1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/LexDiagnostic.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/ConvertUTF.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 using namespace clang;
25
getCharWidth(tok::TokenKind kind,const TargetInfo & Target)26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27 switch (kind) {
28 default: llvm_unreachable("Unknown token type!");
29 case tok::char_constant:
30 case tok::string_literal:
31 case tok::utf8_string_literal:
32 return Target.getCharWidth();
33 case tok::wide_char_constant:
34 case tok::wide_string_literal:
35 return Target.getWCharWidth();
36 case tok::utf16_char_constant:
37 case tok::utf16_string_literal:
38 return Target.getChar16Width();
39 case tok::utf32_char_constant:
40 case tok::utf32_string_literal:
41 return Target.getChar32Width();
42 }
43 }
44
MakeCharSourceRange(const LangOptions & Features,FullSourceLoc TokLoc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd)45 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
46 FullSourceLoc TokLoc,
47 const char *TokBegin,
48 const char *TokRangeBegin,
49 const char *TokRangeEnd) {
50 SourceLocation Begin =
51 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
52 TokLoc.getManager(), Features);
53 SourceLocation End =
54 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
55 TokLoc.getManager(), Features);
56 return CharSourceRange::getCharRange(Begin, End);
57 }
58
59 /// \brief Produce a diagnostic highlighting some portion of a literal.
60 ///
61 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
62 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
63 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
Diag(DiagnosticsEngine * Diags,const LangOptions & Features,FullSourceLoc TokLoc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd,unsigned DiagID)64 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
65 const LangOptions &Features, FullSourceLoc TokLoc,
66 const char *TokBegin, const char *TokRangeBegin,
67 const char *TokRangeEnd, unsigned DiagID) {
68 SourceLocation Begin =
69 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
70 TokLoc.getManager(), Features);
71 return Diags->Report(Begin, DiagID) <<
72 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
73 }
74
75 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
76 /// either a character or a string literal.
ProcessCharEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,bool & HadError,FullSourceLoc Loc,unsigned CharWidth,DiagnosticsEngine * Diags,const LangOptions & Features)77 static unsigned ProcessCharEscape(const char *ThisTokBegin,
78 const char *&ThisTokBuf,
79 const char *ThisTokEnd, bool &HadError,
80 FullSourceLoc Loc, unsigned CharWidth,
81 DiagnosticsEngine *Diags,
82 const LangOptions &Features) {
83 const char *EscapeBegin = ThisTokBuf;
84
85 // Skip the '\' char.
86 ++ThisTokBuf;
87
88 // We know that this character can't be off the end of the buffer, because
89 // that would have been \", which would not have been the end of string.
90 unsigned ResultChar = *ThisTokBuf++;
91 switch (ResultChar) {
92 // These map to themselves.
93 case '\\': case '\'': case '"': case '?': break;
94
95 // These have fixed mappings.
96 case 'a':
97 // TODO: K&R: the meaning of '\\a' is different in traditional C
98 ResultChar = 7;
99 break;
100 case 'b':
101 ResultChar = 8;
102 break;
103 case 'e':
104 if (Diags)
105 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
106 diag::ext_nonstandard_escape) << "e";
107 ResultChar = 27;
108 break;
109 case 'E':
110 if (Diags)
111 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
112 diag::ext_nonstandard_escape) << "E";
113 ResultChar = 27;
114 break;
115 case 'f':
116 ResultChar = 12;
117 break;
118 case 'n':
119 ResultChar = 10;
120 break;
121 case 'r':
122 ResultChar = 13;
123 break;
124 case 't':
125 ResultChar = 9;
126 break;
127 case 'v':
128 ResultChar = 11;
129 break;
130 case 'x': { // Hex escape.
131 ResultChar = 0;
132 if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
133 if (Diags)
134 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
135 diag::err_hex_escape_no_digits) << "x";
136 HadError = 1;
137 break;
138 }
139
140 // Hex escapes are a maximal series of hex digits.
141 bool Overflow = false;
142 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
143 int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
144 if (CharVal == -1) break;
145 // About to shift out a digit?
146 Overflow |= (ResultChar & 0xF0000000) ? true : false;
147 ResultChar <<= 4;
148 ResultChar |= CharVal;
149 }
150
151 // See if any bits will be truncated when evaluated as a character.
152 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
153 Overflow = true;
154 ResultChar &= ~0U >> (32-CharWidth);
155 }
156
157 // Check for overflow.
158 if (Overflow && Diags) // Too many digits to fit in
159 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
160 diag::err_hex_escape_too_large);
161 break;
162 }
163 case '0': case '1': case '2': case '3':
164 case '4': case '5': case '6': case '7': {
165 // Octal escapes.
166 --ThisTokBuf;
167 ResultChar = 0;
168
169 // Octal escapes are a series of octal digits with maximum length 3.
170 // "\0123" is a two digit sequence equal to "\012" "3".
171 unsigned NumDigits = 0;
172 do {
173 ResultChar <<= 3;
174 ResultChar |= *ThisTokBuf++ - '0';
175 ++NumDigits;
176 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
177 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
178
179 // Check for overflow. Reject '\777', but not L'\777'.
180 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
181 if (Diags)
182 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
183 diag::err_octal_escape_too_large);
184 ResultChar &= ~0U >> (32-CharWidth);
185 }
186 break;
187 }
188
189 // Otherwise, these are not valid escapes.
190 case '(': case '{': case '[': case '%':
191 // GCC accepts these as extensions. We warn about them as such though.
192 if (Diags)
193 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
194 diag::ext_nonstandard_escape)
195 << std::string(1, ResultChar);
196 break;
197 default:
198 if (Diags == 0)
199 break;
200
201 if (isPrintable(ResultChar))
202 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
203 diag::ext_unknown_escape)
204 << std::string(1, ResultChar);
205 else
206 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
207 diag::ext_unknown_escape)
208 << "x" + llvm::utohexstr(ResultChar);
209 break;
210 }
211
212 return ResultChar;
213 }
214
215 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
216 /// return the UTF32.
ProcessUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,FullSourceLoc Loc,DiagnosticsEngine * Diags,const LangOptions & Features,bool in_char_string_literal=false)217 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
218 const char *ThisTokEnd,
219 uint32_t &UcnVal, unsigned short &UcnLen,
220 FullSourceLoc Loc, DiagnosticsEngine *Diags,
221 const LangOptions &Features,
222 bool in_char_string_literal = false) {
223 const char *UcnBegin = ThisTokBuf;
224
225 // Skip the '\u' char's.
226 ThisTokBuf += 2;
227
228 if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
229 if (Diags)
230 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
231 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
232 return false;
233 }
234 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
235 unsigned short UcnLenSave = UcnLen;
236 for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
237 int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
238 if (CharVal == -1) break;
239 UcnVal <<= 4;
240 UcnVal |= CharVal;
241 }
242 // If we didn't consume the proper number of digits, there is a problem.
243 if (UcnLenSave) {
244 if (Diags)
245 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
246 diag::err_ucn_escape_incomplete);
247 return false;
248 }
249
250 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
251 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
252 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
253 if (Diags)
254 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
255 diag::err_ucn_escape_invalid);
256 return false;
257 }
258
259 // C++11 allows UCNs that refer to control characters and basic source
260 // characters inside character and string literals
261 if (UcnVal < 0xa0 &&
262 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
263 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
264 if (Diags) {
265 char BasicSCSChar = UcnVal;
266 if (UcnVal >= 0x20 && UcnVal < 0x7f)
267 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
268 IsError ? diag::err_ucn_escape_basic_scs :
269 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
270 << StringRef(&BasicSCSChar, 1);
271 else
272 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
273 IsError ? diag::err_ucn_control_character :
274 diag::warn_cxx98_compat_literal_ucn_control_character);
275 }
276 if (IsError)
277 return false;
278 }
279
280 if (!Features.CPlusPlus && !Features.C99 && Diags)
281 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
282 diag::warn_ucn_not_valid_in_c89_literal);
283
284 return true;
285 }
286
287 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
288 /// which this UCN will occupy.
MeasureUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,unsigned CharByteWidth,const LangOptions & Features,bool & HadError)289 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
290 const char *ThisTokEnd, unsigned CharByteWidth,
291 const LangOptions &Features, bool &HadError) {
292 // UTF-32: 4 bytes per escape.
293 if (CharByteWidth == 4)
294 return 4;
295
296 uint32_t UcnVal = 0;
297 unsigned short UcnLen = 0;
298 FullSourceLoc Loc;
299
300 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
301 UcnLen, Loc, 0, Features, true)) {
302 HadError = true;
303 return 0;
304 }
305
306 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
307 if (CharByteWidth == 2)
308 return UcnVal <= 0xFFFF ? 2 : 4;
309
310 // UTF-8.
311 if (UcnVal < 0x80)
312 return 1;
313 if (UcnVal < 0x800)
314 return 2;
315 if (UcnVal < 0x10000)
316 return 3;
317 return 4;
318 }
319
320 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
321 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
322 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
323 /// we will likely rework our support for UCN's.
EncodeUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,char * & ResultBuf,bool & HadError,FullSourceLoc Loc,unsigned CharByteWidth,DiagnosticsEngine * Diags,const LangOptions & Features)324 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
325 const char *ThisTokEnd,
326 char *&ResultBuf, bool &HadError,
327 FullSourceLoc Loc, unsigned CharByteWidth,
328 DiagnosticsEngine *Diags,
329 const LangOptions &Features) {
330 typedef uint32_t UTF32;
331 UTF32 UcnVal = 0;
332 unsigned short UcnLen = 0;
333 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
334 Loc, Diags, Features, true)) {
335 HadError = true;
336 return;
337 }
338
339 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth) &&
340 "only character widths of 1, 2, or 4 bytes supported");
341
342 (void)UcnLen;
343 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
344
345 if (CharByteWidth == 4) {
346 // FIXME: Make the type of the result buffer correct instead of
347 // using reinterpret_cast.
348 UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
349 *ResultPtr = UcnVal;
350 ResultBuf += 4;
351 return;
352 }
353
354 if (CharByteWidth == 2) {
355 // FIXME: Make the type of the result buffer correct instead of
356 // using reinterpret_cast.
357 UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
358
359 if (UcnVal <= (UTF32)0xFFFF) {
360 *ResultPtr = UcnVal;
361 ResultBuf += 2;
362 return;
363 }
364
365 // Convert to UTF16.
366 UcnVal -= 0x10000;
367 *ResultPtr = 0xD800 + (UcnVal >> 10);
368 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
369 ResultBuf += 4;
370 return;
371 }
372
373 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
374
375 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
376 // The conversion below was inspired by:
377 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
378 // First, we determine how many bytes the result will require.
379 typedef uint8_t UTF8;
380
381 unsigned short bytesToWrite = 0;
382 if (UcnVal < (UTF32)0x80)
383 bytesToWrite = 1;
384 else if (UcnVal < (UTF32)0x800)
385 bytesToWrite = 2;
386 else if (UcnVal < (UTF32)0x10000)
387 bytesToWrite = 3;
388 else
389 bytesToWrite = 4;
390
391 const unsigned byteMask = 0xBF;
392 const unsigned byteMark = 0x80;
393
394 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
395 // into the first byte, depending on how many bytes follow.
396 static const UTF8 firstByteMark[5] = {
397 0x00, 0x00, 0xC0, 0xE0, 0xF0
398 };
399 // Finally, we write the bytes into ResultBuf.
400 ResultBuf += bytesToWrite;
401 switch (bytesToWrite) { // note: everything falls through.
402 case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
403 case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
404 case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
405 case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
406 }
407 // Update the buffer.
408 ResultBuf += bytesToWrite;
409 }
410
411
412 /// integer-constant: [C99 6.4.4.1]
413 /// decimal-constant integer-suffix
414 /// octal-constant integer-suffix
415 /// hexadecimal-constant integer-suffix
416 /// binary-literal integer-suffix [GNU, C++1y]
417 /// user-defined-integer-literal: [C++11 lex.ext]
418 /// decimal-literal ud-suffix
419 /// octal-literal ud-suffix
420 /// hexadecimal-literal ud-suffix
421 /// binary-literal ud-suffix [GNU, C++1y]
422 /// decimal-constant:
423 /// nonzero-digit
424 /// decimal-constant digit
425 /// octal-constant:
426 /// 0
427 /// octal-constant octal-digit
428 /// hexadecimal-constant:
429 /// hexadecimal-prefix hexadecimal-digit
430 /// hexadecimal-constant hexadecimal-digit
431 /// hexadecimal-prefix: one of
432 /// 0x 0X
433 /// binary-literal:
434 /// 0b binary-digit
435 /// 0B binary-digit
436 /// binary-literal binary-digit
437 /// integer-suffix:
438 /// unsigned-suffix [long-suffix]
439 /// unsigned-suffix [long-long-suffix]
440 /// long-suffix [unsigned-suffix]
441 /// long-long-suffix [unsigned-sufix]
442 /// nonzero-digit:
443 /// 1 2 3 4 5 6 7 8 9
444 /// octal-digit:
445 /// 0 1 2 3 4 5 6 7
446 /// hexadecimal-digit:
447 /// 0 1 2 3 4 5 6 7 8 9
448 /// a b c d e f
449 /// A B C D E F
450 /// binary-digit:
451 /// 0
452 /// 1
453 /// unsigned-suffix: one of
454 /// u U
455 /// long-suffix: one of
456 /// l L
457 /// long-long-suffix: one of
458 /// ll LL
459 ///
460 /// floating-constant: [C99 6.4.4.2]
461 /// TODO: add rules...
462 ///
NumericLiteralParser(StringRef TokSpelling,SourceLocation TokLoc,Preprocessor & PP)463 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
464 SourceLocation TokLoc,
465 Preprocessor &PP)
466 : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
467
468 // This routine assumes that the range begin/end matches the regex for integer
469 // and FP constants (specifically, the 'pp-number' regex), and assumes that
470 // the byte at "*end" is both valid and not part of the regex. Because of
471 // this, it doesn't have to check for 'overscan' in various places.
472 assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
473
474 s = DigitsBegin = ThisTokBegin;
475 saw_exponent = false;
476 saw_period = false;
477 saw_ud_suffix = false;
478 isLong = false;
479 isUnsigned = false;
480 isLongLong = false;
481 isFloat = false;
482 isImaginary = false;
483 isMicrosoftInteger = false;
484 hadError = false;
485
486 if (*s == '0') { // parse radix
487 ParseNumberStartingWithZero(TokLoc);
488 if (hadError)
489 return;
490 } else { // the first digit is non-zero
491 radix = 10;
492 s = SkipDigits(s);
493 if (s == ThisTokEnd) {
494 // Done.
495 } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
496 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
497 diag::err_invalid_decimal_digit) << StringRef(s, 1);
498 hadError = true;
499 return;
500 } else if (*s == '.') {
501 s++;
502 saw_period = true;
503 s = SkipDigits(s);
504 }
505 if ((*s == 'e' || *s == 'E')) { // exponent
506 const char *Exponent = s;
507 s++;
508 saw_exponent = true;
509 if (*s == '+' || *s == '-') s++; // sign
510 const char *first_non_digit = SkipDigits(s);
511 if (first_non_digit != s) {
512 s = first_non_digit;
513 } else {
514 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
515 diag::err_exponent_has_no_digits);
516 hadError = true;
517 return;
518 }
519 }
520 }
521
522 SuffixBegin = s;
523
524 // Parse the suffix. At this point we can classify whether we have an FP or
525 // integer constant.
526 bool isFPConstant = isFloatingLiteral();
527 const char *ImaginarySuffixLoc = 0;
528
529 // Loop over all of the characters of the suffix. If we see something bad,
530 // we break out of the loop.
531 for (; s != ThisTokEnd; ++s) {
532 switch (*s) {
533 case 'f': // FP Suffix for "float"
534 case 'F':
535 if (!isFPConstant) break; // Error for integer constant.
536 if (isFloat || isLong) break; // FF, LF invalid.
537 isFloat = true;
538 continue; // Success.
539 case 'u':
540 case 'U':
541 if (isFPConstant) break; // Error for floating constant.
542 if (isUnsigned) break; // Cannot be repeated.
543 isUnsigned = true;
544 continue; // Success.
545 case 'l':
546 case 'L':
547 if (isLong || isLongLong) break; // Cannot be repeated.
548 if (isFloat) break; // LF invalid.
549
550 // Check for long long. The L's need to be adjacent and the same case.
551 if (s+1 != ThisTokEnd && s[1] == s[0]) {
552 if (isFPConstant) break; // long long invalid for floats.
553 isLongLong = true;
554 ++s; // Eat both of them.
555 } else {
556 isLong = true;
557 }
558 continue; // Success.
559 case 'i':
560 case 'I':
561 if (PP.getLangOpts().MicrosoftExt) {
562 if (isFPConstant || isLong || isLongLong) break;
563
564 // Allow i8, i16, i32, i64, and i128.
565 if (s + 1 != ThisTokEnd) {
566 switch (s[1]) {
567 case '8':
568 s += 2; // i8 suffix
569 isMicrosoftInteger = true;
570 break;
571 case '1':
572 if (s + 2 == ThisTokEnd) break;
573 if (s[2] == '6') {
574 s += 3; // i16 suffix
575 isMicrosoftInteger = true;
576 }
577 else if (s[2] == '2') {
578 if (s + 3 == ThisTokEnd) break;
579 if (s[3] == '8') {
580 s += 4; // i128 suffix
581 isMicrosoftInteger = true;
582 }
583 }
584 break;
585 case '3':
586 if (s + 2 == ThisTokEnd) break;
587 if (s[2] == '2') {
588 s += 3; // i32 suffix
589 isLong = true;
590 isMicrosoftInteger = true;
591 }
592 break;
593 case '6':
594 if (s + 2 == ThisTokEnd) break;
595 if (s[2] == '4') {
596 s += 3; // i64 suffix
597 isLongLong = true;
598 isMicrosoftInteger = true;
599 }
600 break;
601 default:
602 break;
603 }
604 break;
605 }
606 }
607 // fall through.
608 case 'j':
609 case 'J':
610 if (isImaginary) break; // Cannot be repeated.
611 isImaginary = true;
612 ImaginarySuffixLoc = s;
613 continue; // Success.
614 }
615 // If we reached here, there was an error or a ud-suffix.
616 break;
617 }
618
619 if (s != ThisTokEnd) {
620 if (isValidUDSuffix(PP.getLangOpts(),
621 StringRef(SuffixBegin, ThisTokEnd - SuffixBegin))) {
622 // Any suffix pieces we might have parsed are actually part of the
623 // ud-suffix.
624 isLong = false;
625 isUnsigned = false;
626 isLongLong = false;
627 isFloat = false;
628 isImaginary = false;
629 isMicrosoftInteger = false;
630
631 saw_ud_suffix = true;
632 return;
633 }
634
635 // Report an error if there are any.
636 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
637 isFPConstant ? diag::err_invalid_suffix_float_constant :
638 diag::err_invalid_suffix_integer_constant)
639 << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
640 hadError = true;
641 return;
642 }
643
644 if (isImaginary) {
645 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
646 ImaginarySuffixLoc - ThisTokBegin),
647 diag::ext_imaginary_constant);
648 }
649 }
650
651 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
652 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
653 /// treat it as an invalid suffix.
isValidUDSuffix(const LangOptions & LangOpts,StringRef Suffix)654 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
655 StringRef Suffix) {
656 if (!LangOpts.CPlusPlus11 || Suffix.empty())
657 return false;
658
659 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
660 if (Suffix[0] == '_')
661 return true;
662
663 // In C++11, there are no library suffixes.
664 if (!LangOpts.CPlusPlus1y)
665 return false;
666
667 // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
668 return llvm::StringSwitch<bool>(Suffix)
669 .Cases("h", "min", "s", true)
670 .Cases("ms", "us", "ns", true)
671 .Default(false);
672 }
673
674 /// ParseNumberStartingWithZero - This method is called when the first character
675 /// of the number is found to be a zero. This means it is either an octal
676 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
677 /// a floating point number (01239.123e4). Eat the prefix, determining the
678 /// radix etc.
ParseNumberStartingWithZero(SourceLocation TokLoc)679 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
680 assert(s[0] == '0' && "Invalid method call");
681 s++;
682
683 // Handle a hex number like 0x1234.
684 if ((*s == 'x' || *s == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
685 s++;
686 radix = 16;
687 DigitsBegin = s;
688 s = SkipHexDigits(s);
689 bool noSignificand = (s == DigitsBegin);
690 if (s == ThisTokEnd) {
691 // Done.
692 } else if (*s == '.') {
693 s++;
694 saw_period = true;
695 const char *floatDigitsBegin = s;
696 s = SkipHexDigits(s);
697 noSignificand &= (floatDigitsBegin == s);
698 }
699
700 if (noSignificand) {
701 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
702 diag::err_hexconstant_requires_digits);
703 hadError = true;
704 return;
705 }
706
707 // A binary exponent can appear with or with a '.'. If dotted, the
708 // binary exponent is required.
709 if (*s == 'p' || *s == 'P') {
710 const char *Exponent = s;
711 s++;
712 saw_exponent = true;
713 if (*s == '+' || *s == '-') s++; // sign
714 const char *first_non_digit = SkipDigits(s);
715 if (first_non_digit == s) {
716 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
717 diag::err_exponent_has_no_digits);
718 hadError = true;
719 return;
720 }
721 s = first_non_digit;
722
723 if (!PP.getLangOpts().HexFloats)
724 PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
725 } else if (saw_period) {
726 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
727 diag::err_hexconstant_requires_exponent);
728 hadError = true;
729 }
730 return;
731 }
732
733 // Handle simple binary numbers 0b01010
734 if (*s == 'b' || *s == 'B') {
735 // 0b101010 is a C++1y / GCC extension.
736 PP.Diag(TokLoc,
737 PP.getLangOpts().CPlusPlus1y
738 ? diag::warn_cxx11_compat_binary_literal
739 : PP.getLangOpts().CPlusPlus
740 ? diag::ext_binary_literal_cxx1y
741 : diag::ext_binary_literal);
742 ++s;
743 radix = 2;
744 DigitsBegin = s;
745 s = SkipBinaryDigits(s);
746 if (s == ThisTokEnd) {
747 // Done.
748 } else if (isHexDigit(*s)) {
749 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
750 diag::err_invalid_binary_digit) << StringRef(s, 1);
751 hadError = true;
752 }
753 // Other suffixes will be diagnosed by the caller.
754 return;
755 }
756
757 // For now, the radix is set to 8. If we discover that we have a
758 // floating point constant, the radix will change to 10. Octal floating
759 // point constants are not permitted (only decimal and hexadecimal).
760 radix = 8;
761 DigitsBegin = s;
762 s = SkipOctalDigits(s);
763 if (s == ThisTokEnd)
764 return; // Done, simple octal number like 01234
765
766 // If we have some other non-octal digit that *is* a decimal digit, see if
767 // this is part of a floating point number like 094.123 or 09e1.
768 if (isDigit(*s)) {
769 const char *EndDecimal = SkipDigits(s);
770 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
771 s = EndDecimal;
772 radix = 10;
773 }
774 }
775
776 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
777 // the code is using an incorrect base.
778 if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
779 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
780 diag::err_invalid_octal_digit) << StringRef(s, 1);
781 hadError = true;
782 return;
783 }
784
785 if (*s == '.') {
786 s++;
787 radix = 10;
788 saw_period = true;
789 s = SkipDigits(s); // Skip suffix.
790 }
791 if (*s == 'e' || *s == 'E') { // exponent
792 const char *Exponent = s;
793 s++;
794 radix = 10;
795 saw_exponent = true;
796 if (*s == '+' || *s == '-') s++; // sign
797 const char *first_non_digit = SkipDigits(s);
798 if (first_non_digit != s) {
799 s = first_non_digit;
800 } else {
801 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
802 diag::err_exponent_has_no_digits);
803 hadError = true;
804 return;
805 }
806 }
807 }
808
alwaysFitsInto64Bits(unsigned Radix,unsigned NumDigits)809 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
810 switch (Radix) {
811 case 2:
812 return NumDigits <= 64;
813 case 8:
814 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
815 case 10:
816 return NumDigits <= 19; // floor(log10(2^64))
817 case 16:
818 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
819 default:
820 llvm_unreachable("impossible Radix");
821 }
822 }
823
824 /// GetIntegerValue - Convert this numeric literal value to an APInt that
825 /// matches Val's input width. If there is an overflow, set Val to the low bits
826 /// of the result and return true. Otherwise, return false.
GetIntegerValue(llvm::APInt & Val)827 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
828 // Fast path: Compute a conservative bound on the maximum number of
829 // bits per digit in this radix. If we can't possibly overflow a
830 // uint64 based on that bound then do the simple conversion to
831 // integer. This avoids the expensive overflow checking below, and
832 // handles the common cases that matter (small decimal integers and
833 // hex/octal values which don't overflow).
834 const unsigned NumDigits = SuffixBegin - DigitsBegin;
835 if (alwaysFitsInto64Bits(radix, NumDigits)) {
836 uint64_t N = 0;
837 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
838 N = N * radix + llvm::hexDigitValue(*Ptr);
839
840 // This will truncate the value to Val's input width. Simply check
841 // for overflow by comparing.
842 Val = N;
843 return Val.getZExtValue() != N;
844 }
845
846 Val = 0;
847 const char *Ptr = DigitsBegin;
848
849 llvm::APInt RadixVal(Val.getBitWidth(), radix);
850 llvm::APInt CharVal(Val.getBitWidth(), 0);
851 llvm::APInt OldVal = Val;
852
853 bool OverflowOccurred = false;
854 while (Ptr < SuffixBegin) {
855 unsigned C = llvm::hexDigitValue(*Ptr++);
856
857 // If this letter is out of bound for this radix, reject it.
858 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
859
860 CharVal = C;
861
862 // Add the digit to the value in the appropriate radix. If adding in digits
863 // made the value smaller, then this overflowed.
864 OldVal = Val;
865
866 // Multiply by radix, did overflow occur on the multiply?
867 Val *= RadixVal;
868 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
869
870 // Add value, did overflow occur on the value?
871 // (a + b) ult b <=> overflow
872 Val += CharVal;
873 OverflowOccurred |= Val.ult(CharVal);
874 }
875 return OverflowOccurred;
876 }
877
878 llvm::APFloat::opStatus
GetFloatValue(llvm::APFloat & Result)879 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
880 using llvm::APFloat;
881
882 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
883 return Result.convertFromString(StringRef(ThisTokBegin, n),
884 APFloat::rmNearestTiesToEven);
885 }
886
887
888 /// \verbatim
889 /// user-defined-character-literal: [C++11 lex.ext]
890 /// character-literal ud-suffix
891 /// ud-suffix:
892 /// identifier
893 /// character-literal: [C++11 lex.ccon]
894 /// ' c-char-sequence '
895 /// u' c-char-sequence '
896 /// U' c-char-sequence '
897 /// L' c-char-sequence '
898 /// c-char-sequence:
899 /// c-char
900 /// c-char-sequence c-char
901 /// c-char:
902 /// any member of the source character set except the single-quote ',
903 /// backslash \, or new-line character
904 /// escape-sequence
905 /// universal-character-name
906 /// escape-sequence:
907 /// simple-escape-sequence
908 /// octal-escape-sequence
909 /// hexadecimal-escape-sequence
910 /// simple-escape-sequence:
911 /// one of \' \" \? \\ \a \b \f \n \r \t \v
912 /// octal-escape-sequence:
913 /// \ octal-digit
914 /// \ octal-digit octal-digit
915 /// \ octal-digit octal-digit octal-digit
916 /// hexadecimal-escape-sequence:
917 /// \x hexadecimal-digit
918 /// hexadecimal-escape-sequence hexadecimal-digit
919 /// universal-character-name: [C++11 lex.charset]
920 /// \u hex-quad
921 /// \U hex-quad hex-quad
922 /// hex-quad:
923 /// hex-digit hex-digit hex-digit hex-digit
924 /// \endverbatim
925 ///
CharLiteralParser(const char * begin,const char * end,SourceLocation Loc,Preprocessor & PP,tok::TokenKind kind)926 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
927 SourceLocation Loc, Preprocessor &PP,
928 tok::TokenKind kind) {
929 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
930 HadError = false;
931
932 Kind = kind;
933
934 const char *TokBegin = begin;
935
936 // Skip over wide character determinant.
937 if (Kind != tok::char_constant) {
938 ++begin;
939 }
940
941 // Skip over the entry quote.
942 assert(begin[0] == '\'' && "Invalid token lexed");
943 ++begin;
944
945 // Remove an optional ud-suffix.
946 if (end[-1] != '\'') {
947 const char *UDSuffixEnd = end;
948 do {
949 --end;
950 } while (end[-1] != '\'');
951 UDSuffixBuf.assign(end, UDSuffixEnd);
952 UDSuffixOffset = end - TokBegin;
953 }
954
955 // Trim the ending quote.
956 assert(end != begin && "Invalid token lexed");
957 --end;
958
959 // FIXME: The "Value" is an uint64_t so we can handle char literals of
960 // up to 64-bits.
961 // FIXME: This extensively assumes that 'char' is 8-bits.
962 assert(PP.getTargetInfo().getCharWidth() == 8 &&
963 "Assumes char is 8 bits");
964 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
965 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
966 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
967 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
968 "Assumes sizeof(wchar) on target is <= 64");
969
970 SmallVector<uint32_t,4> codepoint_buffer;
971 codepoint_buffer.resize(end-begin);
972 uint32_t *buffer_begin = &codepoint_buffer.front();
973 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
974
975 // Unicode escapes representing characters that cannot be correctly
976 // represented in a single code unit are disallowed in character literals
977 // by this implementation.
978 uint32_t largest_character_for_kind;
979 if (tok::wide_char_constant == Kind) {
980 largest_character_for_kind = 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
981 } else if (tok::utf16_char_constant == Kind) {
982 largest_character_for_kind = 0xFFFF;
983 } else if (tok::utf32_char_constant == Kind) {
984 largest_character_for_kind = 0x10FFFF;
985 } else {
986 largest_character_for_kind = 0x7Fu;
987 }
988
989 while (begin!=end) {
990 // Is this a span of non-escape characters?
991 if (begin[0] != '\\') {
992 char const *start = begin;
993 do {
994 ++begin;
995 } while (begin != end && *begin != '\\');
996
997 char const *tmp_in_start = start;
998 uint32_t *tmp_out_start = buffer_begin;
999 ConversionResult res =
1000 ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1001 reinterpret_cast<UTF8 const *>(begin),
1002 &buffer_begin,buffer_end,strictConversion);
1003 if (res!=conversionOK) {
1004 // If we see bad encoding for unprefixed character literals, warn and
1005 // simply copy the byte values, for compatibility with gcc and
1006 // older versions of clang.
1007 bool NoErrorOnBadEncoding = isAscii();
1008 unsigned Msg = diag::err_bad_character_encoding;
1009 if (NoErrorOnBadEncoding)
1010 Msg = diag::warn_bad_character_encoding;
1011 PP.Diag(Loc, Msg);
1012 if (NoErrorOnBadEncoding) {
1013 start = tmp_in_start;
1014 buffer_begin = tmp_out_start;
1015 for ( ; start != begin; ++start, ++buffer_begin)
1016 *buffer_begin = static_cast<uint8_t>(*start);
1017 } else {
1018 HadError = true;
1019 }
1020 } else {
1021 for (; tmp_out_start <buffer_begin; ++tmp_out_start) {
1022 if (*tmp_out_start > largest_character_for_kind) {
1023 HadError = true;
1024 PP.Diag(Loc, diag::err_character_too_large);
1025 }
1026 }
1027 }
1028
1029 continue;
1030 }
1031 // Is this a Universal Character Name excape?
1032 if (begin[1] == 'u' || begin[1] == 'U') {
1033 unsigned short UcnLen = 0;
1034 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1035 FullSourceLoc(Loc, PP.getSourceManager()),
1036 &PP.getDiagnostics(), PP.getLangOpts(),
1037 true))
1038 {
1039 HadError = true;
1040 } else if (*buffer_begin > largest_character_for_kind) {
1041 HadError = true;
1042 PP.Diag(Loc, diag::err_character_too_large);
1043 }
1044
1045 ++buffer_begin;
1046 continue;
1047 }
1048 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1049 uint64_t result =
1050 ProcessCharEscape(TokBegin, begin, end, HadError,
1051 FullSourceLoc(Loc,PP.getSourceManager()),
1052 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1053 *buffer_begin++ = result;
1054 }
1055
1056 unsigned NumCharsSoFar = buffer_begin-&codepoint_buffer.front();
1057
1058 if (NumCharsSoFar > 1) {
1059 if (isWide())
1060 PP.Diag(Loc, diag::warn_extraneous_char_constant);
1061 else if (isAscii() && NumCharsSoFar == 4)
1062 PP.Diag(Loc, diag::ext_four_char_character_literal);
1063 else if (isAscii())
1064 PP.Diag(Loc, diag::ext_multichar_character_literal);
1065 else
1066 PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1067 IsMultiChar = true;
1068 } else
1069 IsMultiChar = false;
1070
1071 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1072
1073 // Narrow character literals act as though their value is concatenated
1074 // in this implementation, but warn on overflow.
1075 bool multi_char_too_long = false;
1076 if (isAscii() && isMultiChar()) {
1077 LitVal = 0;
1078 for (size_t i=0;i<NumCharsSoFar;++i) {
1079 // check for enough leading zeros to shift into
1080 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1081 LitVal <<= 8;
1082 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1083 }
1084 } else if (NumCharsSoFar > 0) {
1085 // otherwise just take the last character
1086 LitVal = buffer_begin[-1];
1087 }
1088
1089 if (!HadError && multi_char_too_long) {
1090 PP.Diag(Loc,diag::warn_char_constant_too_large);
1091 }
1092
1093 // Transfer the value from APInt to uint64_t
1094 Value = LitVal.getZExtValue();
1095
1096 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1097 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1098 // character constants are not sign extended in the this implementation:
1099 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1100 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1101 PP.getLangOpts().CharIsSigned)
1102 Value = (signed char)Value;
1103 }
1104
1105 /// \verbatim
1106 /// string-literal: [C++0x lex.string]
1107 /// encoding-prefix " [s-char-sequence] "
1108 /// encoding-prefix R raw-string
1109 /// encoding-prefix:
1110 /// u8
1111 /// u
1112 /// U
1113 /// L
1114 /// s-char-sequence:
1115 /// s-char
1116 /// s-char-sequence s-char
1117 /// s-char:
1118 /// any member of the source character set except the double-quote ",
1119 /// backslash \, or new-line character
1120 /// escape-sequence
1121 /// universal-character-name
1122 /// raw-string:
1123 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1124 /// r-char-sequence:
1125 /// r-char
1126 /// r-char-sequence r-char
1127 /// r-char:
1128 /// any member of the source character set, except a right parenthesis )
1129 /// followed by the initial d-char-sequence (which may be empty)
1130 /// followed by a double quote ".
1131 /// d-char-sequence:
1132 /// d-char
1133 /// d-char-sequence d-char
1134 /// d-char:
1135 /// any member of the basic source character set except:
1136 /// space, the left parenthesis (, the right parenthesis ),
1137 /// the backslash \, and the control characters representing horizontal
1138 /// tab, vertical tab, form feed, and newline.
1139 /// escape-sequence: [C++0x lex.ccon]
1140 /// simple-escape-sequence
1141 /// octal-escape-sequence
1142 /// hexadecimal-escape-sequence
1143 /// simple-escape-sequence:
1144 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1145 /// octal-escape-sequence:
1146 /// \ octal-digit
1147 /// \ octal-digit octal-digit
1148 /// \ octal-digit octal-digit octal-digit
1149 /// hexadecimal-escape-sequence:
1150 /// \x hexadecimal-digit
1151 /// hexadecimal-escape-sequence hexadecimal-digit
1152 /// universal-character-name:
1153 /// \u hex-quad
1154 /// \U hex-quad hex-quad
1155 /// hex-quad:
1156 /// hex-digit hex-digit hex-digit hex-digit
1157 /// \endverbatim
1158 ///
1159 StringLiteralParser::
StringLiteralParser(const Token * StringToks,unsigned NumStringToks,Preprocessor & PP,bool Complain)1160 StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
1161 Preprocessor &PP, bool Complain)
1162 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1163 Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
1164 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1165 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1166 init(StringToks, NumStringToks);
1167 }
1168
init(const Token * StringToks,unsigned NumStringToks)1169 void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
1170 // The literal token may have come from an invalid source location (e.g. due
1171 // to a PCH error), in which case the token length will be 0.
1172 if (NumStringToks == 0 || StringToks[0].getLength() < 2)
1173 return DiagnoseLexingError(SourceLocation());
1174
1175 // Scan all of the string portions, remember the max individual token length,
1176 // computing a bound on the concatenated string length, and see whether any
1177 // piece is a wide-string. If any of the string portions is a wide-string
1178 // literal, the result is a wide-string literal [C99 6.4.5p4].
1179 assert(NumStringToks && "expected at least one token");
1180 MaxTokenLength = StringToks[0].getLength();
1181 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1182 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1183 Kind = StringToks[0].getKind();
1184
1185 hadError = false;
1186
1187 // Implement Translation Phase #6: concatenation of string literals
1188 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1189 for (unsigned i = 1; i != NumStringToks; ++i) {
1190 if (StringToks[i].getLength() < 2)
1191 return DiagnoseLexingError(StringToks[i].getLocation());
1192
1193 // The string could be shorter than this if it needs cleaning, but this is a
1194 // reasonable bound, which is all we need.
1195 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1196 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1197
1198 // Remember maximum string piece length.
1199 if (StringToks[i].getLength() > MaxTokenLength)
1200 MaxTokenLength = StringToks[i].getLength();
1201
1202 // Remember if we see any wide or utf-8/16/32 strings.
1203 // Also check for illegal concatenations.
1204 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1205 if (isAscii()) {
1206 Kind = StringToks[i].getKind();
1207 } else {
1208 if (Diags)
1209 Diags->Report(StringToks[i].getLocation(),
1210 diag::err_unsupported_string_concat);
1211 hadError = true;
1212 }
1213 }
1214 }
1215
1216 // Include space for the null terminator.
1217 ++SizeBound;
1218
1219 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1220
1221 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1222 CharByteWidth = getCharWidth(Kind, Target);
1223 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1224 CharByteWidth /= 8;
1225
1226 // The output buffer size needs to be large enough to hold wide characters.
1227 // This is a worst-case assumption which basically corresponds to L"" "long".
1228 SizeBound *= CharByteWidth;
1229
1230 // Size the temporary buffer to hold the result string data.
1231 ResultBuf.resize(SizeBound);
1232
1233 // Likewise, but for each string piece.
1234 SmallString<512> TokenBuf;
1235 TokenBuf.resize(MaxTokenLength);
1236
1237 // Loop over all the strings, getting their spelling, and expanding them to
1238 // wide strings as appropriate.
1239 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1240
1241 Pascal = false;
1242
1243 SourceLocation UDSuffixTokLoc;
1244
1245 for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
1246 const char *ThisTokBuf = &TokenBuf[0];
1247 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1248 // that ThisTokBuf points to a buffer that is big enough for the whole token
1249 // and 'spelled' tokens can only shrink.
1250 bool StringInvalid = false;
1251 unsigned ThisTokLen =
1252 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1253 &StringInvalid);
1254 if (StringInvalid)
1255 return DiagnoseLexingError(StringToks[i].getLocation());
1256
1257 const char *ThisTokBegin = ThisTokBuf;
1258 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1259
1260 // Remove an optional ud-suffix.
1261 if (ThisTokEnd[-1] != '"') {
1262 const char *UDSuffixEnd = ThisTokEnd;
1263 do {
1264 --ThisTokEnd;
1265 } while (ThisTokEnd[-1] != '"');
1266
1267 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1268
1269 if (UDSuffixBuf.empty()) {
1270 UDSuffixBuf.assign(UDSuffix);
1271 UDSuffixToken = i;
1272 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1273 UDSuffixTokLoc = StringToks[i].getLocation();
1274 } else if (!UDSuffixBuf.equals(UDSuffix)) {
1275 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1276 // result of a concatenation involving at least one user-defined-string-
1277 // literal, all the participating user-defined-string-literals shall
1278 // have the same ud-suffix.
1279 if (Diags) {
1280 SourceLocation TokLoc = StringToks[i].getLocation();
1281 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1282 << UDSuffixBuf << UDSuffix
1283 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1284 << SourceRange(TokLoc, TokLoc);
1285 }
1286 hadError = true;
1287 }
1288 }
1289
1290 // Strip the end quote.
1291 --ThisTokEnd;
1292
1293 // TODO: Input character set mapping support.
1294
1295 // Skip marker for wide or unicode strings.
1296 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1297 ++ThisTokBuf;
1298 // Skip 8 of u8 marker for utf8 strings.
1299 if (ThisTokBuf[0] == '8')
1300 ++ThisTokBuf;
1301 }
1302
1303 // Check for raw string
1304 if (ThisTokBuf[0] == 'R') {
1305 ThisTokBuf += 2; // skip R"
1306
1307 const char *Prefix = ThisTokBuf;
1308 while (ThisTokBuf[0] != '(')
1309 ++ThisTokBuf;
1310 ++ThisTokBuf; // skip '('
1311
1312 // Remove same number of characters from the end
1313 ThisTokEnd -= ThisTokBuf - Prefix;
1314 assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1315
1316 // Copy the string over
1317 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1318 StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1319 hadError = true;
1320 } else {
1321 if (ThisTokBuf[0] != '"') {
1322 // The file may have come from PCH and then changed after loading the
1323 // PCH; Fail gracefully.
1324 return DiagnoseLexingError(StringToks[i].getLocation());
1325 }
1326 ++ThisTokBuf; // skip "
1327
1328 // Check if this is a pascal string
1329 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1330 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1331
1332 // If the \p sequence is found in the first token, we have a pascal string
1333 // Otherwise, if we already have a pascal string, ignore the first \p
1334 if (i == 0) {
1335 ++ThisTokBuf;
1336 Pascal = true;
1337 } else if (Pascal)
1338 ThisTokBuf += 2;
1339 }
1340
1341 while (ThisTokBuf != ThisTokEnd) {
1342 // Is this a span of non-escape characters?
1343 if (ThisTokBuf[0] != '\\') {
1344 const char *InStart = ThisTokBuf;
1345 do {
1346 ++ThisTokBuf;
1347 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1348
1349 // Copy the character span over.
1350 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1351 StringRef(InStart, ThisTokBuf - InStart)))
1352 hadError = true;
1353 continue;
1354 }
1355 // Is this a Universal Character Name escape?
1356 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1357 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1358 ResultPtr, hadError,
1359 FullSourceLoc(StringToks[i].getLocation(), SM),
1360 CharByteWidth, Diags, Features);
1361 continue;
1362 }
1363 // Otherwise, this is a non-UCN escape character. Process it.
1364 unsigned ResultChar =
1365 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1366 FullSourceLoc(StringToks[i].getLocation(), SM),
1367 CharByteWidth*8, Diags, Features);
1368
1369 if (CharByteWidth == 4) {
1370 // FIXME: Make the type of the result buffer correct instead of
1371 // using reinterpret_cast.
1372 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1373 *ResultWidePtr = ResultChar;
1374 ResultPtr += 4;
1375 } else if (CharByteWidth == 2) {
1376 // FIXME: Make the type of the result buffer correct instead of
1377 // using reinterpret_cast.
1378 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1379 *ResultWidePtr = ResultChar & 0xFFFF;
1380 ResultPtr += 2;
1381 } else {
1382 assert(CharByteWidth == 1 && "Unexpected char width");
1383 *ResultPtr++ = ResultChar & 0xFF;
1384 }
1385 }
1386 }
1387 }
1388
1389 if (Pascal) {
1390 if (CharByteWidth == 4) {
1391 // FIXME: Make the type of the result buffer correct instead of
1392 // using reinterpret_cast.
1393 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1394 ResultWidePtr[0] = GetNumStringChars() - 1;
1395 } else if (CharByteWidth == 2) {
1396 // FIXME: Make the type of the result buffer correct instead of
1397 // using reinterpret_cast.
1398 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1399 ResultWidePtr[0] = GetNumStringChars() - 1;
1400 } else {
1401 assert(CharByteWidth == 1 && "Unexpected char width");
1402 ResultBuf[0] = GetNumStringChars() - 1;
1403 }
1404
1405 // Verify that pascal strings aren't too large.
1406 if (GetStringLength() > 256) {
1407 if (Diags)
1408 Diags->Report(StringToks[0].getLocation(),
1409 diag::err_pascal_string_too_long)
1410 << SourceRange(StringToks[0].getLocation(),
1411 StringToks[NumStringToks-1].getLocation());
1412 hadError = true;
1413 return;
1414 }
1415 } else if (Diags) {
1416 // Complain if this string literal has too many characters.
1417 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1418
1419 if (GetNumStringChars() > MaxChars)
1420 Diags->Report(StringToks[0].getLocation(),
1421 diag::ext_string_too_long)
1422 << GetNumStringChars() << MaxChars
1423 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1424 << SourceRange(StringToks[0].getLocation(),
1425 StringToks[NumStringToks-1].getLocation());
1426 }
1427 }
1428
resyncUTF8(const char * Err,const char * End)1429 static const char *resyncUTF8(const char *Err, const char *End) {
1430 if (Err == End)
1431 return End;
1432 End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1433 while (++Err != End && (*Err & 0xC0) == 0x80)
1434 ;
1435 return Err;
1436 }
1437
1438 /// \brief This function copies from Fragment, which is a sequence of bytes
1439 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
1440 /// Performs widening for multi-byte characters.
CopyStringFragment(const Token & Tok,const char * TokBegin,StringRef Fragment)1441 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1442 const char *TokBegin,
1443 StringRef Fragment) {
1444 const UTF8 *ErrorPtrTmp;
1445 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1446 return false;
1447
1448 // If we see bad encoding for unprefixed string literals, warn and
1449 // simply copy the byte values, for compatibility with gcc and older
1450 // versions of clang.
1451 bool NoErrorOnBadEncoding = isAscii();
1452 if (NoErrorOnBadEncoding) {
1453 memcpy(ResultPtr, Fragment.data(), Fragment.size());
1454 ResultPtr += Fragment.size();
1455 }
1456
1457 if (Diags) {
1458 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1459
1460 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1461 const DiagnosticBuilder &Builder =
1462 Diag(Diags, Features, SourceLoc, TokBegin,
1463 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1464 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1465 : diag::err_bad_string_encoding);
1466
1467 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1468 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1469
1470 // Decode into a dummy buffer.
1471 SmallString<512> Dummy;
1472 Dummy.reserve(Fragment.size() * CharByteWidth);
1473 char *Ptr = Dummy.data();
1474
1475 while (!Builder.hasMaxRanges() &&
1476 !ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1477 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1478 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1479 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1480 ErrorPtr, NextStart);
1481 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1482 }
1483 }
1484 return !NoErrorOnBadEncoding;
1485 }
1486
DiagnoseLexingError(SourceLocation Loc)1487 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1488 hadError = true;
1489 if (Diags)
1490 Diags->Report(Loc, diag::err_lexing_string);
1491 }
1492
1493 /// getOffsetOfStringByte - This function returns the offset of the
1494 /// specified byte of the string data represented by Token. This handles
1495 /// advancing over escape sequences in the string.
getOffsetOfStringByte(const Token & Tok,unsigned ByteNo) const1496 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1497 unsigned ByteNo) const {
1498 // Get the spelling of the token.
1499 SmallString<32> SpellingBuffer;
1500 SpellingBuffer.resize(Tok.getLength());
1501
1502 bool StringInvalid = false;
1503 const char *SpellingPtr = &SpellingBuffer[0];
1504 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1505 &StringInvalid);
1506 if (StringInvalid)
1507 return 0;
1508
1509 const char *SpellingStart = SpellingPtr;
1510 const char *SpellingEnd = SpellingPtr+TokLen;
1511
1512 // Handle UTF-8 strings just like narrow strings.
1513 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1514 SpellingPtr += 2;
1515
1516 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1517 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1518
1519 // For raw string literals, this is easy.
1520 if (SpellingPtr[0] == 'R') {
1521 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1522 // Skip 'R"'.
1523 SpellingPtr += 2;
1524 while (*SpellingPtr != '(') {
1525 ++SpellingPtr;
1526 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1527 }
1528 // Skip '('.
1529 ++SpellingPtr;
1530 return SpellingPtr - SpellingStart + ByteNo;
1531 }
1532
1533 // Skip over the leading quote
1534 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1535 ++SpellingPtr;
1536
1537 // Skip over bytes until we find the offset we're looking for.
1538 while (ByteNo) {
1539 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1540
1541 // Step over non-escapes simply.
1542 if (*SpellingPtr != '\\') {
1543 ++SpellingPtr;
1544 --ByteNo;
1545 continue;
1546 }
1547
1548 // Otherwise, this is an escape character. Advance over it.
1549 bool HadError = false;
1550 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1551 const char *EscapePtr = SpellingPtr;
1552 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1553 1, Features, HadError);
1554 if (Len > ByteNo) {
1555 // ByteNo is somewhere within the escape sequence.
1556 SpellingPtr = EscapePtr;
1557 break;
1558 }
1559 ByteNo -= Len;
1560 } else {
1561 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1562 FullSourceLoc(Tok.getLocation(), SM),
1563 CharByteWidth*8, Diags, Features);
1564 --ByteNo;
1565 }
1566 assert(!HadError && "This method isn't valid on erroneous strings");
1567 }
1568
1569 return SpellingPtr-SpellingStart;
1570 }
1571