• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/ParsedTemplate.h"
21 #include "clang/Sema/Scope.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 using namespace clang;
25 
SelectDigraphErrorMessage(tok::TokenKind Kind)26 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27   switch (Kind) {
28     case tok::kw_template:         return 0;
29     case tok::kw_const_cast:       return 1;
30     case tok::kw_dynamic_cast:     return 2;
31     case tok::kw_reinterpret_cast: return 3;
32     case tok::kw_static_cast:      return 4;
33     default:
34       llvm_unreachable("Unknown type for digraph error message.");
35   }
36 }
37 
38 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)39 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
40   SourceManager &SM = PP.getSourceManager();
41   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44 }
45 
46 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)47 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49   // Pull '<:' and ':' off token stream.
50   if (!AtDigraph)
51     PP.Lex(DigraphToken);
52   PP.Lex(ColonToken);
53 
54   SourceRange Range;
55   Range.setBegin(DigraphToken.getLocation());
56   Range.setEnd(ColonToken.getLocation());
57   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58       << SelectDigraphErrorMessage(Kind)
59       << FixItHint::CreateReplacement(Range, "< ::");
60 
61   // Update token information to reflect their change in token type.
62   ColonToken.setKind(tok::coloncolon);
63   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64   ColonToken.setLength(2);
65   DigraphToken.setKind(tok::less);
66   DigraphToken.setLength(1);
67 
68   // Push new tokens back to token stream.
69   PP.EnterToken(ColonToken);
70   if (!AtDigraph)
71     PP.EnterToken(DigraphToken);
72 }
73 
74 // Check for '<::' which should be '< ::' instead of '[:' when following
75 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)76 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                         bool EnteringContext,
78                                         IdentifierInfo &II, CXXScopeSpec &SS) {
79   if (!Next.is(tok::l_square) || Next.getLength() != 2)
80     return;
81 
82   Token SecondToken = GetLookAheadToken(2);
83   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
84     return;
85 
86   TemplateTy Template;
87   UnqualifiedId TemplateName;
88   TemplateName.setIdentifier(&II, Tok.getLocation());
89   bool MemberOfUnknownSpecialization;
90   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                               TemplateName, ObjectType, EnteringContext,
92                               Template, MemberOfUnknownSpecialization))
93     return;
94 
95   FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96              /*AtDigraph*/false);
97 }
98 
99 /// \brief Emits an error for a left parentheses after a double colon.
100 ///
101 /// When a '(' is found after a '::', emit an error.  Attempt to fix the token
102 /// stream by removing the '(', and the matching ')' if found.
CheckForLParenAfterColonColon()103 void Parser::CheckForLParenAfterColonColon() {
104   if (!Tok.is(tok::l_paren))
105     return;
106 
107   SourceLocation l_parenLoc = ConsumeParen(), r_parenLoc;
108   Token Tok1 = getCurToken();
109   if (!Tok1.is(tok::identifier) && !Tok1.is(tok::star))
110     return;
111 
112   if (Tok1.is(tok::identifier)) {
113     Token Tok2 = GetLookAheadToken(1);
114     if (Tok2.is(tok::r_paren)) {
115       ConsumeToken();
116       PP.EnterToken(Tok1);
117       r_parenLoc = ConsumeParen();
118     }
119   } else if (Tok1.is(tok::star)) {
120     Token Tok2 = GetLookAheadToken(1);
121     if (Tok2.is(tok::identifier)) {
122       Token Tok3 = GetLookAheadToken(2);
123       if (Tok3.is(tok::r_paren)) {
124         ConsumeToken();
125         ConsumeToken();
126         PP.EnterToken(Tok2);
127         PP.EnterToken(Tok1);
128         r_parenLoc = ConsumeParen();
129       }
130     }
131   }
132 
133   Diag(l_parenLoc, diag::err_paren_after_colon_colon)
134       << FixItHint::CreateRemoval(l_parenLoc)
135       << FixItHint::CreateRemoval(r_parenLoc);
136 }
137 
138 /// \brief Parse global scope or nested-name-specifier if present.
139 ///
140 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
141 /// may be preceded by '::'). Note that this routine will not parse ::new or
142 /// ::delete; it will just leave them in the token stream.
143 ///
144 ///       '::'[opt] nested-name-specifier
145 ///       '::'
146 ///
147 ///       nested-name-specifier:
148 ///         type-name '::'
149 ///         namespace-name '::'
150 ///         nested-name-specifier identifier '::'
151 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
152 ///
153 ///
154 /// \param SS the scope specifier that will be set to the parsed
155 /// nested-name-specifier (or empty)
156 ///
157 /// \param ObjectType if this nested-name-specifier is being parsed following
158 /// the "." or "->" of a member access expression, this parameter provides the
159 /// type of the object whose members are being accessed.
160 ///
161 /// \param EnteringContext whether we will be entering into the context of
162 /// the nested-name-specifier after parsing it.
163 ///
164 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
165 /// indicates whether this nested-name-specifier may be part of a
166 /// pseudo-destructor name. In this case, the flag will be set false
167 /// if we don't actually end up parsing a destructor name. Moreorover,
168 /// if we do end up determining that we are parsing a destructor name,
169 /// the last component of the nested-name-specifier is not parsed as
170 /// part of the scope specifier.
171 ///
172 /// \param IsTypename If \c true, this nested-name-specifier is known to be
173 /// part of a type name. This is used to improve error recovery.
174 ///
175 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
176 /// filled in with the leading identifier in the last component of the
177 /// nested-name-specifier, if any.
178 ///
179 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,IdentifierInfo ** LastII)180 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
181                                             ParsedType ObjectType,
182                                             bool EnteringContext,
183                                             bool *MayBePseudoDestructor,
184                                             bool IsTypename,
185                                             IdentifierInfo **LastII) {
186   assert(getLangOpts().CPlusPlus &&
187          "Call sites of this function should be guarded by checking for C++");
188 
189   if (Tok.is(tok::annot_cxxscope)) {
190     assert(!LastII && "want last identifier but have already annotated scope");
191     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
192                                                  Tok.getAnnotationRange(),
193                                                  SS);
194     ConsumeToken();
195     return false;
196   }
197 
198   if (Tok.is(tok::annot_template_id)) {
199     // If the current token is an annotated template id, it may already have
200     // a scope specifier. Restore it.
201     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
202     SS = TemplateId->SS;
203   }
204 
205   if (LastII)
206     *LastII = 0;
207 
208   bool HasScopeSpecifier = false;
209 
210   if (Tok.is(tok::coloncolon)) {
211     // ::new and ::delete aren't nested-name-specifiers.
212     tok::TokenKind NextKind = NextToken().getKind();
213     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
214       return false;
215 
216     // '::' - Global scope qualifier.
217     if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
218       return true;
219 
220     CheckForLParenAfterColonColon();
221 
222     HasScopeSpecifier = true;
223   }
224 
225   bool CheckForDestructor = false;
226   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
227     CheckForDestructor = true;
228     *MayBePseudoDestructor = false;
229   }
230 
231   if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
232     DeclSpec DS(AttrFactory);
233     SourceLocation DeclLoc = Tok.getLocation();
234     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
235     if (Tok.isNot(tok::coloncolon)) {
236       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
237       return false;
238     }
239 
240     SourceLocation CCLoc = ConsumeToken();
241     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
242       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
243 
244     HasScopeSpecifier = true;
245   }
246 
247   while (true) {
248     if (HasScopeSpecifier) {
249       // C++ [basic.lookup.classref]p5:
250       //   If the qualified-id has the form
251       //
252       //       ::class-name-or-namespace-name::...
253       //
254       //   the class-name-or-namespace-name is looked up in global scope as a
255       //   class-name or namespace-name.
256       //
257       // To implement this, we clear out the object type as soon as we've
258       // seen a leading '::' or part of a nested-name-specifier.
259       ObjectType = ParsedType();
260 
261       if (Tok.is(tok::code_completion)) {
262         // Code completion for a nested-name-specifier, where the code
263         // code completion token follows the '::'.
264         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
265         // Include code completion token into the range of the scope otherwise
266         // when we try to annotate the scope tokens the dangling code completion
267         // token will cause assertion in
268         // Preprocessor::AnnotatePreviousCachedTokens.
269         SS.setEndLoc(Tok.getLocation());
270         cutOffParsing();
271         return true;
272       }
273     }
274 
275     // nested-name-specifier:
276     //   nested-name-specifier 'template'[opt] simple-template-id '::'
277 
278     // Parse the optional 'template' keyword, then make sure we have
279     // 'identifier <' after it.
280     if (Tok.is(tok::kw_template)) {
281       // If we don't have a scope specifier or an object type, this isn't a
282       // nested-name-specifier, since they aren't allowed to start with
283       // 'template'.
284       if (!HasScopeSpecifier && !ObjectType)
285         break;
286 
287       TentativeParsingAction TPA(*this);
288       SourceLocation TemplateKWLoc = ConsumeToken();
289 
290       UnqualifiedId TemplateName;
291       if (Tok.is(tok::identifier)) {
292         // Consume the identifier.
293         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
294         ConsumeToken();
295       } else if (Tok.is(tok::kw_operator)) {
296         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
297                                        TemplateName)) {
298           TPA.Commit();
299           break;
300         }
301 
302         if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
303             TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
304           Diag(TemplateName.getSourceRange().getBegin(),
305                diag::err_id_after_template_in_nested_name_spec)
306             << TemplateName.getSourceRange();
307           TPA.Commit();
308           break;
309         }
310       } else {
311         TPA.Revert();
312         break;
313       }
314 
315       // If the next token is not '<', we have a qualified-id that refers
316       // to a template name, such as T::template apply, but is not a
317       // template-id.
318       if (Tok.isNot(tok::less)) {
319         TPA.Revert();
320         break;
321       }
322 
323       // Commit to parsing the template-id.
324       TPA.Commit();
325       TemplateTy Template;
326       if (TemplateNameKind TNK
327           = Actions.ActOnDependentTemplateName(getCurScope(),
328                                                SS, TemplateKWLoc, TemplateName,
329                                                ObjectType, EnteringContext,
330                                                Template)) {
331         if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
332                                     TemplateName, false))
333           return true;
334       } else
335         return true;
336 
337       continue;
338     }
339 
340     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
341       // We have
342       //
343       //   simple-template-id '::'
344       //
345       // So we need to check whether the simple-template-id is of the
346       // right kind (it should name a type or be dependent), and then
347       // convert it into a type within the nested-name-specifier.
348       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
349       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
350         *MayBePseudoDestructor = true;
351         return false;
352       }
353 
354       if (LastII)
355         *LastII = TemplateId->Name;
356 
357       // Consume the template-id token.
358       ConsumeToken();
359 
360       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
361       SourceLocation CCLoc = ConsumeToken();
362 
363       HasScopeSpecifier = true;
364 
365       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
366                                          TemplateId->NumArgs);
367 
368       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
369                                               SS,
370                                               TemplateId->TemplateKWLoc,
371                                               TemplateId->Template,
372                                               TemplateId->TemplateNameLoc,
373                                               TemplateId->LAngleLoc,
374                                               TemplateArgsPtr,
375                                               TemplateId->RAngleLoc,
376                                               CCLoc,
377                                               EnteringContext)) {
378         SourceLocation StartLoc
379           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
380                                       : TemplateId->TemplateNameLoc;
381         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
382       }
383 
384       continue;
385     }
386 
387 
388     // The rest of the nested-name-specifier possibilities start with
389     // tok::identifier.
390     if (Tok.isNot(tok::identifier))
391       break;
392 
393     IdentifierInfo &II = *Tok.getIdentifierInfo();
394 
395     // nested-name-specifier:
396     //   type-name '::'
397     //   namespace-name '::'
398     //   nested-name-specifier identifier '::'
399     Token Next = NextToken();
400 
401     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
402     // and emit a fixit hint for it.
403     if (Next.is(tok::colon) && !ColonIsSacred) {
404       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
405                                             Tok.getLocation(),
406                                             Next.getLocation(), ObjectType,
407                                             EnteringContext) &&
408           // If the token after the colon isn't an identifier, it's still an
409           // error, but they probably meant something else strange so don't
410           // recover like this.
411           PP.LookAhead(1).is(tok::identifier)) {
412         Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
413           << FixItHint::CreateReplacement(Next.getLocation(), "::");
414 
415         // Recover as if the user wrote '::'.
416         Next.setKind(tok::coloncolon);
417       }
418     }
419 
420     if (Next.is(tok::coloncolon)) {
421       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
422           !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
423                                                 II, ObjectType)) {
424         *MayBePseudoDestructor = true;
425         return false;
426       }
427 
428       if (LastII)
429         *LastII = &II;
430 
431       // We have an identifier followed by a '::'. Lookup this name
432       // as the name in a nested-name-specifier.
433       SourceLocation IdLoc = ConsumeToken();
434       assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
435              "NextToken() not working properly!");
436       SourceLocation CCLoc = ConsumeToken();
437 
438       CheckForLParenAfterColonColon();
439 
440       HasScopeSpecifier = true;
441       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
442                                               ObjectType, EnteringContext, SS))
443         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
444 
445       continue;
446     }
447 
448     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
449 
450     // nested-name-specifier:
451     //   type-name '<'
452     if (Next.is(tok::less)) {
453       TemplateTy Template;
454       UnqualifiedId TemplateName;
455       TemplateName.setIdentifier(&II, Tok.getLocation());
456       bool MemberOfUnknownSpecialization;
457       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
458                                               /*hasTemplateKeyword=*/false,
459                                                         TemplateName,
460                                                         ObjectType,
461                                                         EnteringContext,
462                                                         Template,
463                                               MemberOfUnknownSpecialization)) {
464         // We have found a template name, so annotate this token
465         // with a template-id annotation. We do not permit the
466         // template-id to be translated into a type annotation,
467         // because some clients (e.g., the parsing of class template
468         // specializations) still want to see the original template-id
469         // token.
470         ConsumeToken();
471         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
472                                     TemplateName, false))
473           return true;
474         continue;
475       }
476 
477       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
478           (IsTypename || IsTemplateArgumentList(1))) {
479         // We have something like t::getAs<T>, where getAs is a
480         // member of an unknown specialization. However, this will only
481         // parse correctly as a template, so suggest the keyword 'template'
482         // before 'getAs' and treat this as a dependent template name.
483         unsigned DiagID = diag::err_missing_dependent_template_keyword;
484         if (getLangOpts().MicrosoftExt)
485           DiagID = diag::warn_missing_dependent_template_keyword;
486 
487         Diag(Tok.getLocation(), DiagID)
488           << II.getName()
489           << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
490 
491         if (TemplateNameKind TNK
492               = Actions.ActOnDependentTemplateName(getCurScope(),
493                                                    SS, SourceLocation(),
494                                                    TemplateName, ObjectType,
495                                                    EnteringContext, Template)) {
496           // Consume the identifier.
497           ConsumeToken();
498           if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
499                                       TemplateName, false))
500             return true;
501         }
502         else
503           return true;
504 
505         continue;
506       }
507     }
508 
509     // We don't have any tokens that form the beginning of a
510     // nested-name-specifier, so we're done.
511     break;
512   }
513 
514   // Even if we didn't see any pieces of a nested-name-specifier, we
515   // still check whether there is a tilde in this position, which
516   // indicates a potential pseudo-destructor.
517   if (CheckForDestructor && Tok.is(tok::tilde))
518     *MayBePseudoDestructor = true;
519 
520   return false;
521 }
522 
523 /// ParseCXXIdExpression - Handle id-expression.
524 ///
525 ///       id-expression:
526 ///         unqualified-id
527 ///         qualified-id
528 ///
529 ///       qualified-id:
530 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
531 ///         '::' identifier
532 ///         '::' operator-function-id
533 ///         '::' template-id
534 ///
535 /// NOTE: The standard specifies that, for qualified-id, the parser does not
536 /// expect:
537 ///
538 ///   '::' conversion-function-id
539 ///   '::' '~' class-name
540 ///
541 /// This may cause a slight inconsistency on diagnostics:
542 ///
543 /// class C {};
544 /// namespace A {}
545 /// void f() {
546 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
547 ///                  // namespace.
548 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
549 /// }
550 ///
551 /// We simplify the parser a bit and make it work like:
552 ///
553 ///       qualified-id:
554 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
555 ///         '::' unqualified-id
556 ///
557 /// That way Sema can handle and report similar errors for namespaces and the
558 /// global scope.
559 ///
560 /// The isAddressOfOperand parameter indicates that this id-expression is a
561 /// direct operand of the address-of operator. This is, besides member contexts,
562 /// the only place where a qualified-id naming a non-static class member may
563 /// appear.
564 ///
ParseCXXIdExpression(bool isAddressOfOperand)565 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
566   // qualified-id:
567   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
568   //   '::' unqualified-id
569   //
570   CXXScopeSpec SS;
571   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
572 
573   SourceLocation TemplateKWLoc;
574   UnqualifiedId Name;
575   if (ParseUnqualifiedId(SS,
576                          /*EnteringContext=*/false,
577                          /*AllowDestructorName=*/false,
578                          /*AllowConstructorName=*/false,
579                          /*ObjectType=*/ ParsedType(),
580                          TemplateKWLoc,
581                          Name))
582     return ExprError();
583 
584   // This is only the direct operand of an & operator if it is not
585   // followed by a postfix-expression suffix.
586   if (isAddressOfOperand && isPostfixExpressionSuffixStart())
587     isAddressOfOperand = false;
588 
589   return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
590                                    Tok.is(tok::l_paren), isAddressOfOperand);
591 }
592 
593 /// ParseLambdaExpression - Parse a C++11 lambda expression.
594 ///
595 ///       lambda-expression:
596 ///         lambda-introducer lambda-declarator[opt] compound-statement
597 ///
598 ///       lambda-introducer:
599 ///         '[' lambda-capture[opt] ']'
600 ///
601 ///       lambda-capture:
602 ///         capture-default
603 ///         capture-list
604 ///         capture-default ',' capture-list
605 ///
606 ///       capture-default:
607 ///         '&'
608 ///         '='
609 ///
610 ///       capture-list:
611 ///         capture
612 ///         capture-list ',' capture
613 ///
614 ///       capture:
615 ///         simple-capture
616 ///         init-capture     [C++1y]
617 ///
618 ///       simple-capture:
619 ///         identifier
620 ///         '&' identifier
621 ///         'this'
622 ///
623 ///       init-capture:      [C++1y]
624 ///         identifier initializer
625 ///         '&' identifier initializer
626 ///
627 ///       lambda-declarator:
628 ///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
629 ///           'mutable'[opt] exception-specification[opt]
630 ///           trailing-return-type[opt]
631 ///
ParseLambdaExpression()632 ExprResult Parser::ParseLambdaExpression() {
633   // Parse lambda-introducer.
634   LambdaIntroducer Intro;
635 
636   Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
637   if (DiagID) {
638     Diag(Tok, DiagID.getValue());
639     SkipUntil(tok::r_square);
640     SkipUntil(tok::l_brace);
641     SkipUntil(tok::r_brace);
642     return ExprError();
643   }
644 
645   return ParseLambdaExpressionAfterIntroducer(Intro);
646 }
647 
648 /// TryParseLambdaExpression - Use lookahead and potentially tentative
649 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
650 /// it if we are.
651 ///
652 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()653 ExprResult Parser::TryParseLambdaExpression() {
654   assert(getLangOpts().CPlusPlus11
655          && Tok.is(tok::l_square)
656          && "Not at the start of a possible lambda expression.");
657 
658   const Token Next = NextToken(), After = GetLookAheadToken(2);
659 
660   // If lookahead indicates this is a lambda...
661   if (Next.is(tok::r_square) ||     // []
662       Next.is(tok::equal) ||        // [=
663       (Next.is(tok::amp) &&         // [&] or [&,
664        (After.is(tok::r_square) ||
665         After.is(tok::comma))) ||
666       (Next.is(tok::identifier) &&  // [identifier]
667        After.is(tok::r_square))) {
668     return ParseLambdaExpression();
669   }
670 
671   // If lookahead indicates an ObjC message send...
672   // [identifier identifier
673   if (Next.is(tok::identifier) && After.is(tok::identifier)) {
674     return ExprEmpty();
675   }
676 
677   // Here, we're stuck: lambda introducers and Objective-C message sends are
678   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
679   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
680   // writing two routines to parse a lambda introducer, just try to parse
681   // a lambda introducer first, and fall back if that fails.
682   // (TryParseLambdaIntroducer never produces any diagnostic output.)
683   LambdaIntroducer Intro;
684   if (TryParseLambdaIntroducer(Intro))
685     return ExprEmpty();
686   return ParseLambdaExpressionAfterIntroducer(Intro);
687 }
688 
689 /// \brief Parse a lambda introducer.
690 /// \param Intro A LambdaIntroducer filled in with information about the
691 ///        contents of the lambda-introducer.
692 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
693 ///        message send and a lambda expression. In this mode, we will
694 ///        sometimes skip the initializers for init-captures and not fully
695 ///        populate \p Intro. This flag will be set to \c true if we do so.
696 /// \return A DiagnosticID if it hit something unexpected. The location for
697 ///         for the diagnostic is that of the current token.
ParseLambdaIntroducer(LambdaIntroducer & Intro,bool * SkippedInits)698 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
699                                                  bool *SkippedInits) {
700   typedef Optional<unsigned> DiagResult;
701 
702   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
703   BalancedDelimiterTracker T(*this, tok::l_square);
704   T.consumeOpen();
705 
706   Intro.Range.setBegin(T.getOpenLocation());
707 
708   bool first = true;
709 
710   // Parse capture-default.
711   if (Tok.is(tok::amp) &&
712       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
713     Intro.Default = LCD_ByRef;
714     Intro.DefaultLoc = ConsumeToken();
715     first = false;
716   } else if (Tok.is(tok::equal)) {
717     Intro.Default = LCD_ByCopy;
718     Intro.DefaultLoc = ConsumeToken();
719     first = false;
720   }
721 
722   while (Tok.isNot(tok::r_square)) {
723     if (!first) {
724       if (Tok.isNot(tok::comma)) {
725         // Provide a completion for a lambda introducer here. Except
726         // in Objective-C, where this is Almost Surely meant to be a message
727         // send. In that case, fail here and let the ObjC message
728         // expression parser perform the completion.
729         if (Tok.is(tok::code_completion) &&
730             !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
731               !Intro.Captures.empty())) {
732           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
733                                                /*AfterAmpersand=*/false);
734           ConsumeCodeCompletionToken();
735           break;
736         }
737 
738         return DiagResult(diag::err_expected_comma_or_rsquare);
739       }
740       ConsumeToken();
741     }
742 
743     if (Tok.is(tok::code_completion)) {
744       // If we're in Objective-C++ and we have a bare '[', then this is more
745       // likely to be a message receiver.
746       if (getLangOpts().ObjC1 && first)
747         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
748       else
749         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
750                                              /*AfterAmpersand=*/false);
751       ConsumeCodeCompletionToken();
752       break;
753     }
754 
755     first = false;
756 
757     // Parse capture.
758     LambdaCaptureKind Kind = LCK_ByCopy;
759     SourceLocation Loc;
760     IdentifierInfo* Id = 0;
761     SourceLocation EllipsisLoc;
762     ExprResult Init;
763 
764     if (Tok.is(tok::kw_this)) {
765       Kind = LCK_This;
766       Loc = ConsumeToken();
767     } else {
768       if (Tok.is(tok::amp)) {
769         Kind = LCK_ByRef;
770         ConsumeToken();
771 
772         if (Tok.is(tok::code_completion)) {
773           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
774                                                /*AfterAmpersand=*/true);
775           ConsumeCodeCompletionToken();
776           break;
777         }
778       }
779 
780       if (Tok.is(tok::identifier)) {
781         Id = Tok.getIdentifierInfo();
782         Loc = ConsumeToken();
783       } else if (Tok.is(tok::kw_this)) {
784         // FIXME: If we want to suggest a fixit here, will need to return more
785         // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
786         // Clear()ed to prevent emission in case of tentative parsing?
787         return DiagResult(diag::err_this_captured_by_reference);
788       } else {
789         return DiagResult(diag::err_expected_capture);
790       }
791 
792       if (Tok.is(tok::l_paren)) {
793         BalancedDelimiterTracker Parens(*this, tok::l_paren);
794         Parens.consumeOpen();
795 
796         ExprVector Exprs;
797         CommaLocsTy Commas;
798         if (SkippedInits) {
799           Parens.skipToEnd();
800           *SkippedInits = true;
801         } else if (ParseExpressionList(Exprs, Commas)) {
802           Parens.skipToEnd();
803           Init = ExprError();
804         } else {
805           Parens.consumeClose();
806           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
807                                             Parens.getCloseLocation(),
808                                             Exprs);
809         }
810       } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) {
811         if (Tok.is(tok::equal))
812           ConsumeToken();
813 
814         if (!SkippedInits)
815           Init = ParseInitializer();
816         else if (Tok.is(tok::l_brace)) {
817           BalancedDelimiterTracker Braces(*this, tok::l_brace);
818           Braces.consumeOpen();
819           Braces.skipToEnd();
820           *SkippedInits = true;
821         } else {
822           // We're disambiguating this:
823           //
824           //   [..., x = expr
825           //
826           // We need to find the end of the following expression in order to
827           // determine whether this is an Obj-C message send's receiver, or a
828           // lambda init-capture.
829           //
830           // Parse the expression to find where it ends, and annotate it back
831           // onto the tokens. We would have parsed this expression the same way
832           // in either case: both the RHS of an init-capture and the RHS of an
833           // assignment expression are parsed as an initializer-clause, and in
834           // neither case can anything be added to the scope between the '[' and
835           // here.
836           //
837           // FIXME: This is horrible. Adding a mechanism to skip an expression
838           // would be much cleaner.
839           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
840           // that instead. (And if we see a ':' with no matching '?', we can
841           // classify this as an Obj-C message send.)
842           SourceLocation StartLoc = Tok.getLocation();
843           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
844           Init = ParseInitializer();
845 
846           if (Tok.getLocation() != StartLoc) {
847             // Back out the lexing of the token after the initializer.
848             PP.RevertCachedTokens(1);
849 
850             // Replace the consumed tokens with an appropriate annotation.
851             Tok.setLocation(StartLoc);
852             Tok.setKind(tok::annot_primary_expr);
853             setExprAnnotation(Tok, Init);
854             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
855             PP.AnnotateCachedTokens(Tok);
856 
857             // Consume the annotated initializer.
858             ConsumeToken();
859           }
860         }
861       } else if (Tok.is(tok::ellipsis))
862         EllipsisLoc = ConsumeToken();
863     }
864 
865     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init);
866   }
867 
868   T.consumeClose();
869   Intro.Range.setEnd(T.getCloseLocation());
870 
871   return DiagResult();
872 }
873 
874 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
875 ///
876 /// Returns true if it hit something unexpected.
TryParseLambdaIntroducer(LambdaIntroducer & Intro)877 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
878   TentativeParsingAction PA(*this);
879 
880   bool SkippedInits = false;
881   Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
882 
883   if (DiagID) {
884     PA.Revert();
885     return true;
886   }
887 
888   if (SkippedInits) {
889     // Parse it again, but this time parse the init-captures too.
890     PA.Revert();
891     Intro = LambdaIntroducer();
892     DiagID = ParseLambdaIntroducer(Intro);
893     assert(!DiagID && "parsing lambda-introducer failed on reparse");
894     return false;
895   }
896 
897   PA.Commit();
898   return false;
899 }
900 
901 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
902 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)903 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
904                      LambdaIntroducer &Intro) {
905   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
906   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
907 
908   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
909                                 "lambda expression parsing");
910 
911   // FIXME: Call into Actions to add any init-capture declarations to the
912   // scope while parsing the lambda-declarator and compound-statement.
913 
914   // Parse lambda-declarator[opt].
915   DeclSpec DS(AttrFactory);
916   Declarator D(DS, Declarator::LambdaExprContext);
917 
918   if (Tok.is(tok::l_paren)) {
919     ParseScope PrototypeScope(this,
920                               Scope::FunctionPrototypeScope |
921                               Scope::FunctionDeclarationScope |
922                               Scope::DeclScope);
923 
924     SourceLocation DeclEndLoc;
925     BalancedDelimiterTracker T(*this, tok::l_paren);
926     T.consumeOpen();
927     SourceLocation LParenLoc = T.getOpenLocation();
928 
929     // Parse parameter-declaration-clause.
930     ParsedAttributes Attr(AttrFactory);
931     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
932     SourceLocation EllipsisLoc;
933 
934     if (Tok.isNot(tok::r_paren))
935       ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
936 
937     T.consumeClose();
938     SourceLocation RParenLoc = T.getCloseLocation();
939     DeclEndLoc = RParenLoc;
940 
941     // Parse 'mutable'[opt].
942     SourceLocation MutableLoc;
943     if (Tok.is(tok::kw_mutable)) {
944       MutableLoc = ConsumeToken();
945       DeclEndLoc = MutableLoc;
946     }
947 
948     // Parse exception-specification[opt].
949     ExceptionSpecificationType ESpecType = EST_None;
950     SourceRange ESpecRange;
951     SmallVector<ParsedType, 2> DynamicExceptions;
952     SmallVector<SourceRange, 2> DynamicExceptionRanges;
953     ExprResult NoexceptExpr;
954     ESpecType = tryParseExceptionSpecification(ESpecRange,
955                                                DynamicExceptions,
956                                                DynamicExceptionRanges,
957                                                NoexceptExpr);
958 
959     if (ESpecType != EST_None)
960       DeclEndLoc = ESpecRange.getEnd();
961 
962     // Parse attribute-specifier[opt].
963     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
964 
965     SourceLocation FunLocalRangeEnd = DeclEndLoc;
966 
967     // Parse trailing-return-type[opt].
968     TypeResult TrailingReturnType;
969     if (Tok.is(tok::arrow)) {
970       FunLocalRangeEnd = Tok.getLocation();
971       SourceRange Range;
972       TrailingReturnType = ParseTrailingReturnType(Range);
973       if (Range.getEnd().isValid())
974         DeclEndLoc = Range.getEnd();
975     }
976 
977     PrototypeScope.Exit();
978 
979     SourceLocation NoLoc;
980     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
981                                            /*isAmbiguous=*/false,
982                                            LParenLoc,
983                                            ParamInfo.data(), ParamInfo.size(),
984                                            EllipsisLoc, RParenLoc,
985                                            DS.getTypeQualifiers(),
986                                            /*RefQualifierIsLValueRef=*/true,
987                                            /*RefQualifierLoc=*/NoLoc,
988                                            /*ConstQualifierLoc=*/NoLoc,
989                                            /*VolatileQualifierLoc=*/NoLoc,
990                                            MutableLoc,
991                                            ESpecType, ESpecRange.getBegin(),
992                                            DynamicExceptions.data(),
993                                            DynamicExceptionRanges.data(),
994                                            DynamicExceptions.size(),
995                                            NoexceptExpr.isUsable() ?
996                                              NoexceptExpr.get() : 0,
997                                            LParenLoc, FunLocalRangeEnd, D,
998                                            TrailingReturnType),
999                   Attr, DeclEndLoc);
1000   } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
1001     // It's common to forget that one needs '()' before 'mutable' or the
1002     // result type. Deal with this.
1003     Diag(Tok, diag::err_lambda_missing_parens)
1004       << Tok.is(tok::arrow)
1005       << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1006     SourceLocation DeclLoc = Tok.getLocation();
1007     SourceLocation DeclEndLoc = DeclLoc;
1008 
1009     // Parse 'mutable', if it's there.
1010     SourceLocation MutableLoc;
1011     if (Tok.is(tok::kw_mutable)) {
1012       MutableLoc = ConsumeToken();
1013       DeclEndLoc = MutableLoc;
1014     }
1015 
1016     // Parse the return type, if there is one.
1017     TypeResult TrailingReturnType;
1018     if (Tok.is(tok::arrow)) {
1019       SourceRange Range;
1020       TrailingReturnType = ParseTrailingReturnType(Range);
1021       if (Range.getEnd().isValid())
1022         DeclEndLoc = Range.getEnd();
1023     }
1024 
1025     ParsedAttributes Attr(AttrFactory);
1026     SourceLocation NoLoc;
1027     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1028                                                /*isAmbiguous=*/false,
1029                                                /*LParenLoc=*/NoLoc,
1030                                                /*Params=*/0,
1031                                                /*NumParams=*/0,
1032                                                /*EllipsisLoc=*/NoLoc,
1033                                                /*RParenLoc=*/NoLoc,
1034                                                /*TypeQuals=*/0,
1035                                                /*RefQualifierIsLValueRef=*/true,
1036                                                /*RefQualifierLoc=*/NoLoc,
1037                                                /*ConstQualifierLoc=*/NoLoc,
1038                                                /*VolatileQualifierLoc=*/NoLoc,
1039                                                MutableLoc,
1040                                                EST_None,
1041                                                /*ESpecLoc=*/NoLoc,
1042                                                /*Exceptions=*/0,
1043                                                /*ExceptionRanges=*/0,
1044                                                /*NumExceptions=*/0,
1045                                                /*NoexceptExpr=*/0,
1046                                                DeclLoc, DeclEndLoc, D,
1047                                                TrailingReturnType),
1048                   Attr, DeclEndLoc);
1049   }
1050 
1051 
1052   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1053   // it.
1054   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
1055   ParseScope BodyScope(this, ScopeFlags);
1056 
1057   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1058 
1059   // Parse compound-statement.
1060   if (!Tok.is(tok::l_brace)) {
1061     Diag(Tok, diag::err_expected_lambda_body);
1062     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1063     return ExprError();
1064   }
1065 
1066   StmtResult Stmt(ParseCompoundStatementBody());
1067   BodyScope.Exit();
1068 
1069   if (!Stmt.isInvalid())
1070     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
1071 
1072   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1073   return ExprError();
1074 }
1075 
1076 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1077 /// type.
1078 ///
1079 ///       postfix-expression: [C++ 5.2p1]
1080 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1081 ///         'static_cast' '<' type-name '>' '(' expression ')'
1082 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1083 ///         'const_cast' '<' type-name '>' '(' expression ')'
1084 ///
ParseCXXCasts()1085 ExprResult Parser::ParseCXXCasts() {
1086   tok::TokenKind Kind = Tok.getKind();
1087   const char *CastName = 0;     // For error messages
1088 
1089   switch (Kind) {
1090   default: llvm_unreachable("Unknown C++ cast!");
1091   case tok::kw_const_cast:       CastName = "const_cast";       break;
1092   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1093   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1094   case tok::kw_static_cast:      CastName = "static_cast";      break;
1095   }
1096 
1097   SourceLocation OpLoc = ConsumeToken();
1098   SourceLocation LAngleBracketLoc = Tok.getLocation();
1099 
1100   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1101   // diagnose error, suggest fix, and recover parsing.
1102   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1103     Token Next = NextToken();
1104     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1105       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1106   }
1107 
1108   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1109     return ExprError();
1110 
1111   // Parse the common declaration-specifiers piece.
1112   DeclSpec DS(AttrFactory);
1113   ParseSpecifierQualifierList(DS);
1114 
1115   // Parse the abstract-declarator, if present.
1116   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1117   ParseDeclarator(DeclaratorInfo);
1118 
1119   SourceLocation RAngleBracketLoc = Tok.getLocation();
1120 
1121   if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
1122     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
1123 
1124   SourceLocation LParenLoc, RParenLoc;
1125   BalancedDelimiterTracker T(*this, tok::l_paren);
1126 
1127   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1128     return ExprError();
1129 
1130   ExprResult Result = ParseExpression();
1131 
1132   // Match the ')'.
1133   T.consumeClose();
1134 
1135   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1136     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1137                                        LAngleBracketLoc, DeclaratorInfo,
1138                                        RAngleBracketLoc,
1139                                        T.getOpenLocation(), Result.take(),
1140                                        T.getCloseLocation());
1141 
1142   return Result;
1143 }
1144 
1145 /// ParseCXXTypeid - This handles the C++ typeid expression.
1146 ///
1147 ///       postfix-expression: [C++ 5.2p1]
1148 ///         'typeid' '(' expression ')'
1149 ///         'typeid' '(' type-id ')'
1150 ///
ParseCXXTypeid()1151 ExprResult Parser::ParseCXXTypeid() {
1152   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1153 
1154   SourceLocation OpLoc = ConsumeToken();
1155   SourceLocation LParenLoc, RParenLoc;
1156   BalancedDelimiterTracker T(*this, tok::l_paren);
1157 
1158   // typeid expressions are always parenthesized.
1159   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1160     return ExprError();
1161   LParenLoc = T.getOpenLocation();
1162 
1163   ExprResult Result;
1164 
1165   // C++0x [expr.typeid]p3:
1166   //   When typeid is applied to an expression other than an lvalue of a
1167   //   polymorphic class type [...] The expression is an unevaluated
1168   //   operand (Clause 5).
1169   //
1170   // Note that we can't tell whether the expression is an lvalue of a
1171   // polymorphic class type until after we've parsed the expression; we
1172   // speculatively assume the subexpression is unevaluated, and fix it up
1173   // later.
1174   //
1175   // We enter the unevaluated context before trying to determine whether we
1176   // have a type-id, because the tentative parse logic will try to resolve
1177   // names, and must treat them as unevaluated.
1178   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1179                                                Sema::ReuseLambdaContextDecl);
1180 
1181   if (isTypeIdInParens()) {
1182     TypeResult Ty = ParseTypeName();
1183 
1184     // Match the ')'.
1185     T.consumeClose();
1186     RParenLoc = T.getCloseLocation();
1187     if (Ty.isInvalid() || RParenLoc.isInvalid())
1188       return ExprError();
1189 
1190     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1191                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1192   } else {
1193     Result = ParseExpression();
1194 
1195     // Match the ')'.
1196     if (Result.isInvalid())
1197       SkipUntil(tok::r_paren);
1198     else {
1199       T.consumeClose();
1200       RParenLoc = T.getCloseLocation();
1201       if (RParenLoc.isInvalid())
1202         return ExprError();
1203 
1204       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1205                                       Result.release(), RParenLoc);
1206     }
1207   }
1208 
1209   return Result;
1210 }
1211 
1212 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1213 ///
1214 ///         '__uuidof' '(' expression ')'
1215 ///         '__uuidof' '(' type-id ')'
1216 ///
ParseCXXUuidof()1217 ExprResult Parser::ParseCXXUuidof() {
1218   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1219 
1220   SourceLocation OpLoc = ConsumeToken();
1221   BalancedDelimiterTracker T(*this, tok::l_paren);
1222 
1223   // __uuidof expressions are always parenthesized.
1224   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1225     return ExprError();
1226 
1227   ExprResult Result;
1228 
1229   if (isTypeIdInParens()) {
1230     TypeResult Ty = ParseTypeName();
1231 
1232     // Match the ')'.
1233     T.consumeClose();
1234 
1235     if (Ty.isInvalid())
1236       return ExprError();
1237 
1238     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1239                                     Ty.get().getAsOpaquePtr(),
1240                                     T.getCloseLocation());
1241   } else {
1242     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1243     Result = ParseExpression();
1244 
1245     // Match the ')'.
1246     if (Result.isInvalid())
1247       SkipUntil(tok::r_paren);
1248     else {
1249       T.consumeClose();
1250 
1251       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1252                                       /*isType=*/false,
1253                                       Result.release(), T.getCloseLocation());
1254     }
1255   }
1256 
1257   return Result;
1258 }
1259 
1260 /// \brief Parse a C++ pseudo-destructor expression after the base,
1261 /// . or -> operator, and nested-name-specifier have already been
1262 /// parsed.
1263 ///
1264 ///       postfix-expression: [C++ 5.2]
1265 ///         postfix-expression . pseudo-destructor-name
1266 ///         postfix-expression -> pseudo-destructor-name
1267 ///
1268 ///       pseudo-destructor-name:
1269 ///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1270 ///         ::[opt] nested-name-specifier template simple-template-id ::
1271 ///                 ~type-name
1272 ///         ::[opt] nested-name-specifier[opt] ~type-name
1273 ///
1274 ExprResult
ParseCXXPseudoDestructor(ExprArg Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1275 Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1276                                  tok::TokenKind OpKind,
1277                                  CXXScopeSpec &SS,
1278                                  ParsedType ObjectType) {
1279   // We're parsing either a pseudo-destructor-name or a dependent
1280   // member access that has the same form as a
1281   // pseudo-destructor-name. We parse both in the same way and let
1282   // the action model sort them out.
1283   //
1284   // Note that the ::[opt] nested-name-specifier[opt] has already
1285   // been parsed, and if there was a simple-template-id, it has
1286   // been coalesced into a template-id annotation token.
1287   UnqualifiedId FirstTypeName;
1288   SourceLocation CCLoc;
1289   if (Tok.is(tok::identifier)) {
1290     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1291     ConsumeToken();
1292     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1293     CCLoc = ConsumeToken();
1294   } else if (Tok.is(tok::annot_template_id)) {
1295     // FIXME: retrieve TemplateKWLoc from template-id annotation and
1296     // store it in the pseudo-dtor node (to be used when instantiating it).
1297     FirstTypeName.setTemplateId(
1298                               (TemplateIdAnnotation *)Tok.getAnnotationValue());
1299     ConsumeToken();
1300     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1301     CCLoc = ConsumeToken();
1302   } else {
1303     FirstTypeName.setIdentifier(0, SourceLocation());
1304   }
1305 
1306   // Parse the tilde.
1307   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1308   SourceLocation TildeLoc = ConsumeToken();
1309 
1310   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1311     DeclSpec DS(AttrFactory);
1312     ParseDecltypeSpecifier(DS);
1313     if (DS.getTypeSpecType() == TST_error)
1314       return ExprError();
1315     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1316                                              OpKind, TildeLoc, DS,
1317                                              Tok.is(tok::l_paren));
1318   }
1319 
1320   if (!Tok.is(tok::identifier)) {
1321     Diag(Tok, diag::err_destructor_tilde_identifier);
1322     return ExprError();
1323   }
1324 
1325   // Parse the second type.
1326   UnqualifiedId SecondTypeName;
1327   IdentifierInfo *Name = Tok.getIdentifierInfo();
1328   SourceLocation NameLoc = ConsumeToken();
1329   SecondTypeName.setIdentifier(Name, NameLoc);
1330 
1331   // If there is a '<', the second type name is a template-id. Parse
1332   // it as such.
1333   if (Tok.is(tok::less) &&
1334       ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1335                                    Name, NameLoc,
1336                                    false, ObjectType, SecondTypeName,
1337                                    /*AssumeTemplateName=*/true))
1338     return ExprError();
1339 
1340   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1341                                            OpLoc, OpKind,
1342                                            SS, FirstTypeName, CCLoc,
1343                                            TildeLoc, SecondTypeName,
1344                                            Tok.is(tok::l_paren));
1345 }
1346 
1347 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1348 ///
1349 ///       boolean-literal: [C++ 2.13.5]
1350 ///         'true'
1351 ///         'false'
ParseCXXBoolLiteral()1352 ExprResult Parser::ParseCXXBoolLiteral() {
1353   tok::TokenKind Kind = Tok.getKind();
1354   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1355 }
1356 
1357 /// ParseThrowExpression - This handles the C++ throw expression.
1358 ///
1359 ///       throw-expression: [C++ 15]
1360 ///         'throw' assignment-expression[opt]
ParseThrowExpression()1361 ExprResult Parser::ParseThrowExpression() {
1362   assert(Tok.is(tok::kw_throw) && "Not throw!");
1363   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1364 
1365   // If the current token isn't the start of an assignment-expression,
1366   // then the expression is not present.  This handles things like:
1367   //   "C ? throw : (void)42", which is crazy but legal.
1368   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1369   case tok::semi:
1370   case tok::r_paren:
1371   case tok::r_square:
1372   case tok::r_brace:
1373   case tok::colon:
1374   case tok::comma:
1375     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1376 
1377   default:
1378     ExprResult Expr(ParseAssignmentExpression());
1379     if (Expr.isInvalid()) return Expr;
1380     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1381   }
1382 }
1383 
1384 /// ParseCXXThis - This handles the C++ 'this' pointer.
1385 ///
1386 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1387 /// a non-lvalue expression whose value is the address of the object for which
1388 /// the function is called.
ParseCXXThis()1389 ExprResult Parser::ParseCXXThis() {
1390   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1391   SourceLocation ThisLoc = ConsumeToken();
1392   return Actions.ActOnCXXThis(ThisLoc);
1393 }
1394 
1395 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1396 /// Can be interpreted either as function-style casting ("int(x)")
1397 /// or class type construction ("ClassType(x,y,z)")
1398 /// or creation of a value-initialized type ("int()").
1399 /// See [C++ 5.2.3].
1400 ///
1401 ///       postfix-expression: [C++ 5.2p1]
1402 ///         simple-type-specifier '(' expression-list[opt] ')'
1403 /// [C++0x] simple-type-specifier braced-init-list
1404 ///         typename-specifier '(' expression-list[opt] ')'
1405 /// [C++0x] typename-specifier braced-init-list
1406 ///
1407 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)1408 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1409   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1410   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1411 
1412   assert((Tok.is(tok::l_paren) ||
1413           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1414          && "Expected '(' or '{'!");
1415 
1416   if (Tok.is(tok::l_brace)) {
1417     ExprResult Init = ParseBraceInitializer();
1418     if (Init.isInvalid())
1419       return Init;
1420     Expr *InitList = Init.take();
1421     return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1422                                              MultiExprArg(&InitList, 1),
1423                                              SourceLocation());
1424   } else {
1425     BalancedDelimiterTracker T(*this, tok::l_paren);
1426     T.consumeOpen();
1427 
1428     ExprVector Exprs;
1429     CommaLocsTy CommaLocs;
1430 
1431     if (Tok.isNot(tok::r_paren)) {
1432       if (ParseExpressionList(Exprs, CommaLocs)) {
1433         SkipUntil(tok::r_paren);
1434         return ExprError();
1435       }
1436     }
1437 
1438     // Match the ')'.
1439     T.consumeClose();
1440 
1441     // TypeRep could be null, if it references an invalid typedef.
1442     if (!TypeRep)
1443       return ExprError();
1444 
1445     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1446            "Unexpected number of commas!");
1447     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1448                                              Exprs,
1449                                              T.getCloseLocation());
1450   }
1451 }
1452 
1453 /// ParseCXXCondition - if/switch/while condition expression.
1454 ///
1455 ///       condition:
1456 ///         expression
1457 ///         type-specifier-seq declarator '=' assignment-expression
1458 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1459 /// [C++11] type-specifier-seq declarator braced-init-list
1460 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1461 ///             '=' assignment-expression
1462 ///
1463 /// \param ExprOut if the condition was parsed as an expression, the parsed
1464 /// expression.
1465 ///
1466 /// \param DeclOut if the condition was parsed as a declaration, the parsed
1467 /// declaration.
1468 ///
1469 /// \param Loc The location of the start of the statement that requires this
1470 /// condition, e.g., the "for" in a for loop.
1471 ///
1472 /// \param ConvertToBoolean Whether the condition expression should be
1473 /// converted to a boolean value.
1474 ///
1475 /// \returns true if there was a parsing, false otherwise.
ParseCXXCondition(ExprResult & ExprOut,Decl * & DeclOut,SourceLocation Loc,bool ConvertToBoolean)1476 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1477                                Decl *&DeclOut,
1478                                SourceLocation Loc,
1479                                bool ConvertToBoolean) {
1480   if (Tok.is(tok::code_completion)) {
1481     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1482     cutOffParsing();
1483     return true;
1484   }
1485 
1486   ParsedAttributesWithRange attrs(AttrFactory);
1487   MaybeParseCXX11Attributes(attrs);
1488 
1489   if (!isCXXConditionDeclaration()) {
1490     ProhibitAttributes(attrs);
1491 
1492     // Parse the expression.
1493     ExprOut = ParseExpression(); // expression
1494     DeclOut = 0;
1495     if (ExprOut.isInvalid())
1496       return true;
1497 
1498     // If required, convert to a boolean value.
1499     if (ConvertToBoolean)
1500       ExprOut
1501         = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1502     return ExprOut.isInvalid();
1503   }
1504 
1505   // type-specifier-seq
1506   DeclSpec DS(AttrFactory);
1507   DS.takeAttributesFrom(attrs);
1508   ParseSpecifierQualifierList(DS);
1509 
1510   // declarator
1511   Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1512   ParseDeclarator(DeclaratorInfo);
1513 
1514   // simple-asm-expr[opt]
1515   if (Tok.is(tok::kw_asm)) {
1516     SourceLocation Loc;
1517     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1518     if (AsmLabel.isInvalid()) {
1519       SkipUntil(tok::semi);
1520       return true;
1521     }
1522     DeclaratorInfo.setAsmLabel(AsmLabel.release());
1523     DeclaratorInfo.SetRangeEnd(Loc);
1524   }
1525 
1526   // If attributes are present, parse them.
1527   MaybeParseGNUAttributes(DeclaratorInfo);
1528 
1529   // Type-check the declaration itself.
1530   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1531                                                         DeclaratorInfo);
1532   DeclOut = Dcl.get();
1533   ExprOut = ExprError();
1534 
1535   // '=' assignment-expression
1536   // If a '==' or '+=' is found, suggest a fixit to '='.
1537   bool CopyInitialization = isTokenEqualOrEqualTypo();
1538   if (CopyInitialization)
1539     ConsumeToken();
1540 
1541   ExprResult InitExpr = ExprError();
1542   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1543     Diag(Tok.getLocation(),
1544          diag::warn_cxx98_compat_generalized_initializer_lists);
1545     InitExpr = ParseBraceInitializer();
1546   } else if (CopyInitialization) {
1547     InitExpr = ParseAssignmentExpression();
1548   } else if (Tok.is(tok::l_paren)) {
1549     // This was probably an attempt to initialize the variable.
1550     SourceLocation LParen = ConsumeParen(), RParen = LParen;
1551     if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1552       RParen = ConsumeParen();
1553     Diag(DeclOut ? DeclOut->getLocation() : LParen,
1554          diag::err_expected_init_in_condition_lparen)
1555       << SourceRange(LParen, RParen);
1556   } else {
1557     Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1558          diag::err_expected_init_in_condition);
1559   }
1560 
1561   if (!InitExpr.isInvalid())
1562     Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1563                                  DS.containsPlaceholderType());
1564   else
1565     Actions.ActOnInitializerError(DeclOut);
1566 
1567   // FIXME: Build a reference to this declaration? Convert it to bool?
1568   // (This is currently handled by Sema).
1569 
1570   Actions.FinalizeDeclaration(DeclOut);
1571 
1572   return false;
1573 }
1574 
1575 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1576 /// This should only be called when the current token is known to be part of
1577 /// simple-type-specifier.
1578 ///
1579 ///       simple-type-specifier:
1580 ///         '::'[opt] nested-name-specifier[opt] type-name
1581 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1582 ///         char
1583 ///         wchar_t
1584 ///         bool
1585 ///         short
1586 ///         int
1587 ///         long
1588 ///         signed
1589 ///         unsigned
1590 ///         float
1591 ///         double
1592 ///         void
1593 /// [GNU]   typeof-specifier
1594 /// [C++0x] auto               [TODO]
1595 ///
1596 ///       type-name:
1597 ///         class-name
1598 ///         enum-name
1599 ///         typedef-name
1600 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)1601 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1602   DS.SetRangeStart(Tok.getLocation());
1603   const char *PrevSpec;
1604   unsigned DiagID;
1605   SourceLocation Loc = Tok.getLocation();
1606 
1607   switch (Tok.getKind()) {
1608   case tok::identifier:   // foo::bar
1609   case tok::coloncolon:   // ::foo::bar
1610     llvm_unreachable("Annotation token should already be formed!");
1611   default:
1612     llvm_unreachable("Not a simple-type-specifier token!");
1613 
1614   // type-name
1615   case tok::annot_typename: {
1616     if (getTypeAnnotation(Tok))
1617       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1618                          getTypeAnnotation(Tok));
1619     else
1620       DS.SetTypeSpecError();
1621 
1622     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1623     ConsumeToken();
1624 
1625     // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1626     // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1627     // Objective-C interface.  If we don't have Objective-C or a '<', this is
1628     // just a normal reference to a typedef name.
1629     if (Tok.is(tok::less) && getLangOpts().ObjC1)
1630       ParseObjCProtocolQualifiers(DS);
1631 
1632     DS.Finish(Diags, PP);
1633     return;
1634   }
1635 
1636   // builtin types
1637   case tok::kw_short:
1638     DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1639     break;
1640   case tok::kw_long:
1641     DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1642     break;
1643   case tok::kw___int64:
1644     DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1645     break;
1646   case tok::kw_signed:
1647     DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1648     break;
1649   case tok::kw_unsigned:
1650     DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1651     break;
1652   case tok::kw_void:
1653     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1654     break;
1655   case tok::kw_char:
1656     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1657     break;
1658   case tok::kw_int:
1659     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1660     break;
1661   case tok::kw___int128:
1662     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1663     break;
1664   case tok::kw_half:
1665     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1666     break;
1667   case tok::kw_float:
1668     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1669     break;
1670   case tok::kw_double:
1671     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1672     break;
1673   case tok::kw_wchar_t:
1674     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1675     break;
1676   case tok::kw_char16_t:
1677     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1678     break;
1679   case tok::kw_char32_t:
1680     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1681     break;
1682   case tok::kw_bool:
1683     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1684     break;
1685   case tok::annot_decltype:
1686   case tok::kw_decltype:
1687     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1688     return DS.Finish(Diags, PP);
1689 
1690   // GNU typeof support.
1691   case tok::kw_typeof:
1692     ParseTypeofSpecifier(DS);
1693     DS.Finish(Diags, PP);
1694     return;
1695   }
1696   if (Tok.is(tok::annot_typename))
1697     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1698   else
1699     DS.SetRangeEnd(Tok.getLocation());
1700   ConsumeToken();
1701   DS.Finish(Diags, PP);
1702 }
1703 
1704 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1705 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
1706 /// e.g., "const short int". Note that the DeclSpec is *not* finished
1707 /// by parsing the type-specifier-seq, because these sequences are
1708 /// typically followed by some form of declarator. Returns true and
1709 /// emits diagnostics if this is not a type-specifier-seq, false
1710 /// otherwise.
1711 ///
1712 ///   type-specifier-seq: [C++ 8.1]
1713 ///     type-specifier type-specifier-seq[opt]
1714 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS)1715 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1716   ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1717   DS.Finish(Diags, PP);
1718   return false;
1719 }
1720 
1721 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1722 /// some form.
1723 ///
1724 /// This routine is invoked when a '<' is encountered after an identifier or
1725 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1726 /// whether the unqualified-id is actually a template-id. This routine will
1727 /// then parse the template arguments and form the appropriate template-id to
1728 /// return to the caller.
1729 ///
1730 /// \param SS the nested-name-specifier that precedes this template-id, if
1731 /// we're actually parsing a qualified-id.
1732 ///
1733 /// \param Name for constructor and destructor names, this is the actual
1734 /// identifier that may be a template-name.
1735 ///
1736 /// \param NameLoc the location of the class-name in a constructor or
1737 /// destructor.
1738 ///
1739 /// \param EnteringContext whether we're entering the scope of the
1740 /// nested-name-specifier.
1741 ///
1742 /// \param ObjectType if this unqualified-id occurs within a member access
1743 /// expression, the type of the base object whose member is being accessed.
1744 ///
1745 /// \param Id as input, describes the template-name or operator-function-id
1746 /// that precedes the '<'. If template arguments were parsed successfully,
1747 /// will be updated with the template-id.
1748 ///
1749 /// \param AssumeTemplateId When true, this routine will assume that the name
1750 /// refers to a template without performing name lookup to verify.
1751 ///
1752 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Id,bool AssumeTemplateId)1753 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1754                                           SourceLocation TemplateKWLoc,
1755                                           IdentifierInfo *Name,
1756                                           SourceLocation NameLoc,
1757                                           bool EnteringContext,
1758                                           ParsedType ObjectType,
1759                                           UnqualifiedId &Id,
1760                                           bool AssumeTemplateId) {
1761   assert((AssumeTemplateId || Tok.is(tok::less)) &&
1762          "Expected '<' to finish parsing a template-id");
1763 
1764   TemplateTy Template;
1765   TemplateNameKind TNK = TNK_Non_template;
1766   switch (Id.getKind()) {
1767   case UnqualifiedId::IK_Identifier:
1768   case UnqualifiedId::IK_OperatorFunctionId:
1769   case UnqualifiedId::IK_LiteralOperatorId:
1770     if (AssumeTemplateId) {
1771       TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1772                                                Id, ObjectType, EnteringContext,
1773                                                Template);
1774       if (TNK == TNK_Non_template)
1775         return true;
1776     } else {
1777       bool MemberOfUnknownSpecialization;
1778       TNK = Actions.isTemplateName(getCurScope(), SS,
1779                                    TemplateKWLoc.isValid(), Id,
1780                                    ObjectType, EnteringContext, Template,
1781                                    MemberOfUnknownSpecialization);
1782 
1783       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1784           ObjectType && IsTemplateArgumentList()) {
1785         // We have something like t->getAs<T>(), where getAs is a
1786         // member of an unknown specialization. However, this will only
1787         // parse correctly as a template, so suggest the keyword 'template'
1788         // before 'getAs' and treat this as a dependent template name.
1789         std::string Name;
1790         if (Id.getKind() == UnqualifiedId::IK_Identifier)
1791           Name = Id.Identifier->getName();
1792         else {
1793           Name = "operator ";
1794           if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1795             Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1796           else
1797             Name += Id.Identifier->getName();
1798         }
1799         Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1800           << Name
1801           << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1802         TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1803                                                  SS, TemplateKWLoc, Id,
1804                                                  ObjectType, EnteringContext,
1805                                                  Template);
1806         if (TNK == TNK_Non_template)
1807           return true;
1808       }
1809     }
1810     break;
1811 
1812   case UnqualifiedId::IK_ConstructorName: {
1813     UnqualifiedId TemplateName;
1814     bool MemberOfUnknownSpecialization;
1815     TemplateName.setIdentifier(Name, NameLoc);
1816     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1817                                  TemplateName, ObjectType,
1818                                  EnteringContext, Template,
1819                                  MemberOfUnknownSpecialization);
1820     break;
1821   }
1822 
1823   case UnqualifiedId::IK_DestructorName: {
1824     UnqualifiedId TemplateName;
1825     bool MemberOfUnknownSpecialization;
1826     TemplateName.setIdentifier(Name, NameLoc);
1827     if (ObjectType) {
1828       TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1829                                                SS, TemplateKWLoc, TemplateName,
1830                                                ObjectType, EnteringContext,
1831                                                Template);
1832       if (TNK == TNK_Non_template)
1833         return true;
1834     } else {
1835       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1836                                    TemplateName, ObjectType,
1837                                    EnteringContext, Template,
1838                                    MemberOfUnknownSpecialization);
1839 
1840       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1841         Diag(NameLoc, diag::err_destructor_template_id)
1842           << Name << SS.getRange();
1843         return true;
1844       }
1845     }
1846     break;
1847   }
1848 
1849   default:
1850     return false;
1851   }
1852 
1853   if (TNK == TNK_Non_template)
1854     return false;
1855 
1856   // Parse the enclosed template argument list.
1857   SourceLocation LAngleLoc, RAngleLoc;
1858   TemplateArgList TemplateArgs;
1859   if (Tok.is(tok::less) &&
1860       ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1861                                        SS, true, LAngleLoc,
1862                                        TemplateArgs,
1863                                        RAngleLoc))
1864     return true;
1865 
1866   if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1867       Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1868       Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1869     // Form a parsed representation of the template-id to be stored in the
1870     // UnqualifiedId.
1871     TemplateIdAnnotation *TemplateId
1872       = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
1873 
1874     if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1875       TemplateId->Name = Id.Identifier;
1876       TemplateId->Operator = OO_None;
1877       TemplateId->TemplateNameLoc = Id.StartLocation;
1878     } else {
1879       TemplateId->Name = 0;
1880       TemplateId->Operator = Id.OperatorFunctionId.Operator;
1881       TemplateId->TemplateNameLoc = Id.StartLocation;
1882     }
1883 
1884     TemplateId->SS = SS;
1885     TemplateId->TemplateKWLoc = TemplateKWLoc;
1886     TemplateId->Template = Template;
1887     TemplateId->Kind = TNK;
1888     TemplateId->LAngleLoc = LAngleLoc;
1889     TemplateId->RAngleLoc = RAngleLoc;
1890     ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1891     for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1892          Arg != ArgEnd; ++Arg)
1893       Args[Arg] = TemplateArgs[Arg];
1894 
1895     Id.setTemplateId(TemplateId);
1896     return false;
1897   }
1898 
1899   // Bundle the template arguments together.
1900   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
1901 
1902   // Constructor and destructor names.
1903   TypeResult Type
1904     = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1905                                   Template, NameLoc,
1906                                   LAngleLoc, TemplateArgsPtr, RAngleLoc,
1907                                   /*IsCtorOrDtorName=*/true);
1908   if (Type.isInvalid())
1909     return true;
1910 
1911   if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1912     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1913   else
1914     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1915 
1916   return false;
1917 }
1918 
1919 /// \brief Parse an operator-function-id or conversion-function-id as part
1920 /// of a C++ unqualified-id.
1921 ///
1922 /// This routine is responsible only for parsing the operator-function-id or
1923 /// conversion-function-id; it does not handle template arguments in any way.
1924 ///
1925 /// \code
1926 ///       operator-function-id: [C++ 13.5]
1927 ///         'operator' operator
1928 ///
1929 ///       operator: one of
1930 ///            new   delete  new[]   delete[]
1931 ///            +     -    *  /    %  ^    &   |   ~
1932 ///            !     =    <  >    += -=   *=  /=  %=
1933 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1934 ///            <=    >=   && ||   ++ --   ,   ->* ->
1935 ///            ()    []
1936 ///
1937 ///       conversion-function-id: [C++ 12.3.2]
1938 ///         operator conversion-type-id
1939 ///
1940 ///       conversion-type-id:
1941 ///         type-specifier-seq conversion-declarator[opt]
1942 ///
1943 ///       conversion-declarator:
1944 ///         ptr-operator conversion-declarator[opt]
1945 /// \endcode
1946 ///
1947 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
1948 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
1949 ///
1950 /// \param EnteringContext whether we are entering the scope of the
1951 /// nested-name-specifier.
1952 ///
1953 /// \param ObjectType if this unqualified-id occurs within a member access
1954 /// expression, the type of the base object whose member is being accessed.
1955 ///
1956 /// \param Result on a successful parse, contains the parsed unqualified-id.
1957 ///
1958 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)1959 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1960                                         ParsedType ObjectType,
1961                                         UnqualifiedId &Result) {
1962   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1963 
1964   // Consume the 'operator' keyword.
1965   SourceLocation KeywordLoc = ConsumeToken();
1966 
1967   // Determine what kind of operator name we have.
1968   unsigned SymbolIdx = 0;
1969   SourceLocation SymbolLocations[3];
1970   OverloadedOperatorKind Op = OO_None;
1971   switch (Tok.getKind()) {
1972     case tok::kw_new:
1973     case tok::kw_delete: {
1974       bool isNew = Tok.getKind() == tok::kw_new;
1975       // Consume the 'new' or 'delete'.
1976       SymbolLocations[SymbolIdx++] = ConsumeToken();
1977       // Check for array new/delete.
1978       if (Tok.is(tok::l_square) &&
1979           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
1980         // Consume the '[' and ']'.
1981         BalancedDelimiterTracker T(*this, tok::l_square);
1982         T.consumeOpen();
1983         T.consumeClose();
1984         if (T.getCloseLocation().isInvalid())
1985           return true;
1986 
1987         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1988         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1989         Op = isNew? OO_Array_New : OO_Array_Delete;
1990       } else {
1991         Op = isNew? OO_New : OO_Delete;
1992       }
1993       break;
1994     }
1995 
1996 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1997     case tok::Token:                                                     \
1998       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1999       Op = OO_##Name;                                                    \
2000       break;
2001 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2002 #include "clang/Basic/OperatorKinds.def"
2003 
2004     case tok::l_paren: {
2005       // Consume the '(' and ')'.
2006       BalancedDelimiterTracker T(*this, tok::l_paren);
2007       T.consumeOpen();
2008       T.consumeClose();
2009       if (T.getCloseLocation().isInvalid())
2010         return true;
2011 
2012       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2013       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2014       Op = OO_Call;
2015       break;
2016     }
2017 
2018     case tok::l_square: {
2019       // Consume the '[' and ']'.
2020       BalancedDelimiterTracker T(*this, tok::l_square);
2021       T.consumeOpen();
2022       T.consumeClose();
2023       if (T.getCloseLocation().isInvalid())
2024         return true;
2025 
2026       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2027       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2028       Op = OO_Subscript;
2029       break;
2030     }
2031 
2032     case tok::code_completion: {
2033       // Code completion for the operator name.
2034       Actions.CodeCompleteOperatorName(getCurScope());
2035       cutOffParsing();
2036       // Don't try to parse any further.
2037       return true;
2038     }
2039 
2040     default:
2041       break;
2042   }
2043 
2044   if (Op != OO_None) {
2045     // We have parsed an operator-function-id.
2046     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2047     return false;
2048   }
2049 
2050   // Parse a literal-operator-id.
2051   //
2052   //   literal-operator-id: C++11 [over.literal]
2053   //     operator string-literal identifier
2054   //     operator user-defined-string-literal
2055 
2056   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2057     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2058 
2059     SourceLocation DiagLoc;
2060     unsigned DiagId = 0;
2061 
2062     // We're past translation phase 6, so perform string literal concatenation
2063     // before checking for "".
2064     SmallVector<Token, 4> Toks;
2065     SmallVector<SourceLocation, 4> TokLocs;
2066     while (isTokenStringLiteral()) {
2067       if (!Tok.is(tok::string_literal) && !DiagId) {
2068         // C++11 [over.literal]p1:
2069         //   The string-literal or user-defined-string-literal in a
2070         //   literal-operator-id shall have no encoding-prefix [...].
2071         DiagLoc = Tok.getLocation();
2072         DiagId = diag::err_literal_operator_string_prefix;
2073       }
2074       Toks.push_back(Tok);
2075       TokLocs.push_back(ConsumeStringToken());
2076     }
2077 
2078     StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
2079     if (Literal.hadError)
2080       return true;
2081 
2082     // Grab the literal operator's suffix, which will be either the next token
2083     // or a ud-suffix from the string literal.
2084     IdentifierInfo *II = 0;
2085     SourceLocation SuffixLoc;
2086     if (!Literal.getUDSuffix().empty()) {
2087       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2088       SuffixLoc =
2089         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2090                                        Literal.getUDSuffixOffset(),
2091                                        PP.getSourceManager(), getLangOpts());
2092     } else if (Tok.is(tok::identifier)) {
2093       II = Tok.getIdentifierInfo();
2094       SuffixLoc = ConsumeToken();
2095       TokLocs.push_back(SuffixLoc);
2096     } else {
2097       Diag(Tok.getLocation(), diag::err_expected_ident);
2098       return true;
2099     }
2100 
2101     // The string literal must be empty.
2102     if (!Literal.GetString().empty() || Literal.Pascal) {
2103       // C++11 [over.literal]p1:
2104       //   The string-literal or user-defined-string-literal in a
2105       //   literal-operator-id shall [...] contain no characters
2106       //   other than the implicit terminating '\0'.
2107       DiagLoc = TokLocs.front();
2108       DiagId = diag::err_literal_operator_string_not_empty;
2109     }
2110 
2111     if (DiagId) {
2112       // This isn't a valid literal-operator-id, but we think we know
2113       // what the user meant. Tell them what they should have written.
2114       SmallString<32> Str;
2115       Str += "\"\" ";
2116       Str += II->getName();
2117       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2118           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2119     }
2120 
2121     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2122     return false;
2123   }
2124 
2125   // Parse a conversion-function-id.
2126   //
2127   //   conversion-function-id: [C++ 12.3.2]
2128   //     operator conversion-type-id
2129   //
2130   //   conversion-type-id:
2131   //     type-specifier-seq conversion-declarator[opt]
2132   //
2133   //   conversion-declarator:
2134   //     ptr-operator conversion-declarator[opt]
2135 
2136   // Parse the type-specifier-seq.
2137   DeclSpec DS(AttrFactory);
2138   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2139     return true;
2140 
2141   // Parse the conversion-declarator, which is merely a sequence of
2142   // ptr-operators.
2143   Declarator D(DS, Declarator::ConversionIdContext);
2144   ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
2145 
2146   // Finish up the type.
2147   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2148   if (Ty.isInvalid())
2149     return true;
2150 
2151   // Note that this is a conversion-function-id.
2152   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2153                                  D.getSourceRange().getEnd());
2154   return false;
2155 }
2156 
2157 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
2158 /// name of an entity.
2159 ///
2160 /// \code
2161 ///       unqualified-id: [C++ expr.prim.general]
2162 ///         identifier
2163 ///         operator-function-id
2164 ///         conversion-function-id
2165 /// [C++0x] literal-operator-id [TODO]
2166 ///         ~ class-name
2167 ///         template-id
2168 ///
2169 /// \endcode
2170 ///
2171 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2172 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2173 ///
2174 /// \param EnteringContext whether we are entering the scope of the
2175 /// nested-name-specifier.
2176 ///
2177 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2178 ///
2179 /// \param AllowConstructorName whether we allow parsing a constructor name.
2180 ///
2181 /// \param ObjectType if this unqualified-id occurs within a member access
2182 /// expression, the type of the base object whose member is being accessed.
2183 ///
2184 /// \param Result on a successful parse, contains the parsed unqualified-id.
2185 ///
2186 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,ParsedType ObjectType,SourceLocation & TemplateKWLoc,UnqualifiedId & Result)2187 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2188                                 bool AllowDestructorName,
2189                                 bool AllowConstructorName,
2190                                 ParsedType ObjectType,
2191                                 SourceLocation& TemplateKWLoc,
2192                                 UnqualifiedId &Result) {
2193 
2194   // Handle 'A::template B'. This is for template-ids which have not
2195   // already been annotated by ParseOptionalCXXScopeSpecifier().
2196   bool TemplateSpecified = false;
2197   if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2198       (ObjectType || SS.isSet())) {
2199     TemplateSpecified = true;
2200     TemplateKWLoc = ConsumeToken();
2201   }
2202 
2203   // unqualified-id:
2204   //   identifier
2205   //   template-id (when it hasn't already been annotated)
2206   if (Tok.is(tok::identifier)) {
2207     // Consume the identifier.
2208     IdentifierInfo *Id = Tok.getIdentifierInfo();
2209     SourceLocation IdLoc = ConsumeToken();
2210 
2211     if (!getLangOpts().CPlusPlus) {
2212       // If we're not in C++, only identifiers matter. Record the
2213       // identifier and return.
2214       Result.setIdentifier(Id, IdLoc);
2215       return false;
2216     }
2217 
2218     if (AllowConstructorName &&
2219         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2220       // We have parsed a constructor name.
2221       ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2222                                           &SS, false, false,
2223                                           ParsedType(),
2224                                           /*IsCtorOrDtorName=*/true,
2225                                           /*NonTrivialTypeSourceInfo=*/true);
2226       Result.setConstructorName(Ty, IdLoc, IdLoc);
2227     } else {
2228       // We have parsed an identifier.
2229       Result.setIdentifier(Id, IdLoc);
2230     }
2231 
2232     // If the next token is a '<', we may have a template.
2233     if (TemplateSpecified || Tok.is(tok::less))
2234       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2235                                           EnteringContext, ObjectType,
2236                                           Result, TemplateSpecified);
2237 
2238     return false;
2239   }
2240 
2241   // unqualified-id:
2242   //   template-id (already parsed and annotated)
2243   if (Tok.is(tok::annot_template_id)) {
2244     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2245 
2246     // If the template-name names the current class, then this is a constructor
2247     if (AllowConstructorName && TemplateId->Name &&
2248         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2249       if (SS.isSet()) {
2250         // C++ [class.qual]p2 specifies that a qualified template-name
2251         // is taken as the constructor name where a constructor can be
2252         // declared. Thus, the template arguments are extraneous, so
2253         // complain about them and remove them entirely.
2254         Diag(TemplateId->TemplateNameLoc,
2255              diag::err_out_of_line_constructor_template_id)
2256           << TemplateId->Name
2257           << FixItHint::CreateRemoval(
2258                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2259         ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2260                                             TemplateId->TemplateNameLoc,
2261                                             getCurScope(),
2262                                             &SS, false, false,
2263                                             ParsedType(),
2264                                             /*IsCtorOrDtorName=*/true,
2265                                             /*NontrivialTypeSourceInfo=*/true);
2266         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2267                                   TemplateId->RAngleLoc);
2268         ConsumeToken();
2269         return false;
2270       }
2271 
2272       Result.setConstructorTemplateId(TemplateId);
2273       ConsumeToken();
2274       return false;
2275     }
2276 
2277     // We have already parsed a template-id; consume the annotation token as
2278     // our unqualified-id.
2279     Result.setTemplateId(TemplateId);
2280     TemplateKWLoc = TemplateId->TemplateKWLoc;
2281     ConsumeToken();
2282     return false;
2283   }
2284 
2285   // unqualified-id:
2286   //   operator-function-id
2287   //   conversion-function-id
2288   if (Tok.is(tok::kw_operator)) {
2289     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2290       return true;
2291 
2292     // If we have an operator-function-id or a literal-operator-id and the next
2293     // token is a '<', we may have a
2294     //
2295     //   template-id:
2296     //     operator-function-id < template-argument-list[opt] >
2297     if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2298          Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2299         (TemplateSpecified || Tok.is(tok::less)))
2300       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2301                                           0, SourceLocation(),
2302                                           EnteringContext, ObjectType,
2303                                           Result, TemplateSpecified);
2304 
2305     return false;
2306   }
2307 
2308   if (getLangOpts().CPlusPlus &&
2309       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2310     // C++ [expr.unary.op]p10:
2311     //   There is an ambiguity in the unary-expression ~X(), where X is a
2312     //   class-name. The ambiguity is resolved in favor of treating ~ as a
2313     //    unary complement rather than treating ~X as referring to a destructor.
2314 
2315     // Parse the '~'.
2316     SourceLocation TildeLoc = ConsumeToken();
2317 
2318     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2319       DeclSpec DS(AttrFactory);
2320       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2321       if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2322         Result.setDestructorName(TildeLoc, Type, EndLoc);
2323         return false;
2324       }
2325       return true;
2326     }
2327 
2328     // Parse the class-name.
2329     if (Tok.isNot(tok::identifier)) {
2330       Diag(Tok, diag::err_destructor_tilde_identifier);
2331       return true;
2332     }
2333 
2334     // Parse the class-name (or template-name in a simple-template-id).
2335     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2336     SourceLocation ClassNameLoc = ConsumeToken();
2337 
2338     if (TemplateSpecified || Tok.is(tok::less)) {
2339       Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2340       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2341                                           ClassName, ClassNameLoc,
2342                                           EnteringContext, ObjectType,
2343                                           Result, TemplateSpecified);
2344     }
2345 
2346     // Note that this is a destructor name.
2347     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2348                                               ClassNameLoc, getCurScope(),
2349                                               SS, ObjectType,
2350                                               EnteringContext);
2351     if (!Ty)
2352       return true;
2353 
2354     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2355     return false;
2356   }
2357 
2358   Diag(Tok, diag::err_expected_unqualified_id)
2359     << getLangOpts().CPlusPlus;
2360   return true;
2361 }
2362 
2363 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2364 /// memory in a typesafe manner and call constructors.
2365 ///
2366 /// This method is called to parse the new expression after the optional :: has
2367 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2368 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
2369 ///
2370 ///        new-expression:
2371 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
2372 ///                                     new-initializer[opt]
2373 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2374 ///                                     new-initializer[opt]
2375 ///
2376 ///        new-placement:
2377 ///                   '(' expression-list ')'
2378 ///
2379 ///        new-type-id:
2380 ///                   type-specifier-seq new-declarator[opt]
2381 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
2382 ///
2383 ///        new-declarator:
2384 ///                   ptr-operator new-declarator[opt]
2385 ///                   direct-new-declarator
2386 ///
2387 ///        new-initializer:
2388 ///                   '(' expression-list[opt] ')'
2389 /// [C++0x]           braced-init-list
2390 ///
2391 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)2392 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2393   assert(Tok.is(tok::kw_new) && "expected 'new' token");
2394   ConsumeToken();   // Consume 'new'
2395 
2396   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2397   // second form of new-expression. It can't be a new-type-id.
2398 
2399   ExprVector PlacementArgs;
2400   SourceLocation PlacementLParen, PlacementRParen;
2401 
2402   SourceRange TypeIdParens;
2403   DeclSpec DS(AttrFactory);
2404   Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2405   if (Tok.is(tok::l_paren)) {
2406     // If it turns out to be a placement, we change the type location.
2407     BalancedDelimiterTracker T(*this, tok::l_paren);
2408     T.consumeOpen();
2409     PlacementLParen = T.getOpenLocation();
2410     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2411       SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2412       return ExprError();
2413     }
2414 
2415     T.consumeClose();
2416     PlacementRParen = T.getCloseLocation();
2417     if (PlacementRParen.isInvalid()) {
2418       SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2419       return ExprError();
2420     }
2421 
2422     if (PlacementArgs.empty()) {
2423       // Reset the placement locations. There was no placement.
2424       TypeIdParens = T.getRange();
2425       PlacementLParen = PlacementRParen = SourceLocation();
2426     } else {
2427       // We still need the type.
2428       if (Tok.is(tok::l_paren)) {
2429         BalancedDelimiterTracker T(*this, tok::l_paren);
2430         T.consumeOpen();
2431         MaybeParseGNUAttributes(DeclaratorInfo);
2432         ParseSpecifierQualifierList(DS);
2433         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2434         ParseDeclarator(DeclaratorInfo);
2435         T.consumeClose();
2436         TypeIdParens = T.getRange();
2437       } else {
2438         MaybeParseGNUAttributes(DeclaratorInfo);
2439         if (ParseCXXTypeSpecifierSeq(DS))
2440           DeclaratorInfo.setInvalidType(true);
2441         else {
2442           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2443           ParseDeclaratorInternal(DeclaratorInfo,
2444                                   &Parser::ParseDirectNewDeclarator);
2445         }
2446       }
2447     }
2448   } else {
2449     // A new-type-id is a simplified type-id, where essentially the
2450     // direct-declarator is replaced by a direct-new-declarator.
2451     MaybeParseGNUAttributes(DeclaratorInfo);
2452     if (ParseCXXTypeSpecifierSeq(DS))
2453       DeclaratorInfo.setInvalidType(true);
2454     else {
2455       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2456       ParseDeclaratorInternal(DeclaratorInfo,
2457                               &Parser::ParseDirectNewDeclarator);
2458     }
2459   }
2460   if (DeclaratorInfo.isInvalidType()) {
2461     SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2462     return ExprError();
2463   }
2464 
2465   ExprResult Initializer;
2466 
2467   if (Tok.is(tok::l_paren)) {
2468     SourceLocation ConstructorLParen, ConstructorRParen;
2469     ExprVector ConstructorArgs;
2470     BalancedDelimiterTracker T(*this, tok::l_paren);
2471     T.consumeOpen();
2472     ConstructorLParen = T.getOpenLocation();
2473     if (Tok.isNot(tok::r_paren)) {
2474       CommaLocsTy CommaLocs;
2475       if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2476         SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2477         return ExprError();
2478       }
2479     }
2480     T.consumeClose();
2481     ConstructorRParen = T.getCloseLocation();
2482     if (ConstructorRParen.isInvalid()) {
2483       SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2484       return ExprError();
2485     }
2486     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2487                                              ConstructorRParen,
2488                                              ConstructorArgs);
2489   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
2490     Diag(Tok.getLocation(),
2491          diag::warn_cxx98_compat_generalized_initializer_lists);
2492     Initializer = ParseBraceInitializer();
2493   }
2494   if (Initializer.isInvalid())
2495     return Initializer;
2496 
2497   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2498                              PlacementArgs, PlacementRParen,
2499                              TypeIdParens, DeclaratorInfo, Initializer.take());
2500 }
2501 
2502 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2503 /// passed to ParseDeclaratorInternal.
2504 ///
2505 ///        direct-new-declarator:
2506 ///                   '[' expression ']'
2507 ///                   direct-new-declarator '[' constant-expression ']'
2508 ///
ParseDirectNewDeclarator(Declarator & D)2509 void Parser::ParseDirectNewDeclarator(Declarator &D) {
2510   // Parse the array dimensions.
2511   bool first = true;
2512   while (Tok.is(tok::l_square)) {
2513     // An array-size expression can't start with a lambda.
2514     if (CheckProhibitedCXX11Attribute())
2515       continue;
2516 
2517     BalancedDelimiterTracker T(*this, tok::l_square);
2518     T.consumeOpen();
2519 
2520     ExprResult Size(first ? ParseExpression()
2521                                 : ParseConstantExpression());
2522     if (Size.isInvalid()) {
2523       // Recover
2524       SkipUntil(tok::r_square);
2525       return;
2526     }
2527     first = false;
2528 
2529     T.consumeClose();
2530 
2531     // Attributes here appertain to the array type. C++11 [expr.new]p5.
2532     ParsedAttributes Attrs(AttrFactory);
2533     MaybeParseCXX11Attributes(Attrs);
2534 
2535     D.AddTypeInfo(DeclaratorChunk::getArray(0,
2536                                             /*static=*/false, /*star=*/false,
2537                                             Size.release(),
2538                                             T.getOpenLocation(),
2539                                             T.getCloseLocation()),
2540                   Attrs, T.getCloseLocation());
2541 
2542     if (T.getCloseLocation().isInvalid())
2543       return;
2544   }
2545 }
2546 
2547 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2548 /// This ambiguity appears in the syntax of the C++ new operator.
2549 ///
2550 ///        new-expression:
2551 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2552 ///                                     new-initializer[opt]
2553 ///
2554 ///        new-placement:
2555 ///                   '(' expression-list ')'
2556 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)2557 bool Parser::ParseExpressionListOrTypeId(
2558                                    SmallVectorImpl<Expr*> &PlacementArgs,
2559                                          Declarator &D) {
2560   // The '(' was already consumed.
2561   if (isTypeIdInParens()) {
2562     ParseSpecifierQualifierList(D.getMutableDeclSpec());
2563     D.SetSourceRange(D.getDeclSpec().getSourceRange());
2564     ParseDeclarator(D);
2565     return D.isInvalidType();
2566   }
2567 
2568   // It's not a type, it has to be an expression list.
2569   // Discard the comma locations - ActOnCXXNew has enough parameters.
2570   CommaLocsTy CommaLocs;
2571   return ParseExpressionList(PlacementArgs, CommaLocs);
2572 }
2573 
2574 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2575 /// to free memory allocated by new.
2576 ///
2577 /// This method is called to parse the 'delete' expression after the optional
2578 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2579 /// and "Start" is its location.  Otherwise, "Start" is the location of the
2580 /// 'delete' token.
2581 ///
2582 ///        delete-expression:
2583 ///                   '::'[opt] 'delete' cast-expression
2584 ///                   '::'[opt] 'delete' '[' ']' cast-expression
2585 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)2586 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2587   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2588   ConsumeToken(); // Consume 'delete'
2589 
2590   // Array delete?
2591   bool ArrayDelete = false;
2592   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2593     // C++11 [expr.delete]p1:
2594     //   Whenever the delete keyword is followed by empty square brackets, it
2595     //   shall be interpreted as [array delete].
2596     //   [Footnote: A lambda expression with a lambda-introducer that consists
2597     //              of empty square brackets can follow the delete keyword if
2598     //              the lambda expression is enclosed in parentheses.]
2599     // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
2600     //        lambda-introducer.
2601     ArrayDelete = true;
2602     BalancedDelimiterTracker T(*this, tok::l_square);
2603 
2604     T.consumeOpen();
2605     T.consumeClose();
2606     if (T.getCloseLocation().isInvalid())
2607       return ExprError();
2608   }
2609 
2610   ExprResult Operand(ParseCastExpression(false));
2611   if (Operand.isInvalid())
2612     return Operand;
2613 
2614   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2615 }
2616 
UnaryTypeTraitFromTokKind(tok::TokenKind kind)2617 static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2618   switch(kind) {
2619   default: llvm_unreachable("Not a known unary type trait.");
2620   case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2621   case tok::kw___has_nothrow_move_assign: return UTT_HasNothrowMoveAssign;
2622   case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2623   case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2624   case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2625   case tok::kw___has_trivial_move_assign: return UTT_HasTrivialMoveAssign;
2626   case tok::kw___has_trivial_constructor:
2627                                     return UTT_HasTrivialDefaultConstructor;
2628   case tok::kw___has_trivial_move_constructor:
2629                                     return UTT_HasTrivialMoveConstructor;
2630   case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2631   case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2632   case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2633   case tok::kw___is_abstract:             return UTT_IsAbstract;
2634   case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2635   case tok::kw___is_array:                   return UTT_IsArray;
2636   case tok::kw___is_class:                return UTT_IsClass;
2637   case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2638   case tok::kw___is_compound:                return UTT_IsCompound;
2639   case tok::kw___is_const:                   return UTT_IsConst;
2640   case tok::kw___is_empty:                return UTT_IsEmpty;
2641   case tok::kw___is_enum:                 return UTT_IsEnum;
2642   case tok::kw___is_final:                 return UTT_IsFinal;
2643   case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2644   case tok::kw___is_function:                return UTT_IsFunction;
2645   case tok::kw___is_fundamental:             return UTT_IsFundamental;
2646   case tok::kw___is_integral:                return UTT_IsIntegral;
2647   case tok::kw___is_interface_class:         return UTT_IsInterfaceClass;
2648   case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2649   case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2650   case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2651   case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2652   case tok::kw___is_object:                  return UTT_IsObject;
2653   case tok::kw___is_literal:              return UTT_IsLiteral;
2654   case tok::kw___is_literal_type:         return UTT_IsLiteral;
2655   case tok::kw___is_pod:                  return UTT_IsPOD;
2656   case tok::kw___is_pointer:                 return UTT_IsPointer;
2657   case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2658   case tok::kw___is_reference:               return UTT_IsReference;
2659   case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2660   case tok::kw___is_scalar:                  return UTT_IsScalar;
2661   case tok::kw___is_signed:                  return UTT_IsSigned;
2662   case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2663   case tok::kw___is_trivial:                 return UTT_IsTrivial;
2664   case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2665   case tok::kw___is_union:                return UTT_IsUnion;
2666   case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2667   case tok::kw___is_void:                    return UTT_IsVoid;
2668   case tok::kw___is_volatile:                return UTT_IsVolatile;
2669   }
2670 }
2671 
BinaryTypeTraitFromTokKind(tok::TokenKind kind)2672 static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2673   switch(kind) {
2674   default: llvm_unreachable("Not a known binary type trait");
2675   case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2676   case tok::kw___is_convertible:             return BTT_IsConvertible;
2677   case tok::kw___is_same:                    return BTT_IsSame;
2678   case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2679   case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2680   case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2681   }
2682 }
2683 
TypeTraitFromTokKind(tok::TokenKind kind)2684 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2685   switch (kind) {
2686   default: llvm_unreachable("Not a known type trait");
2687   case tok::kw___is_trivially_constructible:
2688     return TT_IsTriviallyConstructible;
2689   }
2690 }
2691 
ArrayTypeTraitFromTokKind(tok::TokenKind kind)2692 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2693   switch(kind) {
2694   default: llvm_unreachable("Not a known binary type trait");
2695   case tok::kw___array_rank:                 return ATT_ArrayRank;
2696   case tok::kw___array_extent:               return ATT_ArrayExtent;
2697   }
2698 }
2699 
ExpressionTraitFromTokKind(tok::TokenKind kind)2700 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2701   switch(kind) {
2702   default: llvm_unreachable("Not a known unary expression trait.");
2703   case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2704   case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2705   }
2706 }
2707 
2708 /// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2709 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
2710 /// templates.
2711 ///
2712 ///       primary-expression:
2713 /// [GNU]             unary-type-trait '(' type-id ')'
2714 ///
ParseUnaryTypeTrait()2715 ExprResult Parser::ParseUnaryTypeTrait() {
2716   UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2717   SourceLocation Loc = ConsumeToken();
2718 
2719   BalancedDelimiterTracker T(*this, tok::l_paren);
2720   if (T.expectAndConsume(diag::err_expected_lparen))
2721     return ExprError();
2722 
2723   // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2724   // there will be cryptic errors about mismatched parentheses and missing
2725   // specifiers.
2726   TypeResult Ty = ParseTypeName();
2727 
2728   T.consumeClose();
2729 
2730   if (Ty.isInvalid())
2731     return ExprError();
2732 
2733   return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2734 }
2735 
2736 /// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2737 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
2738 /// templates.
2739 ///
2740 ///       primary-expression:
2741 /// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2742 ///
ParseBinaryTypeTrait()2743 ExprResult Parser::ParseBinaryTypeTrait() {
2744   BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2745   SourceLocation Loc = ConsumeToken();
2746 
2747   BalancedDelimiterTracker T(*this, tok::l_paren);
2748   if (T.expectAndConsume(diag::err_expected_lparen))
2749     return ExprError();
2750 
2751   TypeResult LhsTy = ParseTypeName();
2752   if (LhsTy.isInvalid()) {
2753     SkipUntil(tok::r_paren);
2754     return ExprError();
2755   }
2756 
2757   if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2758     SkipUntil(tok::r_paren);
2759     return ExprError();
2760   }
2761 
2762   TypeResult RhsTy = ParseTypeName();
2763   if (RhsTy.isInvalid()) {
2764     SkipUntil(tok::r_paren);
2765     return ExprError();
2766   }
2767 
2768   T.consumeClose();
2769 
2770   return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2771                                       T.getCloseLocation());
2772 }
2773 
2774 /// \brief Parse the built-in type-trait pseudo-functions that allow
2775 /// implementation of the TR1/C++11 type traits templates.
2776 ///
2777 ///       primary-expression:
2778 ///          type-trait '(' type-id-seq ')'
2779 ///
2780 ///       type-id-seq:
2781 ///          type-id ...[opt] type-id-seq[opt]
2782 ///
ParseTypeTrait()2783 ExprResult Parser::ParseTypeTrait() {
2784   TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2785   SourceLocation Loc = ConsumeToken();
2786 
2787   BalancedDelimiterTracker Parens(*this, tok::l_paren);
2788   if (Parens.expectAndConsume(diag::err_expected_lparen))
2789     return ExprError();
2790 
2791   SmallVector<ParsedType, 2> Args;
2792   do {
2793     // Parse the next type.
2794     TypeResult Ty = ParseTypeName();
2795     if (Ty.isInvalid()) {
2796       Parens.skipToEnd();
2797       return ExprError();
2798     }
2799 
2800     // Parse the ellipsis, if present.
2801     if (Tok.is(tok::ellipsis)) {
2802       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2803       if (Ty.isInvalid()) {
2804         Parens.skipToEnd();
2805         return ExprError();
2806       }
2807     }
2808 
2809     // Add this type to the list of arguments.
2810     Args.push_back(Ty.get());
2811 
2812     if (Tok.is(tok::comma)) {
2813       ConsumeToken();
2814       continue;
2815     }
2816 
2817     break;
2818   } while (true);
2819 
2820   if (Parens.consumeClose())
2821     return ExprError();
2822 
2823   return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2824 }
2825 
2826 /// ParseArrayTypeTrait - Parse the built-in array type-trait
2827 /// pseudo-functions.
2828 ///
2829 ///       primary-expression:
2830 /// [Embarcadero]     '__array_rank' '(' type-id ')'
2831 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2832 ///
ParseArrayTypeTrait()2833 ExprResult Parser::ParseArrayTypeTrait() {
2834   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2835   SourceLocation Loc = ConsumeToken();
2836 
2837   BalancedDelimiterTracker T(*this, tok::l_paren);
2838   if (T.expectAndConsume(diag::err_expected_lparen))
2839     return ExprError();
2840 
2841   TypeResult Ty = ParseTypeName();
2842   if (Ty.isInvalid()) {
2843     SkipUntil(tok::comma);
2844     SkipUntil(tok::r_paren);
2845     return ExprError();
2846   }
2847 
2848   switch (ATT) {
2849   case ATT_ArrayRank: {
2850     T.consumeClose();
2851     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2852                                        T.getCloseLocation());
2853   }
2854   case ATT_ArrayExtent: {
2855     if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2856       SkipUntil(tok::r_paren);
2857       return ExprError();
2858     }
2859 
2860     ExprResult DimExpr = ParseExpression();
2861     T.consumeClose();
2862 
2863     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2864                                        T.getCloseLocation());
2865   }
2866   }
2867   llvm_unreachable("Invalid ArrayTypeTrait!");
2868 }
2869 
2870 /// ParseExpressionTrait - Parse built-in expression-trait
2871 /// pseudo-functions like __is_lvalue_expr( xxx ).
2872 ///
2873 ///       primary-expression:
2874 /// [Embarcadero]     expression-trait '(' expression ')'
2875 ///
ParseExpressionTrait()2876 ExprResult Parser::ParseExpressionTrait() {
2877   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2878   SourceLocation Loc = ConsumeToken();
2879 
2880   BalancedDelimiterTracker T(*this, tok::l_paren);
2881   if (T.expectAndConsume(diag::err_expected_lparen))
2882     return ExprError();
2883 
2884   ExprResult Expr = ParseExpression();
2885 
2886   T.consumeClose();
2887 
2888   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2889                                       T.getCloseLocation());
2890 }
2891 
2892 
2893 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2894 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2895 /// based on the context past the parens.
2896 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker)2897 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2898                                          ParsedType &CastTy,
2899                                          BalancedDelimiterTracker &Tracker) {
2900   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2901   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2902   assert(isTypeIdInParens() && "Not a type-id!");
2903 
2904   ExprResult Result(true);
2905   CastTy = ParsedType();
2906 
2907   // We need to disambiguate a very ugly part of the C++ syntax:
2908   //
2909   // (T())x;  - type-id
2910   // (T())*x; - type-id
2911   // (T())/x; - expression
2912   // (T());   - expression
2913   //
2914   // The bad news is that we cannot use the specialized tentative parser, since
2915   // it can only verify that the thing inside the parens can be parsed as
2916   // type-id, it is not useful for determining the context past the parens.
2917   //
2918   // The good news is that the parser can disambiguate this part without
2919   // making any unnecessary Action calls.
2920   //
2921   // It uses a scheme similar to parsing inline methods. The parenthesized
2922   // tokens are cached, the context that follows is determined (possibly by
2923   // parsing a cast-expression), and then we re-introduce the cached tokens
2924   // into the token stream and parse them appropriately.
2925 
2926   ParenParseOption ParseAs;
2927   CachedTokens Toks;
2928 
2929   // Store the tokens of the parentheses. We will parse them after we determine
2930   // the context that follows them.
2931   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2932     // We didn't find the ')' we expected.
2933     Tracker.consumeClose();
2934     return ExprError();
2935   }
2936 
2937   if (Tok.is(tok::l_brace)) {
2938     ParseAs = CompoundLiteral;
2939   } else {
2940     bool NotCastExpr;
2941     // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2942     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2943       NotCastExpr = true;
2944     } else {
2945       // Try parsing the cast-expression that may follow.
2946       // If it is not a cast-expression, NotCastExpr will be true and no token
2947       // will be consumed.
2948       Result = ParseCastExpression(false/*isUnaryExpression*/,
2949                                    false/*isAddressofOperand*/,
2950                                    NotCastExpr,
2951                                    // type-id has priority.
2952                                    IsTypeCast);
2953     }
2954 
2955     // If we parsed a cast-expression, it's really a type-id, otherwise it's
2956     // an expression.
2957     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2958   }
2959 
2960   // The current token should go after the cached tokens.
2961   Toks.push_back(Tok);
2962   // Re-enter the stored parenthesized tokens into the token stream, so we may
2963   // parse them now.
2964   PP.EnterTokenStream(Toks.data(), Toks.size(),
2965                       true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2966   // Drop the current token and bring the first cached one. It's the same token
2967   // as when we entered this function.
2968   ConsumeAnyToken();
2969 
2970   if (ParseAs >= CompoundLiteral) {
2971     // Parse the type declarator.
2972     DeclSpec DS(AttrFactory);
2973     ParseSpecifierQualifierList(DS);
2974     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2975     ParseDeclarator(DeclaratorInfo);
2976 
2977     // Match the ')'.
2978     Tracker.consumeClose();
2979 
2980     if (ParseAs == CompoundLiteral) {
2981       ExprType = CompoundLiteral;
2982       TypeResult Ty = ParseTypeName();
2983        return ParseCompoundLiteralExpression(Ty.get(),
2984                                             Tracker.getOpenLocation(),
2985                                             Tracker.getCloseLocation());
2986     }
2987 
2988     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2989     assert(ParseAs == CastExpr);
2990 
2991     if (DeclaratorInfo.isInvalidType())
2992       return ExprError();
2993 
2994     // Result is what ParseCastExpression returned earlier.
2995     if (!Result.isInvalid())
2996       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2997                                     DeclaratorInfo, CastTy,
2998                                     Tracker.getCloseLocation(), Result.take());
2999     return Result;
3000   }
3001 
3002   // Not a compound literal, and not followed by a cast-expression.
3003   assert(ParseAs == SimpleExpr);
3004 
3005   ExprType = SimpleExpr;
3006   Result = ParseExpression();
3007   if (!Result.isInvalid() && Tok.is(tok::r_paren))
3008     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3009                                     Tok.getLocation(), Result.take());
3010 
3011   // Match the ')'.
3012   if (Result.isInvalid()) {
3013     SkipUntil(tok::r_paren);
3014     return ExprError();
3015   }
3016 
3017   Tracker.consumeClose();
3018   return Result;
3019 }
3020