace {
4677 class MemberPointerExprEvaluator
4678 : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
4679 MemberPtr &Result;
4680
Success(const ValueDecl * D)4681 bool Success(const ValueDecl *D) {
4682 Result = MemberPtr(D);
4683 return true;
4684 }
4685 public:
4686
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)4687 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4688 : ExprEvaluatorBaseTy(Info), Result(Result) {}
4689
Success(const APValue & V,const Expr * E)4690 bool Success(const APValue &V, const Expr *E) {
4691 Result.setFrom(V);
4692 return true;
4693 }
ZeroInitialization(const Expr * E)4694 bool ZeroInitialization(const Expr *E) {
4695 return Success((const ValueDecl*)0);
4696 }
4697
4698 bool VisitCastExpr(const CastExpr *E);
4699 bool VisitUnaryAddrOf(const UnaryOperator *E);
4700 };
4701 } // end anonymous namespace
4702
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)4703 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4704 EvalInfo &Info) {
4705 assert(E->isRValue() && E->getType()->isMemberPointerType());
4706 return MemberPointerExprEvaluator(Info, Result).Visit(E);
4707 }
4708
VisitCastExpr(const CastExpr * E)4709 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4710 switch (E->getCastKind()) {
4711 default:
4712 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4713
4714 case CK_NullToMemberPointer:
4715 VisitIgnoredValue(E->getSubExpr());
4716 return ZeroInitialization(E);
4717
4718 case CK_BaseToDerivedMemberPointer: {
4719 if (!Visit(E->getSubExpr()))
4720 return false;
4721 if (E->path_empty())
4722 return true;
4723 // Base-to-derived member pointer casts store the path in derived-to-base
4724 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4725 // the wrong end of the derived->base arc, so stagger the path by one class.
4726 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4727 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4728 PathI != PathE; ++PathI) {
4729 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4730 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4731 if (!Result.castToDerived(Derived))
4732 return Error(E);
4733 }
4734 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4735 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4736 return Error(E);
4737 return true;
4738 }
4739
4740 case CK_DerivedToBaseMemberPointer:
4741 if (!Visit(E->getSubExpr()))
4742 return false;
4743 for (CastExpr::path_const_iterator PathI = E->path_begin(),
4744 PathE = E->path_end(); PathI != PathE; ++PathI) {
4745 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4746 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4747 if (!Result.castToBase(Base))
4748 return Error(E);
4749 }
4750 return true;
4751 }
4752 }
4753
VisitUnaryAddrOf(const UnaryOperator * E)4754 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4755 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4756 // member can be formed.
4757 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4758 }
4759
4760 //===----------------------------------------------------------------------===//
4761 // Record Evaluation
4762 //===----------------------------------------------------------------------===//
4763
4764 namespace {
4765 class RecordExprEvaluator
4766 : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
4767 const LValue &This;
4768 APValue &Result;
4769 public:
4770
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)4771 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4772 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4773
Success(const APValue & V,const Expr * E)4774 bool Success(const APValue &V, const Expr *E) {
4775 Result = V;
4776 return true;
4777 }
4778 bool ZeroInitialization(const Expr *E);
4779
4780 bool VisitCastExpr(const CastExpr *E);
4781 bool VisitInitListExpr(const InitListExpr *E);
4782 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4783 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4784 };
4785 }
4786
4787 /// Perform zero-initialization on an object of non-union class type.
4788 /// C++11 [dcl.init]p5:
4789 /// To zero-initialize an object or reference of type T means:
4790 /// [...]
4791 /// -- if T is a (possibly cv-qualified) non-union class type,
4792 /// each non-static data member and each base-class subobject is
4793 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)4794 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4795 const RecordDecl *RD,
4796 const LValue &This, APValue &Result) {
4797 assert(!RD->isUnion() && "Expected non-union class type");
4798 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4799 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4800 std::distance(RD->field_begin(), RD->field_end()));
4801
4802 if (RD->isInvalidDecl()) return false;
4803 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4804
4805 if (CD) {
4806 unsigned Index = 0;
4807 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4808 End = CD->bases_end(); I != End; ++I, ++Index) {
4809 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4810 LValue Subobject = This;
4811 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4812 return false;
4813 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4814 Result.getStructBase(Index)))
4815 return false;
4816 }
4817 }
4818
4819 for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
4820 I != End; ++I) {
4821 // -- if T is a reference type, no initialization is performed.
4822 if (I->getType()->isReferenceType())
4823 continue;
4824
4825 LValue Subobject = This;
4826 if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
4827 return false;
4828
4829 ImplicitValueInitExpr VIE(I->getType());
4830 if (!EvaluateInPlace(
4831 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4832 return false;
4833 }
4834
4835 return true;
4836 }
4837
ZeroInitialization(const Expr * E)4838 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4839 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4840 if (RD->isInvalidDecl()) return false;
4841 if (RD->isUnion()) {
4842 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4843 // object's first non-static named data member is zero-initialized
4844 RecordDecl::field_iterator I = RD->field_begin();
4845 if (I == RD->field_end()) {
4846 Result = APValue((const FieldDecl*)0);
4847 return true;
4848 }
4849
4850 LValue Subobject = This;
4851 if (!HandleLValueMember(Info, E, Subobject, *I))
4852 return false;
4853 Result = APValue(*I);
4854 ImplicitValueInitExpr VIE(I->getType());
4855 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
4856 }
4857
4858 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
4859 Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
4860 return false;
4861 }
4862
4863 return HandleClassZeroInitialization(Info, E, RD, This, Result);
4864 }
4865
VisitCastExpr(const CastExpr * E)4866 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
4867 switch (E->getCastKind()) {
4868 default:
4869 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4870
4871 case CK_ConstructorConversion:
4872 return Visit(E->getSubExpr());
4873
4874 case CK_DerivedToBase:
4875 case CK_UncheckedDerivedToBase: {
4876 APValue DerivedObject;
4877 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
4878 return false;
4879 if (!DerivedObject.isStruct())
4880 return Error(E->getSubExpr());
4881
4882 // Derived-to-base rvalue conversion: just slice off the derived part.
4883 APValue *Value = &DerivedObject;
4884 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
4885 for (CastExpr::path_const_iterator PathI = E->path_begin(),
4886 PathE = E->path_end(); PathI != PathE; ++PathI) {
4887 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
4888 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4889 Value = &Value->getStructBase(getBaseIndex(RD, Base));
4890 RD = Base;
4891 }
4892 Result = *Value;
4893 return true;
4894 }
4895 }
4896 }
4897
VisitInitListExpr(const InitListExpr * E)4898 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
4899 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4900 if (RD->isInvalidDecl()) return false;
4901 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4902
4903 if (RD->isUnion()) {
4904 const FieldDecl *Field = E->getInitializedFieldInUnion();
4905 Result = APValue(Field);
4906 if (!Field)
4907 return true;
4908
4909 // If the initializer list for a union does not contain any elements, the
4910 // first element of the union is value-initialized.
4911 // FIXME: The element should be initialized from an initializer list.
4912 // Is this difference ever observable for initializer lists which
4913 // we don't build?
4914 ImplicitValueInitExpr VIE(Field->getType());
4915 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
4916
4917 LValue Subobject = This;
4918 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
4919 return false;
4920
4921 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4922 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4923 isa<CXXDefaultInitExpr>(InitExpr));
4924
4925 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
4926 }
4927
4928 assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
4929 "initializer list for class with base classes");
4930 Result = APValue(APValue::UninitStruct(), 0,
4931 std::distance(RD->field_begin(), RD->field_end()));
4932 unsigned ElementNo = 0;
4933 bool Success = true;
4934 for (RecordDecl::field_iterator Field = RD->field_begin(),
4935 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
4936 // Anonymous bit-fields are not considered members of the class for
4937 // purposes of aggregate initialization.
4938 if (Field->isUnnamedBitfield())
4939 continue;
4940
4941 LValue Subobject = This;
4942
4943 bool HaveInit = ElementNo < E->getNumInits();
4944
4945 // FIXME: Diagnostics here should point to the end of the initializer
4946 // list, not the start.
4947 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
4948 Subobject, *Field, &Layout))
4949 return false;
4950
4951 // Perform an implicit value-initialization for members beyond the end of
4952 // the initializer list.
4953 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
4954 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
4955
4956 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4957 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4958 isa<CXXDefaultInitExpr>(Init));
4959
4960 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
4961 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
4962 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
4963 FieldVal, *Field))) {
4964 if (!Info.keepEvaluatingAfterFailure())
4965 return false;
4966 Success = false;
4967 }
4968 }
4969
4970 return Success;
4971 }
4972
VisitCXXConstructExpr(const CXXConstructExpr * E)4973 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
4974 const CXXConstructorDecl *FD = E->getConstructor();
4975 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
4976
4977 bool ZeroInit = E->requiresZeroInitialization();
4978 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
4979 // If we've already performed zero-initialization, we're already done.
4980 if (!Result.isUninit())
4981 return true;
4982
4983 if (ZeroInit)
4984 return ZeroInitialization(E);
4985
4986 const CXXRecordDecl *RD = FD->getParent();
4987 if (RD->isUnion())
4988 Result = APValue((FieldDecl*)0);
4989 else
4990 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4991 std::distance(RD->field_begin(), RD->field_end()));
4992 return true;
4993 }
4994
4995 const FunctionDecl *Definition = 0;
4996 FD->getBody(Definition);
4997
4998 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
4999 return false;
5000
5001 // Avoid materializing a temporary for an elidable copy/move constructor.
5002 if (E->isElidable() && !ZeroInit)
5003 if (const MaterializeTemporaryExpr *ME
5004 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5005 return Visit(ME->GetTemporaryExpr());
5006
5007 if (ZeroInit && !ZeroInitialization(E))
5008 return false;
5009
5010 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5011 return HandleConstructorCall(E->getExprLoc(), This, Args,
5012 cast<CXXConstructorDecl>(Definition), Info,
5013 Result);
5014 }
5015
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5016 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5017 const CXXStdInitializerListExpr *E) {
5018 const ConstantArrayType *ArrayType =
5019 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5020
5021 LValue Array;
5022 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5023 return false;
5024
5025 // Get a pointer to the first element of the array.
5026 Array.addArray(Info, E, ArrayType);
5027
5028 // FIXME: Perform the checks on the field types in SemaInit.
5029 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5030 RecordDecl::field_iterator Field = Record->field_begin();
5031 if (Field == Record->field_end())
5032 return Error(E);
5033
5034 // Start pointer.
5035 if (!Field->getType()->isPointerType() ||
5036 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5037 ArrayType->getElementType()))
5038 return Error(E);
5039
5040 // FIXME: What if the initializer_list type has base classes, etc?
5041 Result = APValue(APValue::UninitStruct(), 0, 2);
5042 Array.moveInto(Result.getStructField(0));
5043
5044 if (++Field == Record->field_end())
5045 return Error(E);
5046
5047 if (Field->getType()->isPointerType() &&
5048 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5049 ArrayType->getElementType())) {
5050 // End pointer.
5051 if (!HandleLValueArrayAdjustment(Info, E, Array,
5052 ArrayType->getElementType(),
5053 ArrayType->getSize().getZExtValue()))
5054 return false;
5055 Array.moveInto(Result.getStructField(1));
5056 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5057 // Length.
5058 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5059 else
5060 return Error(E);
5061
5062 if (++Field != Record->field_end())
5063 return Error(E);
5064
5065 return true;
5066 }
5067
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5068 static bool EvaluateRecord(const Expr *E, const LValue &This,
5069 APValue &Result, EvalInfo &Info) {
5070 assert(E->isRValue() && E->getType()->isRecordType() &&
5071 "can't evaluate expression as a record rvalue");
5072 return RecordExprEvaluator(Info, This, Result).Visit(E);
5073 }
5074
5075 //===----------------------------------------------------------------------===//
5076 // Temporary Evaluation
5077 //
5078 // Temporaries are represented in the AST as rvalues, but generally behave like
5079 // lvalues. The full-object of which the temporary is a subobject is implicitly
5080 // materialized so that a reference can bind to it.
5081 //===----------------------------------------------------------------------===//
5082 namespace {
5083 class TemporaryExprEvaluator
5084 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5085 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5086 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5087 LValueExprEvaluatorBaseTy(Info, Result) {}
5088
5089 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5090 bool VisitConstructExpr(const Expr *E) {
5091 Result.set(E, Info.CurrentCall->Index);
5092 return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5093 Info, Result, E);
5094 }
5095
VisitCastExpr(const CastExpr * E)5096 bool VisitCastExpr(const CastExpr *E) {
5097 switch (E->getCastKind()) {
5098 default:
5099 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5100
5101 case CK_ConstructorConversion:
5102 return VisitConstructExpr(E->getSubExpr());
5103 }
5104 }
VisitInitListExpr(const InitListExpr * E)5105 bool VisitInitListExpr(const InitListExpr *E) {
5106 return VisitConstructExpr(E);
5107 }
VisitCXXConstructExpr(const CXXConstructExpr * E)5108 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5109 return VisitConstructExpr(E);
5110 }
VisitCallExpr(const CallExpr * E)5111 bool VisitCallExpr(const CallExpr *E) {
5112 return VisitConstructExpr(E);
5113 }
5114 };
5115 } // end anonymous namespace
5116
5117 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5118 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5119 assert(E->isRValue() && E->getType()->isRecordType());
5120 return TemporaryExprEvaluator(Info, Result).Visit(E);
5121 }
5122
5123 //===----------------------------------------------------------------------===//
5124 // Vector Evaluation
5125 //===----------------------------------------------------------------------===//
5126
5127 namespace {
5128 class VectorExprEvaluator
5129 : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
5130 APValue &Result;
5131 public:
5132
VectorExprEvaluator(EvalInfo & info,APValue & Result)5133 VectorExprEvaluator(EvalInfo &info, APValue &Result)
5134 : ExprEvaluatorBaseTy(info), Result(Result) {}
5135
Success(const ArrayRef<APValue> & V,const Expr * E)5136 bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5137 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5138 // FIXME: remove this APValue copy.
5139 Result = APValue(V.data(), V.size());
5140 return true;
5141 }
Success(const APValue & V,const Expr * E)5142 bool Success(const APValue &V, const Expr *E) {
5143 assert(V.isVector());
5144 Result = V;
5145 return true;
5146 }
5147 bool ZeroInitialization(const Expr *E);
5148
VisitUnaryReal(const UnaryOperator * E)5149 bool VisitUnaryReal(const UnaryOperator *E)
5150 { return Visit(E->getSubExpr()); }
5151 bool VisitCastExpr(const CastExpr* E);
5152 bool VisitInitListExpr(const InitListExpr *E);
5153 bool VisitUnaryImag(const UnaryOperator *E);
5154 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5155 // binary comparisons, binary and/or/xor,
5156 // shufflevector, ExtVectorElementExpr
5157 };
5158 } // end anonymous namespace
5159
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5160 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5161 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5162 return VectorExprEvaluator(Info, Result).Visit(E);
5163 }
5164
VisitCastExpr(const CastExpr * E)5165 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5166 const VectorType *VTy = E->getType()->castAs<VectorType>();
5167 unsigned NElts = VTy->getNumElements();
5168
5169 const Expr *SE = E->getSubExpr();
5170 QualType SETy = SE->getType();
5171
5172 switch (E->getCastKind()) {
5173 case CK_VectorSplat: {
5174 APValue Val = APValue();
5175 if (SETy->isIntegerType()) {
5176 APSInt IntResult;
5177 if (!EvaluateInteger(SE, IntResult, Info))
5178 return false;
5179 Val = APValue(IntResult);
5180 } else if (SETy->isRealFloatingType()) {
5181 APFloat F(0.0);
5182 if (!EvaluateFloat(SE, F, Info))
5183 return false;
5184 Val = APValue(F);
5185 } else {
5186 return Error(E);
5187 }
5188
5189 // Splat and create vector APValue.
5190 SmallVector<APValue, 4> Elts(NElts, Val);
5191 return Success(Elts, E);
5192 }
5193 case CK_BitCast: {
5194 // Evaluate the operand into an APInt we can extract from.
5195 llvm::APInt SValInt;
5196 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5197 return false;
5198 // Extract the elements
5199 QualType EltTy = VTy->getElementType();
5200 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5201 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5202 SmallVector<APValue, 4> Elts;
5203 if (EltTy->isRealFloatingType()) {
5204 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5205 unsigned FloatEltSize = EltSize;
5206 if (&Sem == &APFloat::x87DoubleExtended)
5207 FloatEltSize = 80;
5208 for (unsigned i = 0; i < NElts; i++) {
5209 llvm::APInt Elt;
5210 if (BigEndian)
5211 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5212 else
5213 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5214 Elts.push_back(APValue(APFloat(Sem, Elt)));
5215 }
5216 } else if (EltTy->isIntegerType()) {
5217 for (unsigned i = 0; i < NElts; i++) {
5218 llvm::APInt Elt;
5219 if (BigEndian)
5220 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5221 else
5222 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5223 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5224 }
5225 } else {
5226 return Error(E);
5227 }
5228 return Success(Elts, E);
5229 }
5230 default:
5231 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5232 }
5233 }
5234
5235 bool
VisitInitListExpr(const InitListExpr * E)5236 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5237 const VectorType *VT = E->getType()->castAs<VectorType>();
5238 unsigned NumInits = E->getNumInits();
5239 unsigned NumElements = VT->getNumElements();
5240
5241 QualType EltTy = VT->getElementType();
5242 SmallVector<APValue, 4> Elements;
5243
5244 // The number of initializers can be less than the number of
5245 // vector elements. For OpenCL, this can be due to nested vector
5246 // initialization. For GCC compatibility, missing trailing elements
5247 // should be initialized with zeroes.
5248 unsigned CountInits = 0, CountElts = 0;
5249 while (CountElts < NumElements) {
5250 // Handle nested vector initialization.
5251 if (CountInits < NumInits
5252 && E->getInit(CountInits)->getType()->isExtVectorType()) {
5253 APValue v;
5254 if (!EvaluateVector(E->getInit(CountInits), v, Info))
5255 return Error(E);
5256 unsigned vlen = v.getVectorLength();
5257 for (unsigned j = 0; j < vlen; j++)
5258 Elements.push_back(v.getVectorElt(j));
5259 CountElts += vlen;
5260 } else if (EltTy->isIntegerType()) {
5261 llvm::APSInt sInt(32);
5262 if (CountInits < NumInits) {
5263 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5264 return false;
5265 } else // trailing integer zero.
5266 sInt = Info.Ctx.MakeIntValue(0, EltTy);
5267 Elements.push_back(APValue(sInt));
5268 CountElts++;
5269 } else {
5270 llvm::APFloat f(0.0);
5271 if (CountInits < NumInits) {
5272 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5273 return false;
5274 } else // trailing float zero.
5275 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5276 Elements.push_back(APValue(f));
5277 CountElts++;
5278 }
5279 CountInits++;
5280 }
5281 return Success(Elements, E);
5282 }
5283
5284 bool
ZeroInitialization(const Expr * E)5285 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5286 const VectorType *VT = E->getType()->getAs<VectorType>();
5287 QualType EltTy = VT->getElementType();
5288 APValue ZeroElement;
5289 if (EltTy->isIntegerType())
5290 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5291 else
5292 ZeroElement =
5293 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5294
5295 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5296 return Success(Elements, E);
5297 }
5298
VisitUnaryImag(const UnaryOperator * E)5299 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5300 VisitIgnoredValue(E->getSubExpr());
5301 return ZeroInitialization(E);
5302 }
5303
5304 //===----------------------------------------------------------------------===//
5305 // Array Evaluation
5306 //===----------------------------------------------------------------------===//
5307
5308 namespace {
5309 class ArrayExprEvaluator
5310 : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
5311 const LValue &This;
5312 APValue &Result;
5313 public:
5314
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)5315 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5316 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5317
Success(const APValue & V,const Expr * E)5318 bool Success(const APValue &V, const Expr *E) {
5319 assert((V.isArray() || V.isLValue()) &&
5320 "expected array or string literal");
5321 Result = V;
5322 return true;
5323 }
5324
ZeroInitialization(const Expr * E)5325 bool ZeroInitialization(const Expr *E) {
5326 const ConstantArrayType *CAT =
5327 Info.Ctx.getAsConstantArrayType(E->getType());
5328 if (!CAT)
5329 return Error(E);
5330
5331 Result = APValue(APValue::UninitArray(), 0,
5332 CAT->getSize().getZExtValue());
5333 if (!Result.hasArrayFiller()) return true;
5334
5335 // Zero-initialize all elements.
5336 LValue Subobject = This;
5337 Subobject.addArray(Info, E, CAT);
5338 ImplicitValueInitExpr VIE(CAT->getElementType());
5339 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5340 }
5341
5342 bool VisitInitListExpr(const InitListExpr *E);
5343 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5344 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5345 const LValue &Subobject,
5346 APValue *Value, QualType Type);
5347 };
5348 } // end anonymous namespace
5349
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5350 static bool EvaluateArray(const Expr *E, const LValue &This,
5351 APValue &Result, EvalInfo &Info) {
5352 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5353 return ArrayExprEvaluator(Info, This, Result).Visit(E);
5354 }
5355
VisitInitListExpr(const InitListExpr * E)5356 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5357 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5358 if (!CAT)
5359 return Error(E);
5360
5361 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5362 // an appropriately-typed string literal enclosed in braces.
5363 if (E->isStringLiteralInit()) {
5364 LValue LV;
5365 if (!EvaluateLValue(E->getInit(0), LV, Info))
5366 return false;
5367 APValue Val;
5368 LV.moveInto(Val);
5369 return Success(Val, E);
5370 }
5371
5372 bool Success = true;
5373
5374 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5375 "zero-initialized array shouldn't have any initialized elts");
5376 APValue Filler;
5377 if (Result.isArray() && Result.hasArrayFiller())
5378 Filler = Result.getArrayFiller();
5379
5380 unsigned NumEltsToInit = E->getNumInits();
5381 unsigned NumElts = CAT->getSize().getZExtValue();
5382 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
5383
5384 // If the initializer might depend on the array index, run it for each
5385 // array element. For now, just whitelist non-class value-initialization.
5386 if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5387 NumEltsToInit = NumElts;
5388
5389 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5390
5391 // If the array was previously zero-initialized, preserve the
5392 // zero-initialized values.
5393 if (!Filler.isUninit()) {
5394 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5395 Result.getArrayInitializedElt(I) = Filler;
5396 if (Result.hasArrayFiller())
5397 Result.getArrayFiller() = Filler;
5398 }
5399
5400 LValue Subobject = This;
5401 Subobject.addArray(Info, E, CAT);
5402 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5403 const Expr *Init =
5404 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5405 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5406 Info, Subobject, Init) ||
5407 !HandleLValueArrayAdjustment(Info, Init, Subobject,
5408 CAT->getElementType(), 1)) {
5409 if (!Info.keepEvaluatingAfterFailure())
5410 return false;
5411 Success = false;
5412 }
5413 }
5414
5415 if (!Result.hasArrayFiller())
5416 return Success;
5417
5418 // If we get here, we have a trivial filler, which we can just evaluate
5419 // once and splat over the rest of the array elements.
5420 assert(FillerExpr && "no array filler for incomplete init list");
5421 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5422 FillerExpr) && Success;
5423 }
5424
VisitCXXConstructExpr(const CXXConstructExpr * E)5425 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5426 return VisitCXXConstructExpr(E, This, &Result, E->getType());
5427 }
5428
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)5429 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5430 const LValue &Subobject,
5431 APValue *Value,
5432 QualType Type) {
5433 bool HadZeroInit = !Value->isUninit();
5434
5435 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5436 unsigned N = CAT->getSize().getZExtValue();
5437
5438 // Preserve the array filler if we had prior zero-initialization.
5439 APValue Filler =
5440 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5441 : APValue();
5442
5443 *Value = APValue(APValue::UninitArray(), N, N);
5444
5445 if (HadZeroInit)
5446 for (unsigned I = 0; I != N; ++I)
5447 Value->getArrayInitializedElt(I) = Filler;
5448
5449 // Initialize the elements.
5450 LValue ArrayElt = Subobject;
5451 ArrayElt.addArray(Info, E, CAT);
5452 for (unsigned I = 0; I != N; ++I)
5453 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5454 CAT->getElementType()) ||
5455 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5456 CAT->getElementType(), 1))
5457 return false;
5458
5459 return true;
5460 }
5461
5462 if (!Type->isRecordType())
5463 return Error(E);
5464
5465 const CXXConstructorDecl *FD = E->getConstructor();
5466
5467 bool ZeroInit = E->requiresZeroInitialization();
5468 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5469 if (HadZeroInit)
5470 return true;
5471
5472 if (ZeroInit) {
5473 ImplicitValueInitExpr VIE(Type);
5474 return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5475 }
5476
5477 const CXXRecordDecl *RD = FD->getParent();
5478 if (RD->isUnion())
5479 *Value = APValue((FieldDecl*)0);
5480 else
5481 *Value =
5482 APValue(APValue::UninitStruct(), RD->getNumBases(),
5483 std::distance(RD->field_begin(), RD->field_end()));
5484 return true;
5485 }
5486
5487 const FunctionDecl *Definition = 0;
5488 FD->getBody(Definition);
5489
5490 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5491 return false;
5492
5493 if (ZeroInit && !HadZeroInit) {
5494 ImplicitValueInitExpr VIE(Type);
5495 if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5496 return false;
5497 }
5498
5499 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5500 return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5501 cast<CXXConstructorDecl>(Definition),
5502 Info, *Value);
5503 }
5504
5505 //===----------------------------------------------------------------------===//
5506 // Integer Evaluation
5507 //
5508 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5509 // types and back in constant folding. Integer values are thus represented
5510 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5511 //===----------------------------------------------------------------------===//
5512
5513 namespace {
5514 class IntExprEvaluator
5515 : public ExprEvaluatorBase<IntExprEvaluator, bool> {
5516 APValue &Result;
5517 public:
IntExprEvaluator(EvalInfo & info,APValue & result)5518 IntExprEvaluator(EvalInfo &info, APValue &result)
5519 : ExprEvaluatorBaseTy(info), Result(result) {}
5520
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)5521 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5522 assert(E->getType()->isIntegralOrEnumerationType() &&
5523 "Invalid evaluation result.");
5524 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5525 "Invalid evaluation result.");
5526 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5527 "Invalid evaluation result.");
5528 Result = APValue(SI);
5529 return true;
5530 }
Success(const llvm::APSInt & SI,const Expr * E)5531 bool Success(const llvm::APSInt &SI, const Expr *E) {
5532 return Success(SI, E, Result);
5533 }
5534
Success(const llvm::APInt & I,const Expr * E,APValue & Result)5535 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5536 assert(E->getType()->isIntegralOrEnumerationType() &&
5537 "Invalid evaluation result.");
5538 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5539 "Invalid evaluation result.");
5540 Result = APValue(APSInt(I));
5541 Result.getInt().setIsUnsigned(
5542 E->getType()->isUnsignedIntegerOrEnumerationType());
5543 return true;
5544 }
Success(const llvm::APInt & I,const Expr * E)5545 bool Success(const llvm::APInt &I, const Expr *E) {
5546 return Success(I, E, Result);
5547 }
5548
Success(uint64_t Value,const Expr * E,APValue & Result)5549 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5550 assert(E->getType()->isIntegralOrEnumerationType() &&
5551 "Invalid evaluation result.");
5552 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5553 return true;
5554 }
Success(uint64_t Value,const Expr * E)5555 bool Success(uint64_t Value, const Expr *E) {
5556 return Success(Value, E, Result);
5557 }
5558
Success(CharUnits Size,const Expr * E)5559 bool Success(CharUnits Size, const Expr *E) {
5560 return Success(Size.getQuantity(), E);
5561 }
5562
Success(const APValue & V,const Expr * E)5563 bool Success(const APValue &V, const Expr *E) {
5564 if (V.isLValue() || V.isAddrLabelDiff()) {
5565 Result = V;
5566 return true;
5567 }
5568 return Success(V.getInt(), E);
5569 }
5570
ZeroInitialization(const Expr * E)5571 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5572
5573 //===--------------------------------------------------------------------===//
5574 // Visitor Methods
5575 //===--------------------------------------------------------------------===//
5576
VisitIntegerLiteral(const IntegerLiteral * E)5577 bool VisitIntegerLiteral(const IntegerLiteral *E) {
5578 return Success(E->getValue(), E);
5579 }
VisitCharacterLiteral(const CharacterLiteral * E)5580 bool VisitCharacterLiteral(const CharacterLiteral *E) {
5581 return Success(E->getValue(), E);
5582 }
5583
5584 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)5585 bool VisitDeclRefExpr(const DeclRefExpr *E) {
5586 if (CheckReferencedDecl(E, E->getDecl()))
5587 return true;
5588
5589 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5590 }
VisitMemberExpr(const MemberExpr * E)5591 bool VisitMemberExpr(const MemberExpr *E) {
5592 if (CheckReferencedDecl(E, E->getMemberDecl())) {
5593 VisitIgnoredValue(E->getBase());
5594 return true;
5595 }
5596
5597 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5598 }
5599
5600 bool VisitCallExpr(const CallExpr *E);
5601 bool VisitBinaryOperator(const BinaryOperator *E);
5602 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5603 bool VisitUnaryOperator(const UnaryOperator *E);
5604
5605 bool VisitCastExpr(const CastExpr* E);
5606 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5607
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)5608 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5609 return Success(E->getValue(), E);
5610 }
5611
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)5612 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5613 return Success(E->getValue(), E);
5614 }
5615
5616 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)5617 bool VisitGNUNullExpr(const GNUNullExpr *E) {
5618 return ZeroInitialization(E);
5619 }
5620
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)5621 bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
5622 return Success(E->getValue(), E);
5623 }
5624
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)5625 bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
5626 return Success(E->getValue(), E);
5627 }
5628
VisitTypeTraitExpr(const TypeTraitExpr * E)5629 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5630 return Success(E->getValue(), E);
5631 }
5632
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)5633 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5634 return Success(E->getValue(), E);
5635 }
5636
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)5637 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5638 return Success(E->getValue(), E);
5639 }
5640
5641 bool VisitUnaryReal(const UnaryOperator *E);
5642 bool VisitUnaryImag(const UnaryOperator *E);
5643
5644 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5645 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5646
5647 private:
5648 CharUnits GetAlignOfExpr(const Expr *E);
5649 CharUnits GetAlignOfType(QualType T);
5650 static QualType GetObjectType(APValue::LValueBase B);
5651 bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5652 // FIXME: Missing: array subscript of vector, member of vector
5653 };
5654 } // end anonymous namespace
5655
5656 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5657 /// produce either the integer value or a pointer.
5658 ///
5659 /// GCC has a heinous extension which folds casts between pointer types and
5660 /// pointer-sized integral types. We support this by allowing the evaluation of
5661 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5662 /// Some simple arithmetic on such values is supported (they are treated much
5663 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)5664 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5665 EvalInfo &Info) {
5666 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5667 return IntExprEvaluator(Info, Result).Visit(E);
5668 }
5669
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)5670 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5671 APValue Val;
5672 if (!EvaluateIntegerOrLValue(E, Val, Info))
5673 return false;
5674 if (!Val.isInt()) {
5675 // FIXME: It would be better to produce the diagnostic for casting
5676 // a pointer to an integer.
5677 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5678 return false;
5679 }
5680 Result = Val.getInt();
5681 return true;
5682 }
5683
5684 /// Check whether the given declaration can be directly converted to an integral
5685 /// rvalue. If not, no diagnostic is produced; there are other things we can
5686 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)5687 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5688 // Enums are integer constant exprs.
5689 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5690 // Check for signedness/width mismatches between E type and ECD value.
5691 bool SameSign = (ECD->getInitVal().isSigned()
5692 == E->getType()->isSignedIntegerOrEnumerationType());
5693 bool SameWidth = (ECD->getInitVal().getBitWidth()
5694 == Info.Ctx.getIntWidth(E->getType()));
5695 if (SameSign && SameWidth)
5696 return Success(ECD->getInitVal(), E);
5697 else {
5698 // Get rid of mismatch (otherwise Success assertions will fail)
5699 // by computing a new value matching the type of E.
5700 llvm::APSInt Val = ECD->getInitVal();
5701 if (!SameSign)
5702 Val.setIsSigned(!ECD->getInitVal().isSigned());
5703 if (!SameWidth)
5704 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5705 return Success(Val, E);
5706 }
5707 }
5708 return false;
5709 }
5710
5711 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5712 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)5713 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5714 // The following enum mimics the values returned by GCC.
5715 // FIXME: Does GCC differ between lvalue and rvalue references here?
5716 enum gcc_type_class {
5717 no_type_class = -1,
5718 void_type_class, integer_type_class, char_type_class,
5719 enumeral_type_class, boolean_type_class,
5720 pointer_type_class, reference_type_class, offset_type_class,
5721 real_type_class, complex_type_class,
5722 function_type_class, method_type_class,
5723 record_type_class, union_type_class,
5724 array_type_class, string_type_class,
5725 lang_type_class
5726 };
5727
5728 // If no argument was supplied, default to "no_type_class". This isn't
5729 // ideal, however it is what gcc does.
5730 if (E->getNumArgs() == 0)
5731 return no_type_class;
5732
5733 QualType ArgTy = E->getArg(0)->getType();
5734 if (ArgTy->isVoidType())
5735 return void_type_class;
5736 else if (ArgTy->isEnumeralType())
5737 return enumeral_type_class;
5738 else if (ArgTy->isBooleanType())
5739 return boolean_type_class;
5740 else if (ArgTy->isCharType())
5741 return string_type_class; // gcc doesn't appear to use char_type_class
5742 else if (ArgTy->isIntegerType())
5743 return integer_type_class;
5744 else if (ArgTy->isPointerType())
5745 return pointer_type_class;
5746 else if (ArgTy->isReferenceType())
5747 return reference_type_class;
5748 else if (ArgTy->isRealType())
5749 return real_type_class;
5750 else if (ArgTy->isComplexType())
5751 return complex_type_class;
5752 else if (ArgTy->isFunctionType())
5753 return function_type_class;
5754 else if (ArgTy->isStructureOrClassType())
5755 return record_type_class;
5756 else if (ArgTy->isUnionType())
5757 return union_type_class;
5758 else if (ArgTy->isArrayType())
5759 return array_type_class;
5760 else if (ArgTy->isUnionType())
5761 return union_type_class;
5762 else // FIXME: offset_type_class, method_type_class, & lang_type_class?
5763 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5764 }
5765
5766 /// EvaluateBuiltinConstantPForLValue - Determine the result of
5767 /// __builtin_constant_p when applied to the given lvalue.
5768 ///
5769 /// An lvalue is only "constant" if it is a pointer or reference to the first
5770 /// character of a string literal.
5771 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)5772 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5773 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5774 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5775 }
5776
5777 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5778 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)5779 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5780 QualType ArgType = Arg->getType();
5781
5782 // __builtin_constant_p always has one operand. The rules which gcc follows
5783 // are not precisely documented, but are as follows:
5784 //
5785 // - If the operand is of integral, floating, complex or enumeration type,
5786 // and can be folded to a known value of that type, it returns 1.
5787 // - If the operand and can be folded to a pointer to the first character
5788 // of a string literal (or such a pointer cast to an integral type), it
5789 // returns 1.
5790 //
5791 // Otherwise, it returns 0.
5792 //
5793 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5794 // its support for this does not currently work.
5795 if (ArgType->isIntegralOrEnumerationType()) {
5796 Expr::EvalResult Result;
5797 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5798 return false;
5799
5800 APValue &V = Result.Val;
5801 if (V.getKind() == APValue::Int)
5802 return true;
5803
5804 return EvaluateBuiltinConstantPForLValue(V);
5805 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5806 return Arg->isEvaluatable(Ctx);
5807 } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5808 LValue LV;
5809 Expr::EvalStatus Status;
5810 EvalInfo Info(Ctx, Status);
5811 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5812 : EvaluatePointer(Arg, LV, Info)) &&
5813 !Status.HasSideEffects)
5814 return EvaluateBuiltinConstantPForLValue(LV);
5815 }
5816
5817 // Anything else isn't considered to be sufficiently constant.
5818 return false;
5819 }
5820
5821 /// Retrieves the "underlying object type" of the given expression,
5822 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)5823 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5824 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5825 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5826 return VD->getType();
5827 } else if (const Expr *E = B.get<const Expr*>()) {
5828 if (isa<CompoundLiteralExpr>(E))
5829 return E->getType();
5830 }
5831
5832 return QualType();
5833 }
5834
TryEvaluateBuiltinObjectSize(const CallExpr * E)5835 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5836 LValue Base;
5837
5838 {
5839 // The operand of __builtin_object_size is never evaluated for side-effects.
5840 // If there are any, but we can determine the pointed-to object anyway, then
5841 // ignore the side-effects.
5842 SpeculativeEvaluationRAII SpeculativeEval(Info);
5843 if (!EvaluatePointer(E->getArg(0), Base, Info))
5844 return false;
5845 }
5846
5847 // If we can prove the base is null, lower to zero now.
5848 if (!Base.getLValueBase()) return Success(0, E);
5849
5850 QualType T = GetObjectType(Base.getLValueBase());
5851 if (T.isNull() ||
5852 T->isIncompleteType() ||
5853 T->isFunctionType() ||
5854 T->isVariablyModifiedType() ||
5855 T->isDependentType())
5856 return Error(E);
5857
5858 CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5859 CharUnits Offset = Base.getLValueOffset();
5860
5861 if (!Offset.isNegative() && Offset <= Size)
5862 Size -= Offset;
5863 else
5864 Size = CharUnits::Zero();
5865 return Success(Size, E);
5866 }
5867
VisitCallExpr(const CallExpr * E)5868 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
5869 switch (unsigned BuiltinOp = E->isBuiltinCall()) {
5870 default:
5871 return ExprEvaluatorBaseTy::VisitCallExpr(E);
5872
5873 case Builtin::BI__builtin_object_size: {
5874 if (TryEvaluateBuiltinObjectSize(E))
5875 return true;
5876
5877 // If evaluating the argument has side-effects, we can't determine the size
5878 // of the object, and so we lower it to unknown now. CodeGen relies on us to
5879 // handle all cases where the expression has side-effects.
5880 if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
5881 if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
5882 return Success(-1ULL, E);
5883 return Success(0, E);
5884 }
5885
5886 // Expression had no side effects, but we couldn't statically determine the
5887 // size of the referenced object.
5888 return Error(E);
5889 }
5890
5891 case Builtin::BI__builtin_bswap16:
5892 case Builtin::BI__builtin_bswap32:
5893 case Builtin::BI__builtin_bswap64: {
5894 APSInt Val;
5895 if (!EvaluateInteger(E->getArg(0), Val, Info))
5896 return false;
5897
5898 return Success(Val.byteSwap(), E);
5899 }
5900
5901 case Builtin::BI__builtin_classify_type:
5902 return Success(EvaluateBuiltinClassifyType(E), E);
5903
5904 // FIXME: BI__builtin_clrsb
5905 // FIXME: BI__builtin_clrsbl
5906 // FIXME: BI__builtin_clrsbll
5907
5908 case Builtin::BI__builtin_clz:
5909 case Builtin::BI__builtin_clzl:
5910 case Builtin::BI__builtin_clzll: {
5911 APSInt Val;
5912 if (!EvaluateInteger(E->getArg(0), Val, Info))
5913 return false;
5914 if (!Val)
5915 return Error(E);
5916
5917 return Success(Val.countLeadingZeros(), E);
5918 }
5919
5920 case Builtin::BI__builtin_constant_p:
5921 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
5922
5923 case Builtin::BI__builtin_ctz:
5924 case Builtin::BI__builtin_ctzl:
5925 case Builtin::BI__builtin_ctzll: {
5926 APSInt Val;
5927 if (!EvaluateInteger(E->getArg(0), Val, Info))
5928 return false;
5929 if (!Val)
5930 return Error(E);
5931
5932 return Success(Val.countTrailingZeros(), E);
5933 }
5934
5935 case Builtin::BI__builtin_eh_return_data_regno: {
5936 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
5937 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
5938 return Success(Operand, E);
5939 }
5940
5941 case Builtin::BI__builtin_expect:
5942 return Visit(E->getArg(0));
5943
5944 case Builtin::BI__builtin_ffs:
5945 case Builtin::BI__builtin_ffsl:
5946 case Builtin::BI__builtin_ffsll: {
5947 APSInt Val;
5948 if (!EvaluateInteger(E->getArg(0), Val, Info))
5949 return false;
5950
5951 unsigned N = Val.countTrailingZeros();
5952 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
5953 }
5954
5955 case Builtin::BI__builtin_fpclassify: {
5956 APFloat Val(0.0);
5957 if (!EvaluateFloat(E->getArg(5), Val, Info))
5958 return false;
5959 unsigned Arg;
5960 switch (Val.getCategory()) {
5961 case APFloat::fcNaN: Arg = 0; break;
5962 case APFloat::fcInfinity: Arg = 1; break;
5963 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
5964 case APFloat::fcZero: Arg = 4; break;
5965 }
5966 return Visit(E->getArg(Arg));
5967 }
5968
5969 case Builtin::BI__builtin_isinf_sign: {
5970 APFloat Val(0.0);
5971 return EvaluateFloat(E->getArg(0), Val, Info) &&
5972 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
5973 }
5974
5975 case Builtin::BI__builtin_parity:
5976 case Builtin::BI__builtin_parityl:
5977 case Builtin::BI__builtin_parityll: {
5978 APSInt Val;
5979 if (!EvaluateInteger(E->getArg(0), Val, Info))
5980 return false;
5981
5982 return Success(Val.countPopulation() % 2, E);
5983 }
5984
5985 case Builtin::BI__builtin_popcount:
5986 case Builtin::BI__builtin_popcountl:
5987 case Builtin::BI__builtin_popcountll: {
5988 APSInt Val;
5989 if (!EvaluateInteger(E->getArg(0), Val, Info))
5990 return false;
5991
5992 return Success(Val.countPopulation(), E);
5993 }
5994
5995 case Builtin::BIstrlen:
5996 // A call to strlen is not a constant expression.
5997 if (Info.getLangOpts().CPlusPlus11)
5998 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
5999 << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6000 else
6001 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6002 // Fall through.
6003 case Builtin::BI__builtin_strlen:
6004 // As an extension, we support strlen() and __builtin_strlen() as constant
6005 // expressions when the argument is a string literal.
6006 if (const StringLiteral *S
6007 = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
6008 // The string literal may have embedded null characters. Find the first
6009 // one and truncate there.
6010 StringRef Str = S->getString();
6011 StringRef::size_type Pos = Str.find(0);
6012 if (Pos != StringRef::npos)
6013 Str = Str.substr(0, Pos);
6014
6015 return Success(Str.size(), E);
6016 }
6017
6018 return Error(E);
6019
6020 case Builtin::BI__atomic_always_lock_free:
6021 case Builtin::BI__atomic_is_lock_free:
6022 case Builtin::BI__c11_atomic_is_lock_free: {
6023 APSInt SizeVal;
6024 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6025 return false;
6026
6027 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6028 // of two less than the maximum inline atomic width, we know it is
6029 // lock-free. If the size isn't a power of two, or greater than the
6030 // maximum alignment where we promote atomics, we know it is not lock-free
6031 // (at least not in the sense of atomic_is_lock_free). Otherwise,
6032 // the answer can only be determined at runtime; for example, 16-byte
6033 // atomics have lock-free implementations on some, but not all,
6034 // x86-64 processors.
6035
6036 // Check power-of-two.
6037 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6038 if (Size.isPowerOfTwo()) {
6039 // Check against inlining width.
6040 unsigned InlineWidthBits =
6041 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6042 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6043 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6044 Size == CharUnits::One() ||
6045 E->getArg(1)->isNullPointerConstant(Info.Ctx,
6046 Expr::NPC_NeverValueDependent))
6047 // OK, we will inline appropriately-aligned operations of this size,
6048 // and _Atomic(T) is appropriately-aligned.
6049 return Success(1, E);
6050
6051 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6052 castAs<PointerType>()->getPointeeType();
6053 if (!PointeeType->isIncompleteType() &&
6054 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6055 // OK, we will inline operations on this object.
6056 return Success(1, E);
6057 }
6058 }
6059 }
6060
6061 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6062 Success(0, E) : Error(E);
6063 }
6064 }
6065 }
6066
HasSameBase(const LValue & A,const LValue & B)6067 static bool HasSameBase(const LValue &A, const LValue &B) {
6068 if (!A.getLValueBase())
6069 return !B.getLValueBase();
6070 if (!B.getLValueBase())
6071 return false;
6072
6073 if (A.getLValueBase().getOpaqueValue() !=
6074 B.getLValueBase().getOpaqueValue()) {
6075 const Decl *ADecl = GetLValueBaseDecl(A);
6076 if (!ADecl)
6077 return false;
6078 const Decl *BDecl = GetLValueBaseDecl(B);
6079 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6080 return false;
6081 }
6082
6083 return IsGlobalLValue(A.getLValueBase()) ||
6084 A.getLValueCallIndex() == B.getLValueCallIndex();
6085 }
6086
6087 namespace {
6088
6089 /// \brief Data recursive integer evaluator of certain binary operators.
6090 ///
6091 /// We use a data recursive algorithm for binary operators so that we are able
6092 /// to handle extreme cases of chained binary operators without causing stack
6093 /// overflow.
6094 class DataRecursiveIntBinOpEvaluator {
6095 struct EvalResult {
6096 APValue Val;
6097 bool Failed;
6098
EvalResult__anon383178e61311::DataRecursiveIntBinOpEvaluator::EvalResult6099 EvalResult() : Failed(false) { }
6100
swap__anon383178e61311::DataRecursiveIntBinOpEvaluator::EvalResult6101 void swap(EvalResult &RHS) {
6102 Val.swap(RHS.Val);
6103 Failed = RHS.Failed;
6104 RHS.Failed = false;
6105 }
6106 };
6107
6108 struct Job {
6109 const Expr *E;
6110 EvalResult LHSResult; // meaningful only for binary operator expression.
6111 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6112
Job__anon383178e61311::DataRecursiveIntBinOpEvaluator::Job6113 Job() : StoredInfo(0) { }
startSpeculativeEval__anon383178e61311::DataRecursiveIntBinOpEvaluator::Job6114 void startSpeculativeEval(EvalInfo &Info) {
6115 OldEvalStatus = Info.EvalStatus;
6116 Info.EvalStatus.Diag = 0;
6117 StoredInfo = &Info;
6118 }
~Job__anon383178e61311::DataRecursiveIntBinOpEvaluator::Job6119 ~Job() {
6120 if (StoredInfo) {
6121 StoredInfo->EvalStatus = OldEvalStatus;
6122 }
6123 }
6124 private:
6125 EvalInfo *StoredInfo; // non-null if status changed.
6126 Expr::EvalStatus OldEvalStatus;
6127 };
6128
6129 SmallVector<Job, 16> Queue;
6130
6131 IntExprEvaluator &IntEval;
6132 EvalInfo &Info;
6133 APValue &FinalResult;
6134
6135 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)6136 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6137 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6138
6139 /// \brief True if \param E is a binary operator that we are going to handle
6140 /// data recursively.
6141 /// We handle binary operators that are comma, logical, or that have operands
6142 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)6143 static bool shouldEnqueue(const BinaryOperator *E) {
6144 return E->getOpcode() == BO_Comma ||
6145 E->isLogicalOp() ||
6146 (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6147 E->getRHS()->getType()->isIntegralOrEnumerationType());
6148 }
6149
Traverse(const BinaryOperator * E)6150 bool Traverse(const BinaryOperator *E) {
6151 enqueue(E);
6152 EvalResult PrevResult;
6153 while (!Queue.empty())
6154 process(PrevResult);
6155
6156 if (PrevResult.Failed) return false;
6157
6158 FinalResult.swap(PrevResult.Val);
6159 return true;
6160 }
6161
6162 private:
Success(uint64_t Value,const Expr * E,APValue & Result)6163 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6164 return IntEval.Success(Value, E, Result);
6165 }
Success(const APSInt & Value,const Expr * E,APValue & Result)6166 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6167 return IntEval.Success(Value, E, Result);
6168 }
Error(const Expr * E)6169 bool Error(const Expr *E) {
6170 return IntEval.Error(E);
6171 }
Error(const Expr * E,diag::kind D)6172 bool Error(const Expr *E, diag::kind D) {
6173 return IntEval.Error(E, D);
6174 }
6175
CCEDiag(const Expr * E,diag::kind D)6176 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6177 return Info.CCEDiag(E, D);
6178 }
6179
6180 // \brief Returns true if visiting the RHS is necessary, false otherwise.
6181 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6182 bool &SuppressRHSDiags);
6183
6184 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6185 const BinaryOperator *E, APValue &Result);
6186
EvaluateExpr(const Expr * E,EvalResult & Result)6187 void EvaluateExpr(const Expr *E, EvalResult &Result) {
6188 Result.Failed = !Evaluate(Result.Val, Info, E);
6189 if (Result.Failed)
6190 Result.Val = APValue();
6191 }
6192
6193 void process(EvalResult &Result);
6194
enqueue(const Expr * E)6195 void enqueue(const Expr *E) {
6196 E = E->IgnoreParens();
6197 Queue.resize(Queue.size()+1);
6198 Queue.back().E = E;
6199 Queue.back().Kind = Job::AnyExprKind;
6200 }
6201 };
6202
6203 }
6204
6205 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)6206 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6207 bool &SuppressRHSDiags) {
6208 if (E->getOpcode() == BO_Comma) {
6209 // Ignore LHS but note if we could not evaluate it.
6210 if (LHSResult.Failed)
6211 Info.EvalStatus.HasSideEffects = true;
6212 return true;
6213 }
6214
6215 if (E->isLogicalOp()) {
6216 bool lhsResult;
6217 if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
6218 // We were able to evaluate the LHS, see if we can get away with not
6219 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6220 if (lhsResult == (E->getOpcode() == BO_LOr)) {
6221 Success(lhsResult, E, LHSResult.Val);
6222 return false; // Ignore RHS
6223 }
6224 } else {
6225 // Since we weren't able to evaluate the left hand side, it
6226 // must have had side effects.
6227 Info.EvalStatus.HasSideEffects = true;
6228
6229 // We can't evaluate the LHS; however, sometimes the result
6230 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6231 // Don't ignore RHS and suppress diagnostics from this arm.
6232 SuppressRHSDiags = true;
6233 }
6234
6235 return true;
6236 }
6237
6238 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6239 E->getRHS()->getType()->isIntegralOrEnumerationType());
6240
6241 if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6242 return false; // Ignore RHS;
6243
6244 return true;
6245 }
6246
6247 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)6248 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6249 const BinaryOperator *E, APValue &Result) {
6250 if (E->getOpcode() == BO_Comma) {
6251 if (RHSResult.Failed)
6252 return false;
6253 Result = RHSResult.Val;
6254 return true;
6255 }
6256
6257 if (E->isLogicalOp()) {
6258 bool lhsResult, rhsResult;
6259 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6260 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6261
6262 if (LHSIsOK) {
6263 if (RHSIsOK) {
6264 if (E->getOpcode() == BO_LOr)
6265 return Success(lhsResult || rhsResult, E, Result);
6266 else
6267 return Success(lhsResult && rhsResult, E, Result);
6268 }
6269 } else {
6270 if (RHSIsOK) {
6271 // We can't evaluate the LHS; however, sometimes the result
6272 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6273 if (rhsResult == (E->getOpcode() == BO_LOr))
6274 return Success(rhsResult, E, Result);
6275 }
6276 }
6277
6278 return false;
6279 }
6280
6281 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6282 E->getRHS()->getType()->isIntegralOrEnumerationType());
6283
6284 if (LHSResult.Failed || RHSResult.Failed)
6285 return false;
6286
6287 const APValue &LHSVal = LHSResult.Val;
6288 const APValue &RHSVal = RHSResult.Val;
6289
6290 // Handle cases like (unsigned long)&a + 4.
6291 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6292 Result = LHSVal;
6293 CharUnits AdditionalOffset = CharUnits::fromQuantity(
6294 RHSVal.getInt().getZExtValue());
6295 if (E->getOpcode() == BO_Add)
6296 Result.getLValueOffset() += AdditionalOffset;
6297 else
6298 Result.getLValueOffset() -= AdditionalOffset;
6299 return true;
6300 }
6301
6302 // Handle cases like 4 + (unsigned long)&a
6303 if (E->getOpcode() == BO_Add &&
6304 RHSVal.isLValue() && LHSVal.isInt()) {
6305 Result = RHSVal;
6306 Result.getLValueOffset() += CharUnits::fromQuantity(
6307 LHSVal.getInt().getZExtValue());
6308 return true;
6309 }
6310
6311 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6312 // Handle (intptr_t)&&A - (intptr_t)&&B.
6313 if (!LHSVal.getLValueOffset().isZero() ||
6314 !RHSVal.getLValueOffset().isZero())
6315 return false;
6316 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6317 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6318 if (!LHSExpr || !RHSExpr)
6319 return false;
6320 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6321 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6322 if (!LHSAddrExpr || !RHSAddrExpr)
6323 return false;
6324 // Make sure both labels come from the same function.
6325 if (LHSAddrExpr->getLabel()->getDeclContext() !=
6326 RHSAddrExpr->getLabel()->getDeclContext())
6327 return false;
6328 Result = APValue(LHSAddrExpr, RHSAddrExpr);
6329 return true;
6330 }
6331
6332 // All the remaining cases expect both operands to be an integer
6333 if (!LHSVal.isInt() || !RHSVal.isInt())
6334 return Error(E);
6335
6336 // Set up the width and signedness manually, in case it can't be deduced
6337 // from the operation we're performing.
6338 // FIXME: Don't do this in the cases where we can deduce it.
6339 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6340 E->getType()->isUnsignedIntegerOrEnumerationType());
6341 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6342 RHSVal.getInt(), Value))
6343 return false;
6344 return Success(Value, E, Result);
6345 }
6346
process(EvalResult & Result)6347 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6348 Job &job = Queue.back();
6349
6350 switch (job.Kind) {
6351 case Job::AnyExprKind: {
6352 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6353 if (shouldEnqueue(Bop)) {
6354 job.Kind = Job::BinOpKind;
6355 enqueue(Bop->getLHS());
6356 return;
6357 }
6358 }
6359
6360 EvaluateExpr(job.E, Result);
6361 Queue.pop_back();
6362 return;
6363 }
6364
6365 case Job::BinOpKind: {
6366 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6367 bool SuppressRHSDiags = false;
6368 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6369 Queue.pop_back();
6370 return;
6371 }
6372 if (SuppressRHSDiags)
6373 job.startSpeculativeEval(Info);
6374 job.LHSResult.swap(Result);
6375 job.Kind = Job::BinOpVisitedLHSKind;
6376 enqueue(Bop->getRHS());
6377 return;
6378 }
6379
6380 case Job::BinOpVisitedLHSKind: {
6381 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6382 EvalResult RHS;
6383 RHS.swap(Result);
6384 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6385 Queue.pop_back();
6386 return;
6387 }
6388 }
6389
6390 llvm_unreachable("Invalid Job::Kind!");
6391 }
6392
VisitBinaryOperator(const BinaryOperator * E)6393 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6394 if (E->isAssignmentOp())
6395 return Error(E);
6396
6397 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6398 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6399
6400 QualType LHSTy = E->getLHS()->getType();
6401 QualType RHSTy = E->getRHS()->getType();
6402
6403 if (LHSTy->isAnyComplexType()) {
6404 assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6405 ComplexValue LHS, RHS;
6406
6407 bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6408 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6409 return false;
6410
6411 if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6412 return false;
6413
6414 if (LHS.isComplexFloat()) {
6415 APFloat::cmpResult CR_r =
6416 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6417 APFloat::cmpResult CR_i =
6418 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6419
6420 if (E->getOpcode() == BO_EQ)
6421 return Success((CR_r == APFloat::cmpEqual &&
6422 CR_i == APFloat::cmpEqual), E);
6423 else {
6424 assert(E->getOpcode() == BO_NE &&
6425 "Invalid complex comparison.");
6426 return Success(((CR_r == APFloat::cmpGreaterThan ||
6427 CR_r == APFloat::cmpLessThan ||
6428 CR_r == APFloat::cmpUnordered) ||
6429 (CR_i == APFloat::cmpGreaterThan ||
6430 CR_i == APFloat::cmpLessThan ||
6431 CR_i == APFloat::cmpUnordered)), E);
6432 }
6433 } else {
6434 if (E->getOpcode() == BO_EQ)
6435 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6436 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6437 else {
6438 assert(E->getOpcode() == BO_NE &&
6439 "Invalid compex comparison.");
6440 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6441 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6442 }
6443 }
6444 }
6445
6446 if (LHSTy->isRealFloatingType() &&
6447 RHSTy->isRealFloatingType()) {
6448 APFloat RHS(0.0), LHS(0.0);
6449
6450 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6451 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6452 return false;
6453
6454 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6455 return false;
6456
6457 APFloat::cmpResult CR = LHS.compare(RHS);
6458
6459 switch (E->getOpcode()) {
6460 default:
6461 llvm_unreachable("Invalid binary operator!");
6462 case BO_LT:
6463 return Success(CR == APFloat::cmpLessThan, E);
6464 case BO_GT:
6465 return Success(CR == APFloat::cmpGreaterThan, E);
6466 case BO_LE:
6467 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6468 case BO_GE:
6469 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6470 E);
6471 case BO_EQ:
6472 return Success(CR == APFloat::cmpEqual, E);
6473 case BO_NE:
6474 return Success(CR == APFloat::cmpGreaterThan
6475 || CR == APFloat::cmpLessThan
6476 || CR == APFloat::cmpUnordered, E);
6477 }
6478 }
6479
6480 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6481 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6482 LValue LHSValue, RHSValue;
6483
6484 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6485 if (!LHSOK && Info.keepEvaluatingAfterFailure())
6486 return false;
6487
6488 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6489 return false;
6490
6491 // Reject differing bases from the normal codepath; we special-case
6492 // comparisons to null.
6493 if (!HasSameBase(LHSValue, RHSValue)) {
6494 if (E->getOpcode() == BO_Sub) {
6495 // Handle &&A - &&B.
6496 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6497 return false;
6498 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6499 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6500 if (!LHSExpr || !RHSExpr)
6501 return false;
6502 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6503 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6504 if (!LHSAddrExpr || !RHSAddrExpr)
6505 return false;
6506 // Make sure both labels come from the same function.
6507 if (LHSAddrExpr->getLabel()->getDeclContext() !=
6508 RHSAddrExpr->getLabel()->getDeclContext())
6509 return false;
6510 Result = APValue(LHSAddrExpr, RHSAddrExpr);
6511 return true;
6512 }
6513 // Inequalities and subtractions between unrelated pointers have
6514 // unspecified or undefined behavior.
6515 if (!E->isEqualityOp())
6516 return Error(E);
6517 // A constant address may compare equal to the address of a symbol.
6518 // The one exception is that address of an object cannot compare equal
6519 // to a null pointer constant.
6520 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6521 (!RHSValue.Base && !RHSValue.Offset.isZero()))
6522 return Error(E);
6523 // It's implementation-defined whether distinct literals will have
6524 // distinct addresses. In clang, the result of such a comparison is
6525 // unspecified, so it is not a constant expression. However, we do know
6526 // that the address of a literal will be non-null.
6527 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6528 LHSValue.Base && RHSValue.Base)
6529 return Error(E);
6530 // We can't tell whether weak symbols will end up pointing to the same
6531 // object.
6532 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6533 return Error(E);
6534 // Pointers with different bases cannot represent the same object.
6535 // (Note that clang defaults to -fmerge-all-constants, which can
6536 // lead to inconsistent results for comparisons involving the address
6537 // of a constant; this generally doesn't matter in practice.)
6538 return Success(E->getOpcode() == BO_NE, E);
6539 }
6540
6541 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6542 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6543
6544 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6545 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6546
6547 if (E->getOpcode() == BO_Sub) {
6548 // C++11 [expr.add]p6:
6549 // Unless both pointers point to elements of the same array object, or
6550 // one past the last element of the array object, the behavior is
6551 // undefined.
6552 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6553 !AreElementsOfSameArray(getType(LHSValue.Base),
6554 LHSDesignator, RHSDesignator))
6555 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6556
6557 QualType Type = E->getLHS()->getType();
6558 QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6559
6560 CharUnits ElementSize;
6561 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6562 return false;
6563
6564 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6565 // and produce incorrect results when it overflows. Such behavior
6566 // appears to be non-conforming, but is common, so perhaps we should
6567 // assume the standard intended for such cases to be undefined behavior
6568 // and check for them.
6569
6570 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6571 // overflow in the final conversion to ptrdiff_t.
6572 APSInt LHS(
6573 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6574 APSInt RHS(
6575 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6576 APSInt ElemSize(
6577 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6578 APSInt TrueResult = (LHS - RHS) / ElemSize;
6579 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6580
6581 if (Result.extend(65) != TrueResult)
6582 HandleOverflow(Info, E, TrueResult, E->getType());
6583 return Success(Result, E);
6584 }
6585
6586 // C++11 [expr.rel]p3:
6587 // Pointers to void (after pointer conversions) can be compared, with a
6588 // result defined as follows: If both pointers represent the same
6589 // address or are both the null pointer value, the result is true if the
6590 // operator is <= or >= and false otherwise; otherwise the result is
6591 // unspecified.
6592 // We interpret this as applying to pointers to *cv* void.
6593 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6594 E->isRelationalOp())
6595 CCEDiag(E, diag::note_constexpr_void_comparison);
6596
6597 // C++11 [expr.rel]p2:
6598 // - If two pointers point to non-static data members of the same object,
6599 // or to subobjects or array elements fo such members, recursively, the
6600 // pointer to the later declared member compares greater provided the
6601 // two members have the same access control and provided their class is
6602 // not a union.
6603 // [...]
6604 // - Otherwise pointer comparisons are unspecified.
6605 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6606 E->isRelationalOp()) {
6607 bool WasArrayIndex;
6608 unsigned Mismatch =
6609 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6610 RHSDesignator, WasArrayIndex);
6611 // At the point where the designators diverge, the comparison has a
6612 // specified value if:
6613 // - we are comparing array indices
6614 // - we are comparing fields of a union, or fields with the same access
6615 // Otherwise, the result is unspecified and thus the comparison is not a
6616 // constant expression.
6617 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6618 Mismatch < RHSDesignator.Entries.size()) {
6619 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6620 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6621 if (!LF && !RF)
6622 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6623 else if (!LF)
6624 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6625 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6626 << RF->getParent() << RF;
6627 else if (!RF)
6628 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6629 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6630 << LF->getParent() << LF;
6631 else if (!LF->getParent()->isUnion() &&
6632 LF->getAccess() != RF->getAccess())
6633 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6634 << LF << LF->getAccess() << RF << RF->getAccess()
6635 << LF->getParent();
6636 }
6637 }
6638
6639 // The comparison here must be unsigned, and performed with the same
6640 // width as the pointer.
6641 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6642 uint64_t CompareLHS = LHSOffset.getQuantity();
6643 uint64_t CompareRHS = RHSOffset.getQuantity();
6644 assert(PtrSize <= 64 && "Unexpected pointer width");
6645 uint64_t Mask = ~0ULL >> (64 - PtrSize);
6646 CompareLHS &= Mask;
6647 CompareRHS &= Mask;
6648
6649 // If there is a base and this is a relational operator, we can only
6650 // compare pointers within the object in question; otherwise, the result
6651 // depends on where the object is located in memory.
6652 if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6653 QualType BaseTy = getType(LHSValue.Base);
6654 if (BaseTy->isIncompleteType())
6655 return Error(E);
6656 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6657 uint64_t OffsetLimit = Size.getQuantity();
6658 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6659 return Error(E);
6660 }
6661
6662 switch (E->getOpcode()) {
6663 default: llvm_unreachable("missing comparison operator");
6664 case BO_LT: return Success(CompareLHS < CompareRHS, E);
6665 case BO_GT: return Success(CompareLHS > CompareRHS, E);
6666 case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6667 case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6668 case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6669 case BO_NE: return Success(CompareLHS != CompareRHS, E);
6670 }
6671 }
6672 }
6673
6674 if (LHSTy->isMemberPointerType()) {
6675 assert(E->isEqualityOp() && "unexpected member pointer operation");
6676 assert(RHSTy->isMemberPointerType() && "invalid comparison");
6677
6678 MemberPtr LHSValue, RHSValue;
6679
6680 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6681 if (!LHSOK && Info.keepEvaluatingAfterFailure())
6682 return false;
6683
6684 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6685 return false;
6686
6687 // C++11 [expr.eq]p2:
6688 // If both operands are null, they compare equal. Otherwise if only one is
6689 // null, they compare unequal.
6690 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6691 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6692 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6693 }
6694
6695 // Otherwise if either is a pointer to a virtual member function, the
6696 // result is unspecified.
6697 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6698 if (MD->isVirtual())
6699 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6700 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6701 if (MD->isVirtual())
6702 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6703
6704 // Otherwise they compare equal if and only if they would refer to the
6705 // same member of the same most derived object or the same subobject if
6706 // they were dereferenced with a hypothetical object of the associated
6707 // class type.
6708 bool Equal = LHSValue == RHSValue;
6709 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6710 }
6711
6712 if (LHSTy->isNullPtrType()) {
6713 assert(E->isComparisonOp() && "unexpected nullptr operation");
6714 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6715 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6716 // are compared, the result is true of the operator is <=, >= or ==, and
6717 // false otherwise.
6718 BinaryOperator::Opcode Opcode = E->getOpcode();
6719 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6720 }
6721
6722 assert((!LHSTy->isIntegralOrEnumerationType() ||
6723 !RHSTy->isIntegralOrEnumerationType()) &&
6724 "DataRecursiveIntBinOpEvaluator should have handled integral types");
6725 // We can't continue from here for non-integral types.
6726 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6727 }
6728
GetAlignOfType(QualType T)6729 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6730 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
6731 // result shall be the alignment of the referenced type."
6732 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6733 T = Ref->getPointeeType();
6734
6735 // __alignof is defined to return the preferred alignment.
6736 return Info.Ctx.toCharUnitsFromBits(
6737 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6738 }
6739
GetAlignOfExpr(const Expr * E)6740 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6741 E = E->IgnoreParens();
6742
6743 // The kinds of expressions that we have special-case logic here for
6744 // should be kept up to date with the special checks for those
6745 // expressions in Sema.
6746
6747 // alignof decl is always accepted, even if it doesn't make sense: we default
6748 // to 1 in those cases.
6749 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6750 return Info.Ctx.getDeclAlign(DRE->getDecl(),
6751 /*RefAsPointee*/true);
6752
6753 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6754 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6755 /*RefAsPointee*/true);
6756
6757 return GetAlignOfType(E->getType());
6758 }
6759
6760
6761 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6762 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)6763 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6764 const UnaryExprOrTypeTraitExpr *E) {
6765 switch(E->getKind()) {
6766 case UETT_AlignOf: {
6767 if (E->isArgumentType())
6768 return Success(GetAlignOfType(E->getArgumentType()), E);
6769 else
6770 return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6771 }
6772
6773 case UETT_VecStep: {
6774 QualType Ty = E->getTypeOfArgument();
6775
6776 if (Ty->isVectorType()) {
6777 unsigned n = Ty->castAs<VectorType>()->getNumElements();
6778
6779 // The vec_step built-in functions that take a 3-component
6780 // vector return 4. (OpenCL 1.1 spec 6.11.12)
6781 if (n == 3)
6782 n = 4;
6783
6784 return Success(n, E);
6785 } else
6786 return Success(1, E);
6787 }
6788
6789 case UETT_SizeOf: {
6790 QualType SrcTy = E->getTypeOfArgument();
6791 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
6792 // the result is the size of the referenced type."
6793 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
6794 SrcTy = Ref->getPointeeType();
6795
6796 CharUnits Sizeof;
6797 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
6798 return false;
6799 return Success(Sizeof, E);
6800 }
6801 }
6802
6803 llvm_unreachable("unknown expr/type trait");
6804 }
6805
VisitOffsetOfExpr(const OffsetOfExpr * OOE)6806 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
6807 CharUnits Result;
6808 unsigned n = OOE->getNumComponents();
6809 if (n == 0)
6810 return Error(OOE);
6811 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
6812 for (unsigned i = 0; i != n; ++i) {
6813 OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
6814 switch (ON.getKind()) {
6815 case OffsetOfExpr::OffsetOfNode::Array: {
6816 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
6817 APSInt IdxResult;
6818 if (!EvaluateInteger(Idx, IdxResult, Info))
6819 return false;
6820 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
6821 if (!AT)
6822 return Error(OOE);
6823 CurrentType = AT->getElementType();
6824 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
6825 Result += IdxResult.getSExtValue() * ElementSize;
6826 break;
6827 }
6828
6829 case OffsetOfExpr::OffsetOfNode::Field: {
6830 FieldDecl *MemberDecl = ON.getField();
6831 const RecordType *RT = CurrentType->getAs<RecordType>();
6832 if (!RT)
6833 return Error(OOE);
6834 RecordDecl *RD = RT->getDecl();
6835 if (RD->isInvalidDecl()) return false;
6836 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6837 unsigned i = MemberDecl->getFieldIndex();
6838 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
6839 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
6840 CurrentType = MemberDecl->getType().getNonReferenceType();
6841 break;
6842 }
6843
6844 case OffsetOfExpr::OffsetOfNode::Identifier:
6845 llvm_unreachable("dependent __builtin_offsetof");
6846
6847 case OffsetOfExpr::OffsetOfNode::Base: {
6848 CXXBaseSpecifier *BaseSpec = ON.getBase();
6849 if (BaseSpec->isVirtual())
6850 return Error(OOE);
6851
6852 // Find the layout of the class whose base we are looking into.
6853 const RecordType *RT = CurrentType->getAs<RecordType>();
6854 if (!RT)
6855 return Error(OOE);
6856 RecordDecl *RD = RT->getDecl();
6857 if (RD->isInvalidDecl()) return false;
6858 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6859
6860 // Find the base class itself.
6861 CurrentType = BaseSpec->getType();
6862 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
6863 if (!BaseRT)
6864 return Error(OOE);
6865
6866 // Add the offset to the base.
6867 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
6868 break;
6869 }
6870 }
6871 }
6872 return Success(Result, OOE);
6873 }
6874
VisitUnaryOperator(const UnaryOperator * E)6875 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6876 switch (E->getOpcode()) {
6877 default:
6878 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
6879 // See C99 6.6p3.
6880 return Error(E);
6881 case UO_Extension:
6882 // FIXME: Should extension allow i-c-e extension expressions in its scope?
6883 // If so, we could clear the diagnostic ID.
6884 return Visit(E->getSubExpr());
6885 case UO_Plus:
6886 // The result is just the value.
6887 return Visit(E->getSubExpr());
6888 case UO_Minus: {
6889 if (!Visit(E->getSubExpr()))
6890 return false;
6891 if (!Result.isInt()) return Error(E);
6892 const APSInt &Value = Result.getInt();
6893 if (Value.isSigned() && Value.isMinSignedValue())
6894 HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
6895 E->getType());
6896 return Success(-Value, E);
6897 }
6898 case UO_Not: {
6899 if (!Visit(E->getSubExpr()))
6900 return false;
6901 if (!Result.isInt()) return Error(E);
6902 return Success(~Result.getInt(), E);
6903 }
6904 case UO_LNot: {
6905 bool bres;
6906 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
6907 return false;
6908 return Success(!bres, E);
6909 }
6910 }
6911 }
6912
6913 /// HandleCast - This is used to evaluate implicit or explicit casts where the
6914 /// result type is integer.
VisitCastExpr(const CastExpr * E)6915 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
6916 const Expr *SubExpr = E->getSubExpr();
6917 QualType DestType = E->getType();
6918 QualType SrcType = SubExpr->getType();
6919
6920 switch (E->getCastKind()) {
6921 case CK_BaseToDerived:
6922 case CK_DerivedToBase:
6923 case CK_UncheckedDerivedToBase:
6924 case CK_Dynamic:
6925 case CK_ToUnion:
6926 case CK_ArrayToPointerDecay:
6927 case CK_FunctionToPointerDecay:
6928 case CK_NullToPointer:
6929 case CK_NullToMemberPointer:
6930 case CK_BaseToDerivedMemberPointer:
6931 case CK_DerivedToBaseMemberPointer:
6932 case CK_ReinterpretMemberPointer:
6933 case CK_ConstructorConversion:
6934 case CK_IntegralToPointer:
6935 case CK_ToVoid:
6936 case CK_VectorSplat:
6937 case CK_IntegralToFloating:
6938 case CK_FloatingCast:
6939 case CK_CPointerToObjCPointerCast:
6940 case CK_BlockPointerToObjCPointerCast:
6941 case CK_AnyPointerToBlockPointerCast:
6942 case CK_ObjCObjectLValueCast:
6943 case CK_FloatingRealToComplex:
6944 case CK_FloatingComplexToReal:
6945 case CK_FloatingComplexCast:
6946 case CK_FloatingComplexToIntegralComplex:
6947 case CK_IntegralRealToComplex:
6948 case CK_IntegralComplexCast:
6949 case CK_IntegralComplexToFloatingComplex:
6950 case CK_BuiltinFnToFnPtr:
6951 case CK_ZeroToOCLEvent:
6952 case CK_NonAtomicToAtomic:
6953 llvm_unreachable("invalid cast kind for integral value");
6954
6955 case CK_BitCast:
6956 case CK_Dependent:
6957 case CK_LValueBitCast:
6958 case CK_ARCProduceObject:
6959 case CK_ARCConsumeObject:
6960 case CK_ARCReclaimReturnedObject:
6961 case CK_ARCExtendBlockObject:
6962 case CK_CopyAndAutoreleaseBlockObject:
6963 return Error(E);
6964
6965 case CK_UserDefinedConversion:
6966 case CK_LValueToRValue:
6967 case CK_AtomicToNonAtomic:
6968 case CK_NoOp:
6969 return ExprEvaluatorBaseTy::VisitCastExpr(E);
6970
6971 case CK_MemberPointerToBoolean:
6972 case CK_PointerToBoolean:
6973 case CK_IntegralToBoolean:
6974 case CK_FloatingToBoolean:
6975 case CK_FloatingComplexToBoolean:
6976 case CK_IntegralComplexToBoolean: {
6977 bool BoolResult;
6978 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
6979 return false;
6980 return Success(BoolResult, E);
6981 }
6982
6983 case CK_IntegralCast: {
6984 if (!Visit(SubExpr))
6985 return false;
6986
6987 if (!Result.isInt()) {
6988 // Allow casts of address-of-label differences if they are no-ops
6989 // or narrowing. (The narrowing case isn't actually guaranteed to
6990 // be constant-evaluatable except in some narrow cases which are hard
6991 // to detect here. We let it through on the assumption the user knows
6992 // what they are doing.)
6993 if (Result.isAddrLabelDiff())
6994 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
6995 // Only allow casts of lvalues if they are lossless.
6996 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
6997 }
6998
6999 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7000 Result.getInt()), E);
7001 }
7002
7003 case CK_PointerToIntegral: {
7004 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7005
7006 LValue LV;
7007 if (!EvaluatePointer(SubExpr, LV, Info))
7008 return false;
7009
7010 if (LV.getLValueBase()) {
7011 // Only allow based lvalue casts if they are lossless.
7012 // FIXME: Allow a larger integer size than the pointer size, and allow
7013 // narrowing back down to pointer width in subsequent integral casts.
7014 // FIXME: Check integer type's active bits, not its type size.
7015 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7016 return Error(E);
7017
7018 LV.Designator.setInvalid();
7019 LV.moveInto(Result);
7020 return true;
7021 }
7022
7023 APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7024 SrcType);
7025 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7026 }
7027
7028 case CK_IntegralComplexToReal: {
7029 ComplexValue C;
7030 if (!EvaluateComplex(SubExpr, C, Info))
7031 return false;
7032 return Success(C.getComplexIntReal(), E);
7033 }
7034
7035 case CK_FloatingToIntegral: {
7036 APFloat F(0.0);
7037 if (!EvaluateFloat(SubExpr, F, Info))
7038 return false;
7039
7040 APSInt Value;
7041 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7042 return false;
7043 return Success(Value, E);
7044 }
7045 }
7046
7047 llvm_unreachable("unknown cast resulting in integral value");
7048 }
7049
VisitUnaryReal(const UnaryOperator * E)7050 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7051 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7052 ComplexValue LV;
7053 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7054 return false;
7055 if (!LV.isComplexInt())
7056 return Error(E);
7057 return Success(LV.getComplexIntReal(), E);
7058 }
7059
7060 return Visit(E->getSubExpr());
7061 }
7062
VisitUnaryImag(const UnaryOperator * E)7063 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7064 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7065 ComplexValue LV;
7066 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7067 return false;
7068 if (!LV.isComplexInt())
7069 return Error(E);
7070 return Success(LV.getComplexIntImag(), E);
7071 }
7072
7073 VisitIgnoredValue(E->getSubExpr());
7074 return Success(0, E);
7075 }
7076
VisitSizeOfPackExpr(const SizeOfPackExpr * E)7077 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7078 return Success(E->getPackLength(), E);
7079 }
7080
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)7081 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7082 return Success(E->getValue(), E);
7083 }
7084
7085 //===----------------------------------------------------------------------===//
7086 // Float Evaluation
7087 //===----------------------------------------------------------------------===//
7088
7089 namespace {
7090 class FloatExprEvaluator
7091 : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
7092 APFloat &Result;
7093 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)7094 FloatExprEvaluator(EvalInfo &info, APFloat &result)
7095 : ExprEvaluatorBaseTy(info), Result(result) {}
7096
Success(const APValue & V,const Expr * e)7097 bool Success(const APValue &V, const Expr *e) {
7098 Result = V.getFloat();
7099 return true;
7100 }
7101
ZeroInitialization(const Expr * E)7102 bool ZeroInitialization(const Expr *E) {
7103 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7104 return true;
7105 }
7106
7107 bool VisitCallExpr(const CallExpr *E);
7108
7109 bool VisitUnaryOperator(const UnaryOperator *E);
7110 bool VisitBinaryOperator(const BinaryOperator *E);
7111 bool VisitFloatingLiteral(const FloatingLiteral *E);
7112 bool VisitCastExpr(const CastExpr *E);
7113
7114 bool VisitUnaryReal(const UnaryOperator *E);
7115 bool VisitUnaryImag(const UnaryOperator *E);
7116
7117 // FIXME: Missing: array subscript of vector, member of vector
7118 };
7119 } // end anonymous namespace
7120
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)7121 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7122 assert(E->isRValue() && E->getType()->isRealFloatingType());
7123 return FloatExprEvaluator(Info, Result).Visit(E);
7124 }
7125
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)7126 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7127 QualType ResultTy,
7128 const Expr *Arg,
7129 bool SNaN,
7130 llvm::APFloat &Result) {
7131 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7132 if (!S) return false;
7133
7134 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7135
7136 llvm::APInt fill;
7137
7138 // Treat empty strings as if they were zero.
7139 if (S->getString().empty())
7140 fill = llvm::APInt(32, 0);
7141 else if (S->getString().getAsInteger(0, fill))
7142 return false;
7143
7144 if (SNaN)
7145 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7146 else
7147 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7148 return true;
7149 }
7150
VisitCallExpr(const CallExpr * E)7151 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7152 switch (E->isBuiltinCall()) {
7153 default:
7154 return ExprEvaluatorBaseTy::VisitCallExpr(E);
7155
7156 case Builtin::BI__builtin_huge_val:
7157 case Builtin::BI__builtin_huge_valf:
7158 case Builtin::BI__builtin_huge_vall:
7159 case Builtin::BI__builtin_inf:
7160 case Builtin::BI__builtin_inff:
7161 case Builtin::BI__builtin_infl: {
7162 const llvm::fltSemantics &Sem =
7163 Info.Ctx.getFloatTypeSemantics(E->getType());
7164 Result = llvm::APFloat::getInf(Sem);
7165 return true;
7166 }
7167
7168 case Builtin::BI__builtin_nans:
7169 case Builtin::BI__builtin_nansf:
7170 case Builtin::BI__builtin_nansl:
7171 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7172 true, Result))
7173 return Error(E);
7174 return true;
7175
7176 case Builtin::BI__builtin_nan:
7177 case Builtin::BI__builtin_nanf:
7178 case Builtin::BI__builtin_nanl:
7179 // If this is __builtin_nan() turn this into a nan, otherwise we
7180 // can't constant fold it.
7181 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7182 false, Result))
7183 return Error(E);
7184 return true;
7185
7186 case Builtin::BI__builtin_fabs:
7187 case Builtin::BI__builtin_fabsf:
7188 case Builtin::BI__builtin_fabsl:
7189 if (!EvaluateFloat(E->getArg(0), Result, Info))
7190 return false;
7191
7192 if (Result.isNegative())
7193 Result.changeSign();
7194 return true;
7195
7196 // FIXME: Builtin::BI__builtin_powi
7197 // FIXME: Builtin::BI__builtin_powif
7198 // FIXME: Builtin::BI__builtin_powil
7199
7200 case Builtin::BI__builtin_copysign:
7201 case Builtin::BI__builtin_copysignf:
7202 case Builtin::BI__builtin_copysignl: {
7203 APFloat RHS(0.);
7204 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7205 !EvaluateFloat(E->getArg(1), RHS, Info))
7206 return false;
7207 Result.copySign(RHS);
7208 return true;
7209 }
7210 }
7211 }
7212
VisitUnaryReal(const UnaryOperator * E)7213 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7214 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7215 ComplexValue CV;
7216 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7217 return false;
7218 Result = CV.FloatReal;
7219 return true;
7220 }
7221
7222 return Visit(E->getSubExpr());
7223 }
7224
VisitUnaryImag(const UnaryOperator * E)7225 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7226 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7227 ComplexValue CV;
7228 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7229 return false;
7230 Result = CV.FloatImag;
7231 return true;
7232 }
7233
7234 VisitIgnoredValue(E->getSubExpr());
7235 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7236 Result = llvm::APFloat::getZero(Sem);
7237 return true;
7238 }
7239
VisitUnaryOperator(const UnaryOperator * E)7240 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7241 switch (E->getOpcode()) {
7242 default: return Error(E);
7243 case UO_Plus:
7244 return EvaluateFloat(E->getSubExpr(), Result, Info);
7245 case UO_Minus:
7246 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7247 return false;
7248 Result.changeSign();
7249 return true;
7250 }
7251 }
7252
VisitBinaryOperator(const BinaryOperator * E)7253 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7254 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7255 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7256
7257 APFloat RHS(0.0);
7258 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7259 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7260 return false;
7261 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7262 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7263 }
7264
VisitFloatingLiteral(const FloatingLiteral * E)7265 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7266 Result = E->getValue();
7267 return true;
7268 }
7269
VisitCastExpr(const CastExpr * E)7270 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7271 const Expr* SubExpr = E->getSubExpr();
7272
7273 switch (E->getCastKind()) {
7274 default:
7275 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7276
7277 case CK_IntegralToFloating: {
7278 APSInt IntResult;
7279 return EvaluateInteger(SubExpr, IntResult, Info) &&
7280 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7281 E->getType(), Result);
7282 }
7283
7284 case CK_FloatingCast: {
7285 if (!Visit(SubExpr))
7286 return false;
7287 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7288 Result);
7289 }
7290
7291 case CK_FloatingComplexToReal: {
7292 ComplexValue V;
7293 if (!EvaluateComplex(SubExpr, V, Info))
7294 return false;
7295 Result = V.getComplexFloatReal();
7296 return true;
7297 }
7298 }
7299 }
7300
7301 //===----------------------------------------------------------------------===//
7302 // Complex Evaluation (for float and integer)
7303 //===----------------------------------------------------------------------===//
7304
7305 namespace {
7306 class ComplexExprEvaluator
7307 : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
7308 ComplexValue &Result;
7309
7310 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)7311 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7312 : ExprEvaluatorBaseTy(info), Result(Result) {}
7313
Success(const APValue & V,const Expr * e)7314 bool Success(const APValue &V, const Expr *e) {
7315 Result.setFrom(V);
7316 return true;
7317 }
7318
7319 bool ZeroInitialization(const Expr *E);
7320
7321 //===--------------------------------------------------------------------===//
7322 // Visitor Methods
7323 //===--------------------------------------------------------------------===//
7324
7325 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7326 bool VisitCastExpr(const CastExpr *E);
7327 bool VisitBinaryOperator(const BinaryOperator *E);
7328 bool VisitUnaryOperator(const UnaryOperator *E);
7329 bool VisitInitListExpr(const InitListExpr *E);
7330 };
7331 } // end anonymous namespace
7332
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)7333 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7334 EvalInfo &Info) {
7335 assert(E->isRValue() && E->getType()->isAnyComplexType());
7336 return ComplexExprEvaluator(Info, Result).Visit(E);
7337 }
7338
ZeroInitialization(const Expr * E)7339 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7340 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7341 if (ElemTy->isRealFloatingType()) {
7342 Result.makeComplexFloat();
7343 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7344 Result.FloatReal = Zero;
7345 Result.FloatImag = Zero;
7346 } else {
7347 Result.makeComplexInt();
7348 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7349 Result.IntReal = Zero;
7350 Result.IntImag = Zero;
7351 }
7352 return true;
7353 }
7354
VisitImaginaryLiteral(const ImaginaryLiteral * E)7355 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7356 const Expr* SubExpr = E->getSubExpr();
7357
7358 if (SubExpr->getType()->isRealFloatingType()) {
7359 Result.makeComplexFloat();
7360 APFloat &Imag = Result.FloatImag;
7361 if (!EvaluateFloat(SubExpr, Imag, Info))
7362 return false;
7363
7364 Result.FloatReal = APFloat(Imag.getSemantics());
7365 return true;
7366 } else {
7367 assert(SubExpr->getType()->isIntegerType() &&
7368 "Unexpected imaginary literal.");
7369
7370 Result.makeComplexInt();
7371 APSInt &Imag = Result.IntImag;
7372 if (!EvaluateInteger(SubExpr, Imag, Info))
7373 return false;
7374
7375 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7376 return true;
7377 }
7378 }
7379
VisitCastExpr(const CastExpr * E)7380 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7381
7382 switch (E->getCastKind()) {
7383 case CK_BitCast:
7384 case CK_BaseToDerived:
7385 case CK_DerivedToBase:
7386 case CK_UncheckedDerivedToBase:
7387 case CK_Dynamic:
7388 case CK_ToUnion:
7389 case CK_ArrayToPointerDecay:
7390 case CK_FunctionToPointerDecay:
7391 case CK_NullToPointer:
7392 case CK_NullToMemberPointer:
7393 case CK_BaseToDerivedMemberPointer:
7394 case CK_DerivedToBaseMemberPointer:
7395 case CK_MemberPointerToBoolean:
7396 case CK_ReinterpretMemberPointer:
7397 case CK_ConstructorConversion:
7398 case CK_IntegralToPointer:
7399 case CK_PointerToIntegral:
7400 case CK_PointerToBoolean:
7401 case CK_ToVoid:
7402 case CK_VectorSplat:
7403 case CK_IntegralCast:
7404 case CK_IntegralToBoolean:
7405 case CK_IntegralToFloating:
7406 case CK_FloatingToIntegral:
7407 case CK_FloatingToBoolean:
7408 case CK_FloatingCast:
7409 case CK_CPointerToObjCPointerCast:
7410 case CK_BlockPointerToObjCPointerCast:
7411 case CK_AnyPointerToBlockPointerCast:
7412 case CK_ObjCObjectLValueCast:
7413 case CK_FloatingComplexToReal:
7414 case CK_FloatingComplexToBoolean:
7415 case CK_IntegralComplexToReal:
7416 case CK_IntegralComplexToBoolean:
7417 case CK_ARCProduceObject:
7418 case CK_ARCConsumeObject:
7419 case CK_ARCReclaimReturnedObject:
7420 case CK_ARCExtendBlockObject:
7421 case CK_CopyAndAutoreleaseBlockObject:
7422 case CK_BuiltinFnToFnPtr:
7423 case CK_ZeroToOCLEvent:
7424 case CK_NonAtomicToAtomic:
7425 llvm_unreachable("invalid cast kind for complex value");
7426
7427 case CK_LValueToRValue:
7428 case CK_AtomicToNonAtomic:
7429 case CK_NoOp:
7430 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7431
7432 case CK_Dependent:
7433 case CK_LValueBitCast:
7434 case CK_UserDefinedConversion:
7435 return Error(E);
7436
7437 case CK_FloatingRealToComplex: {
7438 APFloat &Real = Result.FloatReal;
7439 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7440 return false;
7441
7442 Result.makeComplexFloat();
7443 Result.FloatImag = APFloat(Real.getSemantics());
7444 return true;
7445 }
7446
7447 case CK_FloatingComplexCast: {
7448 if (!Visit(E->getSubExpr()))
7449 return false;
7450
7451 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7452 QualType From
7453 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7454
7455 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7456 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7457 }
7458
7459 case CK_FloatingComplexToIntegralComplex: {
7460 if (!Visit(E->getSubExpr()))
7461 return false;
7462
7463 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7464 QualType From
7465 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7466 Result.makeComplexInt();
7467 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7468 To, Result.IntReal) &&
7469 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7470 To, Result.IntImag);
7471 }
7472
7473 case CK_IntegralRealToComplex: {
7474 APSInt &Real = Result.IntReal;
7475 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7476 return false;
7477
7478 Result.makeComplexInt();
7479 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7480 return true;
7481 }
7482
7483 case CK_IntegralComplexCast: {
7484 if (!Visit(E->getSubExpr()))
7485 return false;
7486
7487 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7488 QualType From
7489 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7490
7491 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7492 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7493 return true;
7494 }
7495
7496 case CK_IntegralComplexToFloatingComplex: {
7497 if (!Visit(E->getSubExpr()))
7498 return false;
7499
7500 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7501 QualType From
7502 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7503 Result.makeComplexFloat();
7504 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7505 To, Result.FloatReal) &&
7506 HandleIntToFloatCast(Info, E, From, Result.IntImag,
7507 To, Result.FloatImag);
7508 }
7509 }
7510
7511 llvm_unreachable("unknown cast resulting in complex value");
7512 }
7513
VisitBinaryOperator(const BinaryOperator * E)7514 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7515 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7516 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7517
7518 bool LHSOK = Visit(E->getLHS());
7519 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7520 return false;
7521
7522 ComplexValue RHS;
7523 if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7524 return false;
7525
7526 assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7527 "Invalid operands to binary operator.");
7528 switch (E->getOpcode()) {
7529 default: return Error(E);
7530 case BO_Add:
7531 if (Result.isComplexFloat()) {
7532 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7533 APFloat::rmNearestTiesToEven);
7534 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7535 APFloat::rmNearestTiesToEven);
7536 } else {
7537 Result.getComplexIntReal() += RHS.getComplexIntReal();
7538 Result.getComplexIntImag() += RHS.getComplexIntImag();
7539 }
7540 break;
7541 case BO_Sub:
7542 if (Result.isComplexFloat()) {
7543 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7544 APFloat::rmNearestTiesToEven);
7545 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7546 APFloat::rmNearestTiesToEven);
7547 } else {
7548 Result.getComplexIntReal() -= RHS.getComplexIntReal();
7549 Result.getComplexIntImag() -= RHS.getComplexIntImag();
7550 }
7551 break;
7552 case BO_Mul:
7553 if (Result.isComplexFloat()) {
7554 ComplexValue LHS = Result;
7555 APFloat &LHS_r = LHS.getComplexFloatReal();
7556 APFloat &LHS_i = LHS.getComplexFloatImag();
7557 APFloat &RHS_r = RHS.getComplexFloatReal();
7558 APFloat &RHS_i = RHS.getComplexFloatImag();
7559
7560 APFloat Tmp = LHS_r;
7561 Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7562 Result.getComplexFloatReal() = Tmp;
7563 Tmp = LHS_i;
7564 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7565 Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7566
7567 Tmp = LHS_r;
7568 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7569 Result.getComplexFloatImag() = Tmp;
7570 Tmp = LHS_i;
7571 Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7572 Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7573 } else {
7574 ComplexValue LHS = Result;
7575 Result.getComplexIntReal() =
7576 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7577 LHS.getComplexIntImag() * RHS.getComplexIntImag());
7578 Result.getComplexIntImag() =
7579 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7580 LHS.getComplexIntImag() * RHS.getComplexIntReal());
7581 }
7582 break;
7583 case BO_Div:
7584 if (Result.isComplexFloat()) {
7585 ComplexValue LHS = Result;
7586 APFloat &LHS_r = LHS.getComplexFloatReal();
7587 APFloat &LHS_i = LHS.getComplexFloatImag();
7588 APFloat &RHS_r = RHS.getComplexFloatReal();
7589 APFloat &RHS_i = RHS.getComplexFloatImag();
7590 APFloat &Res_r = Result.getComplexFloatReal();
7591 APFloat &Res_i = Result.getComplexFloatImag();
7592
7593 APFloat Den = RHS_r;
7594 Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7595 APFloat Tmp = RHS_i;
7596 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7597 Den.add(Tmp, APFloat::rmNearestTiesToEven);
7598
7599 Res_r = LHS_r;
7600 Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7601 Tmp = LHS_i;
7602 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7603 Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7604 Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7605
7606 Res_i = LHS_i;
7607 Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7608 Tmp = LHS_r;
7609 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7610 Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7611 Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7612 } else {
7613 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7614 return Error(E, diag::note_expr_divide_by_zero);
7615
7616 ComplexValue LHS = Result;
7617 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7618 RHS.getComplexIntImag() * RHS.getComplexIntImag();
7619 Result.getComplexIntReal() =
7620 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7621 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7622 Result.getComplexIntImag() =
7623 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7624 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7625 }
7626 break;
7627 }
7628
7629 return true;
7630 }
7631
VisitUnaryOperator(const UnaryOperator * E)7632 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7633 // Get the operand value into 'Result'.
7634 if (!Visit(E->getSubExpr()))
7635 return false;
7636
7637 switch (E->getOpcode()) {
7638 default:
7639 return Error(E);
7640 case UO_Extension:
7641 return true;
7642 case UO_Plus:
7643 // The result is always just the subexpr.
7644 return true;
7645 case UO_Minus:
7646 if (Result.isComplexFloat()) {
7647 Result.getComplexFloatReal().changeSign();
7648 Result.getComplexFloatImag().changeSign();
7649 }
7650 else {
7651 Result.getComplexIntReal() = -Result.getComplexIntReal();
7652 Result.getComplexIntImag() = -Result.getComplexIntImag();
7653 }
7654 return true;
7655 case UO_Not:
7656 if (Result.isComplexFloat())
7657 Result.getComplexFloatImag().changeSign();
7658 else
7659 Result.getComplexIntImag() = -Result.getComplexIntImag();
7660 return true;
7661 }
7662 }
7663
VisitInitListExpr(const InitListExpr * E)7664 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7665 if (E->getNumInits() == 2) {
7666 if (E->getType()->isComplexType()) {
7667 Result.makeComplexFloat();
7668 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7669 return false;
7670 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7671 return false;
7672 } else {
7673 Result.makeComplexInt();
7674 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7675 return false;
7676 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7677 return false;
7678 }
7679 return true;
7680 }
7681 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7682 }
7683
7684 //===----------------------------------------------------------------------===//
7685 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7686 // implicit conversion.
7687 //===----------------------------------------------------------------------===//
7688
7689 namespace {
7690 class AtomicExprEvaluator :
7691 public ExprEvaluatorBase<AtomicExprEvaluator, bool> {
7692 APValue &Result;
7693 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)7694 AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7695 : ExprEvaluatorBaseTy(Info), Result(Result) {}
7696
Success(const APValue & V,const Expr * E)7697 bool Success(const APValue &V, const Expr *E) {
7698 Result = V;
7699 return true;
7700 }
7701
ZeroInitialization(const Expr * E)7702 bool ZeroInitialization(const Expr *E) {
7703 ImplicitValueInitExpr VIE(
7704 E->getType()->castAs<AtomicType>()->getValueType());
7705 return Evaluate(Result, Info, &VIE);
7706 }
7707
VisitCastExpr(const CastExpr * E)7708 bool VisitCastExpr(const CastExpr *E) {
7709 switch (E->getCastKind()) {
7710 default:
7711 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7712 case CK_NonAtomicToAtomic:
7713 return Evaluate(Result, Info, E->getSubExpr());
7714 }
7715 }
7716 };
7717 } // end anonymous namespace
7718
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)7719 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7720 assert(E->isRValue() && E->getType()->isAtomicType());
7721 return AtomicExprEvaluator(Info, Result).Visit(E);
7722 }
7723
7724 //===----------------------------------------------------------------------===//
7725 // Void expression evaluation, primarily for a cast to void on the LHS of a
7726 // comma operator
7727 //===----------------------------------------------------------------------===//
7728
7729 namespace {
7730 class VoidExprEvaluator
7731 : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
7732 public:
VoidExprEvaluator(EvalInfo & Info)7733 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7734
Success(const APValue & V,const Expr * e)7735 bool Success(const APValue &V, const Expr *e) { return true; }
7736
VisitCastExpr(const CastExpr * E)7737 bool VisitCastExpr(const CastExpr *E) {
7738 switch (E->getCastKind()) {
7739 default:
7740 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7741 case CK_ToVoid:
7742 VisitIgnoredValue(E->getSubExpr());
7743 return true;
7744 }
7745 }
7746 };
7747 } // end anonymous namespace
7748
EvaluateVoid(const Expr * E,EvalInfo & Info)7749 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7750 assert(E->isRValue() && E->getType()->isVoidType());
7751 return VoidExprEvaluator(Info).Visit(E);
7752 }
7753
7754 //===----------------------------------------------------------------------===//
7755 // Top level Expr::EvaluateAsRValue method.
7756 //===----------------------------------------------------------------------===//
7757
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)7758 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7759 // In C, function designators are not lvalues, but we evaluate them as if they
7760 // are.
7761 QualType T = E->getType();
7762 if (E->isGLValue() || T->isFunctionType()) {
7763 LValue LV;
7764 if (!EvaluateLValue(E, LV, Info))
7765 return false;
7766 LV.moveInto(Result);
7767 } else if (T->isVectorType()) {
7768 if (!EvaluateVector(E, Result, Info))
7769 return false;
7770 } else if (T->isIntegralOrEnumerationType()) {
7771 if (!IntExprEvaluator(Info, Result).Visit(E))
7772 return false;
7773 } else if (T->hasPointerRepresentation()) {
7774 LValue LV;
7775 if (!EvaluatePointer(E, LV, Info))
7776 return false;
7777 LV.moveInto(Result);
7778 } else if (T->isRealFloatingType()) {
7779 llvm::APFloat F(0.0);
7780 if (!EvaluateFloat(E, F, Info))
7781 return false;
7782 Result = APValue(F);
7783 } else if (T->isAnyComplexType()) {
7784 ComplexValue C;
7785 if (!EvaluateComplex(E, C, Info))
7786 return false;
7787 C.moveInto(Result);
7788 } else if (T->isMemberPointerType()) {
7789 MemberPtr P;
7790 if (!EvaluateMemberPointer(E, P, Info))
7791 return false;
7792 P.moveInto(Result);
7793 return true;
7794 } else if (T->isArrayType()) {
7795 LValue LV;
7796 LV.set(E, Info.CurrentCall->Index);
7797 APValue &Value = Info.CurrentCall->createTemporary(E, false);
7798 if (!EvaluateArray(E, LV, Value, Info))
7799 return false;
7800 Result = Value;
7801 } else if (T->isRecordType()) {
7802 LValue LV;
7803 LV.set(E, Info.CurrentCall->Index);
7804 APValue &Value = Info.CurrentCall->createTemporary(E, false);
7805 if (!EvaluateRecord(E, LV, Value, Info))
7806 return false;
7807 Result = Value;
7808 } else if (T->isVoidType()) {
7809 if (!Info.getLangOpts().CPlusPlus11)
7810 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
7811 << E->getType();
7812 if (!EvaluateVoid(E, Info))
7813 return false;
7814 } else if (T->isAtomicType()) {
7815 if (!EvaluateAtomic(E, Result, Info))
7816 return false;
7817 } else if (Info.getLangOpts().CPlusPlus11) {
7818 Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
7819 return false;
7820 } else {
7821 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
7822 return false;
7823 }
7824
7825 return true;
7826 }
7827
7828 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
7829 /// cases, the in-place evaluation is essential, since later initializers for
7830 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)7831 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
7832 const Expr *E, bool AllowNonLiteralTypes) {
7833 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
7834 return false;
7835
7836 if (E->isRValue()) {
7837 // Evaluate arrays and record types in-place, so that later initializers can
7838 // refer to earlier-initialized members of the object.
7839 if (E->getType()->isArrayType())
7840 return EvaluateArray(E, This, Result, Info);
7841 else if (E->getType()->isRecordType())
7842 return EvaluateRecord(E, This, Result, Info);
7843 }
7844
7845 // For any other type, in-place evaluation is unimportant.
7846 return Evaluate(Result, Info, E);
7847 }
7848
7849 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
7850 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)7851 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
7852 if (!CheckLiteralType(Info, E))
7853 return false;
7854
7855 if (!::Evaluate(Result, Info, E))
7856 return false;
7857
7858 if (E->isGLValue()) {
7859 LValue LV;
7860 LV.setFrom(Info.Ctx, Result);
7861 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
7862 return false;
7863 }
7864
7865 // Check this core constant expression is a constant expression.
7866 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
7867 }
7868
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)7869 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
7870 const ASTContext &Ctx, bool &IsConst) {
7871 // Fast-path evaluations of integer literals, since we sometimes see files
7872 // containing vast quantities of these.
7873 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
7874 Result.Val = APValue(APSInt(L->getValue(),
7875 L->getType()->isUnsignedIntegerType()));
7876 IsConst = true;
7877 return true;
7878 }
7879
7880 // FIXME: Evaluating values of large array and record types can cause
7881 // performance problems. Only do so in C++11 for now.
7882 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
7883 Exp->getType()->isRecordType()) &&
7884 !Ctx.getLangOpts().CPlusPlus11) {
7885 IsConst = false;
7886 return true;
7887 }
7888 return false;
7889 }
7890
7891
7892 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
7893 /// any crazy technique (that has nothing to do with language standards) that
7894 /// we want to. If this function returns true, it returns the folded constant
7895 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
7896 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const7897 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
7898 bool IsConst;
7899 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
7900 return IsConst;
7901
7902 EvalInfo Info(Ctx, Result);
7903 return ::EvaluateAsRValue(Info, this, Result.Val);
7904 }
7905
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const7906 bool Expr::EvaluateAsBooleanCondition(bool &Result,
7907 const ASTContext &Ctx) const {
7908 EvalResult Scratch;
7909 return EvaluateAsRValue(Scratch, Ctx) &&
7910 HandleConversionToBool(Scratch.Val, Result);
7911 }
7912
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const7913 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
7914 SideEffectsKind AllowSideEffects) const {
7915 if (!getType()->isIntegralOrEnumerationType())
7916 return false;
7917
7918 EvalResult ExprResult;
7919 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
7920 (!AllowSideEffects && ExprResult.HasSideEffects))
7921 return false;
7922
7923 Result = ExprResult.Val.getInt();
7924 return true;
7925 }
7926
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const7927 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
7928 EvalInfo Info(Ctx, Result);
7929
7930 LValue LV;
7931 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
7932 !CheckLValueConstantExpression(Info, getExprLoc(),
7933 Ctx.getLValueReferenceType(getType()), LV))
7934 return false;
7935
7936 LV.moveInto(Result.Val);
7937 return true;
7938 }
7939
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const7940 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
7941 const VarDecl *VD,
7942 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
7943 // FIXME: Evaluating initializers for large array and record types can cause
7944 // performance problems. Only do so in C++11 for now.
7945 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
7946 !Ctx.getLangOpts().CPlusPlus11)
7947 return false;
7948
7949 Expr::EvalStatus EStatus;
7950 EStatus.Diag = &Notes;
7951
7952 EvalInfo InitInfo(Ctx, EStatus);
7953 InitInfo.setEvaluatingDecl(VD, Value);
7954
7955 LValue LVal;
7956 LVal.set(VD);
7957
7958 // C++11 [basic.start.init]p2:
7959 // Variables with static storage duration or thread storage duration shall be
7960 // zero-initialized before any other initialization takes place.
7961 // This behavior is not present in C.
7962 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
7963 !VD->getType()->isReferenceType()) {
7964 ImplicitValueInitExpr VIE(VD->getType());
7965 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
7966 /*AllowNonLiteralTypes=*/true))
7967 return false;
7968 }
7969
7970 if (!EvaluateInPlace(Value, InitInfo, LVal, this,
7971 /*AllowNonLiteralTypes=*/true) ||
7972 EStatus.HasSideEffects)
7973 return false;
7974
7975 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
7976 Value);
7977 }
7978
7979 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
7980 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const7981 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
7982 EvalResult Result;
7983 return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
7984 }
7985
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const7986 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
7987 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
7988 EvalResult EvalResult;
7989 EvalResult.Diag = Diag;
7990 bool Result = EvaluateAsRValue(EvalResult, Ctx);
7991 (void)Result;
7992 assert(Result && "Could not evaluate expression");
7993 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
7994
7995 return EvalResult.Val.getInt();
7996 }
7997
EvaluateForOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diags) const7998 void Expr::EvaluateForOverflow(const ASTContext &Ctx,
7999 SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
8000 bool IsConst;
8001 EvalResult EvalResult;
8002 EvalResult.Diag = Diags;
8003 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8004 EvalInfo Info(Ctx, EvalResult, true);
8005 (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8006 }
8007 }
8008
isGlobalLValue() const8009 bool Expr::EvalResult::isGlobalLValue() const {
8010 assert(Val.isLValue());
8011 return IsGlobalLValue(Val.getLValueBase());
8012 }
8013
8014
8015 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8016 /// an integer constant expression.
8017
8018 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8019 /// comma, etc
8020
8021 // CheckICE - This function does the fundamental ICE checking: the returned
8022 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8023 // and a (possibly null) SourceLocation indicating the location of the problem.
8024 //
8025 // Note that to reduce code duplication, this helper does no evaluation
8026 // itself; the caller checks whether the expression is evaluatable, and
8027 // in the rare cases where CheckICE actually cares about the evaluated
8028 // value, it calls into Evalute.
8029
8030 namespace {
8031
8032 enum ICEKind {
8033 /// This expression is an ICE.
8034 IK_ICE,
8035 /// This expression is not an ICE, but if it isn't evaluated, it's
8036 /// a legal subexpression for an ICE. This return value is used to handle
8037 /// the comma operator in C99 mode, and non-constant subexpressions.
8038 IK_ICEIfUnevaluated,
8039 /// This expression is not an ICE, and is not a legal subexpression for one.
8040 IK_NotICE
8041 };
8042
8043 struct ICEDiag {
8044 ICEKind Kind;
8045 SourceLocation Loc;
8046
ICEDiag__anon383178e61911::ICEDiag8047 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8048 };
8049
8050 }
8051
NoDiag()8052 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8053
Worst(ICEDiag A,ICEDiag B)8054 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8055
CheckEvalInICE(const Expr * E,ASTContext & Ctx)8056 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
8057 Expr::EvalResult EVResult;
8058 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8059 !EVResult.Val.isInt())
8060 return ICEDiag(IK_NotICE, E->getLocStart());
8061
8062 return NoDiag();
8063 }
8064
CheckICE(const Expr * E,ASTContext & Ctx)8065 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
8066 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8067 if (!E->getType()->isIntegralOrEnumerationType())
8068 return ICEDiag(IK_NotICE, E->getLocStart());
8069
8070 switch (E->getStmtClass()) {
8071 #define ABSTRACT_STMT(Node)
8072 #define STMT(Node, Base) case Expr::Node##Class:
8073 #define EXPR(Node, Base)
8074 #include "clang/AST/StmtNodes.inc"
8075 case Expr::PredefinedExprClass:
8076 case Expr::FloatingLiteralClass:
8077 case Expr::ImaginaryLiteralClass:
8078 case Expr::StringLiteralClass:
8079 case Expr::ArraySubscriptExprClass:
8080 case Expr::MemberExprClass:
8081 case Expr::CompoundAssignOperatorClass:
8082 case Expr::CompoundLiteralExprClass:
8083 case Expr::ExtVectorElementExprClass:
8084 case Expr::DesignatedInitExprClass:
8085 case Expr::ImplicitValueInitExprClass:
8086 case Expr::ParenListExprClass:
8087 case Expr::VAArgExprClass:
8088 case Expr::AddrLabelExprClass:
8089 case Expr::StmtExprClass:
8090 case Expr::CXXMemberCallExprClass:
8091 case Expr::CUDAKernelCallExprClass:
8092 case Expr::CXXDynamicCastExprClass:
8093 case Expr::CXXTypeidExprClass:
8094 case Expr::CXXUuidofExprClass:
8095 case Expr::MSPropertyRefExprClass:
8096 case Expr::CXXNullPtrLiteralExprClass:
8097 case Expr::UserDefinedLiteralClass:
8098 case Expr::CXXThisExprClass:
8099 case Expr::CXXThrowExprClass:
8100 case Expr::CXXNewExprClass:
8101 case Expr::CXXDeleteExprClass:
8102 case Expr::CXXPseudoDestructorExprClass:
8103 case Expr::UnresolvedLookupExprClass:
8104 case Expr::DependentScopeDeclRefExprClass:
8105 case Expr::CXXConstructExprClass:
8106 case Expr::CXXStdInitializerListExprClass:
8107 case Expr::CXXBindTemporaryExprClass:
8108 case Expr::ExprWithCleanupsClass:
8109 case Expr::CXXTemporaryObjectExprClass:
8110 case Expr::CXXUnresolvedConstructExprClass:
8111 case Expr::CXXDependentScopeMemberExprClass:
8112 case Expr::UnresolvedMemberExprClass:
8113 case Expr::ObjCStringLiteralClass:
8114 case Expr::ObjCBoxedExprClass:
8115 case Expr::ObjCArrayLiteralClass:
8116 case Expr::ObjCDictionaryLiteralClass:
8117 case Expr::ObjCEncodeExprClass:
8118 case Expr::ObjCMessageExprClass:
8119 case Expr::ObjCSelectorExprClass:
8120 case Expr::ObjCProtocolExprClass:
8121 case Expr::ObjCIvarRefExprClass:
8122 case Expr::ObjCPropertyRefExprClass:
8123 case Expr::ObjCSubscriptRefExprClass:
8124 case Expr::ObjCIsaExprClass:
8125 case Expr::ShuffleVectorExprClass:
8126 case Expr::BlockExprClass:
8127 case Expr::NoStmtClass:
8128 case Expr::OpaqueValueExprClass:
8129 case Expr::PackExpansionExprClass:
8130 case Expr::SubstNonTypeTemplateParmPackExprClass:
8131 case Expr::FunctionParmPackExprClass:
8132 case Expr::AsTypeExprClass:
8133 case Expr::ObjCIndirectCopyRestoreExprClass:
8134 case Expr::MaterializeTemporaryExprClass:
8135 case Expr::PseudoObjectExprClass:
8136 case Expr::AtomicExprClass:
8137 case Expr::InitListExprClass:
8138 case Expr::LambdaExprClass:
8139 return ICEDiag(IK_NotICE, E->getLocStart());
8140
8141 case Expr::SizeOfPackExprClass:
8142 case Expr::GNUNullExprClass:
8143 // GCC considers the GNU __null value to be an integral constant expression.
8144 return NoDiag();
8145
8146 case Expr::SubstNonTypeTemplateParmExprClass:
8147 return
8148 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8149
8150 case Expr::ParenExprClass:
8151 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8152 case Expr::GenericSelectionExprClass:
8153 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8154 case Expr::IntegerLiteralClass:
8155 case Expr::CharacterLiteralClass:
8156 case Expr::ObjCBoolLiteralExprClass:
8157 case Expr::CXXBoolLiteralExprClass:
8158 case Expr::CXXScalarValueInitExprClass:
8159 case Expr::UnaryTypeTraitExprClass:
8160 case Expr::BinaryTypeTraitExprClass:
8161 case Expr::TypeTraitExprClass:
8162 case Expr::ArrayTypeTraitExprClass:
8163 case Expr::ExpressionTraitExprClass:
8164 case Expr::CXXNoexceptExprClass:
8165 return NoDiag();
8166 case Expr::CallExprClass:
8167 case Expr::CXXOperatorCallExprClass: {
8168 // C99 6.6/3 allows function calls within unevaluated subexpressions of
8169 // constant expressions, but they can never be ICEs because an ICE cannot
8170 // contain an operand of (pointer to) function type.
8171 const CallExpr *CE = cast<CallExpr>(E);
8172 if (CE->isBuiltinCall())
8173 return CheckEvalInICE(E, Ctx);
8174 return ICEDiag(IK_NotICE, E->getLocStart());
8175 }
8176 case Expr::DeclRefExprClass: {
8177 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8178 return NoDiag();
8179 const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8180 if (Ctx.getLangOpts().CPlusPlus &&
8181 D && IsConstNonVolatile(D->getType())) {
8182 // Parameter variables are never constants. Without this check,
8183 // getAnyInitializer() can find a default argument, which leads
8184 // to chaos.
8185 if (isa<ParmVarDecl>(D))
8186 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8187
8188 // C++ 7.1.5.1p2
8189 // A variable of non-volatile const-qualified integral or enumeration
8190 // type initialized by an ICE can be used in ICEs.
8191 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8192 if (!Dcl->getType()->isIntegralOrEnumerationType())
8193 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8194
8195 const VarDecl *VD;
8196 // Look for a declaration of this variable that has an initializer, and
8197 // check whether it is an ICE.
8198 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8199 return NoDiag();
8200 else
8201 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8202 }
8203 }
8204 return ICEDiag(IK_NotICE, E->getLocStart());
8205 }
8206 case Expr::UnaryOperatorClass: {
8207 const UnaryOperator *Exp = cast<UnaryOperator>(E);
8208 switch (Exp->getOpcode()) {
8209 case UO_PostInc:
8210 case UO_PostDec:
8211 case UO_PreInc:
8212 case UO_PreDec:
8213 case UO_AddrOf:
8214 case UO_Deref:
8215 // C99 6.6/3 allows increment and decrement within unevaluated
8216 // subexpressions of constant expressions, but they can never be ICEs
8217 // because an ICE cannot contain an lvalue operand.
8218 return ICEDiag(IK_NotICE, E->getLocStart());
8219 case UO_Extension:
8220 case UO_LNot:
8221 case UO_Plus:
8222 case UO_Minus:
8223 case UO_Not:
8224 case UO_Real:
8225 case UO_Imag:
8226 return CheckICE(Exp->getSubExpr(), Ctx);
8227 }
8228
8229 // OffsetOf falls through here.
8230 }
8231 case Expr::OffsetOfExprClass: {
8232 // Note that per C99, offsetof must be an ICE. And AFAIK, using
8233 // EvaluateAsRValue matches the proposed gcc behavior for cases like
8234 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
8235 // compliance: we should warn earlier for offsetof expressions with
8236 // array subscripts that aren't ICEs, and if the array subscripts
8237 // are ICEs, the value of the offsetof must be an integer constant.
8238 return CheckEvalInICE(E, Ctx);
8239 }
8240 case Expr::UnaryExprOrTypeTraitExprClass: {
8241 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8242 if ((Exp->getKind() == UETT_SizeOf) &&
8243 Exp->getTypeOfArgument()->isVariableArrayType())
8244 return ICEDiag(IK_NotICE, E->getLocStart());
8245 return NoDiag();
8246 }
8247 case Expr::BinaryOperatorClass: {
8248 const BinaryOperator *Exp = cast<BinaryOperator>(E);
8249 switch (Exp->getOpcode()) {
8250 case BO_PtrMemD:
8251 case BO_PtrMemI:
8252 case BO_Assign:
8253 case BO_MulAssign:
8254 case BO_DivAssign:
8255 case BO_RemAssign:
8256 case BO_AddAssign:
8257 case BO_SubAssign:
8258 case BO_ShlAssign:
8259 case BO_ShrAssign:
8260 case BO_AndAssign:
8261 case BO_XorAssign:
8262 case BO_OrAssign:
8263 // C99 6.6/3 allows assignments within unevaluated subexpressions of
8264 // constant expressions, but they can never be ICEs because an ICE cannot
8265 // contain an lvalue operand.
8266 return ICEDiag(IK_NotICE, E->getLocStart());
8267
8268 case BO_Mul:
8269 case BO_Div:
8270 case BO_Rem:
8271 case BO_Add:
8272 case BO_Sub:
8273 case BO_Shl:
8274 case BO_Shr:
8275 case BO_LT:
8276 case BO_GT:
8277 case BO_LE:
8278 case BO_GE:
8279 case BO_EQ:
8280 case BO_NE:
8281 case BO_And:
8282 case BO_Xor:
8283 case BO_Or:
8284 case BO_Comma: {
8285 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8286 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8287 if (Exp->getOpcode() == BO_Div ||
8288 Exp->getOpcode() == BO_Rem) {
8289 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8290 // we don't evaluate one.
8291 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8292 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8293 if (REval == 0)
8294 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8295 if (REval.isSigned() && REval.isAllOnesValue()) {
8296 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8297 if (LEval.isMinSignedValue())
8298 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8299 }
8300 }
8301 }
8302 if (Exp->getOpcode() == BO_Comma) {
8303 if (Ctx.getLangOpts().C99) {
8304 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8305 // if it isn't evaluated.
8306 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8307 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8308 } else {
8309 // In both C89 and C++, commas in ICEs are illegal.
8310 return ICEDiag(IK_NotICE, E->getLocStart());
8311 }
8312 }
8313 return Worst(LHSResult, RHSResult);
8314 }
8315 case BO_LAnd:
8316 case BO_LOr: {
8317 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8318 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8319 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8320 // Rare case where the RHS has a comma "side-effect"; we need
8321 // to actually check the condition to see whether the side
8322 // with the comma is evaluated.
8323 if ((Exp->getOpcode() == BO_LAnd) !=
8324 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8325 return RHSResult;
8326 return NoDiag();
8327 }
8328
8329 return Worst(LHSResult, RHSResult);
8330 }
8331 }
8332 }
8333 case Expr::ImplicitCastExprClass:
8334 case Expr::CStyleCastExprClass:
8335 case Expr::CXXFunctionalCastExprClass:
8336 case Expr::CXXStaticCastExprClass:
8337 case Expr::CXXReinterpretCastExprClass:
8338 case Expr::CXXConstCastExprClass:
8339 case Expr::ObjCBridgedCastExprClass: {
8340 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8341 if (isa<ExplicitCastExpr>(E)) {
8342 if (const FloatingLiteral *FL
8343 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8344 unsigned DestWidth = Ctx.getIntWidth(E->getType());
8345 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8346 APSInt IgnoredVal(DestWidth, !DestSigned);
8347 bool Ignored;
8348 // If the value does not fit in the destination type, the behavior is
8349 // undefined, so we are not required to treat it as a constant
8350 // expression.
8351 if (FL->getValue().convertToInteger(IgnoredVal,
8352 llvm::APFloat::rmTowardZero,
8353 &Ignored) & APFloat::opInvalidOp)
8354 return ICEDiag(IK_NotICE, E->getLocStart());
8355 return NoDiag();
8356 }
8357 }
8358 switch (cast<CastExpr>(E)->getCastKind()) {
8359 case CK_LValueToRValue:
8360 case CK_AtomicToNonAtomic:
8361 case CK_NonAtomicToAtomic:
8362 case CK_NoOp:
8363 case CK_IntegralToBoolean:
8364 case CK_IntegralCast:
8365 return CheckICE(SubExpr, Ctx);
8366 default:
8367 return ICEDiag(IK_NotICE, E->getLocStart());
8368 }
8369 }
8370 case Expr::BinaryConditionalOperatorClass: {
8371 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8372 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8373 if (CommonResult.Kind == IK_NotICE) return CommonResult;
8374 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8375 if (FalseResult.Kind == IK_NotICE) return FalseResult;
8376 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8377 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8378 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8379 return FalseResult;
8380 }
8381 case Expr::ConditionalOperatorClass: {
8382 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8383 // If the condition (ignoring parens) is a __builtin_constant_p call,
8384 // then only the true side is actually considered in an integer constant
8385 // expression, and it is fully evaluated. This is an important GNU
8386 // extension. See GCC PR38377 for discussion.
8387 if (const CallExpr *CallCE
8388 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8389 if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
8390 return CheckEvalInICE(E, Ctx);
8391 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8392 if (CondResult.Kind == IK_NotICE)
8393 return CondResult;
8394
8395 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8396 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8397
8398 if (TrueResult.Kind == IK_NotICE)
8399 return TrueResult;
8400 if (FalseResult.Kind == IK_NotICE)
8401 return FalseResult;
8402 if (CondResult.Kind == IK_ICEIfUnevaluated)
8403 return CondResult;
8404 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8405 return NoDiag();
8406 // Rare case where the diagnostics depend on which side is evaluated
8407 // Note that if we get here, CondResult is 0, and at least one of
8408 // TrueResult and FalseResult is non-zero.
8409 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8410 return FalseResult;
8411 return TrueResult;
8412 }
8413 case Expr::CXXDefaultArgExprClass:
8414 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8415 case Expr::CXXDefaultInitExprClass:
8416 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8417 case Expr::ChooseExprClass: {
8418 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
8419 }
8420 }
8421
8422 llvm_unreachable("Invalid StmtClass!");
8423 }
8424
8425 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)8426 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
8427 const Expr *E,
8428 llvm::APSInt *Value,
8429 SourceLocation *Loc) {
8430 if (!E->getType()->isIntegralOrEnumerationType()) {
8431 if (Loc) *Loc = E->getExprLoc();
8432 return false;
8433 }
8434
8435 APValue Result;
8436 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8437 return false;
8438
8439 assert(Result.isInt() && "pointer cast to int is not an ICE");
8440 if (Value) *Value = Result.getInt();
8441 return true;
8442 }
8443
isIntegerConstantExpr(ASTContext & Ctx,SourceLocation * Loc) const8444 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
8445 if (Ctx.getLangOpts().CPlusPlus11)
8446 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
8447
8448 ICEDiag D = CheckICE(this, Ctx);
8449 if (D.Kind != IK_ICE) {
8450 if (Loc) *Loc = D.Loc;
8451 return false;
8452 }
8453 return true;
8454 }
8455
isIntegerConstantExpr(llvm::APSInt & Value,ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const8456 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
8457 SourceLocation *Loc, bool isEvaluated) const {
8458 if (Ctx.getLangOpts().CPlusPlus11)
8459 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8460
8461 if (!isIntegerConstantExpr(Ctx, Loc))
8462 return false;
8463 if (!EvaluateAsInt(Value, Ctx))
8464 llvm_unreachable("ICE cannot be evaluated!");
8465 return true;
8466 }
8467
isCXX98IntegralConstantExpr(ASTContext & Ctx) const8468 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
8469 return CheckICE(this, Ctx).Kind == IK_ICE;
8470 }
8471
isCXX11ConstantExpr(ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const8472 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
8473 SourceLocation *Loc) const {
8474 // We support this checking in C++98 mode in order to diagnose compatibility
8475 // issues.
8476 assert(Ctx.getLangOpts().CPlusPlus);
8477
8478 // Build evaluation settings.
8479 Expr::EvalStatus Status;
8480 SmallVector<PartialDiagnosticAt, 8> Diags;
8481 Status.Diag = &Diags;
8482 EvalInfo Info(Ctx, Status);
8483
8484 APValue Scratch;
8485 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8486
8487 if (!Diags.empty()) {
8488 IsConstExpr = false;
8489 if (Loc) *Loc = Diags[0].first;
8490 } else if (!IsConstExpr) {
8491 // FIXME: This shouldn't happen.
8492 if (Loc) *Loc = getExprLoc();
8493 }
8494
8495 return IsConstExpr;
8496 }
8497
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)8498 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8499 SmallVectorImpl<
8500 PartialDiagnosticAt> &Diags) {
8501 // FIXME: It would be useful to check constexpr function templates, but at the
8502 // moment the constant expression evaluator cannot cope with the non-rigorous
8503 // ASTs which we build for dependent expressions.
8504 if (FD->isDependentContext())
8505 return true;
8506
8507 Expr::EvalStatus Status;
8508 Status.Diag = &Diags;
8509
8510 EvalInfo Info(FD->getASTContext(), Status);
8511 Info.CheckingPotentialConstantExpression = true;
8512
8513 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8514 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
8515
8516 // Fabricate an arbitrary expression on the stack and pretend that it
8517 // is a temporary being used as the 'this' pointer.
8518 LValue This;
8519 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8520 This.set(&VIE, Info.CurrentCall->Index);
8521
8522 ArrayRef<const Expr*> Args;
8523
8524 SourceLocation Loc = FD->getLocation();
8525
8526 APValue Scratch;
8527 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8528 // Evaluate the call as a constant initializer, to allow the construction
8529 // of objects of non-literal types.
8530 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8531 HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8532 } else
8533 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
8534 Args, FD->getBody(), Info, Scratch);
8535
8536 return Diags.empty();
8537 }
8538