• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 //    too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54 
55 static bool IsGlobalLValue(APValue::LValueBase B);
56 
57 namespace {
58   struct LValue;
59   struct CallStackFrame;
60   struct EvalInfo;
61 
getType(APValue::LValueBase B)62   static QualType getType(APValue::LValueBase B) {
63     if (!B) return QualType();
64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65       return D->getType();
66 
67     const Expr *Base = B.get<const Expr*>();
68 
69     // For a materialized temporary, the type of the temporary we materialized
70     // may not be the type of the expression.
71     if (const MaterializeTemporaryExpr *MTE =
72             dyn_cast<MaterializeTemporaryExpr>(Base)) {
73       SmallVector<const Expr *, 2> CommaLHSs;
74       SmallVector<SubobjectAdjustment, 2> Adjustments;
75       const Expr *Temp = MTE->GetTemporaryExpr();
76       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                                Adjustments);
78       // Keep any cv-qualifiers from the reference if we generated a temporary
79       // for it.
80       if (Inner != Temp)
81         return Inner->getType();
82     }
83 
84     return Base->getType();
85   }
86 
87   /// Get an LValue path entry, which is known to not be an array index, as a
88   /// field or base class.
89   static
getAsBaseOrMember(APValue::LValuePathEntry E)90   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91     APValue::BaseOrMemberType Value;
92     Value.setFromOpaqueValue(E.BaseOrMember);
93     return Value;
94   }
95 
96   /// Get an LValue path entry, which is known to not be an array index, as a
97   /// field declaration.
getAsField(APValue::LValuePathEntry E)98   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100   }
101   /// Get an LValue path entry, which is known to not be an array index, as a
102   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)103   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105   }
106   /// Determine whether this LValue path entry for a base class names a virtual
107   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)108   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109     return getAsBaseOrMember(E).getInt();
110   }
111 
112   /// Find the path length and type of the most-derived subobject in the given
113   /// path, and find the size of the containing array, if any.
114   static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)115   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                     ArrayRef<APValue::LValuePathEntry> Path,
117                                     uint64_t &ArraySize, QualType &Type) {
118     unsigned MostDerivedLength = 0;
119     Type = Base;
120     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121       if (Type->isArrayType()) {
122         const ConstantArrayType *CAT =
123           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124         Type = CAT->getElementType();
125         ArraySize = CAT->getSize().getZExtValue();
126         MostDerivedLength = I + 1;
127       } else if (Type->isAnyComplexType()) {
128         const ComplexType *CT = Type->castAs<ComplexType>();
129         Type = CT->getElementType();
130         ArraySize = 2;
131         MostDerivedLength = I + 1;
132       } else if (const FieldDecl *FD = getAsField(Path[I])) {
133         Type = FD->getType();
134         ArraySize = 0;
135         MostDerivedLength = I + 1;
136       } else {
137         // Path[I] describes a base class.
138         ArraySize = 0;
139       }
140     }
141     return MostDerivedLength;
142   }
143 
144   // The order of this enum is important for diagnostics.
145   enum CheckSubobjectKind {
146     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147     CSK_This, CSK_Real, CSK_Imag
148   };
149 
150   /// A path from a glvalue to a subobject of that glvalue.
151   struct SubobjectDesignator {
152     /// True if the subobject was named in a manner not supported by C++11. Such
153     /// lvalues can still be folded, but they are not core constant expressions
154     /// and we cannot perform lvalue-to-rvalue conversions on them.
155     bool Invalid : 1;
156 
157     /// Is this a pointer one past the end of an object?
158     bool IsOnePastTheEnd : 1;
159 
160     /// The length of the path to the most-derived object of which this is a
161     /// subobject.
162     unsigned MostDerivedPathLength : 30;
163 
164     /// The size of the array of which the most-derived object is an element, or
165     /// 0 if the most-derived object is not an array element.
166     uint64_t MostDerivedArraySize;
167 
168     /// The type of the most derived object referred to by this address.
169     QualType MostDerivedType;
170 
171     typedef APValue::LValuePathEntry PathEntry;
172 
173     /// The entries on the path from the glvalue to the designated subobject.
174     SmallVector<PathEntry, 8> Entries;
175 
SubobjectDesignator__anon383178e60111::SubobjectDesignator176     SubobjectDesignator() : Invalid(true) {}
177 
SubobjectDesignator__anon383178e60111::SubobjectDesignator178     explicit SubobjectDesignator(QualType T)
179       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180         MostDerivedArraySize(0), MostDerivedType(T) {}
181 
SubobjectDesignator__anon383178e60111::SubobjectDesignator182     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184         MostDerivedPathLength(0), MostDerivedArraySize(0) {
185       if (!Invalid) {
186         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187         ArrayRef<PathEntry> VEntries = V.getLValuePath();
188         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189         if (V.getLValueBase())
190           MostDerivedPathLength =
191               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192                                        V.getLValuePath(), MostDerivedArraySize,
193                                        MostDerivedType);
194       }
195     }
196 
setInvalid__anon383178e60111::SubobjectDesignator197     void setInvalid() {
198       Invalid = true;
199       Entries.clear();
200     }
201 
202     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon383178e60111::SubobjectDesignator203     bool isOnePastTheEnd() const {
204       if (IsOnePastTheEnd)
205         return true;
206       if (MostDerivedArraySize &&
207           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208         return true;
209       return false;
210     }
211 
212     /// Check that this refers to a valid subobject.
isValidSubobject__anon383178e60111::SubobjectDesignator213     bool isValidSubobject() const {
214       if (Invalid)
215         return false;
216       return !isOnePastTheEnd();
217     }
218     /// Check that this refers to a valid subobject, and if not, produce a
219     /// relevant diagnostic and set the designator as invalid.
220     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221 
222     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon383178e60111::SubobjectDesignator223     void addArrayUnchecked(const ConstantArrayType *CAT) {
224       PathEntry Entry;
225       Entry.ArrayIndex = 0;
226       Entries.push_back(Entry);
227 
228       // This is a most-derived object.
229       MostDerivedType = CAT->getElementType();
230       MostDerivedArraySize = CAT->getSize().getZExtValue();
231       MostDerivedPathLength = Entries.size();
232     }
233     /// Update this designator to refer to the given base or member of this
234     /// object.
addDeclUnchecked__anon383178e60111::SubobjectDesignator235     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236       PathEntry Entry;
237       APValue::BaseOrMemberType Value(D, Virtual);
238       Entry.BaseOrMember = Value.getOpaqueValue();
239       Entries.push_back(Entry);
240 
241       // If this isn't a base class, it's a new most-derived object.
242       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243         MostDerivedType = FD->getType();
244         MostDerivedArraySize = 0;
245         MostDerivedPathLength = Entries.size();
246       }
247     }
248     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon383178e60111::SubobjectDesignator249     void addComplexUnchecked(QualType EltTy, bool Imag) {
250       PathEntry Entry;
251       Entry.ArrayIndex = Imag;
252       Entries.push_back(Entry);
253 
254       // This is technically a most-derived object, though in practice this
255       // is unlikely to matter.
256       MostDerivedType = EltTy;
257       MostDerivedArraySize = 2;
258       MostDerivedPathLength = Entries.size();
259     }
260     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261     /// Add N to the address of this subobject.
adjustIndex__anon383178e60111::SubobjectDesignator262     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263       if (Invalid) return;
264       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265         Entries.back().ArrayIndex += N;
266         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268           setInvalid();
269         }
270         return;
271       }
272       // [expr.add]p4: For the purposes of these operators, a pointer to a
273       // nonarray object behaves the same as a pointer to the first element of
274       // an array of length one with the type of the object as its element type.
275       if (IsOnePastTheEnd && N == (uint64_t)-1)
276         IsOnePastTheEnd = false;
277       else if (!IsOnePastTheEnd && N == 1)
278         IsOnePastTheEnd = true;
279       else if (N != 0) {
280         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281         setInvalid();
282       }
283     }
284   };
285 
286   /// A stack frame in the constexpr call stack.
287   struct CallStackFrame {
288     EvalInfo &Info;
289 
290     /// Parent - The caller of this stack frame.
291     CallStackFrame *Caller;
292 
293     /// CallLoc - The location of the call expression for this call.
294     SourceLocation CallLoc;
295 
296     /// Callee - The function which was called.
297     const FunctionDecl *Callee;
298 
299     /// Index - The call index of this call.
300     unsigned Index;
301 
302     /// This - The binding for the this pointer in this call, if any.
303     const LValue *This;
304 
305     /// ParmBindings - Parameter bindings for this function call, indexed by
306     /// parameters' function scope indices.
307     APValue *Arguments;
308 
309     // Note that we intentionally use std::map here so that references to
310     // values are stable.
311     typedef std::map<const void*, APValue> MapTy;
312     typedef MapTy::const_iterator temp_iterator;
313     /// Temporaries - Temporary lvalues materialized within this stack frame.
314     MapTy Temporaries;
315 
316     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317                    const FunctionDecl *Callee, const LValue *This,
318                    APValue *Arguments);
319     ~CallStackFrame();
320 
getTemporary__anon383178e60111::CallStackFrame321     APValue *getTemporary(const void *Key) {
322       MapTy::iterator I = Temporaries.find(Key);
323       return I == Temporaries.end() ? 0 : &I->second;
324     }
325     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
326   };
327 
328   /// Temporarily override 'this'.
329   class ThisOverrideRAII {
330   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)331     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
332         : Frame(Frame), OldThis(Frame.This) {
333       if (Enable)
334         Frame.This = NewThis;
335     }
~ThisOverrideRAII()336     ~ThisOverrideRAII() {
337       Frame.This = OldThis;
338     }
339   private:
340     CallStackFrame &Frame;
341     const LValue *OldThis;
342   };
343 
344   /// A partial diagnostic which we might know in advance that we are not going
345   /// to emit.
346   class OptionalDiagnostic {
347     PartialDiagnostic *Diag;
348 
349   public:
OptionalDiagnostic(PartialDiagnostic * Diag=0)350     explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
351 
352     template<typename T>
operator <<(const T & v)353     OptionalDiagnostic &operator<<(const T &v) {
354       if (Diag)
355         *Diag << v;
356       return *this;
357     }
358 
operator <<(const APSInt & I)359     OptionalDiagnostic &operator<<(const APSInt &I) {
360       if (Diag) {
361         SmallVector<char, 32> Buffer;
362         I.toString(Buffer);
363         *Diag << StringRef(Buffer.data(), Buffer.size());
364       }
365       return *this;
366     }
367 
operator <<(const APFloat & F)368     OptionalDiagnostic &operator<<(const APFloat &F) {
369       if (Diag) {
370         SmallVector<char, 32> Buffer;
371         F.toString(Buffer);
372         *Diag << StringRef(Buffer.data(), Buffer.size());
373       }
374       return *this;
375     }
376   };
377 
378   /// A cleanup, and a flag indicating whether it is lifetime-extended.
379   class Cleanup {
380     llvm::PointerIntPair<APValue*, 1, bool> Value;
381 
382   public:
Cleanup(APValue * Val,bool IsLifetimeExtended)383     Cleanup(APValue *Val, bool IsLifetimeExtended)
384         : Value(Val, IsLifetimeExtended) {}
385 
isLifetimeExtended() const386     bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()387     void endLifetime() {
388       *Value.getPointer() = APValue();
389     }
390   };
391 
392   /// EvalInfo - This is a private struct used by the evaluator to capture
393   /// information about a subexpression as it is folded.  It retains information
394   /// about the AST context, but also maintains information about the folded
395   /// expression.
396   ///
397   /// If an expression could be evaluated, it is still possible it is not a C
398   /// "integer constant expression" or constant expression.  If not, this struct
399   /// captures information about how and why not.
400   ///
401   /// One bit of information passed *into* the request for constant folding
402   /// indicates whether the subexpression is "evaluated" or not according to C
403   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
404   /// evaluate the expression regardless of what the RHS is, but C only allows
405   /// certain things in certain situations.
406   struct EvalInfo {
407     ASTContext &Ctx;
408 
409     /// EvalStatus - Contains information about the evaluation.
410     Expr::EvalStatus &EvalStatus;
411 
412     /// CurrentCall - The top of the constexpr call stack.
413     CallStackFrame *CurrentCall;
414 
415     /// CallStackDepth - The number of calls in the call stack right now.
416     unsigned CallStackDepth;
417 
418     /// NextCallIndex - The next call index to assign.
419     unsigned NextCallIndex;
420 
421     /// StepsLeft - The remaining number of evaluation steps we're permitted
422     /// to perform. This is essentially a limit for the number of statements
423     /// we will evaluate.
424     unsigned StepsLeft;
425 
426     /// BottomFrame - The frame in which evaluation started. This must be
427     /// initialized after CurrentCall and CallStackDepth.
428     CallStackFrame BottomFrame;
429 
430     /// A stack of values whose lifetimes end at the end of some surrounding
431     /// evaluation frame.
432     llvm::SmallVector<Cleanup, 16> CleanupStack;
433 
434     /// EvaluatingDecl - This is the declaration whose initializer is being
435     /// evaluated, if any.
436     APValue::LValueBase EvaluatingDecl;
437 
438     /// EvaluatingDeclValue - This is the value being constructed for the
439     /// declaration whose initializer is being evaluated, if any.
440     APValue *EvaluatingDeclValue;
441 
442     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
443     /// notes attached to it will also be stored, otherwise they will not be.
444     bool HasActiveDiagnostic;
445 
446     /// CheckingPotentialConstantExpression - Are we checking whether the
447     /// expression is a potential constant expression? If so, some diagnostics
448     /// are suppressed.
449     bool CheckingPotentialConstantExpression;
450 
451     bool IntOverflowCheckMode;
452 
EvalInfo__anon383178e60111::EvalInfo453     EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
454              bool OverflowCheckMode = false)
455       : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
456         CallStackDepth(0), NextCallIndex(1),
457         StepsLeft(getLangOpts().ConstexprStepLimit),
458         BottomFrame(*this, SourceLocation(), 0, 0, 0),
459         EvaluatingDecl((const ValueDecl*)0), EvaluatingDeclValue(0),
460         HasActiveDiagnostic(false), CheckingPotentialConstantExpression(false),
461         IntOverflowCheckMode(OverflowCheckMode) {}
462 
setEvaluatingDecl__anon383178e60111::EvalInfo463     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
464       EvaluatingDecl = Base;
465       EvaluatingDeclValue = &Value;
466     }
467 
getLangOpts__anon383178e60111::EvalInfo468     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
469 
CheckCallLimit__anon383178e60111::EvalInfo470     bool CheckCallLimit(SourceLocation Loc) {
471       // Don't perform any constexpr calls (other than the call we're checking)
472       // when checking a potential constant expression.
473       if (CheckingPotentialConstantExpression && CallStackDepth > 1)
474         return false;
475       if (NextCallIndex == 0) {
476         // NextCallIndex has wrapped around.
477         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
478         return false;
479       }
480       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
481         return true;
482       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
483         << getLangOpts().ConstexprCallDepth;
484       return false;
485     }
486 
getCallFrame__anon383178e60111::EvalInfo487     CallStackFrame *getCallFrame(unsigned CallIndex) {
488       assert(CallIndex && "no call index in getCallFrame");
489       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
490       // be null in this loop.
491       CallStackFrame *Frame = CurrentCall;
492       while (Frame->Index > CallIndex)
493         Frame = Frame->Caller;
494       return (Frame->Index == CallIndex) ? Frame : 0;
495     }
496 
nextStep__anon383178e60111::EvalInfo497     bool nextStep(const Stmt *S) {
498       if (!StepsLeft) {
499         Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
500         return false;
501       }
502       --StepsLeft;
503       return true;
504     }
505 
506   private:
507     /// Add a diagnostic to the diagnostics list.
addDiag__anon383178e60111::EvalInfo508     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
509       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
510       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
511       return EvalStatus.Diag->back().second;
512     }
513 
514     /// Add notes containing a call stack to the current point of evaluation.
515     void addCallStack(unsigned Limit);
516 
517   public:
518     /// Diagnose that the evaluation cannot be folded.
Diag__anon383178e60111::EvalInfo519     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
520                               = diag::note_invalid_subexpr_in_const_expr,
521                             unsigned ExtraNotes = 0) {
522       // If we have a prior diagnostic, it will be noting that the expression
523       // isn't a constant expression. This diagnostic is more important.
524       // FIXME: We might want to show both diagnostics to the user.
525       if (EvalStatus.Diag) {
526         unsigned CallStackNotes = CallStackDepth - 1;
527         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
528         if (Limit)
529           CallStackNotes = std::min(CallStackNotes, Limit + 1);
530         if (CheckingPotentialConstantExpression)
531           CallStackNotes = 0;
532 
533         HasActiveDiagnostic = true;
534         EvalStatus.Diag->clear();
535         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
536         addDiag(Loc, DiagId);
537         if (!CheckingPotentialConstantExpression)
538           addCallStack(Limit);
539         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
540       }
541       HasActiveDiagnostic = false;
542       return OptionalDiagnostic();
543     }
544 
Diag__anon383178e60111::EvalInfo545     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
546                               = diag::note_invalid_subexpr_in_const_expr,
547                             unsigned ExtraNotes = 0) {
548       if (EvalStatus.Diag)
549         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
550       HasActiveDiagnostic = false;
551       return OptionalDiagnostic();
552     }
553 
getIntOverflowCheckMode__anon383178e60111::EvalInfo554     bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
555 
556     /// Diagnose that the evaluation does not produce a C++11 core constant
557     /// expression.
558     template<typename LocArg>
CCEDiag__anon383178e60111::EvalInfo559     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
560                                  = diag::note_invalid_subexpr_in_const_expr,
561                                unsigned ExtraNotes = 0) {
562       // Don't override a previous diagnostic.
563       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
564         HasActiveDiagnostic = false;
565         return OptionalDiagnostic();
566       }
567       return Diag(Loc, DiagId, ExtraNotes);
568     }
569 
570     /// Add a note to a prior diagnostic.
Note__anon383178e60111::EvalInfo571     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
572       if (!HasActiveDiagnostic)
573         return OptionalDiagnostic();
574       return OptionalDiagnostic(&addDiag(Loc, DiagId));
575     }
576 
577     /// Add a stack of notes to a prior diagnostic.
addNotes__anon383178e60111::EvalInfo578     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
579       if (HasActiveDiagnostic) {
580         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
581                                 Diags.begin(), Diags.end());
582       }
583     }
584 
585     /// Should we continue evaluation as much as possible after encountering a
586     /// construct which can't be folded?
keepEvaluatingAfterFailure__anon383178e60111::EvalInfo587     bool keepEvaluatingAfterFailure() {
588       // Should return true in IntOverflowCheckMode, so that we check for
589       // overflow even if some subexpressions can't be evaluated as constants.
590       return StepsLeft && (IntOverflowCheckMode ||
591                            (CheckingPotentialConstantExpression &&
592                             EvalStatus.Diag && EvalStatus.Diag->empty()));
593     }
594   };
595 
596   /// Object used to treat all foldable expressions as constant expressions.
597   struct FoldConstant {
598     bool Enabled;
599 
FoldConstant__anon383178e60111::FoldConstant600     explicit FoldConstant(EvalInfo &Info)
601       : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
602                 !Info.EvalStatus.HasSideEffects) {
603     }
604     // Treat the value we've computed since this object was created as constant.
Fold__anon383178e60111::FoldConstant605     void Fold(EvalInfo &Info) {
606       if (Enabled && !Info.EvalStatus.Diag->empty() &&
607           !Info.EvalStatus.HasSideEffects)
608         Info.EvalStatus.Diag->clear();
609     }
610   };
611 
612   /// RAII object used to suppress diagnostics and side-effects from a
613   /// speculative evaluation.
614   class SpeculativeEvaluationRAII {
615     EvalInfo &Info;
616     Expr::EvalStatus Old;
617 
618   public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=0)619     SpeculativeEvaluationRAII(EvalInfo &Info,
620                               SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
621       : Info(Info), Old(Info.EvalStatus) {
622       Info.EvalStatus.Diag = NewDiag;
623     }
~SpeculativeEvaluationRAII()624     ~SpeculativeEvaluationRAII() {
625       Info.EvalStatus = Old;
626     }
627   };
628 
629   /// RAII object wrapping a full-expression or block scope, and handling
630   /// the ending of the lifetime of temporaries created within it.
631   template<bool IsFullExpression>
632   class ScopeRAII {
633     EvalInfo &Info;
634     unsigned OldStackSize;
635   public:
ScopeRAII(EvalInfo & Info)636     ScopeRAII(EvalInfo &Info)
637         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()638     ~ScopeRAII() {
639       // Body moved to a static method to encourage the compiler to inline away
640       // instances of this class.
641       cleanup(Info, OldStackSize);
642     }
643   private:
cleanup(EvalInfo & Info,unsigned OldStackSize)644     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
645       unsigned NewEnd = OldStackSize;
646       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
647            I != N; ++I) {
648         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
649           // Full-expression cleanup of a lifetime-extended temporary: nothing
650           // to do, just move this cleanup to the right place in the stack.
651           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
652           ++NewEnd;
653         } else {
654           // End the lifetime of the object.
655           Info.CleanupStack[I].endLifetime();
656         }
657       }
658       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
659                               Info.CleanupStack.end());
660     }
661   };
662   typedef ScopeRAII<false> BlockScopeRAII;
663   typedef ScopeRAII<true> FullExpressionRAII;
664 }
665 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)666 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
667                                          CheckSubobjectKind CSK) {
668   if (Invalid)
669     return false;
670   if (isOnePastTheEnd()) {
671     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
672       << CSK;
673     setInvalid();
674     return false;
675   }
676   return true;
677 }
678 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)679 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
680                                                     const Expr *E, uint64_t N) {
681   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
682     Info.CCEDiag(E, diag::note_constexpr_array_index)
683       << static_cast<int>(N) << /*array*/ 0
684       << static_cast<unsigned>(MostDerivedArraySize);
685   else
686     Info.CCEDiag(E, diag::note_constexpr_array_index)
687       << static_cast<int>(N) << /*non-array*/ 1;
688   setInvalid();
689 }
690 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)691 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
692                                const FunctionDecl *Callee, const LValue *This,
693                                APValue *Arguments)
694     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
695       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
696   Info.CurrentCall = this;
697   ++Info.CallStackDepth;
698 }
699 
~CallStackFrame()700 CallStackFrame::~CallStackFrame() {
701   assert(Info.CurrentCall == this && "calls retired out of order");
702   --Info.CallStackDepth;
703   Info.CurrentCall = Caller;
704 }
705 
createTemporary(const void * Key,bool IsLifetimeExtended)706 APValue &CallStackFrame::createTemporary(const void *Key,
707                                          bool IsLifetimeExtended) {
708   APValue &Result = Temporaries[Key];
709   assert(Result.isUninit() && "temporary created multiple times");
710   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
711   return Result;
712 }
713 
714 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
715 
addCallStack(unsigned Limit)716 void EvalInfo::addCallStack(unsigned Limit) {
717   // Determine which calls to skip, if any.
718   unsigned ActiveCalls = CallStackDepth - 1;
719   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
720   if (Limit && Limit < ActiveCalls) {
721     SkipStart = Limit / 2 + Limit % 2;
722     SkipEnd = ActiveCalls - Limit / 2;
723   }
724 
725   // Walk the call stack and add the diagnostics.
726   unsigned CallIdx = 0;
727   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
728        Frame = Frame->Caller, ++CallIdx) {
729     // Skip this call?
730     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
731       if (CallIdx == SkipStart) {
732         // Note that we're skipping calls.
733         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
734           << unsigned(ActiveCalls - Limit);
735       }
736       continue;
737     }
738 
739     SmallVector<char, 128> Buffer;
740     llvm::raw_svector_ostream Out(Buffer);
741     describeCall(Frame, Out);
742     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
743   }
744 }
745 
746 namespace {
747   struct ComplexValue {
748   private:
749     bool IsInt;
750 
751   public:
752     APSInt IntReal, IntImag;
753     APFloat FloatReal, FloatImag;
754 
ComplexValue__anon383178e60211::ComplexValue755     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
756 
makeComplexFloat__anon383178e60211::ComplexValue757     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon383178e60211::ComplexValue758     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon383178e60211::ComplexValue759     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon383178e60211::ComplexValue760     APFloat &getComplexFloatImag() { return FloatImag; }
761 
makeComplexInt__anon383178e60211::ComplexValue762     void makeComplexInt() { IsInt = true; }
isComplexInt__anon383178e60211::ComplexValue763     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon383178e60211::ComplexValue764     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon383178e60211::ComplexValue765     APSInt &getComplexIntImag() { return IntImag; }
766 
moveInto__anon383178e60211::ComplexValue767     void moveInto(APValue &v) const {
768       if (isComplexFloat())
769         v = APValue(FloatReal, FloatImag);
770       else
771         v = APValue(IntReal, IntImag);
772     }
setFrom__anon383178e60211::ComplexValue773     void setFrom(const APValue &v) {
774       assert(v.isComplexFloat() || v.isComplexInt());
775       if (v.isComplexFloat()) {
776         makeComplexFloat();
777         FloatReal = v.getComplexFloatReal();
778         FloatImag = v.getComplexFloatImag();
779       } else {
780         makeComplexInt();
781         IntReal = v.getComplexIntReal();
782         IntImag = v.getComplexIntImag();
783       }
784     }
785   };
786 
787   struct LValue {
788     APValue::LValueBase Base;
789     CharUnits Offset;
790     unsigned CallIndex;
791     SubobjectDesignator Designator;
792 
getLValueBase__anon383178e60211::LValue793     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon383178e60211::LValue794     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon383178e60211::LValue795     const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon383178e60211::LValue796     unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon383178e60211::LValue797     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon383178e60211::LValue798     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
799 
moveInto__anon383178e60211::LValue800     void moveInto(APValue &V) const {
801       if (Designator.Invalid)
802         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
803       else
804         V = APValue(Base, Offset, Designator.Entries,
805                     Designator.IsOnePastTheEnd, CallIndex);
806     }
setFrom__anon383178e60211::LValue807     void setFrom(ASTContext &Ctx, const APValue &V) {
808       assert(V.isLValue());
809       Base = V.getLValueBase();
810       Offset = V.getLValueOffset();
811       CallIndex = V.getLValueCallIndex();
812       Designator = SubobjectDesignator(Ctx, V);
813     }
814 
set__anon383178e60211::LValue815     void set(APValue::LValueBase B, unsigned I = 0) {
816       Base = B;
817       Offset = CharUnits::Zero();
818       CallIndex = I;
819       Designator = SubobjectDesignator(getType(B));
820     }
821 
822     // Check that this LValue is not based on a null pointer. If it is, produce
823     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon383178e60211::LValue824     bool checkNullPointer(EvalInfo &Info, const Expr *E,
825                           CheckSubobjectKind CSK) {
826       if (Designator.Invalid)
827         return false;
828       if (!Base) {
829         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
830           << CSK;
831         Designator.setInvalid();
832         return false;
833       }
834       return true;
835     }
836 
837     // Check this LValue refers to an object. If not, set the designator to be
838     // invalid and emit a diagnostic.
checkSubobject__anon383178e60211::LValue839     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
840       // Outside C++11, do not build a designator referring to a subobject of
841       // any object: we won't use such a designator for anything.
842       if (!Info.getLangOpts().CPlusPlus11)
843         Designator.setInvalid();
844       return checkNullPointer(Info, E, CSK) &&
845              Designator.checkSubobject(Info, E, CSK);
846     }
847 
addDecl__anon383178e60211::LValue848     void addDecl(EvalInfo &Info, const Expr *E,
849                  const Decl *D, bool Virtual = false) {
850       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
851         Designator.addDeclUnchecked(D, Virtual);
852     }
addArray__anon383178e60211::LValue853     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
854       if (checkSubobject(Info, E, CSK_ArrayToPointer))
855         Designator.addArrayUnchecked(CAT);
856     }
addComplex__anon383178e60211::LValue857     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
858       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
859         Designator.addComplexUnchecked(EltTy, Imag);
860     }
adjustIndex__anon383178e60211::LValue861     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
862       if (checkNullPointer(Info, E, CSK_ArrayIndex))
863         Designator.adjustIndex(Info, E, N);
864     }
865   };
866 
867   struct MemberPtr {
MemberPtr__anon383178e60211::MemberPtr868     MemberPtr() {}
MemberPtr__anon383178e60211::MemberPtr869     explicit MemberPtr(const ValueDecl *Decl) :
870       DeclAndIsDerivedMember(Decl, false), Path() {}
871 
872     /// The member or (direct or indirect) field referred to by this member
873     /// pointer, or 0 if this is a null member pointer.
getDecl__anon383178e60211::MemberPtr874     const ValueDecl *getDecl() const {
875       return DeclAndIsDerivedMember.getPointer();
876     }
877     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon383178e60211::MemberPtr878     bool isDerivedMember() const {
879       return DeclAndIsDerivedMember.getInt();
880     }
881     /// Get the class which the declaration actually lives in.
getContainingRecord__anon383178e60211::MemberPtr882     const CXXRecordDecl *getContainingRecord() const {
883       return cast<CXXRecordDecl>(
884           DeclAndIsDerivedMember.getPointer()->getDeclContext());
885     }
886 
moveInto__anon383178e60211::MemberPtr887     void moveInto(APValue &V) const {
888       V = APValue(getDecl(), isDerivedMember(), Path);
889     }
setFrom__anon383178e60211::MemberPtr890     void setFrom(const APValue &V) {
891       assert(V.isMemberPointer());
892       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
893       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
894       Path.clear();
895       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
896       Path.insert(Path.end(), P.begin(), P.end());
897     }
898 
899     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
900     /// whether the member is a member of some class derived from the class type
901     /// of the member pointer.
902     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
903     /// Path - The path of base/derived classes from the member declaration's
904     /// class (exclusive) to the class type of the member pointer (inclusive).
905     SmallVector<const CXXRecordDecl*, 4> Path;
906 
907     /// Perform a cast towards the class of the Decl (either up or down the
908     /// hierarchy).
castBack__anon383178e60211::MemberPtr909     bool castBack(const CXXRecordDecl *Class) {
910       assert(!Path.empty());
911       const CXXRecordDecl *Expected;
912       if (Path.size() >= 2)
913         Expected = Path[Path.size() - 2];
914       else
915         Expected = getContainingRecord();
916       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
917         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
918         // if B does not contain the original member and is not a base or
919         // derived class of the class containing the original member, the result
920         // of the cast is undefined.
921         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
922         // (D::*). We consider that to be a language defect.
923         return false;
924       }
925       Path.pop_back();
926       return true;
927     }
928     /// Perform a base-to-derived member pointer cast.
castToDerived__anon383178e60211::MemberPtr929     bool castToDerived(const CXXRecordDecl *Derived) {
930       if (!getDecl())
931         return true;
932       if (!isDerivedMember()) {
933         Path.push_back(Derived);
934         return true;
935       }
936       if (!castBack(Derived))
937         return false;
938       if (Path.empty())
939         DeclAndIsDerivedMember.setInt(false);
940       return true;
941     }
942     /// Perform a derived-to-base member pointer cast.
castToBase__anon383178e60211::MemberPtr943     bool castToBase(const CXXRecordDecl *Base) {
944       if (!getDecl())
945         return true;
946       if (Path.empty())
947         DeclAndIsDerivedMember.setInt(true);
948       if (isDerivedMember()) {
949         Path.push_back(Base);
950         return true;
951       }
952       return castBack(Base);
953     }
954   };
955 
956   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)957   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
958     if (!LHS.getDecl() || !RHS.getDecl())
959       return !LHS.getDecl() && !RHS.getDecl();
960     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
961       return false;
962     return LHS.Path == RHS.Path;
963   }
964 }
965 
966 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
967 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
968                             const LValue &This, const Expr *E,
969                             bool AllowNonLiteralTypes = false);
970 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
971 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
972 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
973                                   EvalInfo &Info);
974 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
975 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
976 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
977                                     EvalInfo &Info);
978 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
979 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
980 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
981 
982 //===----------------------------------------------------------------------===//
983 // Misc utilities
984 //===----------------------------------------------------------------------===//
985 
986 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)987 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
988   unsigned ArgIndex = 0;
989   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
990                       !isa<CXXConstructorDecl>(Frame->Callee) &&
991                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
992 
993   if (!IsMemberCall)
994     Out << *Frame->Callee << '(';
995 
996   if (Frame->This && IsMemberCall) {
997     APValue Val;
998     Frame->This->moveInto(Val);
999     Val.printPretty(Out, Frame->Info.Ctx,
1000                     Frame->This->Designator.MostDerivedType);
1001     // FIXME: Add parens around Val if needed.
1002     Out << "->" << *Frame->Callee << '(';
1003     IsMemberCall = false;
1004   }
1005 
1006   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1007        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1008     if (ArgIndex > (unsigned)IsMemberCall)
1009       Out << ", ";
1010 
1011     const ParmVarDecl *Param = *I;
1012     const APValue &Arg = Frame->Arguments[ArgIndex];
1013     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1014 
1015     if (ArgIndex == 0 && IsMemberCall)
1016       Out << "->" << *Frame->Callee << '(';
1017   }
1018 
1019   Out << ')';
1020 }
1021 
1022 /// Evaluate an expression to see if it had side-effects, and discard its
1023 /// result.
1024 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1025 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1026   APValue Scratch;
1027   if (!Evaluate(Scratch, Info, E)) {
1028     Info.EvalStatus.HasSideEffects = true;
1029     return Info.keepEvaluatingAfterFailure();
1030   }
1031   return true;
1032 }
1033 
1034 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1035 /// return its existing value.
getExtValue(const APSInt & Value)1036 static int64_t getExtValue(const APSInt &Value) {
1037   return Value.isSigned() ? Value.getSExtValue()
1038                           : static_cast<int64_t>(Value.getZExtValue());
1039 }
1040 
1041 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1042 static bool IsStringLiteralCall(const CallExpr *E) {
1043   unsigned Builtin = E->isBuiltinCall();
1044   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1045           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1046 }
1047 
IsGlobalLValue(APValue::LValueBase B)1048 static bool IsGlobalLValue(APValue::LValueBase B) {
1049   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1050   // constant expression of pointer type that evaluates to...
1051 
1052   // ... a null pointer value, or a prvalue core constant expression of type
1053   // std::nullptr_t.
1054   if (!B) return true;
1055 
1056   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1057     // ... the address of an object with static storage duration,
1058     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1059       return VD->hasGlobalStorage();
1060     // ... the address of a function,
1061     return isa<FunctionDecl>(D);
1062   }
1063 
1064   const Expr *E = B.get<const Expr*>();
1065   switch (E->getStmtClass()) {
1066   default:
1067     return false;
1068   case Expr::CompoundLiteralExprClass: {
1069     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1070     return CLE->isFileScope() && CLE->isLValue();
1071   }
1072   case Expr::MaterializeTemporaryExprClass:
1073     // A materialized temporary might have been lifetime-extended to static
1074     // storage duration.
1075     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1076   // A string literal has static storage duration.
1077   case Expr::StringLiteralClass:
1078   case Expr::PredefinedExprClass:
1079   case Expr::ObjCStringLiteralClass:
1080   case Expr::ObjCEncodeExprClass:
1081   case Expr::CXXTypeidExprClass:
1082   case Expr::CXXUuidofExprClass:
1083     return true;
1084   case Expr::CallExprClass:
1085     return IsStringLiteralCall(cast<CallExpr>(E));
1086   // For GCC compatibility, &&label has static storage duration.
1087   case Expr::AddrLabelExprClass:
1088     return true;
1089   // A Block literal expression may be used as the initialization value for
1090   // Block variables at global or local static scope.
1091   case Expr::BlockExprClass:
1092     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1093   case Expr::ImplicitValueInitExprClass:
1094     // FIXME:
1095     // We can never form an lvalue with an implicit value initialization as its
1096     // base through expression evaluation, so these only appear in one case: the
1097     // implicit variable declaration we invent when checking whether a constexpr
1098     // constructor can produce a constant expression. We must assume that such
1099     // an expression might be a global lvalue.
1100     return true;
1101   }
1102 }
1103 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1104 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1105   assert(Base && "no location for a null lvalue");
1106   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1107   if (VD)
1108     Info.Note(VD->getLocation(), diag::note_declared_at);
1109   else
1110     Info.Note(Base.get<const Expr*>()->getExprLoc(),
1111               diag::note_constexpr_temporary_here);
1112 }
1113 
1114 /// Check that this reference or pointer core constant expression is a valid
1115 /// value for an address or reference constant expression. Return true if we
1116 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1117 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1118                                           QualType Type, const LValue &LVal) {
1119   bool IsReferenceType = Type->isReferenceType();
1120 
1121   APValue::LValueBase Base = LVal.getLValueBase();
1122   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1123 
1124   // Check that the object is a global. Note that the fake 'this' object we
1125   // manufacture when checking potential constant expressions is conservatively
1126   // assumed to be global here.
1127   if (!IsGlobalLValue(Base)) {
1128     if (Info.getLangOpts().CPlusPlus11) {
1129       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1130       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1131         << IsReferenceType << !Designator.Entries.empty()
1132         << !!VD << VD;
1133       NoteLValueLocation(Info, Base);
1134     } else {
1135       Info.Diag(Loc);
1136     }
1137     // Don't allow references to temporaries to escape.
1138     return false;
1139   }
1140   assert((Info.CheckingPotentialConstantExpression ||
1141           LVal.getLValueCallIndex() == 0) &&
1142          "have call index for global lvalue");
1143 
1144   // Check if this is a thread-local variable.
1145   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1146     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1147       if (Var->getTLSKind())
1148         return false;
1149     }
1150   }
1151 
1152   // Allow address constant expressions to be past-the-end pointers. This is
1153   // an extension: the standard requires them to point to an object.
1154   if (!IsReferenceType)
1155     return true;
1156 
1157   // A reference constant expression must refer to an object.
1158   if (!Base) {
1159     // FIXME: diagnostic
1160     Info.CCEDiag(Loc);
1161     return true;
1162   }
1163 
1164   // Does this refer one past the end of some object?
1165   if (Designator.isOnePastTheEnd()) {
1166     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1167     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1168       << !Designator.Entries.empty() << !!VD << VD;
1169     NoteLValueLocation(Info, Base);
1170   }
1171 
1172   return true;
1173 }
1174 
1175 /// Check that this core constant expression is of literal type, and if not,
1176 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=0)1177 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1178                              const LValue *This = 0) {
1179   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1180     return true;
1181 
1182   // C++1y: A constant initializer for an object o [...] may also invoke
1183   // constexpr constructors for o and its subobjects even if those objects
1184   // are of non-literal class types.
1185   if (Info.getLangOpts().CPlusPlus1y && This &&
1186       Info.EvaluatingDecl == This->getLValueBase())
1187     return true;
1188 
1189   // Prvalue constant expressions must be of literal types.
1190   if (Info.getLangOpts().CPlusPlus11)
1191     Info.Diag(E, diag::note_constexpr_nonliteral)
1192       << E->getType();
1193   else
1194     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1195   return false;
1196 }
1197 
1198 /// Check that this core constant expression value is a valid value for a
1199 /// constant expression. If not, report an appropriate diagnostic. Does not
1200 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1201 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1202                                     QualType Type, const APValue &Value) {
1203   if (Value.isUninit()) {
1204     Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1205       << true << Type;
1206     return false;
1207   }
1208 
1209   // Core issue 1454: For a literal constant expression of array or class type,
1210   // each subobject of its value shall have been initialized by a constant
1211   // expression.
1212   if (Value.isArray()) {
1213     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1214     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1215       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1216                                    Value.getArrayInitializedElt(I)))
1217         return false;
1218     }
1219     if (!Value.hasArrayFiller())
1220       return true;
1221     return CheckConstantExpression(Info, DiagLoc, EltTy,
1222                                    Value.getArrayFiller());
1223   }
1224   if (Value.isUnion() && Value.getUnionField()) {
1225     return CheckConstantExpression(Info, DiagLoc,
1226                                    Value.getUnionField()->getType(),
1227                                    Value.getUnionValue());
1228   }
1229   if (Value.isStruct()) {
1230     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1231     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1232       unsigned BaseIndex = 0;
1233       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1234              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1235         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1236                                      Value.getStructBase(BaseIndex)))
1237           return false;
1238       }
1239     }
1240     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1241          I != E; ++I) {
1242       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1243                                    Value.getStructField(I->getFieldIndex())))
1244         return false;
1245     }
1246   }
1247 
1248   if (Value.isLValue()) {
1249     LValue LVal;
1250     LVal.setFrom(Info.Ctx, Value);
1251     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1252   }
1253 
1254   // Everything else is fine.
1255   return true;
1256 }
1257 
GetLValueBaseDecl(const LValue & LVal)1258 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1259   return LVal.Base.dyn_cast<const ValueDecl*>();
1260 }
1261 
IsLiteralLValue(const LValue & Value)1262 static bool IsLiteralLValue(const LValue &Value) {
1263   if (Value.CallIndex)
1264     return false;
1265   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1266   return E && !isa<MaterializeTemporaryExpr>(E);
1267 }
1268 
IsWeakLValue(const LValue & Value)1269 static bool IsWeakLValue(const LValue &Value) {
1270   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1271   return Decl && Decl->isWeak();
1272 }
1273 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1274 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1275   // A null base expression indicates a null pointer.  These are always
1276   // evaluatable, and they are false unless the offset is zero.
1277   if (!Value.getLValueBase()) {
1278     Result = !Value.getLValueOffset().isZero();
1279     return true;
1280   }
1281 
1282   // We have a non-null base.  These are generally known to be true, but if it's
1283   // a weak declaration it can be null at runtime.
1284   Result = true;
1285   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1286   return !Decl || !Decl->isWeak();
1287 }
1288 
HandleConversionToBool(const APValue & Val,bool & Result)1289 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1290   switch (Val.getKind()) {
1291   case APValue::Uninitialized:
1292     return false;
1293   case APValue::Int:
1294     Result = Val.getInt().getBoolValue();
1295     return true;
1296   case APValue::Float:
1297     Result = !Val.getFloat().isZero();
1298     return true;
1299   case APValue::ComplexInt:
1300     Result = Val.getComplexIntReal().getBoolValue() ||
1301              Val.getComplexIntImag().getBoolValue();
1302     return true;
1303   case APValue::ComplexFloat:
1304     Result = !Val.getComplexFloatReal().isZero() ||
1305              !Val.getComplexFloatImag().isZero();
1306     return true;
1307   case APValue::LValue:
1308     return EvalPointerValueAsBool(Val, Result);
1309   case APValue::MemberPointer:
1310     Result = Val.getMemberPointerDecl();
1311     return true;
1312   case APValue::Vector:
1313   case APValue::Array:
1314   case APValue::Struct:
1315   case APValue::Union:
1316   case APValue::AddrLabelDiff:
1317     return false;
1318   }
1319 
1320   llvm_unreachable("unknown APValue kind");
1321 }
1322 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1323 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1324                                        EvalInfo &Info) {
1325   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1326   APValue Val;
1327   if (!Evaluate(Val, Info, E))
1328     return false;
1329   return HandleConversionToBool(Val, Result);
1330 }
1331 
1332 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1333 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1334                            const T &SrcValue, QualType DestType) {
1335   Info.CCEDiag(E, diag::note_constexpr_overflow)
1336     << SrcValue << DestType;
1337 }
1338 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1339 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1340                                  QualType SrcType, const APFloat &Value,
1341                                  QualType DestType, APSInt &Result) {
1342   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1343   // Determine whether we are converting to unsigned or signed.
1344   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1345 
1346   Result = APSInt(DestWidth, !DestSigned);
1347   bool ignored;
1348   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1349       & APFloat::opInvalidOp)
1350     HandleOverflow(Info, E, Value, DestType);
1351   return true;
1352 }
1353 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1354 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1355                                    QualType SrcType, QualType DestType,
1356                                    APFloat &Result) {
1357   APFloat Value = Result;
1358   bool ignored;
1359   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1360                      APFloat::rmNearestTiesToEven, &ignored)
1361       & APFloat::opOverflow)
1362     HandleOverflow(Info, E, Value, DestType);
1363   return true;
1364 }
1365 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1366 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1367                                  QualType DestType, QualType SrcType,
1368                                  APSInt &Value) {
1369   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1370   APSInt Result = Value;
1371   // Figure out if this is a truncate, extend or noop cast.
1372   // If the input is signed, do a sign extend, noop, or truncate.
1373   Result = Result.extOrTrunc(DestWidth);
1374   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1375   return Result;
1376 }
1377 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1378 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1379                                  QualType SrcType, const APSInt &Value,
1380                                  QualType DestType, APFloat &Result) {
1381   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1382   if (Result.convertFromAPInt(Value, Value.isSigned(),
1383                               APFloat::rmNearestTiesToEven)
1384       & APFloat::opOverflow)
1385     HandleOverflow(Info, E, Value, DestType);
1386   return true;
1387 }
1388 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1389 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1390                                   APValue &Value, const FieldDecl *FD) {
1391   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1392 
1393   if (!Value.isInt()) {
1394     // Trying to store a pointer-cast-to-integer into a bitfield.
1395     // FIXME: In this case, we should provide the diagnostic for casting
1396     // a pointer to an integer.
1397     assert(Value.isLValue() && "integral value neither int nor lvalue?");
1398     Info.Diag(E);
1399     return false;
1400   }
1401 
1402   APSInt &Int = Value.getInt();
1403   unsigned OldBitWidth = Int.getBitWidth();
1404   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1405   if (NewBitWidth < OldBitWidth)
1406     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1407   return true;
1408 }
1409 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1410 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1411                                   llvm::APInt &Res) {
1412   APValue SVal;
1413   if (!Evaluate(SVal, Info, E))
1414     return false;
1415   if (SVal.isInt()) {
1416     Res = SVal.getInt();
1417     return true;
1418   }
1419   if (SVal.isFloat()) {
1420     Res = SVal.getFloat().bitcastToAPInt();
1421     return true;
1422   }
1423   if (SVal.isVector()) {
1424     QualType VecTy = E->getType();
1425     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1426     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1427     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1428     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1429     Res = llvm::APInt::getNullValue(VecSize);
1430     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1431       APValue &Elt = SVal.getVectorElt(i);
1432       llvm::APInt EltAsInt;
1433       if (Elt.isInt()) {
1434         EltAsInt = Elt.getInt();
1435       } else if (Elt.isFloat()) {
1436         EltAsInt = Elt.getFloat().bitcastToAPInt();
1437       } else {
1438         // Don't try to handle vectors of anything other than int or float
1439         // (not sure if it's possible to hit this case).
1440         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1441         return false;
1442       }
1443       unsigned BaseEltSize = EltAsInt.getBitWidth();
1444       if (BigEndian)
1445         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1446       else
1447         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1448     }
1449     return true;
1450   }
1451   // Give up if the input isn't an int, float, or vector.  For example, we
1452   // reject "(v4i16)(intptr_t)&a".
1453   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1454   return false;
1455 }
1456 
1457 /// Perform the given integer operation, which is known to need at most BitWidth
1458 /// bits, and check for overflow in the original type (if that type was not an
1459 /// unsigned type).
1460 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)1461 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1462                                    const APSInt &LHS, const APSInt &RHS,
1463                                    unsigned BitWidth, Operation Op) {
1464   if (LHS.isUnsigned())
1465     return Op(LHS, RHS);
1466 
1467   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1468   APSInt Result = Value.trunc(LHS.getBitWidth());
1469   if (Result.extend(BitWidth) != Value) {
1470     if (Info.getIntOverflowCheckMode())
1471       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1472         diag::warn_integer_constant_overflow)
1473           << Result.toString(10) << E->getType();
1474     else
1475       HandleOverflow(Info, E, Value, E->getType());
1476   }
1477   return Result;
1478 }
1479 
1480 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1481 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1482                               BinaryOperatorKind Opcode, APSInt RHS,
1483                               APSInt &Result) {
1484   switch (Opcode) {
1485   default:
1486     Info.Diag(E);
1487     return false;
1488   case BO_Mul:
1489     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1490                                   std::multiplies<APSInt>());
1491     return true;
1492   case BO_Add:
1493     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1494                                   std::plus<APSInt>());
1495     return true;
1496   case BO_Sub:
1497     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1498                                   std::minus<APSInt>());
1499     return true;
1500   case BO_And: Result = LHS & RHS; return true;
1501   case BO_Xor: Result = LHS ^ RHS; return true;
1502   case BO_Or:  Result = LHS | RHS; return true;
1503   case BO_Div:
1504   case BO_Rem:
1505     if (RHS == 0) {
1506       Info.Diag(E, diag::note_expr_divide_by_zero);
1507       return false;
1508     }
1509     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1510     if (RHS.isNegative() && RHS.isAllOnesValue() &&
1511         LHS.isSigned() && LHS.isMinSignedValue())
1512       HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1513     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1514     return true;
1515   case BO_Shl: {
1516     if (Info.getLangOpts().OpenCL)
1517       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1518       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1519                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1520                     RHS.isUnsigned());
1521     else if (RHS.isSigned() && RHS.isNegative()) {
1522       // During constant-folding, a negative shift is an opposite shift. Such
1523       // a shift is not a constant expression.
1524       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1525       RHS = -RHS;
1526       goto shift_right;
1527     }
1528   shift_left:
1529     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1530     // the shifted type.
1531     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1532     if (SA != RHS) {
1533       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1534         << RHS << E->getType() << LHS.getBitWidth();
1535     } else if (LHS.isSigned()) {
1536       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1537       // operand, and must not overflow the corresponding unsigned type.
1538       if (LHS.isNegative())
1539         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1540       else if (LHS.countLeadingZeros() < SA)
1541         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1542     }
1543     Result = LHS << SA;
1544     return true;
1545   }
1546   case BO_Shr: {
1547     if (Info.getLangOpts().OpenCL)
1548       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1549       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1550                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1551                     RHS.isUnsigned());
1552     else if (RHS.isSigned() && RHS.isNegative()) {
1553       // During constant-folding, a negative shift is an opposite shift. Such a
1554       // shift is not a constant expression.
1555       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1556       RHS = -RHS;
1557       goto shift_left;
1558     }
1559   shift_right:
1560     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1561     // shifted type.
1562     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1563     if (SA != RHS)
1564       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1565         << RHS << E->getType() << LHS.getBitWidth();
1566     Result = LHS >> SA;
1567     return true;
1568   }
1569 
1570   case BO_LT: Result = LHS < RHS; return true;
1571   case BO_GT: Result = LHS > RHS; return true;
1572   case BO_LE: Result = LHS <= RHS; return true;
1573   case BO_GE: Result = LHS >= RHS; return true;
1574   case BO_EQ: Result = LHS == RHS; return true;
1575   case BO_NE: Result = LHS != RHS; return true;
1576   }
1577 }
1578 
1579 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1580 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1581                                   APFloat &LHS, BinaryOperatorKind Opcode,
1582                                   const APFloat &RHS) {
1583   switch (Opcode) {
1584   default:
1585     Info.Diag(E);
1586     return false;
1587   case BO_Mul:
1588     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1589     break;
1590   case BO_Add:
1591     LHS.add(RHS, APFloat::rmNearestTiesToEven);
1592     break;
1593   case BO_Sub:
1594     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1595     break;
1596   case BO_Div:
1597     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1598     break;
1599   }
1600 
1601   if (LHS.isInfinity() || LHS.isNaN())
1602     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1603   return true;
1604 }
1605 
1606 /// Cast an lvalue referring to a base subobject to a derived class, by
1607 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1608 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1609                                const RecordDecl *TruncatedType,
1610                                unsigned TruncatedElements) {
1611   SubobjectDesignator &D = Result.Designator;
1612 
1613   // Check we actually point to a derived class object.
1614   if (TruncatedElements == D.Entries.size())
1615     return true;
1616   assert(TruncatedElements >= D.MostDerivedPathLength &&
1617          "not casting to a derived class");
1618   if (!Result.checkSubobject(Info, E, CSK_Derived))
1619     return false;
1620 
1621   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1622   const RecordDecl *RD = TruncatedType;
1623   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1624     if (RD->isInvalidDecl()) return false;
1625     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1626     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1627     if (isVirtualBaseClass(D.Entries[I]))
1628       Result.Offset -= Layout.getVBaseClassOffset(Base);
1629     else
1630       Result.Offset -= Layout.getBaseClassOffset(Base);
1631     RD = Base;
1632   }
1633   D.Entries.resize(TruncatedElements);
1634   return true;
1635 }
1636 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=0)1637 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1638                                    const CXXRecordDecl *Derived,
1639                                    const CXXRecordDecl *Base,
1640                                    const ASTRecordLayout *RL = 0) {
1641   if (!RL) {
1642     if (Derived->isInvalidDecl()) return false;
1643     RL = &Info.Ctx.getASTRecordLayout(Derived);
1644   }
1645 
1646   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1647   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1648   return true;
1649 }
1650 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1651 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1652                              const CXXRecordDecl *DerivedDecl,
1653                              const CXXBaseSpecifier *Base) {
1654   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1655 
1656   if (!Base->isVirtual())
1657     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1658 
1659   SubobjectDesignator &D = Obj.Designator;
1660   if (D.Invalid)
1661     return false;
1662 
1663   // Extract most-derived object and corresponding type.
1664   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1665   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1666     return false;
1667 
1668   // Find the virtual base class.
1669   if (DerivedDecl->isInvalidDecl()) return false;
1670   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1671   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1672   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1673   return true;
1674 }
1675 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1676 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1677                                  QualType Type, LValue &Result) {
1678   for (CastExpr::path_const_iterator PathI = E->path_begin(),
1679                                      PathE = E->path_end();
1680        PathI != PathE; ++PathI) {
1681     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1682                           *PathI))
1683       return false;
1684     Type = (*PathI)->getType();
1685   }
1686   return true;
1687 }
1688 
1689 /// Update LVal to refer to the given field, which must be a member of the type
1690 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=0)1691 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1692                                const FieldDecl *FD,
1693                                const ASTRecordLayout *RL = 0) {
1694   if (!RL) {
1695     if (FD->getParent()->isInvalidDecl()) return false;
1696     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1697   }
1698 
1699   unsigned I = FD->getFieldIndex();
1700   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1701   LVal.addDecl(Info, E, FD);
1702   return true;
1703 }
1704 
1705 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1706 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1707                                        LValue &LVal,
1708                                        const IndirectFieldDecl *IFD) {
1709   for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1710                                          CE = IFD->chain_end(); C != CE; ++C)
1711     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1712       return false;
1713   return true;
1714 }
1715 
1716 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1717 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1718                          QualType Type, CharUnits &Size) {
1719   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1720   // extension.
1721   if (Type->isVoidType() || Type->isFunctionType()) {
1722     Size = CharUnits::One();
1723     return true;
1724   }
1725 
1726   if (!Type->isConstantSizeType()) {
1727     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1728     // FIXME: Better diagnostic.
1729     Info.Diag(Loc);
1730     return false;
1731   }
1732 
1733   Size = Info.Ctx.getTypeSizeInChars(Type);
1734   return true;
1735 }
1736 
1737 /// Update a pointer value to model pointer arithmetic.
1738 /// \param Info - Information about the ongoing evaluation.
1739 /// \param E - The expression being evaluated, for diagnostic purposes.
1740 /// \param LVal - The pointer value to be updated.
1741 /// \param EltTy - The pointee type represented by LVal.
1742 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1743 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1744                                         LValue &LVal, QualType EltTy,
1745                                         int64_t Adjustment) {
1746   CharUnits SizeOfPointee;
1747   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1748     return false;
1749 
1750   // Compute the new offset in the appropriate width.
1751   LVal.Offset += Adjustment * SizeOfPointee;
1752   LVal.adjustIndex(Info, E, Adjustment);
1753   return true;
1754 }
1755 
1756 /// Update an lvalue to refer to a component of a complex number.
1757 /// \param Info - Information about the ongoing evaluation.
1758 /// \param LVal - The lvalue to be updated.
1759 /// \param EltTy - The complex number's component type.
1760 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1761 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1762                                        LValue &LVal, QualType EltTy,
1763                                        bool Imag) {
1764   if (Imag) {
1765     CharUnits SizeOfComponent;
1766     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1767       return false;
1768     LVal.Offset += SizeOfComponent;
1769   }
1770   LVal.addComplex(Info, E, EltTy, Imag);
1771   return true;
1772 }
1773 
1774 /// Try to evaluate the initializer for a variable declaration.
1775 ///
1776 /// \param Info   Information about the ongoing evaluation.
1777 /// \param E      An expression to be used when printing diagnostics.
1778 /// \param VD     The variable whose initializer should be obtained.
1779 /// \param Frame  The frame in which the variable was created. Must be null
1780 ///               if this variable is not local to the evaluation.
1781 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)1782 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1783                                 const VarDecl *VD, CallStackFrame *Frame,
1784                                 APValue *&Result) {
1785   // If this is a parameter to an active constexpr function call, perform
1786   // argument substitution.
1787   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1788     // Assume arguments of a potential constant expression are unknown
1789     // constant expressions.
1790     if (Info.CheckingPotentialConstantExpression)
1791       return false;
1792     if (!Frame || !Frame->Arguments) {
1793       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1794       return false;
1795     }
1796     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1797     return true;
1798   }
1799 
1800   // If this is a local variable, dig out its value.
1801   if (Frame) {
1802     Result = Frame->getTemporary(VD);
1803     assert(Result && "missing value for local variable");
1804     return true;
1805   }
1806 
1807   // Dig out the initializer, and use the declaration which it's attached to.
1808   const Expr *Init = VD->getAnyInitializer(VD);
1809   if (!Init || Init->isValueDependent()) {
1810     // If we're checking a potential constant expression, the variable could be
1811     // initialized later.
1812     if (!Info.CheckingPotentialConstantExpression)
1813       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1814     return false;
1815   }
1816 
1817   // If we're currently evaluating the initializer of this declaration, use that
1818   // in-flight value.
1819   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1820     Result = Info.EvaluatingDeclValue;
1821     return true;
1822   }
1823 
1824   // Never evaluate the initializer of a weak variable. We can't be sure that
1825   // this is the definition which will be used.
1826   if (VD->isWeak()) {
1827     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1828     return false;
1829   }
1830 
1831   // Check that we can fold the initializer. In C++, we will have already done
1832   // this in the cases where it matters for conformance.
1833   SmallVector<PartialDiagnosticAt, 8> Notes;
1834   if (!VD->evaluateValue(Notes)) {
1835     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1836               Notes.size() + 1) << VD;
1837     Info.Note(VD->getLocation(), diag::note_declared_at);
1838     Info.addNotes(Notes);
1839     return false;
1840   } else if (!VD->checkInitIsICE()) {
1841     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1842                  Notes.size() + 1) << VD;
1843     Info.Note(VD->getLocation(), diag::note_declared_at);
1844     Info.addNotes(Notes);
1845   }
1846 
1847   Result = VD->getEvaluatedValue();
1848   return true;
1849 }
1850 
IsConstNonVolatile(QualType T)1851 static bool IsConstNonVolatile(QualType T) {
1852   Qualifiers Quals = T.getQualifiers();
1853   return Quals.hasConst() && !Quals.hasVolatile();
1854 }
1855 
1856 /// Get the base index of the given base class within an APValue representing
1857 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)1858 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1859                              const CXXRecordDecl *Base) {
1860   Base = Base->getCanonicalDecl();
1861   unsigned Index = 0;
1862   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1863          E = Derived->bases_end(); I != E; ++I, ++Index) {
1864     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1865       return Index;
1866   }
1867 
1868   llvm_unreachable("base class missing from derived class's bases list");
1869 }
1870 
1871 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)1872 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1873                                             uint64_t Index) {
1874   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1875   const StringLiteral *S = cast<StringLiteral>(Lit);
1876   const ConstantArrayType *CAT =
1877       Info.Ctx.getAsConstantArrayType(S->getType());
1878   assert(CAT && "string literal isn't an array");
1879   QualType CharType = CAT->getElementType();
1880   assert(CharType->isIntegerType() && "unexpected character type");
1881 
1882   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1883                CharType->isUnsignedIntegerType());
1884   if (Index < S->getLength())
1885     Value = S->getCodeUnit(Index);
1886   return Value;
1887 }
1888 
1889 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)1890 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
1891                                 APValue &Result) {
1892   const StringLiteral *S = cast<StringLiteral>(Lit);
1893   const ConstantArrayType *CAT =
1894       Info.Ctx.getAsConstantArrayType(S->getType());
1895   assert(CAT && "string literal isn't an array");
1896   QualType CharType = CAT->getElementType();
1897   assert(CharType->isIntegerType() && "unexpected character type");
1898 
1899   unsigned Elts = CAT->getSize().getZExtValue();
1900   Result = APValue(APValue::UninitArray(),
1901                    std::min(S->getLength(), Elts), Elts);
1902   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1903                CharType->isUnsignedIntegerType());
1904   if (Result.hasArrayFiller())
1905     Result.getArrayFiller() = APValue(Value);
1906   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
1907     Value = S->getCodeUnit(I);
1908     Result.getArrayInitializedElt(I) = APValue(Value);
1909   }
1910 }
1911 
1912 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)1913 static void expandArray(APValue &Array, unsigned Index) {
1914   unsigned Size = Array.getArraySize();
1915   assert(Index < Size);
1916 
1917   // Always at least double the number of elements for which we store a value.
1918   unsigned OldElts = Array.getArrayInitializedElts();
1919   unsigned NewElts = std::max(Index+1, OldElts * 2);
1920   NewElts = std::min(Size, std::max(NewElts, 8u));
1921 
1922   // Copy the data across.
1923   APValue NewValue(APValue::UninitArray(), NewElts, Size);
1924   for (unsigned I = 0; I != OldElts; ++I)
1925     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
1926   for (unsigned I = OldElts; I != NewElts; ++I)
1927     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
1928   if (NewValue.hasArrayFiller())
1929     NewValue.getArrayFiller() = Array.getArrayFiller();
1930   Array.swap(NewValue);
1931 }
1932 
1933 /// Kinds of access we can perform on an object, for diagnostics.
1934 enum AccessKinds {
1935   AK_Read,
1936   AK_Assign,
1937   AK_Increment,
1938   AK_Decrement
1939 };
1940 
1941 /// A handle to a complete object (an object that is not a subobject of
1942 /// another object).
1943 struct CompleteObject {
1944   /// The value of the complete object.
1945   APValue *Value;
1946   /// The type of the complete object.
1947   QualType Type;
1948 
CompleteObjectCompleteObject1949   CompleteObject() : Value(0) {}
CompleteObjectCompleteObject1950   CompleteObject(APValue *Value, QualType Type)
1951       : Value(Value), Type(Type) {
1952     assert(Value && "missing value for complete object");
1953   }
1954 
operator boolCompleteObject1955   LLVM_EXPLICIT operator bool() const { return Value; }
1956 };
1957 
1958 /// Find the designated sub-object of an rvalue.
1959 template<typename SubobjectHandler>
1960 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)1961 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
1962               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
1963   if (Sub.Invalid)
1964     // A diagnostic will have already been produced.
1965     return handler.failed();
1966   if (Sub.isOnePastTheEnd()) {
1967     if (Info.getLangOpts().CPlusPlus11)
1968       Info.Diag(E, diag::note_constexpr_access_past_end)
1969         << handler.AccessKind;
1970     else
1971       Info.Diag(E);
1972     return handler.failed();
1973   }
1974 
1975   APValue *O = Obj.Value;
1976   QualType ObjType = Obj.Type;
1977   const FieldDecl *LastField = 0;
1978 
1979   // Walk the designator's path to find the subobject.
1980   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
1981     if (O->isUninit()) {
1982       if (!Info.CheckingPotentialConstantExpression)
1983         Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
1984       return handler.failed();
1985     }
1986 
1987     if (I == N) {
1988       if (!handler.found(*O, ObjType))
1989         return false;
1990 
1991       // If we modified a bit-field, truncate it to the right width.
1992       if (handler.AccessKind != AK_Read &&
1993           LastField && LastField->isBitField() &&
1994           !truncateBitfieldValue(Info, E, *O, LastField))
1995         return false;
1996 
1997       return true;
1998     }
1999 
2000     LastField = 0;
2001     if (ObjType->isArrayType()) {
2002       // Next subobject is an array element.
2003       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2004       assert(CAT && "vla in literal type?");
2005       uint64_t Index = Sub.Entries[I].ArrayIndex;
2006       if (CAT->getSize().ule(Index)) {
2007         // Note, it should not be possible to form a pointer with a valid
2008         // designator which points more than one past the end of the array.
2009         if (Info.getLangOpts().CPlusPlus11)
2010           Info.Diag(E, diag::note_constexpr_access_past_end)
2011             << handler.AccessKind;
2012         else
2013           Info.Diag(E);
2014         return handler.failed();
2015       }
2016 
2017       ObjType = CAT->getElementType();
2018 
2019       // An array object is represented as either an Array APValue or as an
2020       // LValue which refers to a string literal.
2021       if (O->isLValue()) {
2022         assert(I == N - 1 && "extracting subobject of character?");
2023         assert(!O->hasLValuePath() || O->getLValuePath().empty());
2024         if (handler.AccessKind != AK_Read)
2025           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2026                               *O);
2027         else
2028           return handler.foundString(*O, ObjType, Index);
2029       }
2030 
2031       if (O->getArrayInitializedElts() > Index)
2032         O = &O->getArrayInitializedElt(Index);
2033       else if (handler.AccessKind != AK_Read) {
2034         expandArray(*O, Index);
2035         O = &O->getArrayInitializedElt(Index);
2036       } else
2037         O = &O->getArrayFiller();
2038     } else if (ObjType->isAnyComplexType()) {
2039       // Next subobject is a complex number.
2040       uint64_t Index = Sub.Entries[I].ArrayIndex;
2041       if (Index > 1) {
2042         if (Info.getLangOpts().CPlusPlus11)
2043           Info.Diag(E, diag::note_constexpr_access_past_end)
2044             << handler.AccessKind;
2045         else
2046           Info.Diag(E);
2047         return handler.failed();
2048       }
2049 
2050       bool WasConstQualified = ObjType.isConstQualified();
2051       ObjType = ObjType->castAs<ComplexType>()->getElementType();
2052       if (WasConstQualified)
2053         ObjType.addConst();
2054 
2055       assert(I == N - 1 && "extracting subobject of scalar?");
2056       if (O->isComplexInt()) {
2057         return handler.found(Index ? O->getComplexIntImag()
2058                                    : O->getComplexIntReal(), ObjType);
2059       } else {
2060         assert(O->isComplexFloat());
2061         return handler.found(Index ? O->getComplexFloatImag()
2062                                    : O->getComplexFloatReal(), ObjType);
2063       }
2064     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2065       if (Field->isMutable() && handler.AccessKind == AK_Read) {
2066         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2067           << Field;
2068         Info.Note(Field->getLocation(), diag::note_declared_at);
2069         return handler.failed();
2070       }
2071 
2072       // Next subobject is a class, struct or union field.
2073       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2074       if (RD->isUnion()) {
2075         const FieldDecl *UnionField = O->getUnionField();
2076         if (!UnionField ||
2077             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2078           Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2079             << handler.AccessKind << Field << !UnionField << UnionField;
2080           return handler.failed();
2081         }
2082         O = &O->getUnionValue();
2083       } else
2084         O = &O->getStructField(Field->getFieldIndex());
2085 
2086       bool WasConstQualified = ObjType.isConstQualified();
2087       ObjType = Field->getType();
2088       if (WasConstQualified && !Field->isMutable())
2089         ObjType.addConst();
2090 
2091       if (ObjType.isVolatileQualified()) {
2092         if (Info.getLangOpts().CPlusPlus) {
2093           // FIXME: Include a description of the path to the volatile subobject.
2094           Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2095             << handler.AccessKind << 2 << Field;
2096           Info.Note(Field->getLocation(), diag::note_declared_at);
2097         } else {
2098           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2099         }
2100         return handler.failed();
2101       }
2102 
2103       LastField = Field;
2104     } else {
2105       // Next subobject is a base class.
2106       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2107       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2108       O = &O->getStructBase(getBaseIndex(Derived, Base));
2109 
2110       bool WasConstQualified = ObjType.isConstQualified();
2111       ObjType = Info.Ctx.getRecordType(Base);
2112       if (WasConstQualified)
2113         ObjType.addConst();
2114     }
2115   }
2116 }
2117 
2118 namespace {
2119 struct ExtractSubobjectHandler {
2120   EvalInfo &Info;
2121   APValue &Result;
2122 
2123   static const AccessKinds AccessKind = AK_Read;
2124 
2125   typedef bool result_type;
failed__anon383178e60311::ExtractSubobjectHandler2126   bool failed() { return false; }
found__anon383178e60311::ExtractSubobjectHandler2127   bool found(APValue &Subobj, QualType SubobjType) {
2128     Result = Subobj;
2129     return true;
2130   }
found__anon383178e60311::ExtractSubobjectHandler2131   bool found(APSInt &Value, QualType SubobjType) {
2132     Result = APValue(Value);
2133     return true;
2134   }
found__anon383178e60311::ExtractSubobjectHandler2135   bool found(APFloat &Value, QualType SubobjType) {
2136     Result = APValue(Value);
2137     return true;
2138   }
foundString__anon383178e60311::ExtractSubobjectHandler2139   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2140     Result = APValue(extractStringLiteralCharacter(
2141         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2142     return true;
2143   }
2144 };
2145 } // end anonymous namespace
2146 
2147 const AccessKinds ExtractSubobjectHandler::AccessKind;
2148 
2149 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2150 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2151                              const CompleteObject &Obj,
2152                              const SubobjectDesignator &Sub,
2153                              APValue &Result) {
2154   ExtractSubobjectHandler Handler = { Info, Result };
2155   return findSubobject(Info, E, Obj, Sub, Handler);
2156 }
2157 
2158 namespace {
2159 struct ModifySubobjectHandler {
2160   EvalInfo &Info;
2161   APValue &NewVal;
2162   const Expr *E;
2163 
2164   typedef bool result_type;
2165   static const AccessKinds AccessKind = AK_Assign;
2166 
checkConst__anon383178e60411::ModifySubobjectHandler2167   bool checkConst(QualType QT) {
2168     // Assigning to a const object has undefined behavior.
2169     if (QT.isConstQualified()) {
2170       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2171       return false;
2172     }
2173     return true;
2174   }
2175 
failed__anon383178e60411::ModifySubobjectHandler2176   bool failed() { return false; }
found__anon383178e60411::ModifySubobjectHandler2177   bool found(APValue &Subobj, QualType SubobjType) {
2178     if (!checkConst(SubobjType))
2179       return false;
2180     // We've been given ownership of NewVal, so just swap it in.
2181     Subobj.swap(NewVal);
2182     return true;
2183   }
found__anon383178e60411::ModifySubobjectHandler2184   bool found(APSInt &Value, QualType SubobjType) {
2185     if (!checkConst(SubobjType))
2186       return false;
2187     if (!NewVal.isInt()) {
2188       // Maybe trying to write a cast pointer value into a complex?
2189       Info.Diag(E);
2190       return false;
2191     }
2192     Value = NewVal.getInt();
2193     return true;
2194   }
found__anon383178e60411::ModifySubobjectHandler2195   bool found(APFloat &Value, QualType SubobjType) {
2196     if (!checkConst(SubobjType))
2197       return false;
2198     Value = NewVal.getFloat();
2199     return true;
2200   }
foundString__anon383178e60411::ModifySubobjectHandler2201   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2202     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2203   }
2204 };
2205 } // end anonymous namespace
2206 
2207 const AccessKinds ModifySubobjectHandler::AccessKind;
2208 
2209 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2210 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2211                             const CompleteObject &Obj,
2212                             const SubobjectDesignator &Sub,
2213                             APValue &NewVal) {
2214   ModifySubobjectHandler Handler = { Info, NewVal, E };
2215   return findSubobject(Info, E, Obj, Sub, Handler);
2216 }
2217 
2218 /// Find the position where two subobject designators diverge, or equivalently
2219 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2220 static unsigned FindDesignatorMismatch(QualType ObjType,
2221                                        const SubobjectDesignator &A,
2222                                        const SubobjectDesignator &B,
2223                                        bool &WasArrayIndex) {
2224   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2225   for (/**/; I != N; ++I) {
2226     if (!ObjType.isNull() &&
2227         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2228       // Next subobject is an array element.
2229       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2230         WasArrayIndex = true;
2231         return I;
2232       }
2233       if (ObjType->isAnyComplexType())
2234         ObjType = ObjType->castAs<ComplexType>()->getElementType();
2235       else
2236         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2237     } else {
2238       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2239         WasArrayIndex = false;
2240         return I;
2241       }
2242       if (const FieldDecl *FD = getAsField(A.Entries[I]))
2243         // Next subobject is a field.
2244         ObjType = FD->getType();
2245       else
2246         // Next subobject is a base class.
2247         ObjType = QualType();
2248     }
2249   }
2250   WasArrayIndex = false;
2251   return I;
2252 }
2253 
2254 /// Determine whether the given subobject designators refer to elements of the
2255 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2256 static bool AreElementsOfSameArray(QualType ObjType,
2257                                    const SubobjectDesignator &A,
2258                                    const SubobjectDesignator &B) {
2259   if (A.Entries.size() != B.Entries.size())
2260     return false;
2261 
2262   bool IsArray = A.MostDerivedArraySize != 0;
2263   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2264     // A is a subobject of the array element.
2265     return false;
2266 
2267   // If A (and B) designates an array element, the last entry will be the array
2268   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2269   // of length 1' case, and the entire path must match.
2270   bool WasArrayIndex;
2271   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2272   return CommonLength >= A.Entries.size() - IsArray;
2273 }
2274 
2275 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2276 CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2277                                   const LValue &LVal, QualType LValType) {
2278   if (!LVal.Base) {
2279     Info.Diag(E, diag::note_constexpr_access_null) << AK;
2280     return CompleteObject();
2281   }
2282 
2283   CallStackFrame *Frame = 0;
2284   if (LVal.CallIndex) {
2285     Frame = Info.getCallFrame(LVal.CallIndex);
2286     if (!Frame) {
2287       Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2288         << AK << LVal.Base.is<const ValueDecl*>();
2289       NoteLValueLocation(Info, LVal.Base);
2290       return CompleteObject();
2291     }
2292   }
2293 
2294   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2295   // is not a constant expression (even if the object is non-volatile). We also
2296   // apply this rule to C++98, in order to conform to the expected 'volatile'
2297   // semantics.
2298   if (LValType.isVolatileQualified()) {
2299     if (Info.getLangOpts().CPlusPlus)
2300       Info.Diag(E, diag::note_constexpr_access_volatile_type)
2301         << AK << LValType;
2302     else
2303       Info.Diag(E);
2304     return CompleteObject();
2305   }
2306 
2307   // Compute value storage location and type of base object.
2308   APValue *BaseVal = 0;
2309   QualType BaseType = getType(LVal.Base);
2310 
2311   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2312     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2313     // In C++11, constexpr, non-volatile variables initialized with constant
2314     // expressions are constant expressions too. Inside constexpr functions,
2315     // parameters are constant expressions even if they're non-const.
2316     // In C++1y, objects local to a constant expression (those with a Frame) are
2317     // both readable and writable inside constant expressions.
2318     // In C, such things can also be folded, although they are not ICEs.
2319     const VarDecl *VD = dyn_cast<VarDecl>(D);
2320     if (VD) {
2321       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2322         VD = VDef;
2323     }
2324     if (!VD || VD->isInvalidDecl()) {
2325       Info.Diag(E);
2326       return CompleteObject();
2327     }
2328 
2329     // Accesses of volatile-qualified objects are not allowed.
2330     if (BaseType.isVolatileQualified()) {
2331       if (Info.getLangOpts().CPlusPlus) {
2332         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2333           << AK << 1 << VD;
2334         Info.Note(VD->getLocation(), diag::note_declared_at);
2335       } else {
2336         Info.Diag(E);
2337       }
2338       return CompleteObject();
2339     }
2340 
2341     // Unless we're looking at a local variable or argument in a constexpr call,
2342     // the variable we're reading must be const.
2343     if (!Frame) {
2344       if (Info.getLangOpts().CPlusPlus1y &&
2345           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2346         // OK, we can read and modify an object if we're in the process of
2347         // evaluating its initializer, because its lifetime began in this
2348         // evaluation.
2349       } else if (AK != AK_Read) {
2350         // All the remaining cases only permit reading.
2351         Info.Diag(E, diag::note_constexpr_modify_global);
2352         return CompleteObject();
2353       } else if (VD->isConstexpr()) {
2354         // OK, we can read this variable.
2355       } else if (BaseType->isIntegralOrEnumerationType()) {
2356         if (!BaseType.isConstQualified()) {
2357           if (Info.getLangOpts().CPlusPlus) {
2358             Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2359             Info.Note(VD->getLocation(), diag::note_declared_at);
2360           } else {
2361             Info.Diag(E);
2362           }
2363           return CompleteObject();
2364         }
2365       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2366         // We support folding of const floating-point types, in order to make
2367         // static const data members of such types (supported as an extension)
2368         // more useful.
2369         if (Info.getLangOpts().CPlusPlus11) {
2370           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2371           Info.Note(VD->getLocation(), diag::note_declared_at);
2372         } else {
2373           Info.CCEDiag(E);
2374         }
2375       } else {
2376         // FIXME: Allow folding of values of any literal type in all languages.
2377         if (Info.getLangOpts().CPlusPlus11) {
2378           Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2379           Info.Note(VD->getLocation(), diag::note_declared_at);
2380         } else {
2381           Info.Diag(E);
2382         }
2383         return CompleteObject();
2384       }
2385     }
2386 
2387     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2388       return CompleteObject();
2389   } else {
2390     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2391 
2392     if (!Frame) {
2393       if (const MaterializeTemporaryExpr *MTE =
2394               dyn_cast<MaterializeTemporaryExpr>(Base)) {
2395         assert(MTE->getStorageDuration() == SD_Static &&
2396                "should have a frame for a non-global materialized temporary");
2397 
2398         // Per C++1y [expr.const]p2:
2399         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2400         //   - a [...] glvalue of integral or enumeration type that refers to
2401         //     a non-volatile const object [...]
2402         //   [...]
2403         //   - a [...] glvalue of literal type that refers to a non-volatile
2404         //     object whose lifetime began within the evaluation of e.
2405         //
2406         // C++11 misses the 'began within the evaluation of e' check and
2407         // instead allows all temporaries, including things like:
2408         //   int &&r = 1;
2409         //   int x = ++r;
2410         //   constexpr int k = r;
2411         // Therefore we use the C++1y rules in C++11 too.
2412         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2413         const ValueDecl *ED = MTE->getExtendingDecl();
2414         if (!(BaseType.isConstQualified() &&
2415               BaseType->isIntegralOrEnumerationType()) &&
2416             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2417           Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2418           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2419           return CompleteObject();
2420         }
2421 
2422         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2423         assert(BaseVal && "got reference to unevaluated temporary");
2424       } else {
2425         Info.Diag(E);
2426         return CompleteObject();
2427       }
2428     } else {
2429       BaseVal = Frame->getTemporary(Base);
2430       assert(BaseVal && "missing value for temporary");
2431     }
2432 
2433     // Volatile temporary objects cannot be accessed in constant expressions.
2434     if (BaseType.isVolatileQualified()) {
2435       if (Info.getLangOpts().CPlusPlus) {
2436         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2437           << AK << 0;
2438         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2439       } else {
2440         Info.Diag(E);
2441       }
2442       return CompleteObject();
2443     }
2444   }
2445 
2446   // During the construction of an object, it is not yet 'const'.
2447   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2448   // and this doesn't do quite the right thing for const subobjects of the
2449   // object under construction.
2450   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2451     BaseType = Info.Ctx.getCanonicalType(BaseType);
2452     BaseType.removeLocalConst();
2453   }
2454 
2455   // In C++1y, we can't safely access any mutable state when checking a
2456   // potential constant expression.
2457   if (Frame && Info.getLangOpts().CPlusPlus1y &&
2458       Info.CheckingPotentialConstantExpression)
2459     return CompleteObject();
2460 
2461   return CompleteObject(BaseVal, BaseType);
2462 }
2463 
2464 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2465 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2466 /// glvalue referred to by an entity of reference type.
2467 ///
2468 /// \param Info - Information about the ongoing evaluation.
2469 /// \param Conv - The expression for which we are performing the conversion.
2470 ///               Used for diagnostics.
2471 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2472 ///               case of a non-class type).
2473 /// \param LVal - The glvalue on which we are attempting to perform this action.
2474 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2475 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2476                                            QualType Type,
2477                                            const LValue &LVal, APValue &RVal) {
2478   if (LVal.Designator.Invalid)
2479     return false;
2480 
2481   // Check for special cases where there is no existing APValue to look at.
2482   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2483   if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2484       !Type.isVolatileQualified()) {
2485     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2486       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2487       // initializer until now for such expressions. Such an expression can't be
2488       // an ICE in C, so this only matters for fold.
2489       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2490       if (Type.isVolatileQualified()) {
2491         Info.Diag(Conv);
2492         return false;
2493       }
2494       APValue Lit;
2495       if (!Evaluate(Lit, Info, CLE->getInitializer()))
2496         return false;
2497       CompleteObject LitObj(&Lit, Base->getType());
2498       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2499     } else if (isa<StringLiteral>(Base)) {
2500       // We represent a string literal array as an lvalue pointing at the
2501       // corresponding expression, rather than building an array of chars.
2502       // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2503       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2504       CompleteObject StrObj(&Str, Base->getType());
2505       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2506     }
2507   }
2508 
2509   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2510   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2511 }
2512 
2513 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2514 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2515                              QualType LValType, APValue &Val) {
2516   if (LVal.Designator.Invalid)
2517     return false;
2518 
2519   if (!Info.getLangOpts().CPlusPlus1y) {
2520     Info.Diag(E);
2521     return false;
2522   }
2523 
2524   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2525   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2526 }
2527 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2528 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2529   return T->isSignedIntegerType() &&
2530          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2531 }
2532 
2533 namespace {
2534 struct CompoundAssignSubobjectHandler {
2535   EvalInfo &Info;
2536   const Expr *E;
2537   QualType PromotedLHSType;
2538   BinaryOperatorKind Opcode;
2539   const APValue &RHS;
2540 
2541   static const AccessKinds AccessKind = AK_Assign;
2542 
2543   typedef bool result_type;
2544 
checkConst__anon383178e60511::CompoundAssignSubobjectHandler2545   bool checkConst(QualType QT) {
2546     // Assigning to a const object has undefined behavior.
2547     if (QT.isConstQualified()) {
2548       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2549       return false;
2550     }
2551     return true;
2552   }
2553 
failed__anon383178e60511::CompoundAssignSubobjectHandler2554   bool failed() { return false; }
found__anon383178e60511::CompoundAssignSubobjectHandler2555   bool found(APValue &Subobj, QualType SubobjType) {
2556     switch (Subobj.getKind()) {
2557     case APValue::Int:
2558       return found(Subobj.getInt(), SubobjType);
2559     case APValue::Float:
2560       return found(Subobj.getFloat(), SubobjType);
2561     case APValue::ComplexInt:
2562     case APValue::ComplexFloat:
2563       // FIXME: Implement complex compound assignment.
2564       Info.Diag(E);
2565       return false;
2566     case APValue::LValue:
2567       return foundPointer(Subobj, SubobjType);
2568     default:
2569       // FIXME: can this happen?
2570       Info.Diag(E);
2571       return false;
2572     }
2573   }
found__anon383178e60511::CompoundAssignSubobjectHandler2574   bool found(APSInt &Value, QualType SubobjType) {
2575     if (!checkConst(SubobjType))
2576       return false;
2577 
2578     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2579       // We don't support compound assignment on integer-cast-to-pointer
2580       // values.
2581       Info.Diag(E);
2582       return false;
2583     }
2584 
2585     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2586                                     SubobjType, Value);
2587     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2588       return false;
2589     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2590     return true;
2591   }
found__anon383178e60511::CompoundAssignSubobjectHandler2592   bool found(APFloat &Value, QualType SubobjType) {
2593     return checkConst(SubobjType) &&
2594            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2595                                   Value) &&
2596            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2597            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2598   }
foundPointer__anon383178e60511::CompoundAssignSubobjectHandler2599   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2600     if (!checkConst(SubobjType))
2601       return false;
2602 
2603     QualType PointeeType;
2604     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2605       PointeeType = PT->getPointeeType();
2606 
2607     if (PointeeType.isNull() || !RHS.isInt() ||
2608         (Opcode != BO_Add && Opcode != BO_Sub)) {
2609       Info.Diag(E);
2610       return false;
2611     }
2612 
2613     int64_t Offset = getExtValue(RHS.getInt());
2614     if (Opcode == BO_Sub)
2615       Offset = -Offset;
2616 
2617     LValue LVal;
2618     LVal.setFrom(Info.Ctx, Subobj);
2619     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2620       return false;
2621     LVal.moveInto(Subobj);
2622     return true;
2623   }
foundString__anon383178e60511::CompoundAssignSubobjectHandler2624   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2625     llvm_unreachable("shouldn't encounter string elements here");
2626   }
2627 };
2628 } // end anonymous namespace
2629 
2630 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2631 
2632 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)2633 static bool handleCompoundAssignment(
2634     EvalInfo &Info, const Expr *E,
2635     const LValue &LVal, QualType LValType, QualType PromotedLValType,
2636     BinaryOperatorKind Opcode, const APValue &RVal) {
2637   if (LVal.Designator.Invalid)
2638     return false;
2639 
2640   if (!Info.getLangOpts().CPlusPlus1y) {
2641     Info.Diag(E);
2642     return false;
2643   }
2644 
2645   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2646   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2647                                              RVal };
2648   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2649 }
2650 
2651 namespace {
2652 struct IncDecSubobjectHandler {
2653   EvalInfo &Info;
2654   const Expr *E;
2655   AccessKinds AccessKind;
2656   APValue *Old;
2657 
2658   typedef bool result_type;
2659 
checkConst__anon383178e60611::IncDecSubobjectHandler2660   bool checkConst(QualType QT) {
2661     // Assigning to a const object has undefined behavior.
2662     if (QT.isConstQualified()) {
2663       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2664       return false;
2665     }
2666     return true;
2667   }
2668 
failed__anon383178e60611::IncDecSubobjectHandler2669   bool failed() { return false; }
found__anon383178e60611::IncDecSubobjectHandler2670   bool found(APValue &Subobj, QualType SubobjType) {
2671     // Stash the old value. Also clear Old, so we don't clobber it later
2672     // if we're post-incrementing a complex.
2673     if (Old) {
2674       *Old = Subobj;
2675       Old = 0;
2676     }
2677 
2678     switch (Subobj.getKind()) {
2679     case APValue::Int:
2680       return found(Subobj.getInt(), SubobjType);
2681     case APValue::Float:
2682       return found(Subobj.getFloat(), SubobjType);
2683     case APValue::ComplexInt:
2684       return found(Subobj.getComplexIntReal(),
2685                    SubobjType->castAs<ComplexType>()->getElementType()
2686                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2687     case APValue::ComplexFloat:
2688       return found(Subobj.getComplexFloatReal(),
2689                    SubobjType->castAs<ComplexType>()->getElementType()
2690                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2691     case APValue::LValue:
2692       return foundPointer(Subobj, SubobjType);
2693     default:
2694       // FIXME: can this happen?
2695       Info.Diag(E);
2696       return false;
2697     }
2698   }
found__anon383178e60611::IncDecSubobjectHandler2699   bool found(APSInt &Value, QualType SubobjType) {
2700     if (!checkConst(SubobjType))
2701       return false;
2702 
2703     if (!SubobjType->isIntegerType()) {
2704       // We don't support increment / decrement on integer-cast-to-pointer
2705       // values.
2706       Info.Diag(E);
2707       return false;
2708     }
2709 
2710     if (Old) *Old = APValue(Value);
2711 
2712     // bool arithmetic promotes to int, and the conversion back to bool
2713     // doesn't reduce mod 2^n, so special-case it.
2714     if (SubobjType->isBooleanType()) {
2715       if (AccessKind == AK_Increment)
2716         Value = 1;
2717       else
2718         Value = !Value;
2719       return true;
2720     }
2721 
2722     bool WasNegative = Value.isNegative();
2723     if (AccessKind == AK_Increment) {
2724       ++Value;
2725 
2726       if (!WasNegative && Value.isNegative() &&
2727           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2728         APSInt ActualValue(Value, /*IsUnsigned*/true);
2729         HandleOverflow(Info, E, ActualValue, SubobjType);
2730       }
2731     } else {
2732       --Value;
2733 
2734       if (WasNegative && !Value.isNegative() &&
2735           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2736         unsigned BitWidth = Value.getBitWidth();
2737         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2738         ActualValue.setBit(BitWidth);
2739         HandleOverflow(Info, E, ActualValue, SubobjType);
2740       }
2741     }
2742     return true;
2743   }
found__anon383178e60611::IncDecSubobjectHandler2744   bool found(APFloat &Value, QualType SubobjType) {
2745     if (!checkConst(SubobjType))
2746       return false;
2747 
2748     if (Old) *Old = APValue(Value);
2749 
2750     APFloat One(Value.getSemantics(), 1);
2751     if (AccessKind == AK_Increment)
2752       Value.add(One, APFloat::rmNearestTiesToEven);
2753     else
2754       Value.subtract(One, APFloat::rmNearestTiesToEven);
2755     return true;
2756   }
foundPointer__anon383178e60611::IncDecSubobjectHandler2757   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2758     if (!checkConst(SubobjType))
2759       return false;
2760 
2761     QualType PointeeType;
2762     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2763       PointeeType = PT->getPointeeType();
2764     else {
2765       Info.Diag(E);
2766       return false;
2767     }
2768 
2769     LValue LVal;
2770     LVal.setFrom(Info.Ctx, Subobj);
2771     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2772                                      AccessKind == AK_Increment ? 1 : -1))
2773       return false;
2774     LVal.moveInto(Subobj);
2775     return true;
2776   }
foundString__anon383178e60611::IncDecSubobjectHandler2777   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2778     llvm_unreachable("shouldn't encounter string elements here");
2779   }
2780 };
2781 } // end anonymous namespace
2782 
2783 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)2784 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2785                          QualType LValType, bool IsIncrement, APValue *Old) {
2786   if (LVal.Designator.Invalid)
2787     return false;
2788 
2789   if (!Info.getLangOpts().CPlusPlus1y) {
2790     Info.Diag(E);
2791     return false;
2792   }
2793 
2794   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2795   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2796   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2797   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2798 }
2799 
2800 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)2801 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2802                                    LValue &This) {
2803   if (Object->getType()->isPointerType())
2804     return EvaluatePointer(Object, This, Info);
2805 
2806   if (Object->isGLValue())
2807     return EvaluateLValue(Object, This, Info);
2808 
2809   if (Object->getType()->isLiteralType(Info.Ctx))
2810     return EvaluateTemporary(Object, This, Info);
2811 
2812   return false;
2813 }
2814 
2815 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
2816 /// lvalue referring to the result.
2817 ///
2818 /// \param Info - Information about the ongoing evaluation.
2819 /// \param LV - An lvalue referring to the base of the member pointer.
2820 /// \param RHS - The member pointer expression.
2821 /// \param IncludeMember - Specifies whether the member itself is included in
2822 ///        the resulting LValue subobject designator. This is not possible when
2823 ///        creating a bound member function.
2824 /// \return The field or method declaration to which the member pointer refers,
2825 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)2826 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2827                                                   QualType LVType,
2828                                                   LValue &LV,
2829                                                   const Expr *RHS,
2830                                                   bool IncludeMember = true) {
2831   MemberPtr MemPtr;
2832   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2833     return 0;
2834 
2835   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2836   // member value, the behavior is undefined.
2837   if (!MemPtr.getDecl()) {
2838     // FIXME: Specific diagnostic.
2839     Info.Diag(RHS);
2840     return 0;
2841   }
2842 
2843   if (MemPtr.isDerivedMember()) {
2844     // This is a member of some derived class. Truncate LV appropriately.
2845     // The end of the derived-to-base path for the base object must match the
2846     // derived-to-base path for the member pointer.
2847     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2848         LV.Designator.Entries.size()) {
2849       Info.Diag(RHS);
2850       return 0;
2851     }
2852     unsigned PathLengthToMember =
2853         LV.Designator.Entries.size() - MemPtr.Path.size();
2854     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
2855       const CXXRecordDecl *LVDecl = getAsBaseClass(
2856           LV.Designator.Entries[PathLengthToMember + I]);
2857       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
2858       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
2859         Info.Diag(RHS);
2860         return 0;
2861       }
2862     }
2863 
2864     // Truncate the lvalue to the appropriate derived class.
2865     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
2866                             PathLengthToMember))
2867       return 0;
2868   } else if (!MemPtr.Path.empty()) {
2869     // Extend the LValue path with the member pointer's path.
2870     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
2871                                   MemPtr.Path.size() + IncludeMember);
2872 
2873     // Walk down to the appropriate base class.
2874     if (const PointerType *PT = LVType->getAs<PointerType>())
2875       LVType = PT->getPointeeType();
2876     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
2877     assert(RD && "member pointer access on non-class-type expression");
2878     // The first class in the path is that of the lvalue.
2879     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
2880       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
2881       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
2882         return 0;
2883       RD = Base;
2884     }
2885     // Finally cast to the class containing the member.
2886     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
2887                                 MemPtr.getContainingRecord()))
2888       return 0;
2889   }
2890 
2891   // Add the member. Note that we cannot build bound member functions here.
2892   if (IncludeMember) {
2893     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
2894       if (!HandleLValueMember(Info, RHS, LV, FD))
2895         return 0;
2896     } else if (const IndirectFieldDecl *IFD =
2897                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
2898       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
2899         return 0;
2900     } else {
2901       llvm_unreachable("can't construct reference to bound member function");
2902     }
2903   }
2904 
2905   return MemPtr.getDecl();
2906 }
2907 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)2908 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2909                                                   const BinaryOperator *BO,
2910                                                   LValue &LV,
2911                                                   bool IncludeMember = true) {
2912   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
2913 
2914   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
2915     if (Info.keepEvaluatingAfterFailure()) {
2916       MemberPtr MemPtr;
2917       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
2918     }
2919     return 0;
2920   }
2921 
2922   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
2923                                    BO->getRHS(), IncludeMember);
2924 }
2925 
2926 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
2927 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)2928 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2929                                     LValue &Result) {
2930   SubobjectDesignator &D = Result.Designator;
2931   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2932     return false;
2933 
2934   QualType TargetQT = E->getType();
2935   if (const PointerType *PT = TargetQT->getAs<PointerType>())
2936     TargetQT = PT->getPointeeType();
2937 
2938   // Check this cast lands within the final derived-to-base subobject path.
2939   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2940     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2941       << D.MostDerivedType << TargetQT;
2942     return false;
2943   }
2944 
2945   // Check the type of the final cast. We don't need to check the path,
2946   // since a cast can only be formed if the path is unique.
2947   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2948   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2949   const CXXRecordDecl *FinalType;
2950   if (NewEntriesSize == D.MostDerivedPathLength)
2951     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2952   else
2953     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2954   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2955     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2956       << D.MostDerivedType << TargetQT;
2957     return false;
2958   }
2959 
2960   // Truncate the lvalue to the appropriate derived class.
2961   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2962 }
2963 
2964 namespace {
2965 enum EvalStmtResult {
2966   /// Evaluation failed.
2967   ESR_Failed,
2968   /// Hit a 'return' statement.
2969   ESR_Returned,
2970   /// Evaluation succeeded.
2971   ESR_Succeeded,
2972   /// Hit a 'continue' statement.
2973   ESR_Continue,
2974   /// Hit a 'break' statement.
2975   ESR_Break,
2976   /// Still scanning for 'case' or 'default' statement.
2977   ESR_CaseNotFound
2978 };
2979 }
2980 
EvaluateDecl(EvalInfo & Info,const Decl * D)2981 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
2982   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2983     // We don't need to evaluate the initializer for a static local.
2984     if (!VD->hasLocalStorage())
2985       return true;
2986 
2987     LValue Result;
2988     Result.set(VD, Info.CurrentCall->Index);
2989     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
2990 
2991     if (!VD->getInit()) {
2992       Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
2993         << false << VD->getType();
2994       Val = APValue();
2995       return false;
2996     }
2997 
2998     if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
2999       // Wipe out any partially-computed value, to allow tracking that this
3000       // evaluation failed.
3001       Val = APValue();
3002       return false;
3003     }
3004   }
3005 
3006   return true;
3007 }
3008 
3009 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3010 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3011                          const Expr *Cond, bool &Result) {
3012   FullExpressionRAII Scope(Info);
3013   if (CondDecl && !EvaluateDecl(Info, CondDecl))
3014     return false;
3015   return EvaluateAsBooleanCondition(Cond, Result, Info);
3016 }
3017 
3018 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3019                                    const Stmt *S, const SwitchCase *SC = 0);
3020 
3021 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(APValue & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=0)3022 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3023                                        const Stmt *Body,
3024                                        const SwitchCase *Case = 0) {
3025   BlockScopeRAII Scope(Info);
3026   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3027   case ESR_Break:
3028     return ESR_Succeeded;
3029   case ESR_Succeeded:
3030   case ESR_Continue:
3031     return ESR_Continue;
3032   case ESR_Failed:
3033   case ESR_Returned:
3034   case ESR_CaseNotFound:
3035     return ESR;
3036   }
3037   llvm_unreachable("Invalid EvalStmtResult!");
3038 }
3039 
3040 /// Evaluate a switch statement.
EvaluateSwitch(APValue & Result,EvalInfo & Info,const SwitchStmt * SS)3041 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3042                                      const SwitchStmt *SS) {
3043   BlockScopeRAII Scope(Info);
3044 
3045   // Evaluate the switch condition.
3046   APSInt Value;
3047   {
3048     FullExpressionRAII Scope(Info);
3049     if (SS->getConditionVariable() &&
3050         !EvaluateDecl(Info, SS->getConditionVariable()))
3051       return ESR_Failed;
3052     if (!EvaluateInteger(SS->getCond(), Value, Info))
3053       return ESR_Failed;
3054   }
3055 
3056   // Find the switch case corresponding to the value of the condition.
3057   // FIXME: Cache this lookup.
3058   const SwitchCase *Found = 0;
3059   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3060        SC = SC->getNextSwitchCase()) {
3061     if (isa<DefaultStmt>(SC)) {
3062       Found = SC;
3063       continue;
3064     }
3065 
3066     const CaseStmt *CS = cast<CaseStmt>(SC);
3067     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3068     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3069                               : LHS;
3070     if (LHS <= Value && Value <= RHS) {
3071       Found = SC;
3072       break;
3073     }
3074   }
3075 
3076   if (!Found)
3077     return ESR_Succeeded;
3078 
3079   // Search the switch body for the switch case and evaluate it from there.
3080   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3081   case ESR_Break:
3082     return ESR_Succeeded;
3083   case ESR_Succeeded:
3084   case ESR_Continue:
3085   case ESR_Failed:
3086   case ESR_Returned:
3087     return ESR;
3088   case ESR_CaseNotFound:
3089     // This can only happen if the switch case is nested within a statement
3090     // expression. We have no intention of supporting that.
3091     Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3092     return ESR_Failed;
3093   }
3094   llvm_unreachable("Invalid EvalStmtResult!");
3095 }
3096 
3097 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3098 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3099                                    const Stmt *S, const SwitchCase *Case) {
3100   if (!Info.nextStep(S))
3101     return ESR_Failed;
3102 
3103   // If we're hunting down a 'case' or 'default' label, recurse through
3104   // substatements until we hit the label.
3105   if (Case) {
3106     // FIXME: We don't start the lifetime of objects whose initialization we
3107     // jump over. However, such objects must be of class type with a trivial
3108     // default constructor that initialize all subobjects, so must be empty,
3109     // so this almost never matters.
3110     switch (S->getStmtClass()) {
3111     case Stmt::CompoundStmtClass:
3112       // FIXME: Precompute which substatement of a compound statement we
3113       // would jump to, and go straight there rather than performing a
3114       // linear scan each time.
3115     case Stmt::LabelStmtClass:
3116     case Stmt::AttributedStmtClass:
3117     case Stmt::DoStmtClass:
3118       break;
3119 
3120     case Stmt::CaseStmtClass:
3121     case Stmt::DefaultStmtClass:
3122       if (Case == S)
3123         Case = 0;
3124       break;
3125 
3126     case Stmt::IfStmtClass: {
3127       // FIXME: Precompute which side of an 'if' we would jump to, and go
3128       // straight there rather than scanning both sides.
3129       const IfStmt *IS = cast<IfStmt>(S);
3130 
3131       // Wrap the evaluation in a block scope, in case it's a DeclStmt
3132       // preceded by our switch label.
3133       BlockScopeRAII Scope(Info);
3134 
3135       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3136       if (ESR != ESR_CaseNotFound || !IS->getElse())
3137         return ESR;
3138       return EvaluateStmt(Result, Info, IS->getElse(), Case);
3139     }
3140 
3141     case Stmt::WhileStmtClass: {
3142       EvalStmtResult ESR =
3143           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3144       if (ESR != ESR_Continue)
3145         return ESR;
3146       break;
3147     }
3148 
3149     case Stmt::ForStmtClass: {
3150       const ForStmt *FS = cast<ForStmt>(S);
3151       EvalStmtResult ESR =
3152           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3153       if (ESR != ESR_Continue)
3154         return ESR;
3155       if (FS->getInc()) {
3156         FullExpressionRAII IncScope(Info);
3157         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3158           return ESR_Failed;
3159       }
3160       break;
3161     }
3162 
3163     case Stmt::DeclStmtClass:
3164       // FIXME: If the variable has initialization that can't be jumped over,
3165       // bail out of any immediately-surrounding compound-statement too.
3166     default:
3167       return ESR_CaseNotFound;
3168     }
3169   }
3170 
3171   switch (S->getStmtClass()) {
3172   default:
3173     if (const Expr *E = dyn_cast<Expr>(S)) {
3174       // Don't bother evaluating beyond an expression-statement which couldn't
3175       // be evaluated.
3176       FullExpressionRAII Scope(Info);
3177       if (!EvaluateIgnoredValue(Info, E))
3178         return ESR_Failed;
3179       return ESR_Succeeded;
3180     }
3181 
3182     Info.Diag(S->getLocStart());
3183     return ESR_Failed;
3184 
3185   case Stmt::NullStmtClass:
3186     return ESR_Succeeded;
3187 
3188   case Stmt::DeclStmtClass: {
3189     const DeclStmt *DS = cast<DeclStmt>(S);
3190     for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
3191            DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
3192       // Each declaration initialization is its own full-expression.
3193       // FIXME: This isn't quite right; if we're performing aggregate
3194       // initialization, each braced subexpression is its own full-expression.
3195       FullExpressionRAII Scope(Info);
3196       if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
3197         return ESR_Failed;
3198     }
3199     return ESR_Succeeded;
3200   }
3201 
3202   case Stmt::ReturnStmtClass: {
3203     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3204     FullExpressionRAII Scope(Info);
3205     if (RetExpr && !Evaluate(Result, Info, RetExpr))
3206       return ESR_Failed;
3207     return ESR_Returned;
3208   }
3209 
3210   case Stmt::CompoundStmtClass: {
3211     BlockScopeRAII Scope(Info);
3212 
3213     const CompoundStmt *CS = cast<CompoundStmt>(S);
3214     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
3215            BE = CS->body_end(); BI != BE; ++BI) {
3216       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI, Case);
3217       if (ESR == ESR_Succeeded)
3218         Case = 0;
3219       else if (ESR != ESR_CaseNotFound)
3220         return ESR;
3221     }
3222     return Case ? ESR_CaseNotFound : ESR_Succeeded;
3223   }
3224 
3225   case Stmt::IfStmtClass: {
3226     const IfStmt *IS = cast<IfStmt>(S);
3227 
3228     // Evaluate the condition, as either a var decl or as an expression.
3229     BlockScopeRAII Scope(Info);
3230     bool Cond;
3231     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3232       return ESR_Failed;
3233 
3234     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3235       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3236       if (ESR != ESR_Succeeded)
3237         return ESR;
3238     }
3239     return ESR_Succeeded;
3240   }
3241 
3242   case Stmt::WhileStmtClass: {
3243     const WhileStmt *WS = cast<WhileStmt>(S);
3244     while (true) {
3245       BlockScopeRAII Scope(Info);
3246       bool Continue;
3247       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3248                         Continue))
3249         return ESR_Failed;
3250       if (!Continue)
3251         break;
3252 
3253       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3254       if (ESR != ESR_Continue)
3255         return ESR;
3256     }
3257     return ESR_Succeeded;
3258   }
3259 
3260   case Stmt::DoStmtClass: {
3261     const DoStmt *DS = cast<DoStmt>(S);
3262     bool Continue;
3263     do {
3264       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3265       if (ESR != ESR_Continue)
3266         return ESR;
3267       Case = 0;
3268 
3269       FullExpressionRAII CondScope(Info);
3270       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3271         return ESR_Failed;
3272     } while (Continue);
3273     return ESR_Succeeded;
3274   }
3275 
3276   case Stmt::ForStmtClass: {
3277     const ForStmt *FS = cast<ForStmt>(S);
3278     BlockScopeRAII Scope(Info);
3279     if (FS->getInit()) {
3280       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3281       if (ESR != ESR_Succeeded)
3282         return ESR;
3283     }
3284     while (true) {
3285       BlockScopeRAII Scope(Info);
3286       bool Continue = true;
3287       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3288                                          FS->getCond(), Continue))
3289         return ESR_Failed;
3290       if (!Continue)
3291         break;
3292 
3293       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3294       if (ESR != ESR_Continue)
3295         return ESR;
3296 
3297       if (FS->getInc()) {
3298         FullExpressionRAII IncScope(Info);
3299         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3300           return ESR_Failed;
3301       }
3302     }
3303     return ESR_Succeeded;
3304   }
3305 
3306   case Stmt::CXXForRangeStmtClass: {
3307     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3308     BlockScopeRAII Scope(Info);
3309 
3310     // Initialize the __range variable.
3311     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3312     if (ESR != ESR_Succeeded)
3313       return ESR;
3314 
3315     // Create the __begin and __end iterators.
3316     ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3317     if (ESR != ESR_Succeeded)
3318       return ESR;
3319 
3320     while (true) {
3321       // Condition: __begin != __end.
3322       {
3323         bool Continue = true;
3324         FullExpressionRAII CondExpr(Info);
3325         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3326           return ESR_Failed;
3327         if (!Continue)
3328           break;
3329       }
3330 
3331       // User's variable declaration, initialized by *__begin.
3332       BlockScopeRAII InnerScope(Info);
3333       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3334       if (ESR != ESR_Succeeded)
3335         return ESR;
3336 
3337       // Loop body.
3338       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3339       if (ESR != ESR_Continue)
3340         return ESR;
3341 
3342       // Increment: ++__begin
3343       if (!EvaluateIgnoredValue(Info, FS->getInc()))
3344         return ESR_Failed;
3345     }
3346 
3347     return ESR_Succeeded;
3348   }
3349 
3350   case Stmt::SwitchStmtClass:
3351     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3352 
3353   case Stmt::ContinueStmtClass:
3354     return ESR_Continue;
3355 
3356   case Stmt::BreakStmtClass:
3357     return ESR_Break;
3358 
3359   case Stmt::LabelStmtClass:
3360     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3361 
3362   case Stmt::AttributedStmtClass:
3363     // As a general principle, C++11 attributes can be ignored without
3364     // any semantic impact.
3365     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3366                         Case);
3367 
3368   case Stmt::CaseStmtClass:
3369   case Stmt::DefaultStmtClass:
3370     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3371   }
3372 }
3373 
3374 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3375 /// default constructor. If so, we'll fold it whether or not it's marked as
3376 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3377 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3378 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3379                                            const CXXConstructorDecl *CD,
3380                                            bool IsValueInitialization) {
3381   if (!CD->isTrivial() || !CD->isDefaultConstructor())
3382     return false;
3383 
3384   // Value-initialization does not call a trivial default constructor, so such a
3385   // call is a core constant expression whether or not the constructor is
3386   // constexpr.
3387   if (!CD->isConstexpr() && !IsValueInitialization) {
3388     if (Info.getLangOpts().CPlusPlus11) {
3389       // FIXME: If DiagDecl is an implicitly-declared special member function,
3390       // we should be much more explicit about why it's not constexpr.
3391       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3392         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3393       Info.Note(CD->getLocation(), diag::note_declared_at);
3394     } else {
3395       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3396     }
3397   }
3398   return true;
3399 }
3400 
3401 /// CheckConstexprFunction - Check that a function can be called in a constant
3402 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)3403 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3404                                    const FunctionDecl *Declaration,
3405                                    const FunctionDecl *Definition) {
3406   // Potential constant expressions can contain calls to declared, but not yet
3407   // defined, constexpr functions.
3408   if (Info.CheckingPotentialConstantExpression && !Definition &&
3409       Declaration->isConstexpr())
3410     return false;
3411 
3412   // Bail out with no diagnostic if the function declaration itself is invalid.
3413   // We will have produced a relevant diagnostic while parsing it.
3414   if (Declaration->isInvalidDecl())
3415     return false;
3416 
3417   // Can we evaluate this function call?
3418   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3419     return true;
3420 
3421   if (Info.getLangOpts().CPlusPlus11) {
3422     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3423     // FIXME: If DiagDecl is an implicitly-declared special member function, we
3424     // should be much more explicit about why it's not constexpr.
3425     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3426       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3427       << DiagDecl;
3428     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3429   } else {
3430     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3431   }
3432   return false;
3433 }
3434 
3435 namespace {
3436 typedef SmallVector<APValue, 8> ArgVector;
3437 }
3438 
3439 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3440 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3441                          EvalInfo &Info) {
3442   bool Success = true;
3443   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3444        I != E; ++I) {
3445     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3446       // If we're checking for a potential constant expression, evaluate all
3447       // initializers even if some of them fail.
3448       if (!Info.keepEvaluatingAfterFailure())
3449         return false;
3450       Success = false;
3451     }
3452   }
3453   return Success;
3454 }
3455 
3456 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)3457 static bool HandleFunctionCall(SourceLocation CallLoc,
3458                                const FunctionDecl *Callee, const LValue *This,
3459                                ArrayRef<const Expr*> Args, const Stmt *Body,
3460                                EvalInfo &Info, APValue &Result) {
3461   ArgVector ArgValues(Args.size());
3462   if (!EvaluateArgs(Args, ArgValues, Info))
3463     return false;
3464 
3465   if (!Info.CheckCallLimit(CallLoc))
3466     return false;
3467 
3468   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3469 
3470   // For a trivial copy or move assignment, perform an APValue copy. This is
3471   // essential for unions, where the operations performed by the assignment
3472   // operator cannot be represented as statements.
3473   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3474   if (MD && MD->isDefaulted() && MD->isTrivial()) {
3475     assert(This &&
3476            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3477     LValue RHS;
3478     RHS.setFrom(Info.Ctx, ArgValues[0]);
3479     APValue RHSValue;
3480     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3481                                         RHS, RHSValue))
3482       return false;
3483     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3484                           RHSValue))
3485       return false;
3486     This->moveInto(Result);
3487     return true;
3488   }
3489 
3490   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3491   if (ESR == ESR_Succeeded) {
3492     if (Callee->getResultType()->isVoidType())
3493       return true;
3494     Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3495   }
3496   return ESR == ESR_Returned;
3497 }
3498 
3499 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3500 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3501                                   ArrayRef<const Expr*> Args,
3502                                   const CXXConstructorDecl *Definition,
3503                                   EvalInfo &Info, APValue &Result) {
3504   ArgVector ArgValues(Args.size());
3505   if (!EvaluateArgs(Args, ArgValues, Info))
3506     return false;
3507 
3508   if (!Info.CheckCallLimit(CallLoc))
3509     return false;
3510 
3511   const CXXRecordDecl *RD = Definition->getParent();
3512   if (RD->getNumVBases()) {
3513     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3514     return false;
3515   }
3516 
3517   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3518 
3519   // If it's a delegating constructor, just delegate.
3520   if (Definition->isDelegatingConstructor()) {
3521     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3522     if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3523       return false;
3524     return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3525   }
3526 
3527   // For a trivial copy or move constructor, perform an APValue copy. This is
3528   // essential for unions, where the operations performed by the constructor
3529   // cannot be represented by ctor-initializers.
3530   if (Definition->isDefaulted() &&
3531       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3532        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3533     LValue RHS;
3534     RHS.setFrom(Info.Ctx, ArgValues[0]);
3535     return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3536                                           RHS, Result);
3537   }
3538 
3539   // Reserve space for the struct members.
3540   if (!RD->isUnion() && Result.isUninit())
3541     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3542                      std::distance(RD->field_begin(), RD->field_end()));
3543 
3544   if (RD->isInvalidDecl()) return false;
3545   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3546 
3547   // A scope for temporaries lifetime-extended by reference members.
3548   BlockScopeRAII LifetimeExtendedScope(Info);
3549 
3550   bool Success = true;
3551   unsigned BasesSeen = 0;
3552 #ifndef NDEBUG
3553   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3554 #endif
3555   for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
3556        E = Definition->init_end(); I != E; ++I) {
3557     LValue Subobject = This;
3558     APValue *Value = &Result;
3559 
3560     // Determine the subobject to initialize.
3561     FieldDecl *FD = 0;
3562     if ((*I)->isBaseInitializer()) {
3563       QualType BaseType((*I)->getBaseClass(), 0);
3564 #ifndef NDEBUG
3565       // Non-virtual base classes are initialized in the order in the class
3566       // definition. We have already checked for virtual base classes.
3567       assert(!BaseIt->isVirtual() && "virtual base for literal type");
3568       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3569              "base class initializers not in expected order");
3570       ++BaseIt;
3571 #endif
3572       if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
3573                                   BaseType->getAsCXXRecordDecl(), &Layout))
3574         return false;
3575       Value = &Result.getStructBase(BasesSeen++);
3576     } else if ((FD = (*I)->getMember())) {
3577       if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
3578         return false;
3579       if (RD->isUnion()) {
3580         Result = APValue(FD);
3581         Value = &Result.getUnionValue();
3582       } else {
3583         Value = &Result.getStructField(FD->getFieldIndex());
3584       }
3585     } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
3586       // Walk the indirect field decl's chain to find the object to initialize,
3587       // and make sure we've initialized every step along it.
3588       for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
3589                                              CE = IFD->chain_end();
3590            C != CE; ++C) {
3591         FD = cast<FieldDecl>(*C);
3592         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3593         // Switch the union field if it differs. This happens if we had
3594         // preceding zero-initialization, and we're now initializing a union
3595         // subobject other than the first.
3596         // FIXME: In this case, the values of the other subobjects are
3597         // specified, since zero-initialization sets all padding bits to zero.
3598         if (Value->isUninit() ||
3599             (Value->isUnion() && Value->getUnionField() != FD)) {
3600           if (CD->isUnion())
3601             *Value = APValue(FD);
3602           else
3603             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3604                              std::distance(CD->field_begin(), CD->field_end()));
3605         }
3606         if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
3607           return false;
3608         if (CD->isUnion())
3609           Value = &Value->getUnionValue();
3610         else
3611           Value = &Value->getStructField(FD->getFieldIndex());
3612       }
3613     } else {
3614       llvm_unreachable("unknown base initializer kind");
3615     }
3616 
3617     FullExpressionRAII InitScope(Info);
3618     if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit()) ||
3619         (FD && FD->isBitField() && !truncateBitfieldValue(Info, (*I)->getInit(),
3620                                                           *Value, FD))) {
3621       // If we're checking for a potential constant expression, evaluate all
3622       // initializers even if some of them fail.
3623       if (!Info.keepEvaluatingAfterFailure())
3624         return false;
3625       Success = false;
3626     }
3627   }
3628 
3629   return Success &&
3630          EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3631 }
3632 
3633 //===----------------------------------------------------------------------===//
3634 // Generic Evaluation
3635 //===----------------------------------------------------------------------===//
3636 namespace {
3637 
3638 // FIXME: RetTy is always bool. Remove it.
3639 template <class Derived, typename RetTy=bool>
3640 class ExprEvaluatorBase
3641   : public ConstStmtVisitor<Derived, RetTy> {
3642 private:
DerivedSuccess(const APValue & V,const Expr * E)3643   RetTy DerivedSuccess(const APValue &V, const Expr *E) {
3644     return static_cast<Derived*>(this)->Success(V, E);
3645   }
DerivedZeroInitialization(const Expr * E)3646   RetTy DerivedZeroInitialization(const Expr *E) {
3647     return static_cast<Derived*>(this)->ZeroInitialization(E);
3648   }
3649 
3650   // Check whether a conditional operator with a non-constant condition is a
3651   // potential constant expression. If neither arm is a potential constant
3652   // expression, then the conditional operator is not either.
3653   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)3654   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3655     assert(Info.CheckingPotentialConstantExpression);
3656 
3657     // Speculatively evaluate both arms.
3658     {
3659       SmallVector<PartialDiagnosticAt, 8> Diag;
3660       SpeculativeEvaluationRAII Speculate(Info, &Diag);
3661 
3662       StmtVisitorTy::Visit(E->getFalseExpr());
3663       if (Diag.empty())
3664         return;
3665 
3666       Diag.clear();
3667       StmtVisitorTy::Visit(E->getTrueExpr());
3668       if (Diag.empty())
3669         return;
3670     }
3671 
3672     Error(E, diag::note_constexpr_conditional_never_const);
3673   }
3674 
3675 
3676   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)3677   bool HandleConditionalOperator(const ConditionalOperator *E) {
3678     bool BoolResult;
3679     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3680       if (Info.CheckingPotentialConstantExpression)
3681         CheckPotentialConstantConditional(E);
3682       return false;
3683     }
3684 
3685     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3686     return StmtVisitorTy::Visit(EvalExpr);
3687   }
3688 
3689 protected:
3690   EvalInfo &Info;
3691   typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
3692   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3693 
CCEDiag(const Expr * E,diag::kind D)3694   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3695     return Info.CCEDiag(E, D);
3696   }
3697 
ZeroInitialization(const Expr * E)3698   RetTy ZeroInitialization(const Expr *E) { return Error(E); }
3699 
3700 public:
ExprEvaluatorBase(EvalInfo & Info)3701   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3702 
getEvalInfo()3703   EvalInfo &getEvalInfo() { return Info; }
3704 
3705   /// Report an evaluation error. This should only be called when an error is
3706   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)3707   bool Error(const Expr *E, diag::kind D) {
3708     Info.Diag(E, D);
3709     return false;
3710   }
Error(const Expr * E)3711   bool Error(const Expr *E) {
3712     return Error(E, diag::note_invalid_subexpr_in_const_expr);
3713   }
3714 
VisitStmt(const Stmt *)3715   RetTy VisitStmt(const Stmt *) {
3716     llvm_unreachable("Expression evaluator should not be called on stmts");
3717   }
VisitExpr(const Expr * E)3718   RetTy VisitExpr(const Expr *E) {
3719     return Error(E);
3720   }
3721 
VisitParenExpr(const ParenExpr * E)3722   RetTy VisitParenExpr(const ParenExpr *E)
3723     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)3724   RetTy VisitUnaryExtension(const UnaryOperator *E)
3725     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)3726   RetTy VisitUnaryPlus(const UnaryOperator *E)
3727     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)3728   RetTy VisitChooseExpr(const ChooseExpr *E)
3729     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)3730   RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3731     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)3732   RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3733     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)3734   RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3735     { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)3736   RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E)
3737     { return StmtVisitorTy::Visit(E->getExpr()); }
3738   // We cannot create any objects for which cleanups are required, so there is
3739   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)3740   RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
3741     { return StmtVisitorTy::Visit(E->getSubExpr()); }
3742 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)3743   RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3744     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3745     return static_cast<Derived*>(this)->VisitCastExpr(E);
3746   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)3747   RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3748     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3749     return static_cast<Derived*>(this)->VisitCastExpr(E);
3750   }
3751 
VisitBinaryOperator(const BinaryOperator * E)3752   RetTy VisitBinaryOperator(const BinaryOperator *E) {
3753     switch (E->getOpcode()) {
3754     default:
3755       return Error(E);
3756 
3757     case BO_Comma:
3758       VisitIgnoredValue(E->getLHS());
3759       return StmtVisitorTy::Visit(E->getRHS());
3760 
3761     case BO_PtrMemD:
3762     case BO_PtrMemI: {
3763       LValue Obj;
3764       if (!HandleMemberPointerAccess(Info, E, Obj))
3765         return false;
3766       APValue Result;
3767       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3768         return false;
3769       return DerivedSuccess(Result, E);
3770     }
3771     }
3772   }
3773 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)3774   RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3775     // Evaluate and cache the common expression. We treat it as a temporary,
3776     // even though it's not quite the same thing.
3777     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
3778                   Info, E->getCommon()))
3779       return false;
3780 
3781     return HandleConditionalOperator(E);
3782   }
3783 
VisitConditionalOperator(const ConditionalOperator * E)3784   RetTy VisitConditionalOperator(const ConditionalOperator *E) {
3785     bool IsBcpCall = false;
3786     // If the condition (ignoring parens) is a __builtin_constant_p call,
3787     // the result is a constant expression if it can be folded without
3788     // side-effects. This is an important GNU extension. See GCC PR38377
3789     // for discussion.
3790     if (const CallExpr *CallCE =
3791           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3792       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
3793         IsBcpCall = true;
3794 
3795     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3796     // constant expression; we can't check whether it's potentially foldable.
3797     if (Info.CheckingPotentialConstantExpression && IsBcpCall)
3798       return false;
3799 
3800     FoldConstant Fold(Info);
3801 
3802     if (!HandleConditionalOperator(E))
3803       return false;
3804 
3805     if (IsBcpCall)
3806       Fold.Fold(Info);
3807 
3808     return true;
3809   }
3810 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)3811   RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3812     if (APValue *Value = Info.CurrentCall->getTemporary(E))
3813       return DerivedSuccess(*Value, E);
3814 
3815     const Expr *Source = E->getSourceExpr();
3816     if (!Source)
3817       return Error(E);
3818     if (Source == E) { // sanity checking.
3819       assert(0 && "OpaqueValueExpr recursively refers to itself");
3820       return Error(E);
3821     }
3822     return StmtVisitorTy::Visit(Source);
3823   }
3824 
VisitCallExpr(const CallExpr * E)3825   RetTy VisitCallExpr(const CallExpr *E) {
3826     const Expr *Callee = E->getCallee()->IgnoreParens();
3827     QualType CalleeType = Callee->getType();
3828 
3829     const FunctionDecl *FD = 0;
3830     LValue *This = 0, ThisVal;
3831     ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3832     bool HasQualifier = false;
3833 
3834     // Extract function decl and 'this' pointer from the callee.
3835     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3836       const ValueDecl *Member = 0;
3837       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3838         // Explicit bound member calls, such as x.f() or p->g();
3839         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3840           return false;
3841         Member = ME->getMemberDecl();
3842         This = &ThisVal;
3843         HasQualifier = ME->hasQualifier();
3844       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3845         // Indirect bound member calls ('.*' or '->*').
3846         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3847         if (!Member) return false;
3848         This = &ThisVal;
3849       } else
3850         return Error(Callee);
3851 
3852       FD = dyn_cast<FunctionDecl>(Member);
3853       if (!FD)
3854         return Error(Callee);
3855     } else if (CalleeType->isFunctionPointerType()) {
3856       LValue Call;
3857       if (!EvaluatePointer(Callee, Call, Info))
3858         return false;
3859 
3860       if (!Call.getLValueOffset().isZero())
3861         return Error(Callee);
3862       FD = dyn_cast_or_null<FunctionDecl>(
3863                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
3864       if (!FD)
3865         return Error(Callee);
3866 
3867       // Overloaded operator calls to member functions are represented as normal
3868       // calls with '*this' as the first argument.
3869       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3870       if (MD && !MD->isStatic()) {
3871         // FIXME: When selecting an implicit conversion for an overloaded
3872         // operator delete, we sometimes try to evaluate calls to conversion
3873         // operators without a 'this' parameter!
3874         if (Args.empty())
3875           return Error(E);
3876 
3877         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
3878           return false;
3879         This = &ThisVal;
3880         Args = Args.slice(1);
3881       }
3882 
3883       // Don't call function pointers which have been cast to some other type.
3884       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
3885         return Error(E);
3886     } else
3887       return Error(E);
3888 
3889     if (This && !This->checkSubobject(Info, E, CSK_This))
3890       return false;
3891 
3892     // DR1358 allows virtual constexpr functions in some cases. Don't allow
3893     // calls to such functions in constant expressions.
3894     if (This && !HasQualifier &&
3895         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
3896       return Error(E, diag::note_constexpr_virtual_call);
3897 
3898     const FunctionDecl *Definition = 0;
3899     Stmt *Body = FD->getBody(Definition);
3900     APValue Result;
3901 
3902     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
3903         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
3904                             Info, Result))
3905       return false;
3906 
3907     return DerivedSuccess(Result, E);
3908   }
3909 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)3910   RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
3911     return StmtVisitorTy::Visit(E->getInitializer());
3912   }
VisitInitListExpr(const InitListExpr * E)3913   RetTy VisitInitListExpr(const InitListExpr *E) {
3914     if (E->getNumInits() == 0)
3915       return DerivedZeroInitialization(E);
3916     if (E->getNumInits() == 1)
3917       return StmtVisitorTy::Visit(E->getInit(0));
3918     return Error(E);
3919   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)3920   RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
3921     return DerivedZeroInitialization(E);
3922   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)3923   RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
3924     return DerivedZeroInitialization(E);
3925   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)3926   RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
3927     return DerivedZeroInitialization(E);
3928   }
3929 
3930   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)3931   RetTy VisitMemberExpr(const MemberExpr *E) {
3932     assert(!E->isArrow() && "missing call to bound member function?");
3933 
3934     APValue Val;
3935     if (!Evaluate(Val, Info, E->getBase()))
3936       return false;
3937 
3938     QualType BaseTy = E->getBase()->getType();
3939 
3940     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
3941     if (!FD) return Error(E);
3942     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
3943     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
3944            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
3945 
3946     CompleteObject Obj(&Val, BaseTy);
3947     SubobjectDesignator Designator(BaseTy);
3948     Designator.addDeclUnchecked(FD);
3949 
3950     APValue Result;
3951     return extractSubobject(Info, E, Obj, Designator, Result) &&
3952            DerivedSuccess(Result, E);
3953   }
3954 
VisitCastExpr(const CastExpr * E)3955   RetTy VisitCastExpr(const CastExpr *E) {
3956     switch (E->getCastKind()) {
3957     default:
3958       break;
3959 
3960     case CK_AtomicToNonAtomic: {
3961       APValue AtomicVal;
3962       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
3963         return false;
3964       return DerivedSuccess(AtomicVal, E);
3965     }
3966 
3967     case CK_NoOp:
3968     case CK_UserDefinedConversion:
3969       return StmtVisitorTy::Visit(E->getSubExpr());
3970 
3971     case CK_LValueToRValue: {
3972       LValue LVal;
3973       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
3974         return false;
3975       APValue RVal;
3976       // Note, we use the subexpression's type in order to retain cv-qualifiers.
3977       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
3978                                           LVal, RVal))
3979         return false;
3980       return DerivedSuccess(RVal, E);
3981     }
3982     }
3983 
3984     return Error(E);
3985   }
3986 
VisitUnaryPostInc(const UnaryOperator * UO)3987   RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
3988     return VisitUnaryPostIncDec(UO);
3989   }
VisitUnaryPostDec(const UnaryOperator * UO)3990   RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
3991     return VisitUnaryPostIncDec(UO);
3992   }
VisitUnaryPostIncDec(const UnaryOperator * UO)3993   RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
3994     if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
3995       return Error(UO);
3996 
3997     LValue LVal;
3998     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
3999       return false;
4000     APValue RVal;
4001     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4002                       UO->isIncrementOp(), &RVal))
4003       return false;
4004     return DerivedSuccess(RVal, UO);
4005   }
4006 
VisitStmtExpr(const StmtExpr * E)4007   RetTy VisitStmtExpr(const StmtExpr *E) {
4008     // We will have checked the full-expressions inside the statement expression
4009     // when they were completed, and don't need to check them again now.
4010     if (Info.getIntOverflowCheckMode())
4011       return Error(E);
4012 
4013     BlockScopeRAII Scope(Info);
4014     const CompoundStmt *CS = E->getSubStmt();
4015     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4016                                            BE = CS->body_end();
4017          /**/; ++BI) {
4018       if (BI + 1 == BE) {
4019         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4020         if (!FinalExpr) {
4021           Info.Diag((*BI)->getLocStart(),
4022                     diag::note_constexpr_stmt_expr_unsupported);
4023           return false;
4024         }
4025         return this->Visit(FinalExpr);
4026       }
4027 
4028       APValue ReturnValue;
4029       EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4030       if (ESR != ESR_Succeeded) {
4031         // FIXME: If the statement-expression terminated due to 'return',
4032         // 'break', or 'continue', it would be nice to propagate that to
4033         // the outer statement evaluation rather than bailing out.
4034         if (ESR != ESR_Failed)
4035           Info.Diag((*BI)->getLocStart(),
4036                     diag::note_constexpr_stmt_expr_unsupported);
4037         return false;
4038       }
4039     }
4040   }
4041 
4042   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4043   void VisitIgnoredValue(const Expr *E) {
4044     EvaluateIgnoredValue(Info, E);
4045   }
4046 };
4047 
4048 }
4049 
4050 //===----------------------------------------------------------------------===//
4051 // Common base class for lvalue and temporary evaluation.
4052 //===----------------------------------------------------------------------===//
4053 namespace {
4054 template<class Derived>
4055 class LValueExprEvaluatorBase
4056   : public ExprEvaluatorBase<Derived, bool> {
4057 protected:
4058   LValue &Result;
4059   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4060   typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
4061 
Success(APValue::LValueBase B)4062   bool Success(APValue::LValueBase B) {
4063     Result.set(B);
4064     return true;
4065   }
4066 
4067 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4068   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4069     ExprEvaluatorBaseTy(Info), Result(Result) {}
4070 
Success(const APValue & V,const Expr * E)4071   bool Success(const APValue &V, const Expr *E) {
4072     Result.setFrom(this->Info.Ctx, V);
4073     return true;
4074   }
4075 
VisitMemberExpr(const MemberExpr * E)4076   bool VisitMemberExpr(const MemberExpr *E) {
4077     // Handle non-static data members.
4078     QualType BaseTy;
4079     if (E->isArrow()) {
4080       if (!EvaluatePointer(E->getBase(), Result, this->Info))
4081         return false;
4082       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4083     } else if (E->getBase()->isRValue()) {
4084       assert(E->getBase()->getType()->isRecordType());
4085       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4086         return false;
4087       BaseTy = E->getBase()->getType();
4088     } else {
4089       if (!this->Visit(E->getBase()))
4090         return false;
4091       BaseTy = E->getBase()->getType();
4092     }
4093 
4094     const ValueDecl *MD = E->getMemberDecl();
4095     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4096       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4097              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4098       (void)BaseTy;
4099       if (!HandleLValueMember(this->Info, E, Result, FD))
4100         return false;
4101     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4102       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4103         return false;
4104     } else
4105       return this->Error(E);
4106 
4107     if (MD->getType()->isReferenceType()) {
4108       APValue RefValue;
4109       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4110                                           RefValue))
4111         return false;
4112       return Success(RefValue, E);
4113     }
4114     return true;
4115   }
4116 
VisitBinaryOperator(const BinaryOperator * E)4117   bool VisitBinaryOperator(const BinaryOperator *E) {
4118     switch (E->getOpcode()) {
4119     default:
4120       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4121 
4122     case BO_PtrMemD:
4123     case BO_PtrMemI:
4124       return HandleMemberPointerAccess(this->Info, E, Result);
4125     }
4126   }
4127 
VisitCastExpr(const CastExpr * E)4128   bool VisitCastExpr(const CastExpr *E) {
4129     switch (E->getCastKind()) {
4130     default:
4131       return ExprEvaluatorBaseTy::VisitCastExpr(E);
4132 
4133     case CK_DerivedToBase:
4134     case CK_UncheckedDerivedToBase:
4135       if (!this->Visit(E->getSubExpr()))
4136         return false;
4137 
4138       // Now figure out the necessary offset to add to the base LV to get from
4139       // the derived class to the base class.
4140       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4141                                   Result);
4142     }
4143   }
4144 };
4145 }
4146 
4147 //===----------------------------------------------------------------------===//
4148 // LValue Evaluation
4149 //
4150 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4151 // function designators (in C), decl references to void objects (in C), and
4152 // temporaries (if building with -Wno-address-of-temporary).
4153 //
4154 // LValue evaluation produces values comprising a base expression of one of the
4155 // following types:
4156 // - Declarations
4157 //  * VarDecl
4158 //  * FunctionDecl
4159 // - Literals
4160 //  * CompoundLiteralExpr in C
4161 //  * StringLiteral
4162 //  * CXXTypeidExpr
4163 //  * PredefinedExpr
4164 //  * ObjCStringLiteralExpr
4165 //  * ObjCEncodeExpr
4166 //  * AddrLabelExpr
4167 //  * BlockExpr
4168 //  * CallExpr for a MakeStringConstant builtin
4169 // - Locals and temporaries
4170 //  * MaterializeTemporaryExpr
4171 //  * Any Expr, with a CallIndex indicating the function in which the temporary
4172 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4173 //    from the AST (FIXME).
4174 //  * A MaterializeTemporaryExpr that has static storage duration, with no
4175 //    CallIndex, for a lifetime-extended temporary.
4176 // plus an offset in bytes.
4177 //===----------------------------------------------------------------------===//
4178 namespace {
4179 class LValueExprEvaluator
4180   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4181 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4182   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4183     LValueExprEvaluatorBaseTy(Info, Result) {}
4184 
4185   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4186   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4187 
4188   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4189   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4190   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4191   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4192   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4193   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4194   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4195   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4196   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4197   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4198   bool VisitUnaryDeref(const UnaryOperator *E);
4199   bool VisitUnaryReal(const UnaryOperator *E);
4200   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4201   bool VisitUnaryPreInc(const UnaryOperator *UO) {
4202     return VisitUnaryPreIncDec(UO);
4203   }
VisitUnaryPreDec(const UnaryOperator * UO)4204   bool VisitUnaryPreDec(const UnaryOperator *UO) {
4205     return VisitUnaryPreIncDec(UO);
4206   }
4207   bool VisitBinAssign(const BinaryOperator *BO);
4208   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4209 
VisitCastExpr(const CastExpr * E)4210   bool VisitCastExpr(const CastExpr *E) {
4211     switch (E->getCastKind()) {
4212     default:
4213       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4214 
4215     case CK_LValueBitCast:
4216       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4217       if (!Visit(E->getSubExpr()))
4218         return false;
4219       Result.Designator.setInvalid();
4220       return true;
4221 
4222     case CK_BaseToDerived:
4223       if (!Visit(E->getSubExpr()))
4224         return false;
4225       return HandleBaseToDerivedCast(Info, E, Result);
4226     }
4227   }
4228 };
4229 } // end anonymous namespace
4230 
4231 /// Evaluate an expression as an lvalue. This can be legitimately called on
4232 /// expressions which are not glvalues, in two cases:
4233 ///  * function designators in C, and
4234 ///  * "extern void" objects
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4235 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4236   assert(E->isGLValue() || E->getType()->isFunctionType() ||
4237          E->getType()->isVoidType());
4238   return LValueExprEvaluator(Info, Result).Visit(E);
4239 }
4240 
VisitDeclRefExpr(const DeclRefExpr * E)4241 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4242   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4243     return Success(FD);
4244   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4245     return VisitVarDecl(E, VD);
4246   return Error(E);
4247 }
4248 
VisitVarDecl(const Expr * E,const VarDecl * VD)4249 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4250   CallStackFrame *Frame = 0;
4251   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4252     Frame = Info.CurrentCall;
4253 
4254   if (!VD->getType()->isReferenceType()) {
4255     if (Frame) {
4256       Result.set(VD, Frame->Index);
4257       return true;
4258     }
4259     return Success(VD);
4260   }
4261 
4262   APValue *V;
4263   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4264     return false;
4265   if (V->isUninit()) {
4266     if (!Info.CheckingPotentialConstantExpression)
4267       Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4268     return false;
4269   }
4270   return Success(*V, E);
4271 }
4272 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4273 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4274     const MaterializeTemporaryExpr *E) {
4275   // Walk through the expression to find the materialized temporary itself.
4276   SmallVector<const Expr *, 2> CommaLHSs;
4277   SmallVector<SubobjectAdjustment, 2> Adjustments;
4278   const Expr *Inner = E->GetTemporaryExpr()->
4279       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4280 
4281   // If we passed any comma operators, evaluate their LHSs.
4282   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4283     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4284       return false;
4285 
4286   // A materialized temporary with static storage duration can appear within the
4287   // result of a constant expression evaluation, so we need to preserve its
4288   // value for use outside this evaluation.
4289   APValue *Value;
4290   if (E->getStorageDuration() == SD_Static) {
4291     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4292     *Value = APValue();
4293     Result.set(E);
4294   } else {
4295     Value = &Info.CurrentCall->
4296         createTemporary(E, E->getStorageDuration() == SD_Automatic);
4297     Result.set(E, Info.CurrentCall->Index);
4298   }
4299 
4300   QualType Type = Inner->getType();
4301 
4302   // Materialize the temporary itself.
4303   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4304       (E->getStorageDuration() == SD_Static &&
4305        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4306     *Value = APValue();
4307     return false;
4308   }
4309 
4310   // Adjust our lvalue to refer to the desired subobject.
4311   for (unsigned I = Adjustments.size(); I != 0; /**/) {
4312     --I;
4313     switch (Adjustments[I].Kind) {
4314     case SubobjectAdjustment::DerivedToBaseAdjustment:
4315       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4316                                 Type, Result))
4317         return false;
4318       Type = Adjustments[I].DerivedToBase.BasePath->getType();
4319       break;
4320 
4321     case SubobjectAdjustment::FieldAdjustment:
4322       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4323         return false;
4324       Type = Adjustments[I].Field->getType();
4325       break;
4326 
4327     case SubobjectAdjustment::MemberPointerAdjustment:
4328       if (!HandleMemberPointerAccess(this->Info, Type, Result,
4329                                      Adjustments[I].Ptr.RHS))
4330         return false;
4331       Type = Adjustments[I].Ptr.MPT->getPointeeType();
4332       break;
4333     }
4334   }
4335 
4336   return true;
4337 }
4338 
4339 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4340 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4341   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4342   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4343   // only see this when folding in C, so there's no standard to follow here.
4344   return Success(E);
4345 }
4346 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4347 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4348   if (!E->isPotentiallyEvaluated())
4349     return Success(E);
4350 
4351   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4352     << E->getExprOperand()->getType()
4353     << E->getExprOperand()->getSourceRange();
4354   return false;
4355 }
4356 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4357 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4358   return Success(E);
4359 }
4360 
VisitMemberExpr(const MemberExpr * E)4361 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4362   // Handle static data members.
4363   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4364     VisitIgnoredValue(E->getBase());
4365     return VisitVarDecl(E, VD);
4366   }
4367 
4368   // Handle static member functions.
4369   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4370     if (MD->isStatic()) {
4371       VisitIgnoredValue(E->getBase());
4372       return Success(MD);
4373     }
4374   }
4375 
4376   // Handle non-static data members.
4377   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4378 }
4379 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4380 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4381   // FIXME: Deal with vectors as array subscript bases.
4382   if (E->getBase()->getType()->isVectorType())
4383     return Error(E);
4384 
4385   if (!EvaluatePointer(E->getBase(), Result, Info))
4386     return false;
4387 
4388   APSInt Index;
4389   if (!EvaluateInteger(E->getIdx(), Index, Info))
4390     return false;
4391 
4392   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4393                                      getExtValue(Index));
4394 }
4395 
VisitUnaryDeref(const UnaryOperator * E)4396 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4397   return EvaluatePointer(E->getSubExpr(), Result, Info);
4398 }
4399 
VisitUnaryReal(const UnaryOperator * E)4400 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4401   if (!Visit(E->getSubExpr()))
4402     return false;
4403   // __real is a no-op on scalar lvalues.
4404   if (E->getSubExpr()->getType()->isAnyComplexType())
4405     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4406   return true;
4407 }
4408 
VisitUnaryImag(const UnaryOperator * E)4409 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4410   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4411          "lvalue __imag__ on scalar?");
4412   if (!Visit(E->getSubExpr()))
4413     return false;
4414   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4415   return true;
4416 }
4417 
VisitUnaryPreIncDec(const UnaryOperator * UO)4418 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4419   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4420     return Error(UO);
4421 
4422   if (!this->Visit(UO->getSubExpr()))
4423     return false;
4424 
4425   return handleIncDec(
4426       this->Info, UO, Result, UO->getSubExpr()->getType(),
4427       UO->isIncrementOp(), 0);
4428 }
4429 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4430 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4431     const CompoundAssignOperator *CAO) {
4432   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4433     return Error(CAO);
4434 
4435   APValue RHS;
4436 
4437   // The overall lvalue result is the result of evaluating the LHS.
4438   if (!this->Visit(CAO->getLHS())) {
4439     if (Info.keepEvaluatingAfterFailure())
4440       Evaluate(RHS, this->Info, CAO->getRHS());
4441     return false;
4442   }
4443 
4444   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4445     return false;
4446 
4447   return handleCompoundAssignment(
4448       this->Info, CAO,
4449       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4450       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4451 }
4452 
VisitBinAssign(const BinaryOperator * E)4453 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4454   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4455     return Error(E);
4456 
4457   APValue NewVal;
4458 
4459   if (!this->Visit(E->getLHS())) {
4460     if (Info.keepEvaluatingAfterFailure())
4461       Evaluate(NewVal, this->Info, E->getRHS());
4462     return false;
4463   }
4464 
4465   if (!Evaluate(NewVal, this->Info, E->getRHS()))
4466     return false;
4467 
4468   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4469                           NewVal);
4470 }
4471 
4472 //===----------------------------------------------------------------------===//
4473 // Pointer Evaluation
4474 //===----------------------------------------------------------------------===//
4475 
4476 namespace {
4477 class PointerExprEvaluator
4478   : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
4479   LValue &Result;
4480 
Success(const Expr * E)4481   bool Success(const Expr *E) {
4482     Result.set(E);
4483     return true;
4484   }
4485 public:
4486 
PointerExprEvaluator(EvalInfo & info,LValue & Result)4487   PointerExprEvaluator(EvalInfo &info, LValue &Result)
4488     : ExprEvaluatorBaseTy(info), Result(Result) {}
4489 
Success(const APValue & V,const Expr * E)4490   bool Success(const APValue &V, const Expr *E) {
4491     Result.setFrom(Info.Ctx, V);
4492     return true;
4493   }
ZeroInitialization(const Expr * E)4494   bool ZeroInitialization(const Expr *E) {
4495     return Success((Expr*)0);
4496   }
4497 
4498   bool VisitBinaryOperator(const BinaryOperator *E);
4499   bool VisitCastExpr(const CastExpr* E);
4500   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)4501   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4502       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)4503   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4504       { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)4505   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4506       { return Success(E); }
4507   bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)4508   bool VisitBlockExpr(const BlockExpr *E) {
4509     if (!E->getBlockDecl()->hasCaptures())
4510       return Success(E);
4511     return Error(E);
4512   }
VisitCXXThisExpr(const CXXThisExpr * E)4513   bool VisitCXXThisExpr(const CXXThisExpr *E) {
4514     // Can't look at 'this' when checking a potential constant expression.
4515     if (Info.CheckingPotentialConstantExpression)
4516       return false;
4517     if (!Info.CurrentCall->This)
4518       return Error(E);
4519     Result = *Info.CurrentCall->This;
4520     return true;
4521   }
4522 
4523   // FIXME: Missing: @protocol, @selector
4524 };
4525 } // end anonymous namespace
4526 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)4527 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4528   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4529   return PointerExprEvaluator(Info, Result).Visit(E);
4530 }
4531 
VisitBinaryOperator(const BinaryOperator * E)4532 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4533   if (E->getOpcode() != BO_Add &&
4534       E->getOpcode() != BO_Sub)
4535     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4536 
4537   const Expr *PExp = E->getLHS();
4538   const Expr *IExp = E->getRHS();
4539   if (IExp->getType()->isPointerType())
4540     std::swap(PExp, IExp);
4541 
4542   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4543   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4544     return false;
4545 
4546   llvm::APSInt Offset;
4547   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4548     return false;
4549 
4550   int64_t AdditionalOffset = getExtValue(Offset);
4551   if (E->getOpcode() == BO_Sub)
4552     AdditionalOffset = -AdditionalOffset;
4553 
4554   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4555   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4556                                      AdditionalOffset);
4557 }
4558 
VisitUnaryAddrOf(const UnaryOperator * E)4559 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4560   return EvaluateLValue(E->getSubExpr(), Result, Info);
4561 }
4562 
VisitCastExpr(const CastExpr * E)4563 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4564   const Expr* SubExpr = E->getSubExpr();
4565 
4566   switch (E->getCastKind()) {
4567   default:
4568     break;
4569 
4570   case CK_BitCast:
4571   case CK_CPointerToObjCPointerCast:
4572   case CK_BlockPointerToObjCPointerCast:
4573   case CK_AnyPointerToBlockPointerCast:
4574     if (!Visit(SubExpr))
4575       return false;
4576     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4577     // permitted in constant expressions in C++11. Bitcasts from cv void* are
4578     // also static_casts, but we disallow them as a resolution to DR1312.
4579     if (!E->getType()->isVoidPointerType()) {
4580       Result.Designator.setInvalid();
4581       if (SubExpr->getType()->isVoidPointerType())
4582         CCEDiag(E, diag::note_constexpr_invalid_cast)
4583           << 3 << SubExpr->getType();
4584       else
4585         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4586     }
4587     return true;
4588 
4589   case CK_DerivedToBase:
4590   case CK_UncheckedDerivedToBase:
4591     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4592       return false;
4593     if (!Result.Base && Result.Offset.isZero())
4594       return true;
4595 
4596     // Now figure out the necessary offset to add to the base LV to get from
4597     // the derived class to the base class.
4598     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4599                                   castAs<PointerType>()->getPointeeType(),
4600                                 Result);
4601 
4602   case CK_BaseToDerived:
4603     if (!Visit(E->getSubExpr()))
4604       return false;
4605     if (!Result.Base && Result.Offset.isZero())
4606       return true;
4607     return HandleBaseToDerivedCast(Info, E, Result);
4608 
4609   case CK_NullToPointer:
4610     VisitIgnoredValue(E->getSubExpr());
4611     return ZeroInitialization(E);
4612 
4613   case CK_IntegralToPointer: {
4614     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4615 
4616     APValue Value;
4617     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4618       break;
4619 
4620     if (Value.isInt()) {
4621       unsigned Size = Info.Ctx.getTypeSize(E->getType());
4622       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4623       Result.Base = (Expr*)0;
4624       Result.Offset = CharUnits::fromQuantity(N);
4625       Result.CallIndex = 0;
4626       Result.Designator.setInvalid();
4627       return true;
4628     } else {
4629       // Cast is of an lvalue, no need to change value.
4630       Result.setFrom(Info.Ctx, Value);
4631       return true;
4632     }
4633   }
4634   case CK_ArrayToPointerDecay:
4635     if (SubExpr->isGLValue()) {
4636       if (!EvaluateLValue(SubExpr, Result, Info))
4637         return false;
4638     } else {
4639       Result.set(SubExpr, Info.CurrentCall->Index);
4640       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4641                            Info, Result, SubExpr))
4642         return false;
4643     }
4644     // The result is a pointer to the first element of the array.
4645     if (const ConstantArrayType *CAT
4646           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4647       Result.addArray(Info, E, CAT);
4648     else
4649       Result.Designator.setInvalid();
4650     return true;
4651 
4652   case CK_FunctionToPointerDecay:
4653     return EvaluateLValue(SubExpr, Result, Info);
4654   }
4655 
4656   return ExprEvaluatorBaseTy::VisitCastExpr(E);
4657 }
4658 
VisitCallExpr(const CallExpr * E)4659 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4660   if (IsStringLiteralCall(E))
4661     return Success(E);
4662 
4663   switch (E->isBuiltinCall()) {
4664   case Builtin::BI__builtin_addressof:
4665     return EvaluateLValue(E->getArg(0), Result, Info);
4666 
4667   default:
4668     return ExprEvaluatorBaseTy::VisitCallExpr(E);
4669   }
4670 }
4671 
4672 //===----------------------------------------------------------------------===//
4673 // Member Pointer Evaluation
4674 //===----------------------------------------------------------------------===//
4675 
4676 namespace {
4677 class MemberPointerExprEvaluator
4678   : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
4679   MemberPtr &Result;
4680 
Success(const ValueDecl * D)4681   bool Success(const ValueDecl *D) {
4682     Result = MemberPtr(D);
4683     return true;
4684   }
4685 public:
4686 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)4687   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4688     : ExprEvaluatorBaseTy(Info), Result(Result) {}
4689 
Success(const APValue & V,const Expr * E)4690   bool Success(const APValue &V, const Expr *E) {
4691     Result.setFrom(V);
4692     return true;
4693   }
ZeroInitialization(const Expr * E)4694   bool ZeroInitialization(const Expr *E) {
4695     return Success((const ValueDecl*)0);
4696   }
4697 
4698   bool VisitCastExpr(const CastExpr *E);
4699   bool VisitUnaryAddrOf(const UnaryOperator *E);
4700 };
4701 } // end anonymous namespace
4702 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)4703 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4704                                   EvalInfo &Info) {
4705   assert(E->isRValue() && E->getType()->isMemberPointerType());
4706   return MemberPointerExprEvaluator(Info, Result).Visit(E);
4707 }
4708 
VisitCastExpr(const CastExpr * E)4709 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4710   switch (E->getCastKind()) {
4711   default:
4712     return ExprEvaluatorBaseTy::VisitCastExpr(E);
4713 
4714   case CK_NullToMemberPointer:
4715     VisitIgnoredValue(E->getSubExpr());
4716     return ZeroInitialization(E);
4717 
4718   case CK_BaseToDerivedMemberPointer: {
4719     if (!Visit(E->getSubExpr()))
4720       return false;
4721     if (E->path_empty())
4722       return true;
4723     // Base-to-derived member pointer casts store the path in derived-to-base
4724     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4725     // the wrong end of the derived->base arc, so stagger the path by one class.
4726     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4727     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4728          PathI != PathE; ++PathI) {
4729       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4730       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4731       if (!Result.castToDerived(Derived))
4732         return Error(E);
4733     }
4734     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4735     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4736       return Error(E);
4737     return true;
4738   }
4739 
4740   case CK_DerivedToBaseMemberPointer:
4741     if (!Visit(E->getSubExpr()))
4742       return false;
4743     for (CastExpr::path_const_iterator PathI = E->path_begin(),
4744          PathE = E->path_end(); PathI != PathE; ++PathI) {
4745       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4746       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4747       if (!Result.castToBase(Base))
4748         return Error(E);
4749     }
4750     return true;
4751   }
4752 }
4753 
VisitUnaryAddrOf(const UnaryOperator * E)4754 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4755   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4756   // member can be formed.
4757   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4758 }
4759 
4760 //===----------------------------------------------------------------------===//
4761 // Record Evaluation
4762 //===----------------------------------------------------------------------===//
4763 
4764 namespace {
4765   class RecordExprEvaluator
4766   : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
4767     const LValue &This;
4768     APValue &Result;
4769   public:
4770 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)4771     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4772       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4773 
Success(const APValue & V,const Expr * E)4774     bool Success(const APValue &V, const Expr *E) {
4775       Result = V;
4776       return true;
4777     }
4778     bool ZeroInitialization(const Expr *E);
4779 
4780     bool VisitCastExpr(const CastExpr *E);
4781     bool VisitInitListExpr(const InitListExpr *E);
4782     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4783     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4784   };
4785 }
4786 
4787 /// Perform zero-initialization on an object of non-union class type.
4788 /// C++11 [dcl.init]p5:
4789 ///  To zero-initialize an object or reference of type T means:
4790 ///    [...]
4791 ///    -- if T is a (possibly cv-qualified) non-union class type,
4792 ///       each non-static data member and each base-class subobject is
4793 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)4794 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4795                                           const RecordDecl *RD,
4796                                           const LValue &This, APValue &Result) {
4797   assert(!RD->isUnion() && "Expected non-union class type");
4798   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4799   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4800                    std::distance(RD->field_begin(), RD->field_end()));
4801 
4802   if (RD->isInvalidDecl()) return false;
4803   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4804 
4805   if (CD) {
4806     unsigned Index = 0;
4807     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4808            End = CD->bases_end(); I != End; ++I, ++Index) {
4809       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4810       LValue Subobject = This;
4811       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4812         return false;
4813       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4814                                          Result.getStructBase(Index)))
4815         return false;
4816     }
4817   }
4818 
4819   for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
4820        I != End; ++I) {
4821     // -- if T is a reference type, no initialization is performed.
4822     if (I->getType()->isReferenceType())
4823       continue;
4824 
4825     LValue Subobject = This;
4826     if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
4827       return false;
4828 
4829     ImplicitValueInitExpr VIE(I->getType());
4830     if (!EvaluateInPlace(
4831           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4832       return false;
4833   }
4834 
4835   return true;
4836 }
4837 
ZeroInitialization(const Expr * E)4838 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4839   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4840   if (RD->isInvalidDecl()) return false;
4841   if (RD->isUnion()) {
4842     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4843     // object's first non-static named data member is zero-initialized
4844     RecordDecl::field_iterator I = RD->field_begin();
4845     if (I == RD->field_end()) {
4846       Result = APValue((const FieldDecl*)0);
4847       return true;
4848     }
4849 
4850     LValue Subobject = This;
4851     if (!HandleLValueMember(Info, E, Subobject, *I))
4852       return false;
4853     Result = APValue(*I);
4854     ImplicitValueInitExpr VIE(I->getType());
4855     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
4856   }
4857 
4858   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
4859     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
4860     return false;
4861   }
4862 
4863   return HandleClassZeroInitialization(Info, E, RD, This, Result);
4864 }
4865 
VisitCastExpr(const CastExpr * E)4866 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
4867   switch (E->getCastKind()) {
4868   default:
4869     return ExprEvaluatorBaseTy::VisitCastExpr(E);
4870 
4871   case CK_ConstructorConversion:
4872     return Visit(E->getSubExpr());
4873 
4874   case CK_DerivedToBase:
4875   case CK_UncheckedDerivedToBase: {
4876     APValue DerivedObject;
4877     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
4878       return false;
4879     if (!DerivedObject.isStruct())
4880       return Error(E->getSubExpr());
4881 
4882     // Derived-to-base rvalue conversion: just slice off the derived part.
4883     APValue *Value = &DerivedObject;
4884     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
4885     for (CastExpr::path_const_iterator PathI = E->path_begin(),
4886          PathE = E->path_end(); PathI != PathE; ++PathI) {
4887       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
4888       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4889       Value = &Value->getStructBase(getBaseIndex(RD, Base));
4890       RD = Base;
4891     }
4892     Result = *Value;
4893     return true;
4894   }
4895   }
4896 }
4897 
VisitInitListExpr(const InitListExpr * E)4898 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
4899   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4900   if (RD->isInvalidDecl()) return false;
4901   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4902 
4903   if (RD->isUnion()) {
4904     const FieldDecl *Field = E->getInitializedFieldInUnion();
4905     Result = APValue(Field);
4906     if (!Field)
4907       return true;
4908 
4909     // If the initializer list for a union does not contain any elements, the
4910     // first element of the union is value-initialized.
4911     // FIXME: The element should be initialized from an initializer list.
4912     //        Is this difference ever observable for initializer lists which
4913     //        we don't build?
4914     ImplicitValueInitExpr VIE(Field->getType());
4915     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
4916 
4917     LValue Subobject = This;
4918     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
4919       return false;
4920 
4921     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4922     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4923                                   isa<CXXDefaultInitExpr>(InitExpr));
4924 
4925     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
4926   }
4927 
4928   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
4929          "initializer list for class with base classes");
4930   Result = APValue(APValue::UninitStruct(), 0,
4931                    std::distance(RD->field_begin(), RD->field_end()));
4932   unsigned ElementNo = 0;
4933   bool Success = true;
4934   for (RecordDecl::field_iterator Field = RD->field_begin(),
4935        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
4936     // Anonymous bit-fields are not considered members of the class for
4937     // purposes of aggregate initialization.
4938     if (Field->isUnnamedBitfield())
4939       continue;
4940 
4941     LValue Subobject = This;
4942 
4943     bool HaveInit = ElementNo < E->getNumInits();
4944 
4945     // FIXME: Diagnostics here should point to the end of the initializer
4946     // list, not the start.
4947     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
4948                             Subobject, *Field, &Layout))
4949       return false;
4950 
4951     // Perform an implicit value-initialization for members beyond the end of
4952     // the initializer list.
4953     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
4954     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
4955 
4956     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4957     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4958                                   isa<CXXDefaultInitExpr>(Init));
4959 
4960     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
4961     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
4962         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
4963                                                        FieldVal, *Field))) {
4964       if (!Info.keepEvaluatingAfterFailure())
4965         return false;
4966       Success = false;
4967     }
4968   }
4969 
4970   return Success;
4971 }
4972 
VisitCXXConstructExpr(const CXXConstructExpr * E)4973 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
4974   const CXXConstructorDecl *FD = E->getConstructor();
4975   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
4976 
4977   bool ZeroInit = E->requiresZeroInitialization();
4978   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
4979     // If we've already performed zero-initialization, we're already done.
4980     if (!Result.isUninit())
4981       return true;
4982 
4983     if (ZeroInit)
4984       return ZeroInitialization(E);
4985 
4986     const CXXRecordDecl *RD = FD->getParent();
4987     if (RD->isUnion())
4988       Result = APValue((FieldDecl*)0);
4989     else
4990       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4991                        std::distance(RD->field_begin(), RD->field_end()));
4992     return true;
4993   }
4994 
4995   const FunctionDecl *Definition = 0;
4996   FD->getBody(Definition);
4997 
4998   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
4999     return false;
5000 
5001   // Avoid materializing a temporary for an elidable copy/move constructor.
5002   if (E->isElidable() && !ZeroInit)
5003     if (const MaterializeTemporaryExpr *ME
5004           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5005       return Visit(ME->GetTemporaryExpr());
5006 
5007   if (ZeroInit && !ZeroInitialization(E))
5008     return false;
5009 
5010   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5011   return HandleConstructorCall(E->getExprLoc(), This, Args,
5012                                cast<CXXConstructorDecl>(Definition), Info,
5013                                Result);
5014 }
5015 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5016 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5017     const CXXStdInitializerListExpr *E) {
5018   const ConstantArrayType *ArrayType =
5019       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5020 
5021   LValue Array;
5022   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5023     return false;
5024 
5025   // Get a pointer to the first element of the array.
5026   Array.addArray(Info, E, ArrayType);
5027 
5028   // FIXME: Perform the checks on the field types in SemaInit.
5029   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5030   RecordDecl::field_iterator Field = Record->field_begin();
5031   if (Field == Record->field_end())
5032     return Error(E);
5033 
5034   // Start pointer.
5035   if (!Field->getType()->isPointerType() ||
5036       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5037                             ArrayType->getElementType()))
5038     return Error(E);
5039 
5040   // FIXME: What if the initializer_list type has base classes, etc?
5041   Result = APValue(APValue::UninitStruct(), 0, 2);
5042   Array.moveInto(Result.getStructField(0));
5043 
5044   if (++Field == Record->field_end())
5045     return Error(E);
5046 
5047   if (Field->getType()->isPointerType() &&
5048       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5049                            ArrayType->getElementType())) {
5050     // End pointer.
5051     if (!HandleLValueArrayAdjustment(Info, E, Array,
5052                                      ArrayType->getElementType(),
5053                                      ArrayType->getSize().getZExtValue()))
5054       return false;
5055     Array.moveInto(Result.getStructField(1));
5056   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5057     // Length.
5058     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5059   else
5060     return Error(E);
5061 
5062   if (++Field != Record->field_end())
5063     return Error(E);
5064 
5065   return true;
5066 }
5067 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5068 static bool EvaluateRecord(const Expr *E, const LValue &This,
5069                            APValue &Result, EvalInfo &Info) {
5070   assert(E->isRValue() && E->getType()->isRecordType() &&
5071          "can't evaluate expression as a record rvalue");
5072   return RecordExprEvaluator(Info, This, Result).Visit(E);
5073 }
5074 
5075 //===----------------------------------------------------------------------===//
5076 // Temporary Evaluation
5077 //
5078 // Temporaries are represented in the AST as rvalues, but generally behave like
5079 // lvalues. The full-object of which the temporary is a subobject is implicitly
5080 // materialized so that a reference can bind to it.
5081 //===----------------------------------------------------------------------===//
5082 namespace {
5083 class TemporaryExprEvaluator
5084   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5085 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5086   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5087     LValueExprEvaluatorBaseTy(Info, Result) {}
5088 
5089   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5090   bool VisitConstructExpr(const Expr *E) {
5091     Result.set(E, Info.CurrentCall->Index);
5092     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5093                            Info, Result, E);
5094   }
5095 
VisitCastExpr(const CastExpr * E)5096   bool VisitCastExpr(const CastExpr *E) {
5097     switch (E->getCastKind()) {
5098     default:
5099       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5100 
5101     case CK_ConstructorConversion:
5102       return VisitConstructExpr(E->getSubExpr());
5103     }
5104   }
VisitInitListExpr(const InitListExpr * E)5105   bool VisitInitListExpr(const InitListExpr *E) {
5106     return VisitConstructExpr(E);
5107   }
VisitCXXConstructExpr(const CXXConstructExpr * E)5108   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5109     return VisitConstructExpr(E);
5110   }
VisitCallExpr(const CallExpr * E)5111   bool VisitCallExpr(const CallExpr *E) {
5112     return VisitConstructExpr(E);
5113   }
5114 };
5115 } // end anonymous namespace
5116 
5117 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5118 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5119   assert(E->isRValue() && E->getType()->isRecordType());
5120   return TemporaryExprEvaluator(Info, Result).Visit(E);
5121 }
5122 
5123 //===----------------------------------------------------------------------===//
5124 // Vector Evaluation
5125 //===----------------------------------------------------------------------===//
5126 
5127 namespace {
5128   class VectorExprEvaluator
5129   : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
5130     APValue &Result;
5131   public:
5132 
VectorExprEvaluator(EvalInfo & info,APValue & Result)5133     VectorExprEvaluator(EvalInfo &info, APValue &Result)
5134       : ExprEvaluatorBaseTy(info), Result(Result) {}
5135 
Success(const ArrayRef<APValue> & V,const Expr * E)5136     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5137       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5138       // FIXME: remove this APValue copy.
5139       Result = APValue(V.data(), V.size());
5140       return true;
5141     }
Success(const APValue & V,const Expr * E)5142     bool Success(const APValue &V, const Expr *E) {
5143       assert(V.isVector());
5144       Result = V;
5145       return true;
5146     }
5147     bool ZeroInitialization(const Expr *E);
5148 
VisitUnaryReal(const UnaryOperator * E)5149     bool VisitUnaryReal(const UnaryOperator *E)
5150       { return Visit(E->getSubExpr()); }
5151     bool VisitCastExpr(const CastExpr* E);
5152     bool VisitInitListExpr(const InitListExpr *E);
5153     bool VisitUnaryImag(const UnaryOperator *E);
5154     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5155     //                 binary comparisons, binary and/or/xor,
5156     //                 shufflevector, ExtVectorElementExpr
5157   };
5158 } // end anonymous namespace
5159 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5160 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5161   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5162   return VectorExprEvaluator(Info, Result).Visit(E);
5163 }
5164 
VisitCastExpr(const CastExpr * E)5165 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5166   const VectorType *VTy = E->getType()->castAs<VectorType>();
5167   unsigned NElts = VTy->getNumElements();
5168 
5169   const Expr *SE = E->getSubExpr();
5170   QualType SETy = SE->getType();
5171 
5172   switch (E->getCastKind()) {
5173   case CK_VectorSplat: {
5174     APValue Val = APValue();
5175     if (SETy->isIntegerType()) {
5176       APSInt IntResult;
5177       if (!EvaluateInteger(SE, IntResult, Info))
5178          return false;
5179       Val = APValue(IntResult);
5180     } else if (SETy->isRealFloatingType()) {
5181        APFloat F(0.0);
5182        if (!EvaluateFloat(SE, F, Info))
5183          return false;
5184        Val = APValue(F);
5185     } else {
5186       return Error(E);
5187     }
5188 
5189     // Splat and create vector APValue.
5190     SmallVector<APValue, 4> Elts(NElts, Val);
5191     return Success(Elts, E);
5192   }
5193   case CK_BitCast: {
5194     // Evaluate the operand into an APInt we can extract from.
5195     llvm::APInt SValInt;
5196     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5197       return false;
5198     // Extract the elements
5199     QualType EltTy = VTy->getElementType();
5200     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5201     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5202     SmallVector<APValue, 4> Elts;
5203     if (EltTy->isRealFloatingType()) {
5204       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5205       unsigned FloatEltSize = EltSize;
5206       if (&Sem == &APFloat::x87DoubleExtended)
5207         FloatEltSize = 80;
5208       for (unsigned i = 0; i < NElts; i++) {
5209         llvm::APInt Elt;
5210         if (BigEndian)
5211           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5212         else
5213           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5214         Elts.push_back(APValue(APFloat(Sem, Elt)));
5215       }
5216     } else if (EltTy->isIntegerType()) {
5217       for (unsigned i = 0; i < NElts; i++) {
5218         llvm::APInt Elt;
5219         if (BigEndian)
5220           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5221         else
5222           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5223         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5224       }
5225     } else {
5226       return Error(E);
5227     }
5228     return Success(Elts, E);
5229   }
5230   default:
5231     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5232   }
5233 }
5234 
5235 bool
VisitInitListExpr(const InitListExpr * E)5236 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5237   const VectorType *VT = E->getType()->castAs<VectorType>();
5238   unsigned NumInits = E->getNumInits();
5239   unsigned NumElements = VT->getNumElements();
5240 
5241   QualType EltTy = VT->getElementType();
5242   SmallVector<APValue, 4> Elements;
5243 
5244   // The number of initializers can be less than the number of
5245   // vector elements. For OpenCL, this can be due to nested vector
5246   // initialization. For GCC compatibility, missing trailing elements
5247   // should be initialized with zeroes.
5248   unsigned CountInits = 0, CountElts = 0;
5249   while (CountElts < NumElements) {
5250     // Handle nested vector initialization.
5251     if (CountInits < NumInits
5252         && E->getInit(CountInits)->getType()->isExtVectorType()) {
5253       APValue v;
5254       if (!EvaluateVector(E->getInit(CountInits), v, Info))
5255         return Error(E);
5256       unsigned vlen = v.getVectorLength();
5257       for (unsigned j = 0; j < vlen; j++)
5258         Elements.push_back(v.getVectorElt(j));
5259       CountElts += vlen;
5260     } else if (EltTy->isIntegerType()) {
5261       llvm::APSInt sInt(32);
5262       if (CountInits < NumInits) {
5263         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5264           return false;
5265       } else // trailing integer zero.
5266         sInt = Info.Ctx.MakeIntValue(0, EltTy);
5267       Elements.push_back(APValue(sInt));
5268       CountElts++;
5269     } else {
5270       llvm::APFloat f(0.0);
5271       if (CountInits < NumInits) {
5272         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5273           return false;
5274       } else // trailing float zero.
5275         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5276       Elements.push_back(APValue(f));
5277       CountElts++;
5278     }
5279     CountInits++;
5280   }
5281   return Success(Elements, E);
5282 }
5283 
5284 bool
ZeroInitialization(const Expr * E)5285 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5286   const VectorType *VT = E->getType()->getAs<VectorType>();
5287   QualType EltTy = VT->getElementType();
5288   APValue ZeroElement;
5289   if (EltTy->isIntegerType())
5290     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5291   else
5292     ZeroElement =
5293         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5294 
5295   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5296   return Success(Elements, E);
5297 }
5298 
VisitUnaryImag(const UnaryOperator * E)5299 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5300   VisitIgnoredValue(E->getSubExpr());
5301   return ZeroInitialization(E);
5302 }
5303 
5304 //===----------------------------------------------------------------------===//
5305 // Array Evaluation
5306 //===----------------------------------------------------------------------===//
5307 
5308 namespace {
5309   class ArrayExprEvaluator
5310   : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
5311     const LValue &This;
5312     APValue &Result;
5313   public:
5314 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)5315     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5316       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5317 
Success(const APValue & V,const Expr * E)5318     bool Success(const APValue &V, const Expr *E) {
5319       assert((V.isArray() || V.isLValue()) &&
5320              "expected array or string literal");
5321       Result = V;
5322       return true;
5323     }
5324 
ZeroInitialization(const Expr * E)5325     bool ZeroInitialization(const Expr *E) {
5326       const ConstantArrayType *CAT =
5327           Info.Ctx.getAsConstantArrayType(E->getType());
5328       if (!CAT)
5329         return Error(E);
5330 
5331       Result = APValue(APValue::UninitArray(), 0,
5332                        CAT->getSize().getZExtValue());
5333       if (!Result.hasArrayFiller()) return true;
5334 
5335       // Zero-initialize all elements.
5336       LValue Subobject = This;
5337       Subobject.addArray(Info, E, CAT);
5338       ImplicitValueInitExpr VIE(CAT->getElementType());
5339       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5340     }
5341 
5342     bool VisitInitListExpr(const InitListExpr *E);
5343     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5344     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5345                                const LValue &Subobject,
5346                                APValue *Value, QualType Type);
5347   };
5348 } // end anonymous namespace
5349 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5350 static bool EvaluateArray(const Expr *E, const LValue &This,
5351                           APValue &Result, EvalInfo &Info) {
5352   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5353   return ArrayExprEvaluator(Info, This, Result).Visit(E);
5354 }
5355 
VisitInitListExpr(const InitListExpr * E)5356 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5357   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5358   if (!CAT)
5359     return Error(E);
5360 
5361   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5362   // an appropriately-typed string literal enclosed in braces.
5363   if (E->isStringLiteralInit()) {
5364     LValue LV;
5365     if (!EvaluateLValue(E->getInit(0), LV, Info))
5366       return false;
5367     APValue Val;
5368     LV.moveInto(Val);
5369     return Success(Val, E);
5370   }
5371 
5372   bool Success = true;
5373 
5374   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5375          "zero-initialized array shouldn't have any initialized elts");
5376   APValue Filler;
5377   if (Result.isArray() && Result.hasArrayFiller())
5378     Filler = Result.getArrayFiller();
5379 
5380   unsigned NumEltsToInit = E->getNumInits();
5381   unsigned NumElts = CAT->getSize().getZExtValue();
5382   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
5383 
5384   // If the initializer might depend on the array index, run it for each
5385   // array element. For now, just whitelist non-class value-initialization.
5386   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5387     NumEltsToInit = NumElts;
5388 
5389   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5390 
5391   // If the array was previously zero-initialized, preserve the
5392   // zero-initialized values.
5393   if (!Filler.isUninit()) {
5394     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5395       Result.getArrayInitializedElt(I) = Filler;
5396     if (Result.hasArrayFiller())
5397       Result.getArrayFiller() = Filler;
5398   }
5399 
5400   LValue Subobject = This;
5401   Subobject.addArray(Info, E, CAT);
5402   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5403     const Expr *Init =
5404         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5405     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5406                          Info, Subobject, Init) ||
5407         !HandleLValueArrayAdjustment(Info, Init, Subobject,
5408                                      CAT->getElementType(), 1)) {
5409       if (!Info.keepEvaluatingAfterFailure())
5410         return false;
5411       Success = false;
5412     }
5413   }
5414 
5415   if (!Result.hasArrayFiller())
5416     return Success;
5417 
5418   // If we get here, we have a trivial filler, which we can just evaluate
5419   // once and splat over the rest of the array elements.
5420   assert(FillerExpr && "no array filler for incomplete init list");
5421   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5422                          FillerExpr) && Success;
5423 }
5424 
VisitCXXConstructExpr(const CXXConstructExpr * E)5425 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5426   return VisitCXXConstructExpr(E, This, &Result, E->getType());
5427 }
5428 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)5429 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5430                                                const LValue &Subobject,
5431                                                APValue *Value,
5432                                                QualType Type) {
5433   bool HadZeroInit = !Value->isUninit();
5434 
5435   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5436     unsigned N = CAT->getSize().getZExtValue();
5437 
5438     // Preserve the array filler if we had prior zero-initialization.
5439     APValue Filler =
5440       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5441                                              : APValue();
5442 
5443     *Value = APValue(APValue::UninitArray(), N, N);
5444 
5445     if (HadZeroInit)
5446       for (unsigned I = 0; I != N; ++I)
5447         Value->getArrayInitializedElt(I) = Filler;
5448 
5449     // Initialize the elements.
5450     LValue ArrayElt = Subobject;
5451     ArrayElt.addArray(Info, E, CAT);
5452     for (unsigned I = 0; I != N; ++I)
5453       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5454                                  CAT->getElementType()) ||
5455           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5456                                        CAT->getElementType(), 1))
5457         return false;
5458 
5459     return true;
5460   }
5461 
5462   if (!Type->isRecordType())
5463     return Error(E);
5464 
5465   const CXXConstructorDecl *FD = E->getConstructor();
5466 
5467   bool ZeroInit = E->requiresZeroInitialization();
5468   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5469     if (HadZeroInit)
5470       return true;
5471 
5472     if (ZeroInit) {
5473       ImplicitValueInitExpr VIE(Type);
5474       return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5475     }
5476 
5477     const CXXRecordDecl *RD = FD->getParent();
5478     if (RD->isUnion())
5479       *Value = APValue((FieldDecl*)0);
5480     else
5481       *Value =
5482           APValue(APValue::UninitStruct(), RD->getNumBases(),
5483                   std::distance(RD->field_begin(), RD->field_end()));
5484     return true;
5485   }
5486 
5487   const FunctionDecl *Definition = 0;
5488   FD->getBody(Definition);
5489 
5490   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5491     return false;
5492 
5493   if (ZeroInit && !HadZeroInit) {
5494     ImplicitValueInitExpr VIE(Type);
5495     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5496       return false;
5497   }
5498 
5499   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5500   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5501                                cast<CXXConstructorDecl>(Definition),
5502                                Info, *Value);
5503 }
5504 
5505 //===----------------------------------------------------------------------===//
5506 // Integer Evaluation
5507 //
5508 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5509 // types and back in constant folding. Integer values are thus represented
5510 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5511 //===----------------------------------------------------------------------===//
5512 
5513 namespace {
5514 class IntExprEvaluator
5515   : public ExprEvaluatorBase<IntExprEvaluator, bool> {
5516   APValue &Result;
5517 public:
IntExprEvaluator(EvalInfo & info,APValue & result)5518   IntExprEvaluator(EvalInfo &info, APValue &result)
5519     : ExprEvaluatorBaseTy(info), Result(result) {}
5520 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)5521   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5522     assert(E->getType()->isIntegralOrEnumerationType() &&
5523            "Invalid evaluation result.");
5524     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5525            "Invalid evaluation result.");
5526     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5527            "Invalid evaluation result.");
5528     Result = APValue(SI);
5529     return true;
5530   }
Success(const llvm::APSInt & SI,const Expr * E)5531   bool Success(const llvm::APSInt &SI, const Expr *E) {
5532     return Success(SI, E, Result);
5533   }
5534 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)5535   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5536     assert(E->getType()->isIntegralOrEnumerationType() &&
5537            "Invalid evaluation result.");
5538     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5539            "Invalid evaluation result.");
5540     Result = APValue(APSInt(I));
5541     Result.getInt().setIsUnsigned(
5542                             E->getType()->isUnsignedIntegerOrEnumerationType());
5543     return true;
5544   }
Success(const llvm::APInt & I,const Expr * E)5545   bool Success(const llvm::APInt &I, const Expr *E) {
5546     return Success(I, E, Result);
5547   }
5548 
Success(uint64_t Value,const Expr * E,APValue & Result)5549   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5550     assert(E->getType()->isIntegralOrEnumerationType() &&
5551            "Invalid evaluation result.");
5552     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5553     return true;
5554   }
Success(uint64_t Value,const Expr * E)5555   bool Success(uint64_t Value, const Expr *E) {
5556     return Success(Value, E, Result);
5557   }
5558 
Success(CharUnits Size,const Expr * E)5559   bool Success(CharUnits Size, const Expr *E) {
5560     return Success(Size.getQuantity(), E);
5561   }
5562 
Success(const APValue & V,const Expr * E)5563   bool Success(const APValue &V, const Expr *E) {
5564     if (V.isLValue() || V.isAddrLabelDiff()) {
5565       Result = V;
5566       return true;
5567     }
5568     return Success(V.getInt(), E);
5569   }
5570 
ZeroInitialization(const Expr * E)5571   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5572 
5573   //===--------------------------------------------------------------------===//
5574   //                            Visitor Methods
5575   //===--------------------------------------------------------------------===//
5576 
VisitIntegerLiteral(const IntegerLiteral * E)5577   bool VisitIntegerLiteral(const IntegerLiteral *E) {
5578     return Success(E->getValue(), E);
5579   }
VisitCharacterLiteral(const CharacterLiteral * E)5580   bool VisitCharacterLiteral(const CharacterLiteral *E) {
5581     return Success(E->getValue(), E);
5582   }
5583 
5584   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)5585   bool VisitDeclRefExpr(const DeclRefExpr *E) {
5586     if (CheckReferencedDecl(E, E->getDecl()))
5587       return true;
5588 
5589     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5590   }
VisitMemberExpr(const MemberExpr * E)5591   bool VisitMemberExpr(const MemberExpr *E) {
5592     if (CheckReferencedDecl(E, E->getMemberDecl())) {
5593       VisitIgnoredValue(E->getBase());
5594       return true;
5595     }
5596 
5597     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5598   }
5599 
5600   bool VisitCallExpr(const CallExpr *E);
5601   bool VisitBinaryOperator(const BinaryOperator *E);
5602   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5603   bool VisitUnaryOperator(const UnaryOperator *E);
5604 
5605   bool VisitCastExpr(const CastExpr* E);
5606   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5607 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)5608   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5609     return Success(E->getValue(), E);
5610   }
5611 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)5612   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5613     return Success(E->getValue(), E);
5614   }
5615 
5616   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)5617   bool VisitGNUNullExpr(const GNUNullExpr *E) {
5618     return ZeroInitialization(E);
5619   }
5620 
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)5621   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
5622     return Success(E->getValue(), E);
5623   }
5624 
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)5625   bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
5626     return Success(E->getValue(), E);
5627   }
5628 
VisitTypeTraitExpr(const TypeTraitExpr * E)5629   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5630     return Success(E->getValue(), E);
5631   }
5632 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)5633   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5634     return Success(E->getValue(), E);
5635   }
5636 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)5637   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5638     return Success(E->getValue(), E);
5639   }
5640 
5641   bool VisitUnaryReal(const UnaryOperator *E);
5642   bool VisitUnaryImag(const UnaryOperator *E);
5643 
5644   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5645   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5646 
5647 private:
5648   CharUnits GetAlignOfExpr(const Expr *E);
5649   CharUnits GetAlignOfType(QualType T);
5650   static QualType GetObjectType(APValue::LValueBase B);
5651   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5652   // FIXME: Missing: array subscript of vector, member of vector
5653 };
5654 } // end anonymous namespace
5655 
5656 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5657 /// produce either the integer value or a pointer.
5658 ///
5659 /// GCC has a heinous extension which folds casts between pointer types and
5660 /// pointer-sized integral types. We support this by allowing the evaluation of
5661 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5662 /// Some simple arithmetic on such values is supported (they are treated much
5663 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)5664 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5665                                     EvalInfo &Info) {
5666   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5667   return IntExprEvaluator(Info, Result).Visit(E);
5668 }
5669 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)5670 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5671   APValue Val;
5672   if (!EvaluateIntegerOrLValue(E, Val, Info))
5673     return false;
5674   if (!Val.isInt()) {
5675     // FIXME: It would be better to produce the diagnostic for casting
5676     //        a pointer to an integer.
5677     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5678     return false;
5679   }
5680   Result = Val.getInt();
5681   return true;
5682 }
5683 
5684 /// Check whether the given declaration can be directly converted to an integral
5685 /// rvalue. If not, no diagnostic is produced; there are other things we can
5686 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)5687 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5688   // Enums are integer constant exprs.
5689   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5690     // Check for signedness/width mismatches between E type and ECD value.
5691     bool SameSign = (ECD->getInitVal().isSigned()
5692                      == E->getType()->isSignedIntegerOrEnumerationType());
5693     bool SameWidth = (ECD->getInitVal().getBitWidth()
5694                       == Info.Ctx.getIntWidth(E->getType()));
5695     if (SameSign && SameWidth)
5696       return Success(ECD->getInitVal(), E);
5697     else {
5698       // Get rid of mismatch (otherwise Success assertions will fail)
5699       // by computing a new value matching the type of E.
5700       llvm::APSInt Val = ECD->getInitVal();
5701       if (!SameSign)
5702         Val.setIsSigned(!ECD->getInitVal().isSigned());
5703       if (!SameWidth)
5704         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5705       return Success(Val, E);
5706     }
5707   }
5708   return false;
5709 }
5710 
5711 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5712 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)5713 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5714   // The following enum mimics the values returned by GCC.
5715   // FIXME: Does GCC differ between lvalue and rvalue references here?
5716   enum gcc_type_class {
5717     no_type_class = -1,
5718     void_type_class, integer_type_class, char_type_class,
5719     enumeral_type_class, boolean_type_class,
5720     pointer_type_class, reference_type_class, offset_type_class,
5721     real_type_class, complex_type_class,
5722     function_type_class, method_type_class,
5723     record_type_class, union_type_class,
5724     array_type_class, string_type_class,
5725     lang_type_class
5726   };
5727 
5728   // If no argument was supplied, default to "no_type_class". This isn't
5729   // ideal, however it is what gcc does.
5730   if (E->getNumArgs() == 0)
5731     return no_type_class;
5732 
5733   QualType ArgTy = E->getArg(0)->getType();
5734   if (ArgTy->isVoidType())
5735     return void_type_class;
5736   else if (ArgTy->isEnumeralType())
5737     return enumeral_type_class;
5738   else if (ArgTy->isBooleanType())
5739     return boolean_type_class;
5740   else if (ArgTy->isCharType())
5741     return string_type_class; // gcc doesn't appear to use char_type_class
5742   else if (ArgTy->isIntegerType())
5743     return integer_type_class;
5744   else if (ArgTy->isPointerType())
5745     return pointer_type_class;
5746   else if (ArgTy->isReferenceType())
5747     return reference_type_class;
5748   else if (ArgTy->isRealType())
5749     return real_type_class;
5750   else if (ArgTy->isComplexType())
5751     return complex_type_class;
5752   else if (ArgTy->isFunctionType())
5753     return function_type_class;
5754   else if (ArgTy->isStructureOrClassType())
5755     return record_type_class;
5756   else if (ArgTy->isUnionType())
5757     return union_type_class;
5758   else if (ArgTy->isArrayType())
5759     return array_type_class;
5760   else if (ArgTy->isUnionType())
5761     return union_type_class;
5762   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
5763     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5764 }
5765 
5766 /// EvaluateBuiltinConstantPForLValue - Determine the result of
5767 /// __builtin_constant_p when applied to the given lvalue.
5768 ///
5769 /// An lvalue is only "constant" if it is a pointer or reference to the first
5770 /// character of a string literal.
5771 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)5772 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5773   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5774   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5775 }
5776 
5777 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5778 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)5779 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5780   QualType ArgType = Arg->getType();
5781 
5782   // __builtin_constant_p always has one operand. The rules which gcc follows
5783   // are not precisely documented, but are as follows:
5784   //
5785   //  - If the operand is of integral, floating, complex or enumeration type,
5786   //    and can be folded to a known value of that type, it returns 1.
5787   //  - If the operand and can be folded to a pointer to the first character
5788   //    of a string literal (or such a pointer cast to an integral type), it
5789   //    returns 1.
5790   //
5791   // Otherwise, it returns 0.
5792   //
5793   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5794   // its support for this does not currently work.
5795   if (ArgType->isIntegralOrEnumerationType()) {
5796     Expr::EvalResult Result;
5797     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5798       return false;
5799 
5800     APValue &V = Result.Val;
5801     if (V.getKind() == APValue::Int)
5802       return true;
5803 
5804     return EvaluateBuiltinConstantPForLValue(V);
5805   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5806     return Arg->isEvaluatable(Ctx);
5807   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5808     LValue LV;
5809     Expr::EvalStatus Status;
5810     EvalInfo Info(Ctx, Status);
5811     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5812                           : EvaluatePointer(Arg, LV, Info)) &&
5813         !Status.HasSideEffects)
5814       return EvaluateBuiltinConstantPForLValue(LV);
5815   }
5816 
5817   // Anything else isn't considered to be sufficiently constant.
5818   return false;
5819 }
5820 
5821 /// Retrieves the "underlying object type" of the given expression,
5822 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)5823 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5824   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5825     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5826       return VD->getType();
5827   } else if (const Expr *E = B.get<const Expr*>()) {
5828     if (isa<CompoundLiteralExpr>(E))
5829       return E->getType();
5830   }
5831 
5832   return QualType();
5833 }
5834 
TryEvaluateBuiltinObjectSize(const CallExpr * E)5835 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5836   LValue Base;
5837 
5838   {
5839     // The operand of __builtin_object_size is never evaluated for side-effects.
5840     // If there are any, but we can determine the pointed-to object anyway, then
5841     // ignore the side-effects.
5842     SpeculativeEvaluationRAII SpeculativeEval(Info);
5843     if (!EvaluatePointer(E->getArg(0), Base, Info))
5844       return false;
5845   }
5846 
5847   // If we can prove the base is null, lower to zero now.
5848   if (!Base.getLValueBase()) return Success(0, E);
5849 
5850   QualType T = GetObjectType(Base.getLValueBase());
5851   if (T.isNull() ||
5852       T->isIncompleteType() ||
5853       T->isFunctionType() ||
5854       T->isVariablyModifiedType() ||
5855       T->isDependentType())
5856     return Error(E);
5857 
5858   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5859   CharUnits Offset = Base.getLValueOffset();
5860 
5861   if (!Offset.isNegative() && Offset <= Size)
5862     Size -= Offset;
5863   else
5864     Size = CharUnits::Zero();
5865   return Success(Size, E);
5866 }
5867 
VisitCallExpr(const CallExpr * E)5868 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
5869   switch (unsigned BuiltinOp = E->isBuiltinCall()) {
5870   default:
5871     return ExprEvaluatorBaseTy::VisitCallExpr(E);
5872 
5873   case Builtin::BI__builtin_object_size: {
5874     if (TryEvaluateBuiltinObjectSize(E))
5875       return true;
5876 
5877     // If evaluating the argument has side-effects, we can't determine the size
5878     // of the object, and so we lower it to unknown now. CodeGen relies on us to
5879     // handle all cases where the expression has side-effects.
5880     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
5881       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
5882         return Success(-1ULL, E);
5883       return Success(0, E);
5884     }
5885 
5886     // Expression had no side effects, but we couldn't statically determine the
5887     // size of the referenced object.
5888     return Error(E);
5889   }
5890 
5891   case Builtin::BI__builtin_bswap16:
5892   case Builtin::BI__builtin_bswap32:
5893   case Builtin::BI__builtin_bswap64: {
5894     APSInt Val;
5895     if (!EvaluateInteger(E->getArg(0), Val, Info))
5896       return false;
5897 
5898     return Success(Val.byteSwap(), E);
5899   }
5900 
5901   case Builtin::BI__builtin_classify_type:
5902     return Success(EvaluateBuiltinClassifyType(E), E);
5903 
5904   // FIXME: BI__builtin_clrsb
5905   // FIXME: BI__builtin_clrsbl
5906   // FIXME: BI__builtin_clrsbll
5907 
5908   case Builtin::BI__builtin_clz:
5909   case Builtin::BI__builtin_clzl:
5910   case Builtin::BI__builtin_clzll: {
5911     APSInt Val;
5912     if (!EvaluateInteger(E->getArg(0), Val, Info))
5913       return false;
5914     if (!Val)
5915       return Error(E);
5916 
5917     return Success(Val.countLeadingZeros(), E);
5918   }
5919 
5920   case Builtin::BI__builtin_constant_p:
5921     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
5922 
5923   case Builtin::BI__builtin_ctz:
5924   case Builtin::BI__builtin_ctzl:
5925   case Builtin::BI__builtin_ctzll: {
5926     APSInt Val;
5927     if (!EvaluateInteger(E->getArg(0), Val, Info))
5928       return false;
5929     if (!Val)
5930       return Error(E);
5931 
5932     return Success(Val.countTrailingZeros(), E);
5933   }
5934 
5935   case Builtin::BI__builtin_eh_return_data_regno: {
5936     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
5937     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
5938     return Success(Operand, E);
5939   }
5940 
5941   case Builtin::BI__builtin_expect:
5942     return Visit(E->getArg(0));
5943 
5944   case Builtin::BI__builtin_ffs:
5945   case Builtin::BI__builtin_ffsl:
5946   case Builtin::BI__builtin_ffsll: {
5947     APSInt Val;
5948     if (!EvaluateInteger(E->getArg(0), Val, Info))
5949       return false;
5950 
5951     unsigned N = Val.countTrailingZeros();
5952     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
5953   }
5954 
5955   case Builtin::BI__builtin_fpclassify: {
5956     APFloat Val(0.0);
5957     if (!EvaluateFloat(E->getArg(5), Val, Info))
5958       return false;
5959     unsigned Arg;
5960     switch (Val.getCategory()) {
5961     case APFloat::fcNaN: Arg = 0; break;
5962     case APFloat::fcInfinity: Arg = 1; break;
5963     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
5964     case APFloat::fcZero: Arg = 4; break;
5965     }
5966     return Visit(E->getArg(Arg));
5967   }
5968 
5969   case Builtin::BI__builtin_isinf_sign: {
5970     APFloat Val(0.0);
5971     return EvaluateFloat(E->getArg(0), Val, Info) &&
5972            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
5973   }
5974 
5975   case Builtin::BI__builtin_parity:
5976   case Builtin::BI__builtin_parityl:
5977   case Builtin::BI__builtin_parityll: {
5978     APSInt Val;
5979     if (!EvaluateInteger(E->getArg(0), Val, Info))
5980       return false;
5981 
5982     return Success(Val.countPopulation() % 2, E);
5983   }
5984 
5985   case Builtin::BI__builtin_popcount:
5986   case Builtin::BI__builtin_popcountl:
5987   case Builtin::BI__builtin_popcountll: {
5988     APSInt Val;
5989     if (!EvaluateInteger(E->getArg(0), Val, Info))
5990       return false;
5991 
5992     return Success(Val.countPopulation(), E);
5993   }
5994 
5995   case Builtin::BIstrlen:
5996     // A call to strlen is not a constant expression.
5997     if (Info.getLangOpts().CPlusPlus11)
5998       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
5999         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6000     else
6001       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6002     // Fall through.
6003   case Builtin::BI__builtin_strlen:
6004     // As an extension, we support strlen() and __builtin_strlen() as constant
6005     // expressions when the argument is a string literal.
6006     if (const StringLiteral *S
6007                = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
6008       // The string literal may have embedded null characters. Find the first
6009       // one and truncate there.
6010       StringRef Str = S->getString();
6011       StringRef::size_type Pos = Str.find(0);
6012       if (Pos != StringRef::npos)
6013         Str = Str.substr(0, Pos);
6014 
6015       return Success(Str.size(), E);
6016     }
6017 
6018     return Error(E);
6019 
6020   case Builtin::BI__atomic_always_lock_free:
6021   case Builtin::BI__atomic_is_lock_free:
6022   case Builtin::BI__c11_atomic_is_lock_free: {
6023     APSInt SizeVal;
6024     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6025       return false;
6026 
6027     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6028     // of two less than the maximum inline atomic width, we know it is
6029     // lock-free.  If the size isn't a power of two, or greater than the
6030     // maximum alignment where we promote atomics, we know it is not lock-free
6031     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6032     // the answer can only be determined at runtime; for example, 16-byte
6033     // atomics have lock-free implementations on some, but not all,
6034     // x86-64 processors.
6035 
6036     // Check power-of-two.
6037     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6038     if (Size.isPowerOfTwo()) {
6039       // Check against inlining width.
6040       unsigned InlineWidthBits =
6041           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6042       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6043         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6044             Size == CharUnits::One() ||
6045             E->getArg(1)->isNullPointerConstant(Info.Ctx,
6046                                                 Expr::NPC_NeverValueDependent))
6047           // OK, we will inline appropriately-aligned operations of this size,
6048           // and _Atomic(T) is appropriately-aligned.
6049           return Success(1, E);
6050 
6051         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6052           castAs<PointerType>()->getPointeeType();
6053         if (!PointeeType->isIncompleteType() &&
6054             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6055           // OK, we will inline operations on this object.
6056           return Success(1, E);
6057         }
6058       }
6059     }
6060 
6061     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6062         Success(0, E) : Error(E);
6063   }
6064   }
6065 }
6066 
HasSameBase(const LValue & A,const LValue & B)6067 static bool HasSameBase(const LValue &A, const LValue &B) {
6068   if (!A.getLValueBase())
6069     return !B.getLValueBase();
6070   if (!B.getLValueBase())
6071     return false;
6072 
6073   if (A.getLValueBase().getOpaqueValue() !=
6074       B.getLValueBase().getOpaqueValue()) {
6075     const Decl *ADecl = GetLValueBaseDecl(A);
6076     if (!ADecl)
6077       return false;
6078     const Decl *BDecl = GetLValueBaseDecl(B);
6079     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6080       return false;
6081   }
6082 
6083   return IsGlobalLValue(A.getLValueBase()) ||
6084          A.getLValueCallIndex() == B.getLValueCallIndex();
6085 }
6086 
6087 namespace {
6088 
6089 /// \brief Data recursive integer evaluator of certain binary operators.
6090 ///
6091 /// We use a data recursive algorithm for binary operators so that we are able
6092 /// to handle extreme cases of chained binary operators without causing stack
6093 /// overflow.
6094 class DataRecursiveIntBinOpEvaluator {
6095   struct EvalResult {
6096     APValue Val;
6097     bool Failed;
6098 
EvalResult__anon383178e61311::DataRecursiveIntBinOpEvaluator::EvalResult6099     EvalResult() : Failed(false) { }
6100 
swap__anon383178e61311::DataRecursiveIntBinOpEvaluator::EvalResult6101     void swap(EvalResult &RHS) {
6102       Val.swap(RHS.Val);
6103       Failed = RHS.Failed;
6104       RHS.Failed = false;
6105     }
6106   };
6107 
6108   struct Job {
6109     const Expr *E;
6110     EvalResult LHSResult; // meaningful only for binary operator expression.
6111     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6112 
Job__anon383178e61311::DataRecursiveIntBinOpEvaluator::Job6113     Job() : StoredInfo(0) { }
startSpeculativeEval__anon383178e61311::DataRecursiveIntBinOpEvaluator::Job6114     void startSpeculativeEval(EvalInfo &Info) {
6115       OldEvalStatus = Info.EvalStatus;
6116       Info.EvalStatus.Diag = 0;
6117       StoredInfo = &Info;
6118     }
~Job__anon383178e61311::DataRecursiveIntBinOpEvaluator::Job6119     ~Job() {
6120       if (StoredInfo) {
6121         StoredInfo->EvalStatus = OldEvalStatus;
6122       }
6123     }
6124   private:
6125     EvalInfo *StoredInfo; // non-null if status changed.
6126     Expr::EvalStatus OldEvalStatus;
6127   };
6128 
6129   SmallVector<Job, 16> Queue;
6130 
6131   IntExprEvaluator &IntEval;
6132   EvalInfo &Info;
6133   APValue &FinalResult;
6134 
6135 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)6136   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6137     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6138 
6139   /// \brief True if \param E is a binary operator that we are going to handle
6140   /// data recursively.
6141   /// We handle binary operators that are comma, logical, or that have operands
6142   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)6143   static bool shouldEnqueue(const BinaryOperator *E) {
6144     return E->getOpcode() == BO_Comma ||
6145            E->isLogicalOp() ||
6146            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6147             E->getRHS()->getType()->isIntegralOrEnumerationType());
6148   }
6149 
Traverse(const BinaryOperator * E)6150   bool Traverse(const BinaryOperator *E) {
6151     enqueue(E);
6152     EvalResult PrevResult;
6153     while (!Queue.empty())
6154       process(PrevResult);
6155 
6156     if (PrevResult.Failed) return false;
6157 
6158     FinalResult.swap(PrevResult.Val);
6159     return true;
6160   }
6161 
6162 private:
Success(uint64_t Value,const Expr * E,APValue & Result)6163   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6164     return IntEval.Success(Value, E, Result);
6165   }
Success(const APSInt & Value,const Expr * E,APValue & Result)6166   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6167     return IntEval.Success(Value, E, Result);
6168   }
Error(const Expr * E)6169   bool Error(const Expr *E) {
6170     return IntEval.Error(E);
6171   }
Error(const Expr * E,diag::kind D)6172   bool Error(const Expr *E, diag::kind D) {
6173     return IntEval.Error(E, D);
6174   }
6175 
CCEDiag(const Expr * E,diag::kind D)6176   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6177     return Info.CCEDiag(E, D);
6178   }
6179 
6180   // \brief Returns true if visiting the RHS is necessary, false otherwise.
6181   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6182                          bool &SuppressRHSDiags);
6183 
6184   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6185                   const BinaryOperator *E, APValue &Result);
6186 
EvaluateExpr(const Expr * E,EvalResult & Result)6187   void EvaluateExpr(const Expr *E, EvalResult &Result) {
6188     Result.Failed = !Evaluate(Result.Val, Info, E);
6189     if (Result.Failed)
6190       Result.Val = APValue();
6191   }
6192 
6193   void process(EvalResult &Result);
6194 
enqueue(const Expr * E)6195   void enqueue(const Expr *E) {
6196     E = E->IgnoreParens();
6197     Queue.resize(Queue.size()+1);
6198     Queue.back().E = E;
6199     Queue.back().Kind = Job::AnyExprKind;
6200   }
6201 };
6202 
6203 }
6204 
6205 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)6206        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6207                          bool &SuppressRHSDiags) {
6208   if (E->getOpcode() == BO_Comma) {
6209     // Ignore LHS but note if we could not evaluate it.
6210     if (LHSResult.Failed)
6211       Info.EvalStatus.HasSideEffects = true;
6212     return true;
6213   }
6214 
6215   if (E->isLogicalOp()) {
6216     bool lhsResult;
6217     if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
6218       // We were able to evaluate the LHS, see if we can get away with not
6219       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6220       if (lhsResult == (E->getOpcode() == BO_LOr)) {
6221         Success(lhsResult, E, LHSResult.Val);
6222         return false; // Ignore RHS
6223       }
6224     } else {
6225       // Since we weren't able to evaluate the left hand side, it
6226       // must have had side effects.
6227       Info.EvalStatus.HasSideEffects = true;
6228 
6229       // We can't evaluate the LHS; however, sometimes the result
6230       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6231       // Don't ignore RHS and suppress diagnostics from this arm.
6232       SuppressRHSDiags = true;
6233     }
6234 
6235     return true;
6236   }
6237 
6238   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6239          E->getRHS()->getType()->isIntegralOrEnumerationType());
6240 
6241   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6242     return false; // Ignore RHS;
6243 
6244   return true;
6245 }
6246 
6247 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)6248        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6249                   const BinaryOperator *E, APValue &Result) {
6250   if (E->getOpcode() == BO_Comma) {
6251     if (RHSResult.Failed)
6252       return false;
6253     Result = RHSResult.Val;
6254     return true;
6255   }
6256 
6257   if (E->isLogicalOp()) {
6258     bool lhsResult, rhsResult;
6259     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6260     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6261 
6262     if (LHSIsOK) {
6263       if (RHSIsOK) {
6264         if (E->getOpcode() == BO_LOr)
6265           return Success(lhsResult || rhsResult, E, Result);
6266         else
6267           return Success(lhsResult && rhsResult, E, Result);
6268       }
6269     } else {
6270       if (RHSIsOK) {
6271         // We can't evaluate the LHS; however, sometimes the result
6272         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6273         if (rhsResult == (E->getOpcode() == BO_LOr))
6274           return Success(rhsResult, E, Result);
6275       }
6276     }
6277 
6278     return false;
6279   }
6280 
6281   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6282          E->getRHS()->getType()->isIntegralOrEnumerationType());
6283 
6284   if (LHSResult.Failed || RHSResult.Failed)
6285     return false;
6286 
6287   const APValue &LHSVal = LHSResult.Val;
6288   const APValue &RHSVal = RHSResult.Val;
6289 
6290   // Handle cases like (unsigned long)&a + 4.
6291   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6292     Result = LHSVal;
6293     CharUnits AdditionalOffset = CharUnits::fromQuantity(
6294                                                          RHSVal.getInt().getZExtValue());
6295     if (E->getOpcode() == BO_Add)
6296       Result.getLValueOffset() += AdditionalOffset;
6297     else
6298       Result.getLValueOffset() -= AdditionalOffset;
6299     return true;
6300   }
6301 
6302   // Handle cases like 4 + (unsigned long)&a
6303   if (E->getOpcode() == BO_Add &&
6304       RHSVal.isLValue() && LHSVal.isInt()) {
6305     Result = RHSVal;
6306     Result.getLValueOffset() += CharUnits::fromQuantity(
6307                                                         LHSVal.getInt().getZExtValue());
6308     return true;
6309   }
6310 
6311   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6312     // Handle (intptr_t)&&A - (intptr_t)&&B.
6313     if (!LHSVal.getLValueOffset().isZero() ||
6314         !RHSVal.getLValueOffset().isZero())
6315       return false;
6316     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6317     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6318     if (!LHSExpr || !RHSExpr)
6319       return false;
6320     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6321     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6322     if (!LHSAddrExpr || !RHSAddrExpr)
6323       return false;
6324     // Make sure both labels come from the same function.
6325     if (LHSAddrExpr->getLabel()->getDeclContext() !=
6326         RHSAddrExpr->getLabel()->getDeclContext())
6327       return false;
6328     Result = APValue(LHSAddrExpr, RHSAddrExpr);
6329     return true;
6330   }
6331 
6332   // All the remaining cases expect both operands to be an integer
6333   if (!LHSVal.isInt() || !RHSVal.isInt())
6334     return Error(E);
6335 
6336   // Set up the width and signedness manually, in case it can't be deduced
6337   // from the operation we're performing.
6338   // FIXME: Don't do this in the cases where we can deduce it.
6339   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6340                E->getType()->isUnsignedIntegerOrEnumerationType());
6341   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6342                          RHSVal.getInt(), Value))
6343     return false;
6344   return Success(Value, E, Result);
6345 }
6346 
process(EvalResult & Result)6347 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6348   Job &job = Queue.back();
6349 
6350   switch (job.Kind) {
6351     case Job::AnyExprKind: {
6352       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6353         if (shouldEnqueue(Bop)) {
6354           job.Kind = Job::BinOpKind;
6355           enqueue(Bop->getLHS());
6356           return;
6357         }
6358       }
6359 
6360       EvaluateExpr(job.E, Result);
6361       Queue.pop_back();
6362       return;
6363     }
6364 
6365     case Job::BinOpKind: {
6366       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6367       bool SuppressRHSDiags = false;
6368       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6369         Queue.pop_back();
6370         return;
6371       }
6372       if (SuppressRHSDiags)
6373         job.startSpeculativeEval(Info);
6374       job.LHSResult.swap(Result);
6375       job.Kind = Job::BinOpVisitedLHSKind;
6376       enqueue(Bop->getRHS());
6377       return;
6378     }
6379 
6380     case Job::BinOpVisitedLHSKind: {
6381       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6382       EvalResult RHS;
6383       RHS.swap(Result);
6384       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6385       Queue.pop_back();
6386       return;
6387     }
6388   }
6389 
6390   llvm_unreachable("Invalid Job::Kind!");
6391 }
6392 
VisitBinaryOperator(const BinaryOperator * E)6393 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6394   if (E->isAssignmentOp())
6395     return Error(E);
6396 
6397   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6398     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6399 
6400   QualType LHSTy = E->getLHS()->getType();
6401   QualType RHSTy = E->getRHS()->getType();
6402 
6403   if (LHSTy->isAnyComplexType()) {
6404     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6405     ComplexValue LHS, RHS;
6406 
6407     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6408     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6409       return false;
6410 
6411     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6412       return false;
6413 
6414     if (LHS.isComplexFloat()) {
6415       APFloat::cmpResult CR_r =
6416         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6417       APFloat::cmpResult CR_i =
6418         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6419 
6420       if (E->getOpcode() == BO_EQ)
6421         return Success((CR_r == APFloat::cmpEqual &&
6422                         CR_i == APFloat::cmpEqual), E);
6423       else {
6424         assert(E->getOpcode() == BO_NE &&
6425                "Invalid complex comparison.");
6426         return Success(((CR_r == APFloat::cmpGreaterThan ||
6427                          CR_r == APFloat::cmpLessThan ||
6428                          CR_r == APFloat::cmpUnordered) ||
6429                         (CR_i == APFloat::cmpGreaterThan ||
6430                          CR_i == APFloat::cmpLessThan ||
6431                          CR_i == APFloat::cmpUnordered)), E);
6432       }
6433     } else {
6434       if (E->getOpcode() == BO_EQ)
6435         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6436                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6437       else {
6438         assert(E->getOpcode() == BO_NE &&
6439                "Invalid compex comparison.");
6440         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6441                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6442       }
6443     }
6444   }
6445 
6446   if (LHSTy->isRealFloatingType() &&
6447       RHSTy->isRealFloatingType()) {
6448     APFloat RHS(0.0), LHS(0.0);
6449 
6450     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6451     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6452       return false;
6453 
6454     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6455       return false;
6456 
6457     APFloat::cmpResult CR = LHS.compare(RHS);
6458 
6459     switch (E->getOpcode()) {
6460     default:
6461       llvm_unreachable("Invalid binary operator!");
6462     case BO_LT:
6463       return Success(CR == APFloat::cmpLessThan, E);
6464     case BO_GT:
6465       return Success(CR == APFloat::cmpGreaterThan, E);
6466     case BO_LE:
6467       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6468     case BO_GE:
6469       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6470                      E);
6471     case BO_EQ:
6472       return Success(CR == APFloat::cmpEqual, E);
6473     case BO_NE:
6474       return Success(CR == APFloat::cmpGreaterThan
6475                      || CR == APFloat::cmpLessThan
6476                      || CR == APFloat::cmpUnordered, E);
6477     }
6478   }
6479 
6480   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6481     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6482       LValue LHSValue, RHSValue;
6483 
6484       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6485       if (!LHSOK && Info.keepEvaluatingAfterFailure())
6486         return false;
6487 
6488       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6489         return false;
6490 
6491       // Reject differing bases from the normal codepath; we special-case
6492       // comparisons to null.
6493       if (!HasSameBase(LHSValue, RHSValue)) {
6494         if (E->getOpcode() == BO_Sub) {
6495           // Handle &&A - &&B.
6496           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6497             return false;
6498           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6499           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6500           if (!LHSExpr || !RHSExpr)
6501             return false;
6502           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6503           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6504           if (!LHSAddrExpr || !RHSAddrExpr)
6505             return false;
6506           // Make sure both labels come from the same function.
6507           if (LHSAddrExpr->getLabel()->getDeclContext() !=
6508               RHSAddrExpr->getLabel()->getDeclContext())
6509             return false;
6510           Result = APValue(LHSAddrExpr, RHSAddrExpr);
6511           return true;
6512         }
6513         // Inequalities and subtractions between unrelated pointers have
6514         // unspecified or undefined behavior.
6515         if (!E->isEqualityOp())
6516           return Error(E);
6517         // A constant address may compare equal to the address of a symbol.
6518         // The one exception is that address of an object cannot compare equal
6519         // to a null pointer constant.
6520         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6521             (!RHSValue.Base && !RHSValue.Offset.isZero()))
6522           return Error(E);
6523         // It's implementation-defined whether distinct literals will have
6524         // distinct addresses. In clang, the result of such a comparison is
6525         // unspecified, so it is not a constant expression. However, we do know
6526         // that the address of a literal will be non-null.
6527         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6528             LHSValue.Base && RHSValue.Base)
6529           return Error(E);
6530         // We can't tell whether weak symbols will end up pointing to the same
6531         // object.
6532         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6533           return Error(E);
6534         // Pointers with different bases cannot represent the same object.
6535         // (Note that clang defaults to -fmerge-all-constants, which can
6536         // lead to inconsistent results for comparisons involving the address
6537         // of a constant; this generally doesn't matter in practice.)
6538         return Success(E->getOpcode() == BO_NE, E);
6539       }
6540 
6541       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6542       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6543 
6544       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6545       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6546 
6547       if (E->getOpcode() == BO_Sub) {
6548         // C++11 [expr.add]p6:
6549         //   Unless both pointers point to elements of the same array object, or
6550         //   one past the last element of the array object, the behavior is
6551         //   undefined.
6552         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6553             !AreElementsOfSameArray(getType(LHSValue.Base),
6554                                     LHSDesignator, RHSDesignator))
6555           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6556 
6557         QualType Type = E->getLHS()->getType();
6558         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6559 
6560         CharUnits ElementSize;
6561         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6562           return false;
6563 
6564         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6565         // and produce incorrect results when it overflows. Such behavior
6566         // appears to be non-conforming, but is common, so perhaps we should
6567         // assume the standard intended for such cases to be undefined behavior
6568         // and check for them.
6569 
6570         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6571         // overflow in the final conversion to ptrdiff_t.
6572         APSInt LHS(
6573           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6574         APSInt RHS(
6575           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6576         APSInt ElemSize(
6577           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6578         APSInt TrueResult = (LHS - RHS) / ElemSize;
6579         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6580 
6581         if (Result.extend(65) != TrueResult)
6582           HandleOverflow(Info, E, TrueResult, E->getType());
6583         return Success(Result, E);
6584       }
6585 
6586       // C++11 [expr.rel]p3:
6587       //   Pointers to void (after pointer conversions) can be compared, with a
6588       //   result defined as follows: If both pointers represent the same
6589       //   address or are both the null pointer value, the result is true if the
6590       //   operator is <= or >= and false otherwise; otherwise the result is
6591       //   unspecified.
6592       // We interpret this as applying to pointers to *cv* void.
6593       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6594           E->isRelationalOp())
6595         CCEDiag(E, diag::note_constexpr_void_comparison);
6596 
6597       // C++11 [expr.rel]p2:
6598       // - If two pointers point to non-static data members of the same object,
6599       //   or to subobjects or array elements fo such members, recursively, the
6600       //   pointer to the later declared member compares greater provided the
6601       //   two members have the same access control and provided their class is
6602       //   not a union.
6603       //   [...]
6604       // - Otherwise pointer comparisons are unspecified.
6605       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6606           E->isRelationalOp()) {
6607         bool WasArrayIndex;
6608         unsigned Mismatch =
6609           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6610                                  RHSDesignator, WasArrayIndex);
6611         // At the point where the designators diverge, the comparison has a
6612         // specified value if:
6613         //  - we are comparing array indices
6614         //  - we are comparing fields of a union, or fields with the same access
6615         // Otherwise, the result is unspecified and thus the comparison is not a
6616         // constant expression.
6617         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6618             Mismatch < RHSDesignator.Entries.size()) {
6619           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6620           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6621           if (!LF && !RF)
6622             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6623           else if (!LF)
6624             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6625               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6626               << RF->getParent() << RF;
6627           else if (!RF)
6628             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6629               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6630               << LF->getParent() << LF;
6631           else if (!LF->getParent()->isUnion() &&
6632                    LF->getAccess() != RF->getAccess())
6633             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6634               << LF << LF->getAccess() << RF << RF->getAccess()
6635               << LF->getParent();
6636         }
6637       }
6638 
6639       // The comparison here must be unsigned, and performed with the same
6640       // width as the pointer.
6641       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6642       uint64_t CompareLHS = LHSOffset.getQuantity();
6643       uint64_t CompareRHS = RHSOffset.getQuantity();
6644       assert(PtrSize <= 64 && "Unexpected pointer width");
6645       uint64_t Mask = ~0ULL >> (64 - PtrSize);
6646       CompareLHS &= Mask;
6647       CompareRHS &= Mask;
6648 
6649       // If there is a base and this is a relational operator, we can only
6650       // compare pointers within the object in question; otherwise, the result
6651       // depends on where the object is located in memory.
6652       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6653         QualType BaseTy = getType(LHSValue.Base);
6654         if (BaseTy->isIncompleteType())
6655           return Error(E);
6656         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6657         uint64_t OffsetLimit = Size.getQuantity();
6658         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6659           return Error(E);
6660       }
6661 
6662       switch (E->getOpcode()) {
6663       default: llvm_unreachable("missing comparison operator");
6664       case BO_LT: return Success(CompareLHS < CompareRHS, E);
6665       case BO_GT: return Success(CompareLHS > CompareRHS, E);
6666       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6667       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6668       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6669       case BO_NE: return Success(CompareLHS != CompareRHS, E);
6670       }
6671     }
6672   }
6673 
6674   if (LHSTy->isMemberPointerType()) {
6675     assert(E->isEqualityOp() && "unexpected member pointer operation");
6676     assert(RHSTy->isMemberPointerType() && "invalid comparison");
6677 
6678     MemberPtr LHSValue, RHSValue;
6679 
6680     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6681     if (!LHSOK && Info.keepEvaluatingAfterFailure())
6682       return false;
6683 
6684     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6685       return false;
6686 
6687     // C++11 [expr.eq]p2:
6688     //   If both operands are null, they compare equal. Otherwise if only one is
6689     //   null, they compare unequal.
6690     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6691       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6692       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6693     }
6694 
6695     //   Otherwise if either is a pointer to a virtual member function, the
6696     //   result is unspecified.
6697     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6698       if (MD->isVirtual())
6699         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6700     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6701       if (MD->isVirtual())
6702         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6703 
6704     //   Otherwise they compare equal if and only if they would refer to the
6705     //   same member of the same most derived object or the same subobject if
6706     //   they were dereferenced with a hypothetical object of the associated
6707     //   class type.
6708     bool Equal = LHSValue == RHSValue;
6709     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6710   }
6711 
6712   if (LHSTy->isNullPtrType()) {
6713     assert(E->isComparisonOp() && "unexpected nullptr operation");
6714     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6715     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6716     // are compared, the result is true of the operator is <=, >= or ==, and
6717     // false otherwise.
6718     BinaryOperator::Opcode Opcode = E->getOpcode();
6719     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6720   }
6721 
6722   assert((!LHSTy->isIntegralOrEnumerationType() ||
6723           !RHSTy->isIntegralOrEnumerationType()) &&
6724          "DataRecursiveIntBinOpEvaluator should have handled integral types");
6725   // We can't continue from here for non-integral types.
6726   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6727 }
6728 
GetAlignOfType(QualType T)6729 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6730   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
6731   //   result shall be the alignment of the referenced type."
6732   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6733     T = Ref->getPointeeType();
6734 
6735   // __alignof is defined to return the preferred alignment.
6736   return Info.Ctx.toCharUnitsFromBits(
6737     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6738 }
6739 
GetAlignOfExpr(const Expr * E)6740 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6741   E = E->IgnoreParens();
6742 
6743   // The kinds of expressions that we have special-case logic here for
6744   // should be kept up to date with the special checks for those
6745   // expressions in Sema.
6746 
6747   // alignof decl is always accepted, even if it doesn't make sense: we default
6748   // to 1 in those cases.
6749   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6750     return Info.Ctx.getDeclAlign(DRE->getDecl(),
6751                                  /*RefAsPointee*/true);
6752 
6753   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6754     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6755                                  /*RefAsPointee*/true);
6756 
6757   return GetAlignOfType(E->getType());
6758 }
6759 
6760 
6761 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6762 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)6763 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6764                                     const UnaryExprOrTypeTraitExpr *E) {
6765   switch(E->getKind()) {
6766   case UETT_AlignOf: {
6767     if (E->isArgumentType())
6768       return Success(GetAlignOfType(E->getArgumentType()), E);
6769     else
6770       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6771   }
6772 
6773   case UETT_VecStep: {
6774     QualType Ty = E->getTypeOfArgument();
6775 
6776     if (Ty->isVectorType()) {
6777       unsigned n = Ty->castAs<VectorType>()->getNumElements();
6778 
6779       // The vec_step built-in functions that take a 3-component
6780       // vector return 4. (OpenCL 1.1 spec 6.11.12)
6781       if (n == 3)
6782         n = 4;
6783 
6784       return Success(n, E);
6785     } else
6786       return Success(1, E);
6787   }
6788 
6789   case UETT_SizeOf: {
6790     QualType SrcTy = E->getTypeOfArgument();
6791     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
6792     //   the result is the size of the referenced type."
6793     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
6794       SrcTy = Ref->getPointeeType();
6795 
6796     CharUnits Sizeof;
6797     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
6798       return false;
6799     return Success(Sizeof, E);
6800   }
6801   }
6802 
6803   llvm_unreachable("unknown expr/type trait");
6804 }
6805 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)6806 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
6807   CharUnits Result;
6808   unsigned n = OOE->getNumComponents();
6809   if (n == 0)
6810     return Error(OOE);
6811   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
6812   for (unsigned i = 0; i != n; ++i) {
6813     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
6814     switch (ON.getKind()) {
6815     case OffsetOfExpr::OffsetOfNode::Array: {
6816       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
6817       APSInt IdxResult;
6818       if (!EvaluateInteger(Idx, IdxResult, Info))
6819         return false;
6820       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
6821       if (!AT)
6822         return Error(OOE);
6823       CurrentType = AT->getElementType();
6824       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
6825       Result += IdxResult.getSExtValue() * ElementSize;
6826       break;
6827     }
6828 
6829     case OffsetOfExpr::OffsetOfNode::Field: {
6830       FieldDecl *MemberDecl = ON.getField();
6831       const RecordType *RT = CurrentType->getAs<RecordType>();
6832       if (!RT)
6833         return Error(OOE);
6834       RecordDecl *RD = RT->getDecl();
6835       if (RD->isInvalidDecl()) return false;
6836       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6837       unsigned i = MemberDecl->getFieldIndex();
6838       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
6839       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
6840       CurrentType = MemberDecl->getType().getNonReferenceType();
6841       break;
6842     }
6843 
6844     case OffsetOfExpr::OffsetOfNode::Identifier:
6845       llvm_unreachable("dependent __builtin_offsetof");
6846 
6847     case OffsetOfExpr::OffsetOfNode::Base: {
6848       CXXBaseSpecifier *BaseSpec = ON.getBase();
6849       if (BaseSpec->isVirtual())
6850         return Error(OOE);
6851 
6852       // Find the layout of the class whose base we are looking into.
6853       const RecordType *RT = CurrentType->getAs<RecordType>();
6854       if (!RT)
6855         return Error(OOE);
6856       RecordDecl *RD = RT->getDecl();
6857       if (RD->isInvalidDecl()) return false;
6858       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6859 
6860       // Find the base class itself.
6861       CurrentType = BaseSpec->getType();
6862       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
6863       if (!BaseRT)
6864         return Error(OOE);
6865 
6866       // Add the offset to the base.
6867       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
6868       break;
6869     }
6870     }
6871   }
6872   return Success(Result, OOE);
6873 }
6874 
VisitUnaryOperator(const UnaryOperator * E)6875 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6876   switch (E->getOpcode()) {
6877   default:
6878     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
6879     // See C99 6.6p3.
6880     return Error(E);
6881   case UO_Extension:
6882     // FIXME: Should extension allow i-c-e extension expressions in its scope?
6883     // If so, we could clear the diagnostic ID.
6884     return Visit(E->getSubExpr());
6885   case UO_Plus:
6886     // The result is just the value.
6887     return Visit(E->getSubExpr());
6888   case UO_Minus: {
6889     if (!Visit(E->getSubExpr()))
6890       return false;
6891     if (!Result.isInt()) return Error(E);
6892     const APSInt &Value = Result.getInt();
6893     if (Value.isSigned() && Value.isMinSignedValue())
6894       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
6895                      E->getType());
6896     return Success(-Value, E);
6897   }
6898   case UO_Not: {
6899     if (!Visit(E->getSubExpr()))
6900       return false;
6901     if (!Result.isInt()) return Error(E);
6902     return Success(~Result.getInt(), E);
6903   }
6904   case UO_LNot: {
6905     bool bres;
6906     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
6907       return false;
6908     return Success(!bres, E);
6909   }
6910   }
6911 }
6912 
6913 /// HandleCast - This is used to evaluate implicit or explicit casts where the
6914 /// result type is integer.
VisitCastExpr(const CastExpr * E)6915 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
6916   const Expr *SubExpr = E->getSubExpr();
6917   QualType DestType = E->getType();
6918   QualType SrcType = SubExpr->getType();
6919 
6920   switch (E->getCastKind()) {
6921   case CK_BaseToDerived:
6922   case CK_DerivedToBase:
6923   case CK_UncheckedDerivedToBase:
6924   case CK_Dynamic:
6925   case CK_ToUnion:
6926   case CK_ArrayToPointerDecay:
6927   case CK_FunctionToPointerDecay:
6928   case CK_NullToPointer:
6929   case CK_NullToMemberPointer:
6930   case CK_BaseToDerivedMemberPointer:
6931   case CK_DerivedToBaseMemberPointer:
6932   case CK_ReinterpretMemberPointer:
6933   case CK_ConstructorConversion:
6934   case CK_IntegralToPointer:
6935   case CK_ToVoid:
6936   case CK_VectorSplat:
6937   case CK_IntegralToFloating:
6938   case CK_FloatingCast:
6939   case CK_CPointerToObjCPointerCast:
6940   case CK_BlockPointerToObjCPointerCast:
6941   case CK_AnyPointerToBlockPointerCast:
6942   case CK_ObjCObjectLValueCast:
6943   case CK_FloatingRealToComplex:
6944   case CK_FloatingComplexToReal:
6945   case CK_FloatingComplexCast:
6946   case CK_FloatingComplexToIntegralComplex:
6947   case CK_IntegralRealToComplex:
6948   case CK_IntegralComplexCast:
6949   case CK_IntegralComplexToFloatingComplex:
6950   case CK_BuiltinFnToFnPtr:
6951   case CK_ZeroToOCLEvent:
6952   case CK_NonAtomicToAtomic:
6953     llvm_unreachable("invalid cast kind for integral value");
6954 
6955   case CK_BitCast:
6956   case CK_Dependent:
6957   case CK_LValueBitCast:
6958   case CK_ARCProduceObject:
6959   case CK_ARCConsumeObject:
6960   case CK_ARCReclaimReturnedObject:
6961   case CK_ARCExtendBlockObject:
6962   case CK_CopyAndAutoreleaseBlockObject:
6963     return Error(E);
6964 
6965   case CK_UserDefinedConversion:
6966   case CK_LValueToRValue:
6967   case CK_AtomicToNonAtomic:
6968   case CK_NoOp:
6969     return ExprEvaluatorBaseTy::VisitCastExpr(E);
6970 
6971   case CK_MemberPointerToBoolean:
6972   case CK_PointerToBoolean:
6973   case CK_IntegralToBoolean:
6974   case CK_FloatingToBoolean:
6975   case CK_FloatingComplexToBoolean:
6976   case CK_IntegralComplexToBoolean: {
6977     bool BoolResult;
6978     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
6979       return false;
6980     return Success(BoolResult, E);
6981   }
6982 
6983   case CK_IntegralCast: {
6984     if (!Visit(SubExpr))
6985       return false;
6986 
6987     if (!Result.isInt()) {
6988       // Allow casts of address-of-label differences if they are no-ops
6989       // or narrowing.  (The narrowing case isn't actually guaranteed to
6990       // be constant-evaluatable except in some narrow cases which are hard
6991       // to detect here.  We let it through on the assumption the user knows
6992       // what they are doing.)
6993       if (Result.isAddrLabelDiff())
6994         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
6995       // Only allow casts of lvalues if they are lossless.
6996       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
6997     }
6998 
6999     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7000                                       Result.getInt()), E);
7001   }
7002 
7003   case CK_PointerToIntegral: {
7004     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7005 
7006     LValue LV;
7007     if (!EvaluatePointer(SubExpr, LV, Info))
7008       return false;
7009 
7010     if (LV.getLValueBase()) {
7011       // Only allow based lvalue casts if they are lossless.
7012       // FIXME: Allow a larger integer size than the pointer size, and allow
7013       // narrowing back down to pointer width in subsequent integral casts.
7014       // FIXME: Check integer type's active bits, not its type size.
7015       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7016         return Error(E);
7017 
7018       LV.Designator.setInvalid();
7019       LV.moveInto(Result);
7020       return true;
7021     }
7022 
7023     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7024                                          SrcType);
7025     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7026   }
7027 
7028   case CK_IntegralComplexToReal: {
7029     ComplexValue C;
7030     if (!EvaluateComplex(SubExpr, C, Info))
7031       return false;
7032     return Success(C.getComplexIntReal(), E);
7033   }
7034 
7035   case CK_FloatingToIntegral: {
7036     APFloat F(0.0);
7037     if (!EvaluateFloat(SubExpr, F, Info))
7038       return false;
7039 
7040     APSInt Value;
7041     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7042       return false;
7043     return Success(Value, E);
7044   }
7045   }
7046 
7047   llvm_unreachable("unknown cast resulting in integral value");
7048 }
7049 
VisitUnaryReal(const UnaryOperator * E)7050 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7051   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7052     ComplexValue LV;
7053     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7054       return false;
7055     if (!LV.isComplexInt())
7056       return Error(E);
7057     return Success(LV.getComplexIntReal(), E);
7058   }
7059 
7060   return Visit(E->getSubExpr());
7061 }
7062 
VisitUnaryImag(const UnaryOperator * E)7063 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7064   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7065     ComplexValue LV;
7066     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7067       return false;
7068     if (!LV.isComplexInt())
7069       return Error(E);
7070     return Success(LV.getComplexIntImag(), E);
7071   }
7072 
7073   VisitIgnoredValue(E->getSubExpr());
7074   return Success(0, E);
7075 }
7076 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)7077 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7078   return Success(E->getPackLength(), E);
7079 }
7080 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)7081 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7082   return Success(E->getValue(), E);
7083 }
7084 
7085 //===----------------------------------------------------------------------===//
7086 // Float Evaluation
7087 //===----------------------------------------------------------------------===//
7088 
7089 namespace {
7090 class FloatExprEvaluator
7091   : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
7092   APFloat &Result;
7093 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)7094   FloatExprEvaluator(EvalInfo &info, APFloat &result)
7095     : ExprEvaluatorBaseTy(info), Result(result) {}
7096 
Success(const APValue & V,const Expr * e)7097   bool Success(const APValue &V, const Expr *e) {
7098     Result = V.getFloat();
7099     return true;
7100   }
7101 
ZeroInitialization(const Expr * E)7102   bool ZeroInitialization(const Expr *E) {
7103     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7104     return true;
7105   }
7106 
7107   bool VisitCallExpr(const CallExpr *E);
7108 
7109   bool VisitUnaryOperator(const UnaryOperator *E);
7110   bool VisitBinaryOperator(const BinaryOperator *E);
7111   bool VisitFloatingLiteral(const FloatingLiteral *E);
7112   bool VisitCastExpr(const CastExpr *E);
7113 
7114   bool VisitUnaryReal(const UnaryOperator *E);
7115   bool VisitUnaryImag(const UnaryOperator *E);
7116 
7117   // FIXME: Missing: array subscript of vector, member of vector
7118 };
7119 } // end anonymous namespace
7120 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)7121 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7122   assert(E->isRValue() && E->getType()->isRealFloatingType());
7123   return FloatExprEvaluator(Info, Result).Visit(E);
7124 }
7125 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)7126 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7127                                   QualType ResultTy,
7128                                   const Expr *Arg,
7129                                   bool SNaN,
7130                                   llvm::APFloat &Result) {
7131   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7132   if (!S) return false;
7133 
7134   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7135 
7136   llvm::APInt fill;
7137 
7138   // Treat empty strings as if they were zero.
7139   if (S->getString().empty())
7140     fill = llvm::APInt(32, 0);
7141   else if (S->getString().getAsInteger(0, fill))
7142     return false;
7143 
7144   if (SNaN)
7145     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7146   else
7147     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7148   return true;
7149 }
7150 
VisitCallExpr(const CallExpr * E)7151 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7152   switch (E->isBuiltinCall()) {
7153   default:
7154     return ExprEvaluatorBaseTy::VisitCallExpr(E);
7155 
7156   case Builtin::BI__builtin_huge_val:
7157   case Builtin::BI__builtin_huge_valf:
7158   case Builtin::BI__builtin_huge_vall:
7159   case Builtin::BI__builtin_inf:
7160   case Builtin::BI__builtin_inff:
7161   case Builtin::BI__builtin_infl: {
7162     const llvm::fltSemantics &Sem =
7163       Info.Ctx.getFloatTypeSemantics(E->getType());
7164     Result = llvm::APFloat::getInf(Sem);
7165     return true;
7166   }
7167 
7168   case Builtin::BI__builtin_nans:
7169   case Builtin::BI__builtin_nansf:
7170   case Builtin::BI__builtin_nansl:
7171     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7172                                true, Result))
7173       return Error(E);
7174     return true;
7175 
7176   case Builtin::BI__builtin_nan:
7177   case Builtin::BI__builtin_nanf:
7178   case Builtin::BI__builtin_nanl:
7179     // If this is __builtin_nan() turn this into a nan, otherwise we
7180     // can't constant fold it.
7181     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7182                                false, Result))
7183       return Error(E);
7184     return true;
7185 
7186   case Builtin::BI__builtin_fabs:
7187   case Builtin::BI__builtin_fabsf:
7188   case Builtin::BI__builtin_fabsl:
7189     if (!EvaluateFloat(E->getArg(0), Result, Info))
7190       return false;
7191 
7192     if (Result.isNegative())
7193       Result.changeSign();
7194     return true;
7195 
7196   // FIXME: Builtin::BI__builtin_powi
7197   // FIXME: Builtin::BI__builtin_powif
7198   // FIXME: Builtin::BI__builtin_powil
7199 
7200   case Builtin::BI__builtin_copysign:
7201   case Builtin::BI__builtin_copysignf:
7202   case Builtin::BI__builtin_copysignl: {
7203     APFloat RHS(0.);
7204     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7205         !EvaluateFloat(E->getArg(1), RHS, Info))
7206       return false;
7207     Result.copySign(RHS);
7208     return true;
7209   }
7210   }
7211 }
7212 
VisitUnaryReal(const UnaryOperator * E)7213 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7214   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7215     ComplexValue CV;
7216     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7217       return false;
7218     Result = CV.FloatReal;
7219     return true;
7220   }
7221 
7222   return Visit(E->getSubExpr());
7223 }
7224 
VisitUnaryImag(const UnaryOperator * E)7225 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7226   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7227     ComplexValue CV;
7228     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7229       return false;
7230     Result = CV.FloatImag;
7231     return true;
7232   }
7233 
7234   VisitIgnoredValue(E->getSubExpr());
7235   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7236   Result = llvm::APFloat::getZero(Sem);
7237   return true;
7238 }
7239 
VisitUnaryOperator(const UnaryOperator * E)7240 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7241   switch (E->getOpcode()) {
7242   default: return Error(E);
7243   case UO_Plus:
7244     return EvaluateFloat(E->getSubExpr(), Result, Info);
7245   case UO_Minus:
7246     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7247       return false;
7248     Result.changeSign();
7249     return true;
7250   }
7251 }
7252 
VisitBinaryOperator(const BinaryOperator * E)7253 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7254   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7255     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7256 
7257   APFloat RHS(0.0);
7258   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7259   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7260     return false;
7261   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7262          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7263 }
7264 
VisitFloatingLiteral(const FloatingLiteral * E)7265 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7266   Result = E->getValue();
7267   return true;
7268 }
7269 
VisitCastExpr(const CastExpr * E)7270 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7271   const Expr* SubExpr = E->getSubExpr();
7272 
7273   switch (E->getCastKind()) {
7274   default:
7275     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7276 
7277   case CK_IntegralToFloating: {
7278     APSInt IntResult;
7279     return EvaluateInteger(SubExpr, IntResult, Info) &&
7280            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7281                                 E->getType(), Result);
7282   }
7283 
7284   case CK_FloatingCast: {
7285     if (!Visit(SubExpr))
7286       return false;
7287     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7288                                   Result);
7289   }
7290 
7291   case CK_FloatingComplexToReal: {
7292     ComplexValue V;
7293     if (!EvaluateComplex(SubExpr, V, Info))
7294       return false;
7295     Result = V.getComplexFloatReal();
7296     return true;
7297   }
7298   }
7299 }
7300 
7301 //===----------------------------------------------------------------------===//
7302 // Complex Evaluation (for float and integer)
7303 //===----------------------------------------------------------------------===//
7304 
7305 namespace {
7306 class ComplexExprEvaluator
7307   : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
7308   ComplexValue &Result;
7309 
7310 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)7311   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7312     : ExprEvaluatorBaseTy(info), Result(Result) {}
7313 
Success(const APValue & V,const Expr * e)7314   bool Success(const APValue &V, const Expr *e) {
7315     Result.setFrom(V);
7316     return true;
7317   }
7318 
7319   bool ZeroInitialization(const Expr *E);
7320 
7321   //===--------------------------------------------------------------------===//
7322   //                            Visitor Methods
7323   //===--------------------------------------------------------------------===//
7324 
7325   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7326   bool VisitCastExpr(const CastExpr *E);
7327   bool VisitBinaryOperator(const BinaryOperator *E);
7328   bool VisitUnaryOperator(const UnaryOperator *E);
7329   bool VisitInitListExpr(const InitListExpr *E);
7330 };
7331 } // end anonymous namespace
7332 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)7333 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7334                             EvalInfo &Info) {
7335   assert(E->isRValue() && E->getType()->isAnyComplexType());
7336   return ComplexExprEvaluator(Info, Result).Visit(E);
7337 }
7338 
ZeroInitialization(const Expr * E)7339 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7340   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7341   if (ElemTy->isRealFloatingType()) {
7342     Result.makeComplexFloat();
7343     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7344     Result.FloatReal = Zero;
7345     Result.FloatImag = Zero;
7346   } else {
7347     Result.makeComplexInt();
7348     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7349     Result.IntReal = Zero;
7350     Result.IntImag = Zero;
7351   }
7352   return true;
7353 }
7354 
VisitImaginaryLiteral(const ImaginaryLiteral * E)7355 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7356   const Expr* SubExpr = E->getSubExpr();
7357 
7358   if (SubExpr->getType()->isRealFloatingType()) {
7359     Result.makeComplexFloat();
7360     APFloat &Imag = Result.FloatImag;
7361     if (!EvaluateFloat(SubExpr, Imag, Info))
7362       return false;
7363 
7364     Result.FloatReal = APFloat(Imag.getSemantics());
7365     return true;
7366   } else {
7367     assert(SubExpr->getType()->isIntegerType() &&
7368            "Unexpected imaginary literal.");
7369 
7370     Result.makeComplexInt();
7371     APSInt &Imag = Result.IntImag;
7372     if (!EvaluateInteger(SubExpr, Imag, Info))
7373       return false;
7374 
7375     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7376     return true;
7377   }
7378 }
7379 
VisitCastExpr(const CastExpr * E)7380 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7381 
7382   switch (E->getCastKind()) {
7383   case CK_BitCast:
7384   case CK_BaseToDerived:
7385   case CK_DerivedToBase:
7386   case CK_UncheckedDerivedToBase:
7387   case CK_Dynamic:
7388   case CK_ToUnion:
7389   case CK_ArrayToPointerDecay:
7390   case CK_FunctionToPointerDecay:
7391   case CK_NullToPointer:
7392   case CK_NullToMemberPointer:
7393   case CK_BaseToDerivedMemberPointer:
7394   case CK_DerivedToBaseMemberPointer:
7395   case CK_MemberPointerToBoolean:
7396   case CK_ReinterpretMemberPointer:
7397   case CK_ConstructorConversion:
7398   case CK_IntegralToPointer:
7399   case CK_PointerToIntegral:
7400   case CK_PointerToBoolean:
7401   case CK_ToVoid:
7402   case CK_VectorSplat:
7403   case CK_IntegralCast:
7404   case CK_IntegralToBoolean:
7405   case CK_IntegralToFloating:
7406   case CK_FloatingToIntegral:
7407   case CK_FloatingToBoolean:
7408   case CK_FloatingCast:
7409   case CK_CPointerToObjCPointerCast:
7410   case CK_BlockPointerToObjCPointerCast:
7411   case CK_AnyPointerToBlockPointerCast:
7412   case CK_ObjCObjectLValueCast:
7413   case CK_FloatingComplexToReal:
7414   case CK_FloatingComplexToBoolean:
7415   case CK_IntegralComplexToReal:
7416   case CK_IntegralComplexToBoolean:
7417   case CK_ARCProduceObject:
7418   case CK_ARCConsumeObject:
7419   case CK_ARCReclaimReturnedObject:
7420   case CK_ARCExtendBlockObject:
7421   case CK_CopyAndAutoreleaseBlockObject:
7422   case CK_BuiltinFnToFnPtr:
7423   case CK_ZeroToOCLEvent:
7424   case CK_NonAtomicToAtomic:
7425     llvm_unreachable("invalid cast kind for complex value");
7426 
7427   case CK_LValueToRValue:
7428   case CK_AtomicToNonAtomic:
7429   case CK_NoOp:
7430     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7431 
7432   case CK_Dependent:
7433   case CK_LValueBitCast:
7434   case CK_UserDefinedConversion:
7435     return Error(E);
7436 
7437   case CK_FloatingRealToComplex: {
7438     APFloat &Real = Result.FloatReal;
7439     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7440       return false;
7441 
7442     Result.makeComplexFloat();
7443     Result.FloatImag = APFloat(Real.getSemantics());
7444     return true;
7445   }
7446 
7447   case CK_FloatingComplexCast: {
7448     if (!Visit(E->getSubExpr()))
7449       return false;
7450 
7451     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7452     QualType From
7453       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7454 
7455     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7456            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7457   }
7458 
7459   case CK_FloatingComplexToIntegralComplex: {
7460     if (!Visit(E->getSubExpr()))
7461       return false;
7462 
7463     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7464     QualType From
7465       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7466     Result.makeComplexInt();
7467     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7468                                 To, Result.IntReal) &&
7469            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7470                                 To, Result.IntImag);
7471   }
7472 
7473   case CK_IntegralRealToComplex: {
7474     APSInt &Real = Result.IntReal;
7475     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7476       return false;
7477 
7478     Result.makeComplexInt();
7479     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7480     return true;
7481   }
7482 
7483   case CK_IntegralComplexCast: {
7484     if (!Visit(E->getSubExpr()))
7485       return false;
7486 
7487     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7488     QualType From
7489       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7490 
7491     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7492     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7493     return true;
7494   }
7495 
7496   case CK_IntegralComplexToFloatingComplex: {
7497     if (!Visit(E->getSubExpr()))
7498       return false;
7499 
7500     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7501     QualType From
7502       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7503     Result.makeComplexFloat();
7504     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7505                                 To, Result.FloatReal) &&
7506            HandleIntToFloatCast(Info, E, From, Result.IntImag,
7507                                 To, Result.FloatImag);
7508   }
7509   }
7510 
7511   llvm_unreachable("unknown cast resulting in complex value");
7512 }
7513 
VisitBinaryOperator(const BinaryOperator * E)7514 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7515   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7516     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7517 
7518   bool LHSOK = Visit(E->getLHS());
7519   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7520     return false;
7521 
7522   ComplexValue RHS;
7523   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7524     return false;
7525 
7526   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7527          "Invalid operands to binary operator.");
7528   switch (E->getOpcode()) {
7529   default: return Error(E);
7530   case BO_Add:
7531     if (Result.isComplexFloat()) {
7532       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7533                                        APFloat::rmNearestTiesToEven);
7534       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7535                                        APFloat::rmNearestTiesToEven);
7536     } else {
7537       Result.getComplexIntReal() += RHS.getComplexIntReal();
7538       Result.getComplexIntImag() += RHS.getComplexIntImag();
7539     }
7540     break;
7541   case BO_Sub:
7542     if (Result.isComplexFloat()) {
7543       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7544                                             APFloat::rmNearestTiesToEven);
7545       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7546                                             APFloat::rmNearestTiesToEven);
7547     } else {
7548       Result.getComplexIntReal() -= RHS.getComplexIntReal();
7549       Result.getComplexIntImag() -= RHS.getComplexIntImag();
7550     }
7551     break;
7552   case BO_Mul:
7553     if (Result.isComplexFloat()) {
7554       ComplexValue LHS = Result;
7555       APFloat &LHS_r = LHS.getComplexFloatReal();
7556       APFloat &LHS_i = LHS.getComplexFloatImag();
7557       APFloat &RHS_r = RHS.getComplexFloatReal();
7558       APFloat &RHS_i = RHS.getComplexFloatImag();
7559 
7560       APFloat Tmp = LHS_r;
7561       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7562       Result.getComplexFloatReal() = Tmp;
7563       Tmp = LHS_i;
7564       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7565       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7566 
7567       Tmp = LHS_r;
7568       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7569       Result.getComplexFloatImag() = Tmp;
7570       Tmp = LHS_i;
7571       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7572       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7573     } else {
7574       ComplexValue LHS = Result;
7575       Result.getComplexIntReal() =
7576         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7577          LHS.getComplexIntImag() * RHS.getComplexIntImag());
7578       Result.getComplexIntImag() =
7579         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7580          LHS.getComplexIntImag() * RHS.getComplexIntReal());
7581     }
7582     break;
7583   case BO_Div:
7584     if (Result.isComplexFloat()) {
7585       ComplexValue LHS = Result;
7586       APFloat &LHS_r = LHS.getComplexFloatReal();
7587       APFloat &LHS_i = LHS.getComplexFloatImag();
7588       APFloat &RHS_r = RHS.getComplexFloatReal();
7589       APFloat &RHS_i = RHS.getComplexFloatImag();
7590       APFloat &Res_r = Result.getComplexFloatReal();
7591       APFloat &Res_i = Result.getComplexFloatImag();
7592 
7593       APFloat Den = RHS_r;
7594       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7595       APFloat Tmp = RHS_i;
7596       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7597       Den.add(Tmp, APFloat::rmNearestTiesToEven);
7598 
7599       Res_r = LHS_r;
7600       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7601       Tmp = LHS_i;
7602       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7603       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7604       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7605 
7606       Res_i = LHS_i;
7607       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7608       Tmp = LHS_r;
7609       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7610       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7611       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7612     } else {
7613       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7614         return Error(E, diag::note_expr_divide_by_zero);
7615 
7616       ComplexValue LHS = Result;
7617       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7618         RHS.getComplexIntImag() * RHS.getComplexIntImag();
7619       Result.getComplexIntReal() =
7620         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7621          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7622       Result.getComplexIntImag() =
7623         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7624          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7625     }
7626     break;
7627   }
7628 
7629   return true;
7630 }
7631 
VisitUnaryOperator(const UnaryOperator * E)7632 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7633   // Get the operand value into 'Result'.
7634   if (!Visit(E->getSubExpr()))
7635     return false;
7636 
7637   switch (E->getOpcode()) {
7638   default:
7639     return Error(E);
7640   case UO_Extension:
7641     return true;
7642   case UO_Plus:
7643     // The result is always just the subexpr.
7644     return true;
7645   case UO_Minus:
7646     if (Result.isComplexFloat()) {
7647       Result.getComplexFloatReal().changeSign();
7648       Result.getComplexFloatImag().changeSign();
7649     }
7650     else {
7651       Result.getComplexIntReal() = -Result.getComplexIntReal();
7652       Result.getComplexIntImag() = -Result.getComplexIntImag();
7653     }
7654     return true;
7655   case UO_Not:
7656     if (Result.isComplexFloat())
7657       Result.getComplexFloatImag().changeSign();
7658     else
7659       Result.getComplexIntImag() = -Result.getComplexIntImag();
7660     return true;
7661   }
7662 }
7663 
VisitInitListExpr(const InitListExpr * E)7664 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7665   if (E->getNumInits() == 2) {
7666     if (E->getType()->isComplexType()) {
7667       Result.makeComplexFloat();
7668       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7669         return false;
7670       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7671         return false;
7672     } else {
7673       Result.makeComplexInt();
7674       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7675         return false;
7676       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7677         return false;
7678     }
7679     return true;
7680   }
7681   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7682 }
7683 
7684 //===----------------------------------------------------------------------===//
7685 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7686 // implicit conversion.
7687 //===----------------------------------------------------------------------===//
7688 
7689 namespace {
7690 class AtomicExprEvaluator :
7691     public ExprEvaluatorBase<AtomicExprEvaluator, bool> {
7692   APValue &Result;
7693 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)7694   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7695       : ExprEvaluatorBaseTy(Info), Result(Result) {}
7696 
Success(const APValue & V,const Expr * E)7697   bool Success(const APValue &V, const Expr *E) {
7698     Result = V;
7699     return true;
7700   }
7701 
ZeroInitialization(const Expr * E)7702   bool ZeroInitialization(const Expr *E) {
7703     ImplicitValueInitExpr VIE(
7704         E->getType()->castAs<AtomicType>()->getValueType());
7705     return Evaluate(Result, Info, &VIE);
7706   }
7707 
VisitCastExpr(const CastExpr * E)7708   bool VisitCastExpr(const CastExpr *E) {
7709     switch (E->getCastKind()) {
7710     default:
7711       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7712     case CK_NonAtomicToAtomic:
7713       return Evaluate(Result, Info, E->getSubExpr());
7714     }
7715   }
7716 };
7717 } // end anonymous namespace
7718 
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)7719 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7720   assert(E->isRValue() && E->getType()->isAtomicType());
7721   return AtomicExprEvaluator(Info, Result).Visit(E);
7722 }
7723 
7724 //===----------------------------------------------------------------------===//
7725 // Void expression evaluation, primarily for a cast to void on the LHS of a
7726 // comma operator
7727 //===----------------------------------------------------------------------===//
7728 
7729 namespace {
7730 class VoidExprEvaluator
7731   : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
7732 public:
VoidExprEvaluator(EvalInfo & Info)7733   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7734 
Success(const APValue & V,const Expr * e)7735   bool Success(const APValue &V, const Expr *e) { return true; }
7736 
VisitCastExpr(const CastExpr * E)7737   bool VisitCastExpr(const CastExpr *E) {
7738     switch (E->getCastKind()) {
7739     default:
7740       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7741     case CK_ToVoid:
7742       VisitIgnoredValue(E->getSubExpr());
7743       return true;
7744     }
7745   }
7746 };
7747 } // end anonymous namespace
7748 
EvaluateVoid(const Expr * E,EvalInfo & Info)7749 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7750   assert(E->isRValue() && E->getType()->isVoidType());
7751   return VoidExprEvaluator(Info).Visit(E);
7752 }
7753 
7754 //===----------------------------------------------------------------------===//
7755 // Top level Expr::EvaluateAsRValue method.
7756 //===----------------------------------------------------------------------===//
7757 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)7758 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7759   // In C, function designators are not lvalues, but we evaluate them as if they
7760   // are.
7761   QualType T = E->getType();
7762   if (E->isGLValue() || T->isFunctionType()) {
7763     LValue LV;
7764     if (!EvaluateLValue(E, LV, Info))
7765       return false;
7766     LV.moveInto(Result);
7767   } else if (T->isVectorType()) {
7768     if (!EvaluateVector(E, Result, Info))
7769       return false;
7770   } else if (T->isIntegralOrEnumerationType()) {
7771     if (!IntExprEvaluator(Info, Result).Visit(E))
7772       return false;
7773   } else if (T->hasPointerRepresentation()) {
7774     LValue LV;
7775     if (!EvaluatePointer(E, LV, Info))
7776       return false;
7777     LV.moveInto(Result);
7778   } else if (T->isRealFloatingType()) {
7779     llvm::APFloat F(0.0);
7780     if (!EvaluateFloat(E, F, Info))
7781       return false;
7782     Result = APValue(F);
7783   } else if (T->isAnyComplexType()) {
7784     ComplexValue C;
7785     if (!EvaluateComplex(E, C, Info))
7786       return false;
7787     C.moveInto(Result);
7788   } else if (T->isMemberPointerType()) {
7789     MemberPtr P;
7790     if (!EvaluateMemberPointer(E, P, Info))
7791       return false;
7792     P.moveInto(Result);
7793     return true;
7794   } else if (T->isArrayType()) {
7795     LValue LV;
7796     LV.set(E, Info.CurrentCall->Index);
7797     APValue &Value = Info.CurrentCall->createTemporary(E, false);
7798     if (!EvaluateArray(E, LV, Value, Info))
7799       return false;
7800     Result = Value;
7801   } else if (T->isRecordType()) {
7802     LValue LV;
7803     LV.set(E, Info.CurrentCall->Index);
7804     APValue &Value = Info.CurrentCall->createTemporary(E, false);
7805     if (!EvaluateRecord(E, LV, Value, Info))
7806       return false;
7807     Result = Value;
7808   } else if (T->isVoidType()) {
7809     if (!Info.getLangOpts().CPlusPlus11)
7810       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
7811         << E->getType();
7812     if (!EvaluateVoid(E, Info))
7813       return false;
7814   } else if (T->isAtomicType()) {
7815     if (!EvaluateAtomic(E, Result, Info))
7816       return false;
7817   } else if (Info.getLangOpts().CPlusPlus11) {
7818     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
7819     return false;
7820   } else {
7821     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
7822     return false;
7823   }
7824 
7825   return true;
7826 }
7827 
7828 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
7829 /// cases, the in-place evaluation is essential, since later initializers for
7830 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)7831 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
7832                             const Expr *E, bool AllowNonLiteralTypes) {
7833   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
7834     return false;
7835 
7836   if (E->isRValue()) {
7837     // Evaluate arrays and record types in-place, so that later initializers can
7838     // refer to earlier-initialized members of the object.
7839     if (E->getType()->isArrayType())
7840       return EvaluateArray(E, This, Result, Info);
7841     else if (E->getType()->isRecordType())
7842       return EvaluateRecord(E, This, Result, Info);
7843   }
7844 
7845   // For any other type, in-place evaluation is unimportant.
7846   return Evaluate(Result, Info, E);
7847 }
7848 
7849 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
7850 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)7851 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
7852   if (!CheckLiteralType(Info, E))
7853     return false;
7854 
7855   if (!::Evaluate(Result, Info, E))
7856     return false;
7857 
7858   if (E->isGLValue()) {
7859     LValue LV;
7860     LV.setFrom(Info.Ctx, Result);
7861     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
7862       return false;
7863   }
7864 
7865   // Check this core constant expression is a constant expression.
7866   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
7867 }
7868 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)7869 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
7870                                  const ASTContext &Ctx, bool &IsConst) {
7871   // Fast-path evaluations of integer literals, since we sometimes see files
7872   // containing vast quantities of these.
7873   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
7874     Result.Val = APValue(APSInt(L->getValue(),
7875                                 L->getType()->isUnsignedIntegerType()));
7876     IsConst = true;
7877     return true;
7878   }
7879 
7880   // FIXME: Evaluating values of large array and record types can cause
7881   // performance problems. Only do so in C++11 for now.
7882   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
7883                           Exp->getType()->isRecordType()) &&
7884       !Ctx.getLangOpts().CPlusPlus11) {
7885     IsConst = false;
7886     return true;
7887   }
7888   return false;
7889 }
7890 
7891 
7892 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
7893 /// any crazy technique (that has nothing to do with language standards) that
7894 /// we want to.  If this function returns true, it returns the folded constant
7895 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
7896 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const7897 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
7898   bool IsConst;
7899   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
7900     return IsConst;
7901 
7902   EvalInfo Info(Ctx, Result);
7903   return ::EvaluateAsRValue(Info, this, Result.Val);
7904 }
7905 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const7906 bool Expr::EvaluateAsBooleanCondition(bool &Result,
7907                                       const ASTContext &Ctx) const {
7908   EvalResult Scratch;
7909   return EvaluateAsRValue(Scratch, Ctx) &&
7910          HandleConversionToBool(Scratch.Val, Result);
7911 }
7912 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const7913 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
7914                          SideEffectsKind AllowSideEffects) const {
7915   if (!getType()->isIntegralOrEnumerationType())
7916     return false;
7917 
7918   EvalResult ExprResult;
7919   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
7920       (!AllowSideEffects && ExprResult.HasSideEffects))
7921     return false;
7922 
7923   Result = ExprResult.Val.getInt();
7924   return true;
7925 }
7926 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const7927 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
7928   EvalInfo Info(Ctx, Result);
7929 
7930   LValue LV;
7931   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
7932       !CheckLValueConstantExpression(Info, getExprLoc(),
7933                                      Ctx.getLValueReferenceType(getType()), LV))
7934     return false;
7935 
7936   LV.moveInto(Result.Val);
7937   return true;
7938 }
7939 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const7940 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
7941                                  const VarDecl *VD,
7942                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
7943   // FIXME: Evaluating initializers for large array and record types can cause
7944   // performance problems. Only do so in C++11 for now.
7945   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
7946       !Ctx.getLangOpts().CPlusPlus11)
7947     return false;
7948 
7949   Expr::EvalStatus EStatus;
7950   EStatus.Diag = &Notes;
7951 
7952   EvalInfo InitInfo(Ctx, EStatus);
7953   InitInfo.setEvaluatingDecl(VD, Value);
7954 
7955   LValue LVal;
7956   LVal.set(VD);
7957 
7958   // C++11 [basic.start.init]p2:
7959   //  Variables with static storage duration or thread storage duration shall be
7960   //  zero-initialized before any other initialization takes place.
7961   // This behavior is not present in C.
7962   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
7963       !VD->getType()->isReferenceType()) {
7964     ImplicitValueInitExpr VIE(VD->getType());
7965     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
7966                          /*AllowNonLiteralTypes=*/true))
7967       return false;
7968   }
7969 
7970   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
7971                        /*AllowNonLiteralTypes=*/true) ||
7972       EStatus.HasSideEffects)
7973     return false;
7974 
7975   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
7976                                  Value);
7977 }
7978 
7979 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
7980 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const7981 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
7982   EvalResult Result;
7983   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
7984 }
7985 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const7986 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
7987                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
7988   EvalResult EvalResult;
7989   EvalResult.Diag = Diag;
7990   bool Result = EvaluateAsRValue(EvalResult, Ctx);
7991   (void)Result;
7992   assert(Result && "Could not evaluate expression");
7993   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
7994 
7995   return EvalResult.Val.getInt();
7996 }
7997 
EvaluateForOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diags) const7998 void Expr::EvaluateForOverflow(const ASTContext &Ctx,
7999                     SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
8000   bool IsConst;
8001   EvalResult EvalResult;
8002   EvalResult.Diag = Diags;
8003   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8004     EvalInfo Info(Ctx, EvalResult, true);
8005     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8006   }
8007 }
8008 
isGlobalLValue() const8009 bool Expr::EvalResult::isGlobalLValue() const {
8010   assert(Val.isLValue());
8011   return IsGlobalLValue(Val.getLValueBase());
8012 }
8013 
8014 
8015 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8016 /// an integer constant expression.
8017 
8018 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8019 /// comma, etc
8020 
8021 // CheckICE - This function does the fundamental ICE checking: the returned
8022 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8023 // and a (possibly null) SourceLocation indicating the location of the problem.
8024 //
8025 // Note that to reduce code duplication, this helper does no evaluation
8026 // itself; the caller checks whether the expression is evaluatable, and
8027 // in the rare cases where CheckICE actually cares about the evaluated
8028 // value, it calls into Evalute.
8029 
8030 namespace {
8031 
8032 enum ICEKind {
8033   /// This expression is an ICE.
8034   IK_ICE,
8035   /// This expression is not an ICE, but if it isn't evaluated, it's
8036   /// a legal subexpression for an ICE. This return value is used to handle
8037   /// the comma operator in C99 mode, and non-constant subexpressions.
8038   IK_ICEIfUnevaluated,
8039   /// This expression is not an ICE, and is not a legal subexpression for one.
8040   IK_NotICE
8041 };
8042 
8043 struct ICEDiag {
8044   ICEKind Kind;
8045   SourceLocation Loc;
8046 
ICEDiag__anon383178e61911::ICEDiag8047   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8048 };
8049 
8050 }
8051 
NoDiag()8052 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8053 
Worst(ICEDiag A,ICEDiag B)8054 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8055 
CheckEvalInICE(const Expr * E,ASTContext & Ctx)8056 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
8057   Expr::EvalResult EVResult;
8058   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8059       !EVResult.Val.isInt())
8060     return ICEDiag(IK_NotICE, E->getLocStart());
8061 
8062   return NoDiag();
8063 }
8064 
CheckICE(const Expr * E,ASTContext & Ctx)8065 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
8066   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8067   if (!E->getType()->isIntegralOrEnumerationType())
8068     return ICEDiag(IK_NotICE, E->getLocStart());
8069 
8070   switch (E->getStmtClass()) {
8071 #define ABSTRACT_STMT(Node)
8072 #define STMT(Node, Base) case Expr::Node##Class:
8073 #define EXPR(Node, Base)
8074 #include "clang/AST/StmtNodes.inc"
8075   case Expr::PredefinedExprClass:
8076   case Expr::FloatingLiteralClass:
8077   case Expr::ImaginaryLiteralClass:
8078   case Expr::StringLiteralClass:
8079   case Expr::ArraySubscriptExprClass:
8080   case Expr::MemberExprClass:
8081   case Expr::CompoundAssignOperatorClass:
8082   case Expr::CompoundLiteralExprClass:
8083   case Expr::ExtVectorElementExprClass:
8084   case Expr::DesignatedInitExprClass:
8085   case Expr::ImplicitValueInitExprClass:
8086   case Expr::ParenListExprClass:
8087   case Expr::VAArgExprClass:
8088   case Expr::AddrLabelExprClass:
8089   case Expr::StmtExprClass:
8090   case Expr::CXXMemberCallExprClass:
8091   case Expr::CUDAKernelCallExprClass:
8092   case Expr::CXXDynamicCastExprClass:
8093   case Expr::CXXTypeidExprClass:
8094   case Expr::CXXUuidofExprClass:
8095   case Expr::MSPropertyRefExprClass:
8096   case Expr::CXXNullPtrLiteralExprClass:
8097   case Expr::UserDefinedLiteralClass:
8098   case Expr::CXXThisExprClass:
8099   case Expr::CXXThrowExprClass:
8100   case Expr::CXXNewExprClass:
8101   case Expr::CXXDeleteExprClass:
8102   case Expr::CXXPseudoDestructorExprClass:
8103   case Expr::UnresolvedLookupExprClass:
8104   case Expr::DependentScopeDeclRefExprClass:
8105   case Expr::CXXConstructExprClass:
8106   case Expr::CXXStdInitializerListExprClass:
8107   case Expr::CXXBindTemporaryExprClass:
8108   case Expr::ExprWithCleanupsClass:
8109   case Expr::CXXTemporaryObjectExprClass:
8110   case Expr::CXXUnresolvedConstructExprClass:
8111   case Expr::CXXDependentScopeMemberExprClass:
8112   case Expr::UnresolvedMemberExprClass:
8113   case Expr::ObjCStringLiteralClass:
8114   case Expr::ObjCBoxedExprClass:
8115   case Expr::ObjCArrayLiteralClass:
8116   case Expr::ObjCDictionaryLiteralClass:
8117   case Expr::ObjCEncodeExprClass:
8118   case Expr::ObjCMessageExprClass:
8119   case Expr::ObjCSelectorExprClass:
8120   case Expr::ObjCProtocolExprClass:
8121   case Expr::ObjCIvarRefExprClass:
8122   case Expr::ObjCPropertyRefExprClass:
8123   case Expr::ObjCSubscriptRefExprClass:
8124   case Expr::ObjCIsaExprClass:
8125   case Expr::ShuffleVectorExprClass:
8126   case Expr::BlockExprClass:
8127   case Expr::NoStmtClass:
8128   case Expr::OpaqueValueExprClass:
8129   case Expr::PackExpansionExprClass:
8130   case Expr::SubstNonTypeTemplateParmPackExprClass:
8131   case Expr::FunctionParmPackExprClass:
8132   case Expr::AsTypeExprClass:
8133   case Expr::ObjCIndirectCopyRestoreExprClass:
8134   case Expr::MaterializeTemporaryExprClass:
8135   case Expr::PseudoObjectExprClass:
8136   case Expr::AtomicExprClass:
8137   case Expr::InitListExprClass:
8138   case Expr::LambdaExprClass:
8139     return ICEDiag(IK_NotICE, E->getLocStart());
8140 
8141   case Expr::SizeOfPackExprClass:
8142   case Expr::GNUNullExprClass:
8143     // GCC considers the GNU __null value to be an integral constant expression.
8144     return NoDiag();
8145 
8146   case Expr::SubstNonTypeTemplateParmExprClass:
8147     return
8148       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8149 
8150   case Expr::ParenExprClass:
8151     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8152   case Expr::GenericSelectionExprClass:
8153     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8154   case Expr::IntegerLiteralClass:
8155   case Expr::CharacterLiteralClass:
8156   case Expr::ObjCBoolLiteralExprClass:
8157   case Expr::CXXBoolLiteralExprClass:
8158   case Expr::CXXScalarValueInitExprClass:
8159   case Expr::UnaryTypeTraitExprClass:
8160   case Expr::BinaryTypeTraitExprClass:
8161   case Expr::TypeTraitExprClass:
8162   case Expr::ArrayTypeTraitExprClass:
8163   case Expr::ExpressionTraitExprClass:
8164   case Expr::CXXNoexceptExprClass:
8165     return NoDiag();
8166   case Expr::CallExprClass:
8167   case Expr::CXXOperatorCallExprClass: {
8168     // C99 6.6/3 allows function calls within unevaluated subexpressions of
8169     // constant expressions, but they can never be ICEs because an ICE cannot
8170     // contain an operand of (pointer to) function type.
8171     const CallExpr *CE = cast<CallExpr>(E);
8172     if (CE->isBuiltinCall())
8173       return CheckEvalInICE(E, Ctx);
8174     return ICEDiag(IK_NotICE, E->getLocStart());
8175   }
8176   case Expr::DeclRefExprClass: {
8177     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8178       return NoDiag();
8179     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8180     if (Ctx.getLangOpts().CPlusPlus &&
8181         D && IsConstNonVolatile(D->getType())) {
8182       // Parameter variables are never constants.  Without this check,
8183       // getAnyInitializer() can find a default argument, which leads
8184       // to chaos.
8185       if (isa<ParmVarDecl>(D))
8186         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8187 
8188       // C++ 7.1.5.1p2
8189       //   A variable of non-volatile const-qualified integral or enumeration
8190       //   type initialized by an ICE can be used in ICEs.
8191       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8192         if (!Dcl->getType()->isIntegralOrEnumerationType())
8193           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8194 
8195         const VarDecl *VD;
8196         // Look for a declaration of this variable that has an initializer, and
8197         // check whether it is an ICE.
8198         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8199           return NoDiag();
8200         else
8201           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8202       }
8203     }
8204     return ICEDiag(IK_NotICE, E->getLocStart());
8205   }
8206   case Expr::UnaryOperatorClass: {
8207     const UnaryOperator *Exp = cast<UnaryOperator>(E);
8208     switch (Exp->getOpcode()) {
8209     case UO_PostInc:
8210     case UO_PostDec:
8211     case UO_PreInc:
8212     case UO_PreDec:
8213     case UO_AddrOf:
8214     case UO_Deref:
8215       // C99 6.6/3 allows increment and decrement within unevaluated
8216       // subexpressions of constant expressions, but they can never be ICEs
8217       // because an ICE cannot contain an lvalue operand.
8218       return ICEDiag(IK_NotICE, E->getLocStart());
8219     case UO_Extension:
8220     case UO_LNot:
8221     case UO_Plus:
8222     case UO_Minus:
8223     case UO_Not:
8224     case UO_Real:
8225     case UO_Imag:
8226       return CheckICE(Exp->getSubExpr(), Ctx);
8227     }
8228 
8229     // OffsetOf falls through here.
8230   }
8231   case Expr::OffsetOfExprClass: {
8232     // Note that per C99, offsetof must be an ICE. And AFAIK, using
8233     // EvaluateAsRValue matches the proposed gcc behavior for cases like
8234     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
8235     // compliance: we should warn earlier for offsetof expressions with
8236     // array subscripts that aren't ICEs, and if the array subscripts
8237     // are ICEs, the value of the offsetof must be an integer constant.
8238     return CheckEvalInICE(E, Ctx);
8239   }
8240   case Expr::UnaryExprOrTypeTraitExprClass: {
8241     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8242     if ((Exp->getKind() ==  UETT_SizeOf) &&
8243         Exp->getTypeOfArgument()->isVariableArrayType())
8244       return ICEDiag(IK_NotICE, E->getLocStart());
8245     return NoDiag();
8246   }
8247   case Expr::BinaryOperatorClass: {
8248     const BinaryOperator *Exp = cast<BinaryOperator>(E);
8249     switch (Exp->getOpcode()) {
8250     case BO_PtrMemD:
8251     case BO_PtrMemI:
8252     case BO_Assign:
8253     case BO_MulAssign:
8254     case BO_DivAssign:
8255     case BO_RemAssign:
8256     case BO_AddAssign:
8257     case BO_SubAssign:
8258     case BO_ShlAssign:
8259     case BO_ShrAssign:
8260     case BO_AndAssign:
8261     case BO_XorAssign:
8262     case BO_OrAssign:
8263       // C99 6.6/3 allows assignments within unevaluated subexpressions of
8264       // constant expressions, but they can never be ICEs because an ICE cannot
8265       // contain an lvalue operand.
8266       return ICEDiag(IK_NotICE, E->getLocStart());
8267 
8268     case BO_Mul:
8269     case BO_Div:
8270     case BO_Rem:
8271     case BO_Add:
8272     case BO_Sub:
8273     case BO_Shl:
8274     case BO_Shr:
8275     case BO_LT:
8276     case BO_GT:
8277     case BO_LE:
8278     case BO_GE:
8279     case BO_EQ:
8280     case BO_NE:
8281     case BO_And:
8282     case BO_Xor:
8283     case BO_Or:
8284     case BO_Comma: {
8285       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8286       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8287       if (Exp->getOpcode() == BO_Div ||
8288           Exp->getOpcode() == BO_Rem) {
8289         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8290         // we don't evaluate one.
8291         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8292           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8293           if (REval == 0)
8294             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8295           if (REval.isSigned() && REval.isAllOnesValue()) {
8296             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8297             if (LEval.isMinSignedValue())
8298               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8299           }
8300         }
8301       }
8302       if (Exp->getOpcode() == BO_Comma) {
8303         if (Ctx.getLangOpts().C99) {
8304           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8305           // if it isn't evaluated.
8306           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8307             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8308         } else {
8309           // In both C89 and C++, commas in ICEs are illegal.
8310           return ICEDiag(IK_NotICE, E->getLocStart());
8311         }
8312       }
8313       return Worst(LHSResult, RHSResult);
8314     }
8315     case BO_LAnd:
8316     case BO_LOr: {
8317       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8318       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8319       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8320         // Rare case where the RHS has a comma "side-effect"; we need
8321         // to actually check the condition to see whether the side
8322         // with the comma is evaluated.
8323         if ((Exp->getOpcode() == BO_LAnd) !=
8324             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8325           return RHSResult;
8326         return NoDiag();
8327       }
8328 
8329       return Worst(LHSResult, RHSResult);
8330     }
8331     }
8332   }
8333   case Expr::ImplicitCastExprClass:
8334   case Expr::CStyleCastExprClass:
8335   case Expr::CXXFunctionalCastExprClass:
8336   case Expr::CXXStaticCastExprClass:
8337   case Expr::CXXReinterpretCastExprClass:
8338   case Expr::CXXConstCastExprClass:
8339   case Expr::ObjCBridgedCastExprClass: {
8340     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8341     if (isa<ExplicitCastExpr>(E)) {
8342       if (const FloatingLiteral *FL
8343             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8344         unsigned DestWidth = Ctx.getIntWidth(E->getType());
8345         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8346         APSInt IgnoredVal(DestWidth, !DestSigned);
8347         bool Ignored;
8348         // If the value does not fit in the destination type, the behavior is
8349         // undefined, so we are not required to treat it as a constant
8350         // expression.
8351         if (FL->getValue().convertToInteger(IgnoredVal,
8352                                             llvm::APFloat::rmTowardZero,
8353                                             &Ignored) & APFloat::opInvalidOp)
8354           return ICEDiag(IK_NotICE, E->getLocStart());
8355         return NoDiag();
8356       }
8357     }
8358     switch (cast<CastExpr>(E)->getCastKind()) {
8359     case CK_LValueToRValue:
8360     case CK_AtomicToNonAtomic:
8361     case CK_NonAtomicToAtomic:
8362     case CK_NoOp:
8363     case CK_IntegralToBoolean:
8364     case CK_IntegralCast:
8365       return CheckICE(SubExpr, Ctx);
8366     default:
8367       return ICEDiag(IK_NotICE, E->getLocStart());
8368     }
8369   }
8370   case Expr::BinaryConditionalOperatorClass: {
8371     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8372     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8373     if (CommonResult.Kind == IK_NotICE) return CommonResult;
8374     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8375     if (FalseResult.Kind == IK_NotICE) return FalseResult;
8376     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8377     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8378         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8379     return FalseResult;
8380   }
8381   case Expr::ConditionalOperatorClass: {
8382     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8383     // If the condition (ignoring parens) is a __builtin_constant_p call,
8384     // then only the true side is actually considered in an integer constant
8385     // expression, and it is fully evaluated.  This is an important GNU
8386     // extension.  See GCC PR38377 for discussion.
8387     if (const CallExpr *CallCE
8388         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8389       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
8390         return CheckEvalInICE(E, Ctx);
8391     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8392     if (CondResult.Kind == IK_NotICE)
8393       return CondResult;
8394 
8395     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8396     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8397 
8398     if (TrueResult.Kind == IK_NotICE)
8399       return TrueResult;
8400     if (FalseResult.Kind == IK_NotICE)
8401       return FalseResult;
8402     if (CondResult.Kind == IK_ICEIfUnevaluated)
8403       return CondResult;
8404     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8405       return NoDiag();
8406     // Rare case where the diagnostics depend on which side is evaluated
8407     // Note that if we get here, CondResult is 0, and at least one of
8408     // TrueResult and FalseResult is non-zero.
8409     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8410       return FalseResult;
8411     return TrueResult;
8412   }
8413   case Expr::CXXDefaultArgExprClass:
8414     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8415   case Expr::CXXDefaultInitExprClass:
8416     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8417   case Expr::ChooseExprClass: {
8418     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
8419   }
8420   }
8421 
8422   llvm_unreachable("Invalid StmtClass!");
8423 }
8424 
8425 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)8426 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
8427                                                     const Expr *E,
8428                                                     llvm::APSInt *Value,
8429                                                     SourceLocation *Loc) {
8430   if (!E->getType()->isIntegralOrEnumerationType()) {
8431     if (Loc) *Loc = E->getExprLoc();
8432     return false;
8433   }
8434 
8435   APValue Result;
8436   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8437     return false;
8438 
8439   assert(Result.isInt() && "pointer cast to int is not an ICE");
8440   if (Value) *Value = Result.getInt();
8441   return true;
8442 }
8443 
isIntegerConstantExpr(ASTContext & Ctx,SourceLocation * Loc) const8444 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
8445   if (Ctx.getLangOpts().CPlusPlus11)
8446     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
8447 
8448   ICEDiag D = CheckICE(this, Ctx);
8449   if (D.Kind != IK_ICE) {
8450     if (Loc) *Loc = D.Loc;
8451     return false;
8452   }
8453   return true;
8454 }
8455 
isIntegerConstantExpr(llvm::APSInt & Value,ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const8456 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
8457                                  SourceLocation *Loc, bool isEvaluated) const {
8458   if (Ctx.getLangOpts().CPlusPlus11)
8459     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8460 
8461   if (!isIntegerConstantExpr(Ctx, Loc))
8462     return false;
8463   if (!EvaluateAsInt(Value, Ctx))
8464     llvm_unreachable("ICE cannot be evaluated!");
8465   return true;
8466 }
8467 
isCXX98IntegralConstantExpr(ASTContext & Ctx) const8468 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
8469   return CheckICE(this, Ctx).Kind == IK_ICE;
8470 }
8471 
isCXX11ConstantExpr(ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const8472 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
8473                                SourceLocation *Loc) const {
8474   // We support this checking in C++98 mode in order to diagnose compatibility
8475   // issues.
8476   assert(Ctx.getLangOpts().CPlusPlus);
8477 
8478   // Build evaluation settings.
8479   Expr::EvalStatus Status;
8480   SmallVector<PartialDiagnosticAt, 8> Diags;
8481   Status.Diag = &Diags;
8482   EvalInfo Info(Ctx, Status);
8483 
8484   APValue Scratch;
8485   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8486 
8487   if (!Diags.empty()) {
8488     IsConstExpr = false;
8489     if (Loc) *Loc = Diags[0].first;
8490   } else if (!IsConstExpr) {
8491     // FIXME: This shouldn't happen.
8492     if (Loc) *Loc = getExprLoc();
8493   }
8494 
8495   return IsConstExpr;
8496 }
8497 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)8498 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8499                                    SmallVectorImpl<
8500                                      PartialDiagnosticAt> &Diags) {
8501   // FIXME: It would be useful to check constexpr function templates, but at the
8502   // moment the constant expression evaluator cannot cope with the non-rigorous
8503   // ASTs which we build for dependent expressions.
8504   if (FD->isDependentContext())
8505     return true;
8506 
8507   Expr::EvalStatus Status;
8508   Status.Diag = &Diags;
8509 
8510   EvalInfo Info(FD->getASTContext(), Status);
8511   Info.CheckingPotentialConstantExpression = true;
8512 
8513   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8514   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
8515 
8516   // Fabricate an arbitrary expression on the stack and pretend that it
8517   // is a temporary being used as the 'this' pointer.
8518   LValue This;
8519   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8520   This.set(&VIE, Info.CurrentCall->Index);
8521 
8522   ArrayRef<const Expr*> Args;
8523 
8524   SourceLocation Loc = FD->getLocation();
8525 
8526   APValue Scratch;
8527   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8528     // Evaluate the call as a constant initializer, to allow the construction
8529     // of objects of non-literal types.
8530     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8531     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8532   } else
8533     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
8534                        Args, FD->getBody(), Info, Scratch);
8535 
8536   return Diags.empty();
8537 }
8538