1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/ParsedTemplate.h"
21 #include "clang/Sema/Scope.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 using namespace clang;
25
SelectDigraphErrorMessage(tok::TokenKind Kind)26 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27 switch (Kind) {
28 case tok::kw_template: return 0;
29 case tok::kw_const_cast: return 1;
30 case tok::kw_dynamic_cast: return 2;
31 case tok::kw_reinterpret_cast: return 3;
32 case tok::kw_static_cast: return 4;
33 default:
34 llvm_unreachable("Unknown type for digraph error message.");
35 }
36 }
37
38 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)39 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
40 SourceManager &SM = PP.getSourceManager();
41 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44 }
45
46 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)47 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49 // Pull '<:' and ':' off token stream.
50 if (!AtDigraph)
51 PP.Lex(DigraphToken);
52 PP.Lex(ColonToken);
53
54 SourceRange Range;
55 Range.setBegin(DigraphToken.getLocation());
56 Range.setEnd(ColonToken.getLocation());
57 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58 << SelectDigraphErrorMessage(Kind)
59 << FixItHint::CreateReplacement(Range, "< ::");
60
61 // Update token information to reflect their change in token type.
62 ColonToken.setKind(tok::coloncolon);
63 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64 ColonToken.setLength(2);
65 DigraphToken.setKind(tok::less);
66 DigraphToken.setLength(1);
67
68 // Push new tokens back to token stream.
69 PP.EnterToken(ColonToken);
70 if (!AtDigraph)
71 PP.EnterToken(DigraphToken);
72 }
73
74 // Check for '<::' which should be '< ::' instead of '[:' when following
75 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)76 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77 bool EnteringContext,
78 IdentifierInfo &II, CXXScopeSpec &SS) {
79 if (!Next.is(tok::l_square) || Next.getLength() != 2)
80 return;
81
82 Token SecondToken = GetLookAheadToken(2);
83 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
84 return;
85
86 TemplateTy Template;
87 UnqualifiedId TemplateName;
88 TemplateName.setIdentifier(&II, Tok.getLocation());
89 bool MemberOfUnknownSpecialization;
90 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91 TemplateName, ObjectType, EnteringContext,
92 Template, MemberOfUnknownSpecialization))
93 return;
94
95 FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96 /*AtDigraph*/false);
97 }
98
99 /// \brief Emits an error for a left parentheses after a double colon.
100 ///
101 /// When a '(' is found after a '::', emit an error. Attempt to fix the token
102 /// stream by removing the '(', and the matching ')' if found.
CheckForLParenAfterColonColon()103 void Parser::CheckForLParenAfterColonColon() {
104 if (!Tok.is(tok::l_paren))
105 return;
106
107 SourceLocation l_parenLoc = ConsumeParen(), r_parenLoc;
108 Token Tok1 = getCurToken();
109 if (!Tok1.is(tok::identifier) && !Tok1.is(tok::star))
110 return;
111
112 if (Tok1.is(tok::identifier)) {
113 Token Tok2 = GetLookAheadToken(1);
114 if (Tok2.is(tok::r_paren)) {
115 ConsumeToken();
116 PP.EnterToken(Tok1);
117 r_parenLoc = ConsumeParen();
118 }
119 } else if (Tok1.is(tok::star)) {
120 Token Tok2 = GetLookAheadToken(1);
121 if (Tok2.is(tok::identifier)) {
122 Token Tok3 = GetLookAheadToken(2);
123 if (Tok3.is(tok::r_paren)) {
124 ConsumeToken();
125 ConsumeToken();
126 PP.EnterToken(Tok2);
127 PP.EnterToken(Tok1);
128 r_parenLoc = ConsumeParen();
129 }
130 }
131 }
132
133 Diag(l_parenLoc, diag::err_paren_after_colon_colon)
134 << FixItHint::CreateRemoval(l_parenLoc)
135 << FixItHint::CreateRemoval(r_parenLoc);
136 }
137
138 /// \brief Parse global scope or nested-name-specifier if present.
139 ///
140 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
141 /// may be preceded by '::'). Note that this routine will not parse ::new or
142 /// ::delete; it will just leave them in the token stream.
143 ///
144 /// '::'[opt] nested-name-specifier
145 /// '::'
146 ///
147 /// nested-name-specifier:
148 /// type-name '::'
149 /// namespace-name '::'
150 /// nested-name-specifier identifier '::'
151 /// nested-name-specifier 'template'[opt] simple-template-id '::'
152 ///
153 ///
154 /// \param SS the scope specifier that will be set to the parsed
155 /// nested-name-specifier (or empty)
156 ///
157 /// \param ObjectType if this nested-name-specifier is being parsed following
158 /// the "." or "->" of a member access expression, this parameter provides the
159 /// type of the object whose members are being accessed.
160 ///
161 /// \param EnteringContext whether we will be entering into the context of
162 /// the nested-name-specifier after parsing it.
163 ///
164 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
165 /// indicates whether this nested-name-specifier may be part of a
166 /// pseudo-destructor name. In this case, the flag will be set false
167 /// if we don't actually end up parsing a destructor name. Moreorover,
168 /// if we do end up determining that we are parsing a destructor name,
169 /// the last component of the nested-name-specifier is not parsed as
170 /// part of the scope specifier.
171 ///
172 /// \param IsTypename If \c true, this nested-name-specifier is known to be
173 /// part of a type name. This is used to improve error recovery.
174 ///
175 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
176 /// filled in with the leading identifier in the last component of the
177 /// nested-name-specifier, if any.
178 ///
179 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,IdentifierInfo ** LastII)180 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
181 ParsedType ObjectType,
182 bool EnteringContext,
183 bool *MayBePseudoDestructor,
184 bool IsTypename,
185 IdentifierInfo **LastII) {
186 assert(getLangOpts().CPlusPlus &&
187 "Call sites of this function should be guarded by checking for C++");
188
189 if (Tok.is(tok::annot_cxxscope)) {
190 assert(!LastII && "want last identifier but have already annotated scope");
191 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
192 Tok.getAnnotationRange(),
193 SS);
194 ConsumeToken();
195 return false;
196 }
197
198 if (Tok.is(tok::annot_template_id)) {
199 // If the current token is an annotated template id, it may already have
200 // a scope specifier. Restore it.
201 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
202 SS = TemplateId->SS;
203 }
204
205 if (LastII)
206 *LastII = 0;
207
208 bool HasScopeSpecifier = false;
209
210 if (Tok.is(tok::coloncolon)) {
211 // ::new and ::delete aren't nested-name-specifiers.
212 tok::TokenKind NextKind = NextToken().getKind();
213 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
214 return false;
215
216 // '::' - Global scope qualifier.
217 if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
218 return true;
219
220 CheckForLParenAfterColonColon();
221
222 HasScopeSpecifier = true;
223 }
224
225 bool CheckForDestructor = false;
226 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
227 CheckForDestructor = true;
228 *MayBePseudoDestructor = false;
229 }
230
231 if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
232 DeclSpec DS(AttrFactory);
233 SourceLocation DeclLoc = Tok.getLocation();
234 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
235 if (Tok.isNot(tok::coloncolon)) {
236 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
237 return false;
238 }
239
240 SourceLocation CCLoc = ConsumeToken();
241 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
242 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
243
244 HasScopeSpecifier = true;
245 }
246
247 while (true) {
248 if (HasScopeSpecifier) {
249 // C++ [basic.lookup.classref]p5:
250 // If the qualified-id has the form
251 //
252 // ::class-name-or-namespace-name::...
253 //
254 // the class-name-or-namespace-name is looked up in global scope as a
255 // class-name or namespace-name.
256 //
257 // To implement this, we clear out the object type as soon as we've
258 // seen a leading '::' or part of a nested-name-specifier.
259 ObjectType = ParsedType();
260
261 if (Tok.is(tok::code_completion)) {
262 // Code completion for a nested-name-specifier, where the code
263 // code completion token follows the '::'.
264 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
265 // Include code completion token into the range of the scope otherwise
266 // when we try to annotate the scope tokens the dangling code completion
267 // token will cause assertion in
268 // Preprocessor::AnnotatePreviousCachedTokens.
269 SS.setEndLoc(Tok.getLocation());
270 cutOffParsing();
271 return true;
272 }
273 }
274
275 // nested-name-specifier:
276 // nested-name-specifier 'template'[opt] simple-template-id '::'
277
278 // Parse the optional 'template' keyword, then make sure we have
279 // 'identifier <' after it.
280 if (Tok.is(tok::kw_template)) {
281 // If we don't have a scope specifier or an object type, this isn't a
282 // nested-name-specifier, since they aren't allowed to start with
283 // 'template'.
284 if (!HasScopeSpecifier && !ObjectType)
285 break;
286
287 TentativeParsingAction TPA(*this);
288 SourceLocation TemplateKWLoc = ConsumeToken();
289
290 UnqualifiedId TemplateName;
291 if (Tok.is(tok::identifier)) {
292 // Consume the identifier.
293 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
294 ConsumeToken();
295 } else if (Tok.is(tok::kw_operator)) {
296 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
297 TemplateName)) {
298 TPA.Commit();
299 break;
300 }
301
302 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
303 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
304 Diag(TemplateName.getSourceRange().getBegin(),
305 diag::err_id_after_template_in_nested_name_spec)
306 << TemplateName.getSourceRange();
307 TPA.Commit();
308 break;
309 }
310 } else {
311 TPA.Revert();
312 break;
313 }
314
315 // If the next token is not '<', we have a qualified-id that refers
316 // to a template name, such as T::template apply, but is not a
317 // template-id.
318 if (Tok.isNot(tok::less)) {
319 TPA.Revert();
320 break;
321 }
322
323 // Commit to parsing the template-id.
324 TPA.Commit();
325 TemplateTy Template;
326 if (TemplateNameKind TNK
327 = Actions.ActOnDependentTemplateName(getCurScope(),
328 SS, TemplateKWLoc, TemplateName,
329 ObjectType, EnteringContext,
330 Template)) {
331 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
332 TemplateName, false))
333 return true;
334 } else
335 return true;
336
337 continue;
338 }
339
340 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
341 // We have
342 //
343 // simple-template-id '::'
344 //
345 // So we need to check whether the simple-template-id is of the
346 // right kind (it should name a type or be dependent), and then
347 // convert it into a type within the nested-name-specifier.
348 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
349 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
350 *MayBePseudoDestructor = true;
351 return false;
352 }
353
354 if (LastII)
355 *LastII = TemplateId->Name;
356
357 // Consume the template-id token.
358 ConsumeToken();
359
360 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
361 SourceLocation CCLoc = ConsumeToken();
362
363 HasScopeSpecifier = true;
364
365 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
366 TemplateId->NumArgs);
367
368 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
369 SS,
370 TemplateId->TemplateKWLoc,
371 TemplateId->Template,
372 TemplateId->TemplateNameLoc,
373 TemplateId->LAngleLoc,
374 TemplateArgsPtr,
375 TemplateId->RAngleLoc,
376 CCLoc,
377 EnteringContext)) {
378 SourceLocation StartLoc
379 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
380 : TemplateId->TemplateNameLoc;
381 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
382 }
383
384 continue;
385 }
386
387
388 // The rest of the nested-name-specifier possibilities start with
389 // tok::identifier.
390 if (Tok.isNot(tok::identifier))
391 break;
392
393 IdentifierInfo &II = *Tok.getIdentifierInfo();
394
395 // nested-name-specifier:
396 // type-name '::'
397 // namespace-name '::'
398 // nested-name-specifier identifier '::'
399 Token Next = NextToken();
400
401 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
402 // and emit a fixit hint for it.
403 if (Next.is(tok::colon) && !ColonIsSacred) {
404 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
405 Tok.getLocation(),
406 Next.getLocation(), ObjectType,
407 EnteringContext) &&
408 // If the token after the colon isn't an identifier, it's still an
409 // error, but they probably meant something else strange so don't
410 // recover like this.
411 PP.LookAhead(1).is(tok::identifier)) {
412 Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
413 << FixItHint::CreateReplacement(Next.getLocation(), "::");
414
415 // Recover as if the user wrote '::'.
416 Next.setKind(tok::coloncolon);
417 }
418 }
419
420 if (Next.is(tok::coloncolon)) {
421 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
422 !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
423 II, ObjectType)) {
424 *MayBePseudoDestructor = true;
425 return false;
426 }
427
428 if (LastII)
429 *LastII = &II;
430
431 // We have an identifier followed by a '::'. Lookup this name
432 // as the name in a nested-name-specifier.
433 SourceLocation IdLoc = ConsumeToken();
434 assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
435 "NextToken() not working properly!");
436 SourceLocation CCLoc = ConsumeToken();
437
438 CheckForLParenAfterColonColon();
439
440 HasScopeSpecifier = true;
441 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
442 ObjectType, EnteringContext, SS))
443 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
444
445 continue;
446 }
447
448 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
449
450 // nested-name-specifier:
451 // type-name '<'
452 if (Next.is(tok::less)) {
453 TemplateTy Template;
454 UnqualifiedId TemplateName;
455 TemplateName.setIdentifier(&II, Tok.getLocation());
456 bool MemberOfUnknownSpecialization;
457 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
458 /*hasTemplateKeyword=*/false,
459 TemplateName,
460 ObjectType,
461 EnteringContext,
462 Template,
463 MemberOfUnknownSpecialization)) {
464 // We have found a template name, so annotate this token
465 // with a template-id annotation. We do not permit the
466 // template-id to be translated into a type annotation,
467 // because some clients (e.g., the parsing of class template
468 // specializations) still want to see the original template-id
469 // token.
470 ConsumeToken();
471 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
472 TemplateName, false))
473 return true;
474 continue;
475 }
476
477 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
478 (IsTypename || IsTemplateArgumentList(1))) {
479 // We have something like t::getAs<T>, where getAs is a
480 // member of an unknown specialization. However, this will only
481 // parse correctly as a template, so suggest the keyword 'template'
482 // before 'getAs' and treat this as a dependent template name.
483 unsigned DiagID = diag::err_missing_dependent_template_keyword;
484 if (getLangOpts().MicrosoftExt)
485 DiagID = diag::warn_missing_dependent_template_keyword;
486
487 Diag(Tok.getLocation(), DiagID)
488 << II.getName()
489 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
490
491 if (TemplateNameKind TNK
492 = Actions.ActOnDependentTemplateName(getCurScope(),
493 SS, SourceLocation(),
494 TemplateName, ObjectType,
495 EnteringContext, Template)) {
496 // Consume the identifier.
497 ConsumeToken();
498 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
499 TemplateName, false))
500 return true;
501 }
502 else
503 return true;
504
505 continue;
506 }
507 }
508
509 // We don't have any tokens that form the beginning of a
510 // nested-name-specifier, so we're done.
511 break;
512 }
513
514 // Even if we didn't see any pieces of a nested-name-specifier, we
515 // still check whether there is a tilde in this position, which
516 // indicates a potential pseudo-destructor.
517 if (CheckForDestructor && Tok.is(tok::tilde))
518 *MayBePseudoDestructor = true;
519
520 return false;
521 }
522
523 /// ParseCXXIdExpression - Handle id-expression.
524 ///
525 /// id-expression:
526 /// unqualified-id
527 /// qualified-id
528 ///
529 /// qualified-id:
530 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
531 /// '::' identifier
532 /// '::' operator-function-id
533 /// '::' template-id
534 ///
535 /// NOTE: The standard specifies that, for qualified-id, the parser does not
536 /// expect:
537 ///
538 /// '::' conversion-function-id
539 /// '::' '~' class-name
540 ///
541 /// This may cause a slight inconsistency on diagnostics:
542 ///
543 /// class C {};
544 /// namespace A {}
545 /// void f() {
546 /// :: A :: ~ C(); // Some Sema error about using destructor with a
547 /// // namespace.
548 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
549 /// }
550 ///
551 /// We simplify the parser a bit and make it work like:
552 ///
553 /// qualified-id:
554 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
555 /// '::' unqualified-id
556 ///
557 /// That way Sema can handle and report similar errors for namespaces and the
558 /// global scope.
559 ///
560 /// The isAddressOfOperand parameter indicates that this id-expression is a
561 /// direct operand of the address-of operator. This is, besides member contexts,
562 /// the only place where a qualified-id naming a non-static class member may
563 /// appear.
564 ///
ParseCXXIdExpression(bool isAddressOfOperand)565 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
566 // qualified-id:
567 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
568 // '::' unqualified-id
569 //
570 CXXScopeSpec SS;
571 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
572
573 SourceLocation TemplateKWLoc;
574 UnqualifiedId Name;
575 if (ParseUnqualifiedId(SS,
576 /*EnteringContext=*/false,
577 /*AllowDestructorName=*/false,
578 /*AllowConstructorName=*/false,
579 /*ObjectType=*/ ParsedType(),
580 TemplateKWLoc,
581 Name))
582 return ExprError();
583
584 // This is only the direct operand of an & operator if it is not
585 // followed by a postfix-expression suffix.
586 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
587 isAddressOfOperand = false;
588
589 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
590 Tok.is(tok::l_paren), isAddressOfOperand);
591 }
592
593 /// ParseLambdaExpression - Parse a C++11 lambda expression.
594 ///
595 /// lambda-expression:
596 /// lambda-introducer lambda-declarator[opt] compound-statement
597 ///
598 /// lambda-introducer:
599 /// '[' lambda-capture[opt] ']'
600 ///
601 /// lambda-capture:
602 /// capture-default
603 /// capture-list
604 /// capture-default ',' capture-list
605 ///
606 /// capture-default:
607 /// '&'
608 /// '='
609 ///
610 /// capture-list:
611 /// capture
612 /// capture-list ',' capture
613 ///
614 /// capture:
615 /// simple-capture
616 /// init-capture [C++1y]
617 ///
618 /// simple-capture:
619 /// identifier
620 /// '&' identifier
621 /// 'this'
622 ///
623 /// init-capture: [C++1y]
624 /// identifier initializer
625 /// '&' identifier initializer
626 ///
627 /// lambda-declarator:
628 /// '(' parameter-declaration-clause ')' attribute-specifier[opt]
629 /// 'mutable'[opt] exception-specification[opt]
630 /// trailing-return-type[opt]
631 ///
ParseLambdaExpression()632 ExprResult Parser::ParseLambdaExpression() {
633 // Parse lambda-introducer.
634 LambdaIntroducer Intro;
635
636 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
637 if (DiagID) {
638 Diag(Tok, DiagID.getValue());
639 SkipUntil(tok::r_square);
640 SkipUntil(tok::l_brace);
641 SkipUntil(tok::r_brace);
642 return ExprError();
643 }
644
645 return ParseLambdaExpressionAfterIntroducer(Intro);
646 }
647
648 /// TryParseLambdaExpression - Use lookahead and potentially tentative
649 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
650 /// it if we are.
651 ///
652 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()653 ExprResult Parser::TryParseLambdaExpression() {
654 assert(getLangOpts().CPlusPlus11
655 && Tok.is(tok::l_square)
656 && "Not at the start of a possible lambda expression.");
657
658 const Token Next = NextToken(), After = GetLookAheadToken(2);
659
660 // If lookahead indicates this is a lambda...
661 if (Next.is(tok::r_square) || // []
662 Next.is(tok::equal) || // [=
663 (Next.is(tok::amp) && // [&] or [&,
664 (After.is(tok::r_square) ||
665 After.is(tok::comma))) ||
666 (Next.is(tok::identifier) && // [identifier]
667 After.is(tok::r_square))) {
668 return ParseLambdaExpression();
669 }
670
671 // If lookahead indicates an ObjC message send...
672 // [identifier identifier
673 if (Next.is(tok::identifier) && After.is(tok::identifier)) {
674 return ExprEmpty();
675 }
676
677 // Here, we're stuck: lambda introducers and Objective-C message sends are
678 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
679 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
680 // writing two routines to parse a lambda introducer, just try to parse
681 // a lambda introducer first, and fall back if that fails.
682 // (TryParseLambdaIntroducer never produces any diagnostic output.)
683 LambdaIntroducer Intro;
684 if (TryParseLambdaIntroducer(Intro))
685 return ExprEmpty();
686 return ParseLambdaExpressionAfterIntroducer(Intro);
687 }
688
689 /// \brief Parse a lambda introducer.
690 /// \param Intro A LambdaIntroducer filled in with information about the
691 /// contents of the lambda-introducer.
692 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
693 /// message send and a lambda expression. In this mode, we will
694 /// sometimes skip the initializers for init-captures and not fully
695 /// populate \p Intro. This flag will be set to \c true if we do so.
696 /// \return A DiagnosticID if it hit something unexpected. The location for
697 /// for the diagnostic is that of the current token.
ParseLambdaIntroducer(LambdaIntroducer & Intro,bool * SkippedInits)698 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
699 bool *SkippedInits) {
700 typedef Optional<unsigned> DiagResult;
701
702 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
703 BalancedDelimiterTracker T(*this, tok::l_square);
704 T.consumeOpen();
705
706 Intro.Range.setBegin(T.getOpenLocation());
707
708 bool first = true;
709
710 // Parse capture-default.
711 if (Tok.is(tok::amp) &&
712 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
713 Intro.Default = LCD_ByRef;
714 Intro.DefaultLoc = ConsumeToken();
715 first = false;
716 } else if (Tok.is(tok::equal)) {
717 Intro.Default = LCD_ByCopy;
718 Intro.DefaultLoc = ConsumeToken();
719 first = false;
720 }
721
722 while (Tok.isNot(tok::r_square)) {
723 if (!first) {
724 if (Tok.isNot(tok::comma)) {
725 // Provide a completion for a lambda introducer here. Except
726 // in Objective-C, where this is Almost Surely meant to be a message
727 // send. In that case, fail here and let the ObjC message
728 // expression parser perform the completion.
729 if (Tok.is(tok::code_completion) &&
730 !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
731 !Intro.Captures.empty())) {
732 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
733 /*AfterAmpersand=*/false);
734 ConsumeCodeCompletionToken();
735 break;
736 }
737
738 return DiagResult(diag::err_expected_comma_or_rsquare);
739 }
740 ConsumeToken();
741 }
742
743 if (Tok.is(tok::code_completion)) {
744 // If we're in Objective-C++ and we have a bare '[', then this is more
745 // likely to be a message receiver.
746 if (getLangOpts().ObjC1 && first)
747 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
748 else
749 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
750 /*AfterAmpersand=*/false);
751 ConsumeCodeCompletionToken();
752 break;
753 }
754
755 first = false;
756
757 // Parse capture.
758 LambdaCaptureKind Kind = LCK_ByCopy;
759 SourceLocation Loc;
760 IdentifierInfo* Id = 0;
761 SourceLocation EllipsisLoc;
762 ExprResult Init;
763
764 if (Tok.is(tok::kw_this)) {
765 Kind = LCK_This;
766 Loc = ConsumeToken();
767 } else {
768 if (Tok.is(tok::amp)) {
769 Kind = LCK_ByRef;
770 ConsumeToken();
771
772 if (Tok.is(tok::code_completion)) {
773 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
774 /*AfterAmpersand=*/true);
775 ConsumeCodeCompletionToken();
776 break;
777 }
778 }
779
780 if (Tok.is(tok::identifier)) {
781 Id = Tok.getIdentifierInfo();
782 Loc = ConsumeToken();
783 } else if (Tok.is(tok::kw_this)) {
784 // FIXME: If we want to suggest a fixit here, will need to return more
785 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
786 // Clear()ed to prevent emission in case of tentative parsing?
787 return DiagResult(diag::err_this_captured_by_reference);
788 } else {
789 return DiagResult(diag::err_expected_capture);
790 }
791
792 if (Tok.is(tok::l_paren)) {
793 BalancedDelimiterTracker Parens(*this, tok::l_paren);
794 Parens.consumeOpen();
795
796 ExprVector Exprs;
797 CommaLocsTy Commas;
798 if (SkippedInits) {
799 Parens.skipToEnd();
800 *SkippedInits = true;
801 } else if (ParseExpressionList(Exprs, Commas)) {
802 Parens.skipToEnd();
803 Init = ExprError();
804 } else {
805 Parens.consumeClose();
806 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
807 Parens.getCloseLocation(),
808 Exprs);
809 }
810 } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) {
811 if (Tok.is(tok::equal))
812 ConsumeToken();
813
814 if (!SkippedInits)
815 Init = ParseInitializer();
816 else if (Tok.is(tok::l_brace)) {
817 BalancedDelimiterTracker Braces(*this, tok::l_brace);
818 Braces.consumeOpen();
819 Braces.skipToEnd();
820 *SkippedInits = true;
821 } else {
822 // We're disambiguating this:
823 //
824 // [..., x = expr
825 //
826 // We need to find the end of the following expression in order to
827 // determine whether this is an Obj-C message send's receiver, or a
828 // lambda init-capture.
829 //
830 // Parse the expression to find where it ends, and annotate it back
831 // onto the tokens. We would have parsed this expression the same way
832 // in either case: both the RHS of an init-capture and the RHS of an
833 // assignment expression are parsed as an initializer-clause, and in
834 // neither case can anything be added to the scope between the '[' and
835 // here.
836 //
837 // FIXME: This is horrible. Adding a mechanism to skip an expression
838 // would be much cleaner.
839 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
840 // that instead. (And if we see a ':' with no matching '?', we can
841 // classify this as an Obj-C message send.)
842 SourceLocation StartLoc = Tok.getLocation();
843 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
844 Init = ParseInitializer();
845
846 if (Tok.getLocation() != StartLoc) {
847 // Back out the lexing of the token after the initializer.
848 PP.RevertCachedTokens(1);
849
850 // Replace the consumed tokens with an appropriate annotation.
851 Tok.setLocation(StartLoc);
852 Tok.setKind(tok::annot_primary_expr);
853 setExprAnnotation(Tok, Init);
854 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
855 PP.AnnotateCachedTokens(Tok);
856
857 // Consume the annotated initializer.
858 ConsumeToken();
859 }
860 }
861 } else if (Tok.is(tok::ellipsis))
862 EllipsisLoc = ConsumeToken();
863 }
864
865 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init);
866 }
867
868 T.consumeClose();
869 Intro.Range.setEnd(T.getCloseLocation());
870
871 return DiagResult();
872 }
873
874 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
875 ///
876 /// Returns true if it hit something unexpected.
TryParseLambdaIntroducer(LambdaIntroducer & Intro)877 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
878 TentativeParsingAction PA(*this);
879
880 bool SkippedInits = false;
881 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
882
883 if (DiagID) {
884 PA.Revert();
885 return true;
886 }
887
888 if (SkippedInits) {
889 // Parse it again, but this time parse the init-captures too.
890 PA.Revert();
891 Intro = LambdaIntroducer();
892 DiagID = ParseLambdaIntroducer(Intro);
893 assert(!DiagID && "parsing lambda-introducer failed on reparse");
894 return false;
895 }
896
897 PA.Commit();
898 return false;
899 }
900
901 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
902 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)903 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
904 LambdaIntroducer &Intro) {
905 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
906 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
907
908 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
909 "lambda expression parsing");
910
911 // FIXME: Call into Actions to add any init-capture declarations to the
912 // scope while parsing the lambda-declarator and compound-statement.
913
914 // Parse lambda-declarator[opt].
915 DeclSpec DS(AttrFactory);
916 Declarator D(DS, Declarator::LambdaExprContext);
917
918 if (Tok.is(tok::l_paren)) {
919 ParseScope PrototypeScope(this,
920 Scope::FunctionPrototypeScope |
921 Scope::FunctionDeclarationScope |
922 Scope::DeclScope);
923
924 SourceLocation DeclEndLoc;
925 BalancedDelimiterTracker T(*this, tok::l_paren);
926 T.consumeOpen();
927 SourceLocation LParenLoc = T.getOpenLocation();
928
929 // Parse parameter-declaration-clause.
930 ParsedAttributes Attr(AttrFactory);
931 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
932 SourceLocation EllipsisLoc;
933
934 if (Tok.isNot(tok::r_paren))
935 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
936
937 T.consumeClose();
938 SourceLocation RParenLoc = T.getCloseLocation();
939 DeclEndLoc = RParenLoc;
940
941 // Parse 'mutable'[opt].
942 SourceLocation MutableLoc;
943 if (Tok.is(tok::kw_mutable)) {
944 MutableLoc = ConsumeToken();
945 DeclEndLoc = MutableLoc;
946 }
947
948 // Parse exception-specification[opt].
949 ExceptionSpecificationType ESpecType = EST_None;
950 SourceRange ESpecRange;
951 SmallVector<ParsedType, 2> DynamicExceptions;
952 SmallVector<SourceRange, 2> DynamicExceptionRanges;
953 ExprResult NoexceptExpr;
954 ESpecType = tryParseExceptionSpecification(ESpecRange,
955 DynamicExceptions,
956 DynamicExceptionRanges,
957 NoexceptExpr);
958
959 if (ESpecType != EST_None)
960 DeclEndLoc = ESpecRange.getEnd();
961
962 // Parse attribute-specifier[opt].
963 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
964
965 SourceLocation FunLocalRangeEnd = DeclEndLoc;
966
967 // Parse trailing-return-type[opt].
968 TypeResult TrailingReturnType;
969 if (Tok.is(tok::arrow)) {
970 FunLocalRangeEnd = Tok.getLocation();
971 SourceRange Range;
972 TrailingReturnType = ParseTrailingReturnType(Range);
973 if (Range.getEnd().isValid())
974 DeclEndLoc = Range.getEnd();
975 }
976
977 PrototypeScope.Exit();
978
979 SourceLocation NoLoc;
980 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
981 /*isAmbiguous=*/false,
982 LParenLoc,
983 ParamInfo.data(), ParamInfo.size(),
984 EllipsisLoc, RParenLoc,
985 DS.getTypeQualifiers(),
986 /*RefQualifierIsLValueRef=*/true,
987 /*RefQualifierLoc=*/NoLoc,
988 /*ConstQualifierLoc=*/NoLoc,
989 /*VolatileQualifierLoc=*/NoLoc,
990 MutableLoc,
991 ESpecType, ESpecRange.getBegin(),
992 DynamicExceptions.data(),
993 DynamicExceptionRanges.data(),
994 DynamicExceptions.size(),
995 NoexceptExpr.isUsable() ?
996 NoexceptExpr.get() : 0,
997 LParenLoc, FunLocalRangeEnd, D,
998 TrailingReturnType),
999 Attr, DeclEndLoc);
1000 } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
1001 // It's common to forget that one needs '()' before 'mutable' or the
1002 // result type. Deal with this.
1003 Diag(Tok, diag::err_lambda_missing_parens)
1004 << Tok.is(tok::arrow)
1005 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1006 SourceLocation DeclLoc = Tok.getLocation();
1007 SourceLocation DeclEndLoc = DeclLoc;
1008
1009 // Parse 'mutable', if it's there.
1010 SourceLocation MutableLoc;
1011 if (Tok.is(tok::kw_mutable)) {
1012 MutableLoc = ConsumeToken();
1013 DeclEndLoc = MutableLoc;
1014 }
1015
1016 // Parse the return type, if there is one.
1017 TypeResult TrailingReturnType;
1018 if (Tok.is(tok::arrow)) {
1019 SourceRange Range;
1020 TrailingReturnType = ParseTrailingReturnType(Range);
1021 if (Range.getEnd().isValid())
1022 DeclEndLoc = Range.getEnd();
1023 }
1024
1025 ParsedAttributes Attr(AttrFactory);
1026 SourceLocation NoLoc;
1027 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1028 /*isAmbiguous=*/false,
1029 /*LParenLoc=*/NoLoc,
1030 /*Params=*/0,
1031 /*NumParams=*/0,
1032 /*EllipsisLoc=*/NoLoc,
1033 /*RParenLoc=*/NoLoc,
1034 /*TypeQuals=*/0,
1035 /*RefQualifierIsLValueRef=*/true,
1036 /*RefQualifierLoc=*/NoLoc,
1037 /*ConstQualifierLoc=*/NoLoc,
1038 /*VolatileQualifierLoc=*/NoLoc,
1039 MutableLoc,
1040 EST_None,
1041 /*ESpecLoc=*/NoLoc,
1042 /*Exceptions=*/0,
1043 /*ExceptionRanges=*/0,
1044 /*NumExceptions=*/0,
1045 /*NoexceptExpr=*/0,
1046 DeclLoc, DeclEndLoc, D,
1047 TrailingReturnType),
1048 Attr, DeclEndLoc);
1049 }
1050
1051
1052 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1053 // it.
1054 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
1055 ParseScope BodyScope(this, ScopeFlags);
1056
1057 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1058
1059 // Parse compound-statement.
1060 if (!Tok.is(tok::l_brace)) {
1061 Diag(Tok, diag::err_expected_lambda_body);
1062 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1063 return ExprError();
1064 }
1065
1066 StmtResult Stmt(ParseCompoundStatementBody());
1067 BodyScope.Exit();
1068
1069 if (!Stmt.isInvalid())
1070 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
1071
1072 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1073 return ExprError();
1074 }
1075
1076 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1077 /// type.
1078 ///
1079 /// postfix-expression: [C++ 5.2p1]
1080 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1081 /// 'static_cast' '<' type-name '>' '(' expression ')'
1082 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1083 /// 'const_cast' '<' type-name '>' '(' expression ')'
1084 ///
ParseCXXCasts()1085 ExprResult Parser::ParseCXXCasts() {
1086 tok::TokenKind Kind = Tok.getKind();
1087 const char *CastName = 0; // For error messages
1088
1089 switch (Kind) {
1090 default: llvm_unreachable("Unknown C++ cast!");
1091 case tok::kw_const_cast: CastName = "const_cast"; break;
1092 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1093 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1094 case tok::kw_static_cast: CastName = "static_cast"; break;
1095 }
1096
1097 SourceLocation OpLoc = ConsumeToken();
1098 SourceLocation LAngleBracketLoc = Tok.getLocation();
1099
1100 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1101 // diagnose error, suggest fix, and recover parsing.
1102 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1103 Token Next = NextToken();
1104 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1105 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1106 }
1107
1108 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1109 return ExprError();
1110
1111 // Parse the common declaration-specifiers piece.
1112 DeclSpec DS(AttrFactory);
1113 ParseSpecifierQualifierList(DS);
1114
1115 // Parse the abstract-declarator, if present.
1116 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1117 ParseDeclarator(DeclaratorInfo);
1118
1119 SourceLocation RAngleBracketLoc = Tok.getLocation();
1120
1121 if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
1122 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
1123
1124 SourceLocation LParenLoc, RParenLoc;
1125 BalancedDelimiterTracker T(*this, tok::l_paren);
1126
1127 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1128 return ExprError();
1129
1130 ExprResult Result = ParseExpression();
1131
1132 // Match the ')'.
1133 T.consumeClose();
1134
1135 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1136 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1137 LAngleBracketLoc, DeclaratorInfo,
1138 RAngleBracketLoc,
1139 T.getOpenLocation(), Result.take(),
1140 T.getCloseLocation());
1141
1142 return Result;
1143 }
1144
1145 /// ParseCXXTypeid - This handles the C++ typeid expression.
1146 ///
1147 /// postfix-expression: [C++ 5.2p1]
1148 /// 'typeid' '(' expression ')'
1149 /// 'typeid' '(' type-id ')'
1150 ///
ParseCXXTypeid()1151 ExprResult Parser::ParseCXXTypeid() {
1152 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1153
1154 SourceLocation OpLoc = ConsumeToken();
1155 SourceLocation LParenLoc, RParenLoc;
1156 BalancedDelimiterTracker T(*this, tok::l_paren);
1157
1158 // typeid expressions are always parenthesized.
1159 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1160 return ExprError();
1161 LParenLoc = T.getOpenLocation();
1162
1163 ExprResult Result;
1164
1165 // C++0x [expr.typeid]p3:
1166 // When typeid is applied to an expression other than an lvalue of a
1167 // polymorphic class type [...] The expression is an unevaluated
1168 // operand (Clause 5).
1169 //
1170 // Note that we can't tell whether the expression is an lvalue of a
1171 // polymorphic class type until after we've parsed the expression; we
1172 // speculatively assume the subexpression is unevaluated, and fix it up
1173 // later.
1174 //
1175 // We enter the unevaluated context before trying to determine whether we
1176 // have a type-id, because the tentative parse logic will try to resolve
1177 // names, and must treat them as unevaluated.
1178 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1179 Sema::ReuseLambdaContextDecl);
1180
1181 if (isTypeIdInParens()) {
1182 TypeResult Ty = ParseTypeName();
1183
1184 // Match the ')'.
1185 T.consumeClose();
1186 RParenLoc = T.getCloseLocation();
1187 if (Ty.isInvalid() || RParenLoc.isInvalid())
1188 return ExprError();
1189
1190 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1191 Ty.get().getAsOpaquePtr(), RParenLoc);
1192 } else {
1193 Result = ParseExpression();
1194
1195 // Match the ')'.
1196 if (Result.isInvalid())
1197 SkipUntil(tok::r_paren);
1198 else {
1199 T.consumeClose();
1200 RParenLoc = T.getCloseLocation();
1201 if (RParenLoc.isInvalid())
1202 return ExprError();
1203
1204 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1205 Result.release(), RParenLoc);
1206 }
1207 }
1208
1209 return Result;
1210 }
1211
1212 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1213 ///
1214 /// '__uuidof' '(' expression ')'
1215 /// '__uuidof' '(' type-id ')'
1216 ///
ParseCXXUuidof()1217 ExprResult Parser::ParseCXXUuidof() {
1218 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1219
1220 SourceLocation OpLoc = ConsumeToken();
1221 BalancedDelimiterTracker T(*this, tok::l_paren);
1222
1223 // __uuidof expressions are always parenthesized.
1224 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1225 return ExprError();
1226
1227 ExprResult Result;
1228
1229 if (isTypeIdInParens()) {
1230 TypeResult Ty = ParseTypeName();
1231
1232 // Match the ')'.
1233 T.consumeClose();
1234
1235 if (Ty.isInvalid())
1236 return ExprError();
1237
1238 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1239 Ty.get().getAsOpaquePtr(),
1240 T.getCloseLocation());
1241 } else {
1242 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1243 Result = ParseExpression();
1244
1245 // Match the ')'.
1246 if (Result.isInvalid())
1247 SkipUntil(tok::r_paren);
1248 else {
1249 T.consumeClose();
1250
1251 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1252 /*isType=*/false,
1253 Result.release(), T.getCloseLocation());
1254 }
1255 }
1256
1257 return Result;
1258 }
1259
1260 /// \brief Parse a C++ pseudo-destructor expression after the base,
1261 /// . or -> operator, and nested-name-specifier have already been
1262 /// parsed.
1263 ///
1264 /// postfix-expression: [C++ 5.2]
1265 /// postfix-expression . pseudo-destructor-name
1266 /// postfix-expression -> pseudo-destructor-name
1267 ///
1268 /// pseudo-destructor-name:
1269 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1270 /// ::[opt] nested-name-specifier template simple-template-id ::
1271 /// ~type-name
1272 /// ::[opt] nested-name-specifier[opt] ~type-name
1273 ///
1274 ExprResult
ParseCXXPseudoDestructor(ExprArg Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1275 Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1276 tok::TokenKind OpKind,
1277 CXXScopeSpec &SS,
1278 ParsedType ObjectType) {
1279 // We're parsing either a pseudo-destructor-name or a dependent
1280 // member access that has the same form as a
1281 // pseudo-destructor-name. We parse both in the same way and let
1282 // the action model sort them out.
1283 //
1284 // Note that the ::[opt] nested-name-specifier[opt] has already
1285 // been parsed, and if there was a simple-template-id, it has
1286 // been coalesced into a template-id annotation token.
1287 UnqualifiedId FirstTypeName;
1288 SourceLocation CCLoc;
1289 if (Tok.is(tok::identifier)) {
1290 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1291 ConsumeToken();
1292 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1293 CCLoc = ConsumeToken();
1294 } else if (Tok.is(tok::annot_template_id)) {
1295 // FIXME: retrieve TemplateKWLoc from template-id annotation and
1296 // store it in the pseudo-dtor node (to be used when instantiating it).
1297 FirstTypeName.setTemplateId(
1298 (TemplateIdAnnotation *)Tok.getAnnotationValue());
1299 ConsumeToken();
1300 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1301 CCLoc = ConsumeToken();
1302 } else {
1303 FirstTypeName.setIdentifier(0, SourceLocation());
1304 }
1305
1306 // Parse the tilde.
1307 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1308 SourceLocation TildeLoc = ConsumeToken();
1309
1310 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1311 DeclSpec DS(AttrFactory);
1312 ParseDecltypeSpecifier(DS);
1313 if (DS.getTypeSpecType() == TST_error)
1314 return ExprError();
1315 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1316 OpKind, TildeLoc, DS,
1317 Tok.is(tok::l_paren));
1318 }
1319
1320 if (!Tok.is(tok::identifier)) {
1321 Diag(Tok, diag::err_destructor_tilde_identifier);
1322 return ExprError();
1323 }
1324
1325 // Parse the second type.
1326 UnqualifiedId SecondTypeName;
1327 IdentifierInfo *Name = Tok.getIdentifierInfo();
1328 SourceLocation NameLoc = ConsumeToken();
1329 SecondTypeName.setIdentifier(Name, NameLoc);
1330
1331 // If there is a '<', the second type name is a template-id. Parse
1332 // it as such.
1333 if (Tok.is(tok::less) &&
1334 ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1335 Name, NameLoc,
1336 false, ObjectType, SecondTypeName,
1337 /*AssumeTemplateName=*/true))
1338 return ExprError();
1339
1340 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1341 OpLoc, OpKind,
1342 SS, FirstTypeName, CCLoc,
1343 TildeLoc, SecondTypeName,
1344 Tok.is(tok::l_paren));
1345 }
1346
1347 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1348 ///
1349 /// boolean-literal: [C++ 2.13.5]
1350 /// 'true'
1351 /// 'false'
ParseCXXBoolLiteral()1352 ExprResult Parser::ParseCXXBoolLiteral() {
1353 tok::TokenKind Kind = Tok.getKind();
1354 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1355 }
1356
1357 /// ParseThrowExpression - This handles the C++ throw expression.
1358 ///
1359 /// throw-expression: [C++ 15]
1360 /// 'throw' assignment-expression[opt]
ParseThrowExpression()1361 ExprResult Parser::ParseThrowExpression() {
1362 assert(Tok.is(tok::kw_throw) && "Not throw!");
1363 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1364
1365 // If the current token isn't the start of an assignment-expression,
1366 // then the expression is not present. This handles things like:
1367 // "C ? throw : (void)42", which is crazy but legal.
1368 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1369 case tok::semi:
1370 case tok::r_paren:
1371 case tok::r_square:
1372 case tok::r_brace:
1373 case tok::colon:
1374 case tok::comma:
1375 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1376
1377 default:
1378 ExprResult Expr(ParseAssignmentExpression());
1379 if (Expr.isInvalid()) return Expr;
1380 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1381 }
1382 }
1383
1384 /// ParseCXXThis - This handles the C++ 'this' pointer.
1385 ///
1386 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1387 /// a non-lvalue expression whose value is the address of the object for which
1388 /// the function is called.
ParseCXXThis()1389 ExprResult Parser::ParseCXXThis() {
1390 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1391 SourceLocation ThisLoc = ConsumeToken();
1392 return Actions.ActOnCXXThis(ThisLoc);
1393 }
1394
1395 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1396 /// Can be interpreted either as function-style casting ("int(x)")
1397 /// or class type construction ("ClassType(x,y,z)")
1398 /// or creation of a value-initialized type ("int()").
1399 /// See [C++ 5.2.3].
1400 ///
1401 /// postfix-expression: [C++ 5.2p1]
1402 /// simple-type-specifier '(' expression-list[opt] ')'
1403 /// [C++0x] simple-type-specifier braced-init-list
1404 /// typename-specifier '(' expression-list[opt] ')'
1405 /// [C++0x] typename-specifier braced-init-list
1406 ///
1407 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)1408 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1409 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1410 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1411
1412 assert((Tok.is(tok::l_paren) ||
1413 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1414 && "Expected '(' or '{'!");
1415
1416 if (Tok.is(tok::l_brace)) {
1417 ExprResult Init = ParseBraceInitializer();
1418 if (Init.isInvalid())
1419 return Init;
1420 Expr *InitList = Init.take();
1421 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1422 MultiExprArg(&InitList, 1),
1423 SourceLocation());
1424 } else {
1425 BalancedDelimiterTracker T(*this, tok::l_paren);
1426 T.consumeOpen();
1427
1428 ExprVector Exprs;
1429 CommaLocsTy CommaLocs;
1430
1431 if (Tok.isNot(tok::r_paren)) {
1432 if (ParseExpressionList(Exprs, CommaLocs)) {
1433 SkipUntil(tok::r_paren);
1434 return ExprError();
1435 }
1436 }
1437
1438 // Match the ')'.
1439 T.consumeClose();
1440
1441 // TypeRep could be null, if it references an invalid typedef.
1442 if (!TypeRep)
1443 return ExprError();
1444
1445 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1446 "Unexpected number of commas!");
1447 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1448 Exprs,
1449 T.getCloseLocation());
1450 }
1451 }
1452
1453 /// ParseCXXCondition - if/switch/while condition expression.
1454 ///
1455 /// condition:
1456 /// expression
1457 /// type-specifier-seq declarator '=' assignment-expression
1458 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1459 /// [C++11] type-specifier-seq declarator braced-init-list
1460 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1461 /// '=' assignment-expression
1462 ///
1463 /// \param ExprOut if the condition was parsed as an expression, the parsed
1464 /// expression.
1465 ///
1466 /// \param DeclOut if the condition was parsed as a declaration, the parsed
1467 /// declaration.
1468 ///
1469 /// \param Loc The location of the start of the statement that requires this
1470 /// condition, e.g., the "for" in a for loop.
1471 ///
1472 /// \param ConvertToBoolean Whether the condition expression should be
1473 /// converted to a boolean value.
1474 ///
1475 /// \returns true if there was a parsing, false otherwise.
ParseCXXCondition(ExprResult & ExprOut,Decl * & DeclOut,SourceLocation Loc,bool ConvertToBoolean)1476 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1477 Decl *&DeclOut,
1478 SourceLocation Loc,
1479 bool ConvertToBoolean) {
1480 if (Tok.is(tok::code_completion)) {
1481 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1482 cutOffParsing();
1483 return true;
1484 }
1485
1486 ParsedAttributesWithRange attrs(AttrFactory);
1487 MaybeParseCXX11Attributes(attrs);
1488
1489 if (!isCXXConditionDeclaration()) {
1490 ProhibitAttributes(attrs);
1491
1492 // Parse the expression.
1493 ExprOut = ParseExpression(); // expression
1494 DeclOut = 0;
1495 if (ExprOut.isInvalid())
1496 return true;
1497
1498 // If required, convert to a boolean value.
1499 if (ConvertToBoolean)
1500 ExprOut
1501 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1502 return ExprOut.isInvalid();
1503 }
1504
1505 // type-specifier-seq
1506 DeclSpec DS(AttrFactory);
1507 DS.takeAttributesFrom(attrs);
1508 ParseSpecifierQualifierList(DS);
1509
1510 // declarator
1511 Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1512 ParseDeclarator(DeclaratorInfo);
1513
1514 // simple-asm-expr[opt]
1515 if (Tok.is(tok::kw_asm)) {
1516 SourceLocation Loc;
1517 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1518 if (AsmLabel.isInvalid()) {
1519 SkipUntil(tok::semi);
1520 return true;
1521 }
1522 DeclaratorInfo.setAsmLabel(AsmLabel.release());
1523 DeclaratorInfo.SetRangeEnd(Loc);
1524 }
1525
1526 // If attributes are present, parse them.
1527 MaybeParseGNUAttributes(DeclaratorInfo);
1528
1529 // Type-check the declaration itself.
1530 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1531 DeclaratorInfo);
1532 DeclOut = Dcl.get();
1533 ExprOut = ExprError();
1534
1535 // '=' assignment-expression
1536 // If a '==' or '+=' is found, suggest a fixit to '='.
1537 bool CopyInitialization = isTokenEqualOrEqualTypo();
1538 if (CopyInitialization)
1539 ConsumeToken();
1540
1541 ExprResult InitExpr = ExprError();
1542 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1543 Diag(Tok.getLocation(),
1544 diag::warn_cxx98_compat_generalized_initializer_lists);
1545 InitExpr = ParseBraceInitializer();
1546 } else if (CopyInitialization) {
1547 InitExpr = ParseAssignmentExpression();
1548 } else if (Tok.is(tok::l_paren)) {
1549 // This was probably an attempt to initialize the variable.
1550 SourceLocation LParen = ConsumeParen(), RParen = LParen;
1551 if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1552 RParen = ConsumeParen();
1553 Diag(DeclOut ? DeclOut->getLocation() : LParen,
1554 diag::err_expected_init_in_condition_lparen)
1555 << SourceRange(LParen, RParen);
1556 } else {
1557 Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1558 diag::err_expected_init_in_condition);
1559 }
1560
1561 if (!InitExpr.isInvalid())
1562 Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1563 DS.containsPlaceholderType());
1564 else
1565 Actions.ActOnInitializerError(DeclOut);
1566
1567 // FIXME: Build a reference to this declaration? Convert it to bool?
1568 // (This is currently handled by Sema).
1569
1570 Actions.FinalizeDeclaration(DeclOut);
1571
1572 return false;
1573 }
1574
1575 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1576 /// This should only be called when the current token is known to be part of
1577 /// simple-type-specifier.
1578 ///
1579 /// simple-type-specifier:
1580 /// '::'[opt] nested-name-specifier[opt] type-name
1581 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1582 /// char
1583 /// wchar_t
1584 /// bool
1585 /// short
1586 /// int
1587 /// long
1588 /// signed
1589 /// unsigned
1590 /// float
1591 /// double
1592 /// void
1593 /// [GNU] typeof-specifier
1594 /// [C++0x] auto [TODO]
1595 ///
1596 /// type-name:
1597 /// class-name
1598 /// enum-name
1599 /// typedef-name
1600 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)1601 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1602 DS.SetRangeStart(Tok.getLocation());
1603 const char *PrevSpec;
1604 unsigned DiagID;
1605 SourceLocation Loc = Tok.getLocation();
1606
1607 switch (Tok.getKind()) {
1608 case tok::identifier: // foo::bar
1609 case tok::coloncolon: // ::foo::bar
1610 llvm_unreachable("Annotation token should already be formed!");
1611 default:
1612 llvm_unreachable("Not a simple-type-specifier token!");
1613
1614 // type-name
1615 case tok::annot_typename: {
1616 if (getTypeAnnotation(Tok))
1617 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1618 getTypeAnnotation(Tok));
1619 else
1620 DS.SetTypeSpecError();
1621
1622 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1623 ConsumeToken();
1624
1625 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1626 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1627 // Objective-C interface. If we don't have Objective-C or a '<', this is
1628 // just a normal reference to a typedef name.
1629 if (Tok.is(tok::less) && getLangOpts().ObjC1)
1630 ParseObjCProtocolQualifiers(DS);
1631
1632 DS.Finish(Diags, PP);
1633 return;
1634 }
1635
1636 // builtin types
1637 case tok::kw_short:
1638 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1639 break;
1640 case tok::kw_long:
1641 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1642 break;
1643 case tok::kw___int64:
1644 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1645 break;
1646 case tok::kw_signed:
1647 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1648 break;
1649 case tok::kw_unsigned:
1650 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1651 break;
1652 case tok::kw_void:
1653 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1654 break;
1655 case tok::kw_char:
1656 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1657 break;
1658 case tok::kw_int:
1659 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1660 break;
1661 case tok::kw___int128:
1662 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1663 break;
1664 case tok::kw_half:
1665 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1666 break;
1667 case tok::kw_float:
1668 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1669 break;
1670 case tok::kw_double:
1671 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1672 break;
1673 case tok::kw_wchar_t:
1674 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1675 break;
1676 case tok::kw_char16_t:
1677 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1678 break;
1679 case tok::kw_char32_t:
1680 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1681 break;
1682 case tok::kw_bool:
1683 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1684 break;
1685 case tok::annot_decltype:
1686 case tok::kw_decltype:
1687 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1688 return DS.Finish(Diags, PP);
1689
1690 // GNU typeof support.
1691 case tok::kw_typeof:
1692 ParseTypeofSpecifier(DS);
1693 DS.Finish(Diags, PP);
1694 return;
1695 }
1696 if (Tok.is(tok::annot_typename))
1697 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1698 else
1699 DS.SetRangeEnd(Tok.getLocation());
1700 ConsumeToken();
1701 DS.Finish(Diags, PP);
1702 }
1703
1704 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1705 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
1706 /// e.g., "const short int". Note that the DeclSpec is *not* finished
1707 /// by parsing the type-specifier-seq, because these sequences are
1708 /// typically followed by some form of declarator. Returns true and
1709 /// emits diagnostics if this is not a type-specifier-seq, false
1710 /// otherwise.
1711 ///
1712 /// type-specifier-seq: [C++ 8.1]
1713 /// type-specifier type-specifier-seq[opt]
1714 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS)1715 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1716 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1717 DS.Finish(Diags, PP);
1718 return false;
1719 }
1720
1721 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1722 /// some form.
1723 ///
1724 /// This routine is invoked when a '<' is encountered after an identifier or
1725 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1726 /// whether the unqualified-id is actually a template-id. This routine will
1727 /// then parse the template arguments and form the appropriate template-id to
1728 /// return to the caller.
1729 ///
1730 /// \param SS the nested-name-specifier that precedes this template-id, if
1731 /// we're actually parsing a qualified-id.
1732 ///
1733 /// \param Name for constructor and destructor names, this is the actual
1734 /// identifier that may be a template-name.
1735 ///
1736 /// \param NameLoc the location of the class-name in a constructor or
1737 /// destructor.
1738 ///
1739 /// \param EnteringContext whether we're entering the scope of the
1740 /// nested-name-specifier.
1741 ///
1742 /// \param ObjectType if this unqualified-id occurs within a member access
1743 /// expression, the type of the base object whose member is being accessed.
1744 ///
1745 /// \param Id as input, describes the template-name or operator-function-id
1746 /// that precedes the '<'. If template arguments were parsed successfully,
1747 /// will be updated with the template-id.
1748 ///
1749 /// \param AssumeTemplateId When true, this routine will assume that the name
1750 /// refers to a template without performing name lookup to verify.
1751 ///
1752 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Id,bool AssumeTemplateId)1753 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1754 SourceLocation TemplateKWLoc,
1755 IdentifierInfo *Name,
1756 SourceLocation NameLoc,
1757 bool EnteringContext,
1758 ParsedType ObjectType,
1759 UnqualifiedId &Id,
1760 bool AssumeTemplateId) {
1761 assert((AssumeTemplateId || Tok.is(tok::less)) &&
1762 "Expected '<' to finish parsing a template-id");
1763
1764 TemplateTy Template;
1765 TemplateNameKind TNK = TNK_Non_template;
1766 switch (Id.getKind()) {
1767 case UnqualifiedId::IK_Identifier:
1768 case UnqualifiedId::IK_OperatorFunctionId:
1769 case UnqualifiedId::IK_LiteralOperatorId:
1770 if (AssumeTemplateId) {
1771 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1772 Id, ObjectType, EnteringContext,
1773 Template);
1774 if (TNK == TNK_Non_template)
1775 return true;
1776 } else {
1777 bool MemberOfUnknownSpecialization;
1778 TNK = Actions.isTemplateName(getCurScope(), SS,
1779 TemplateKWLoc.isValid(), Id,
1780 ObjectType, EnteringContext, Template,
1781 MemberOfUnknownSpecialization);
1782
1783 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1784 ObjectType && IsTemplateArgumentList()) {
1785 // We have something like t->getAs<T>(), where getAs is a
1786 // member of an unknown specialization. However, this will only
1787 // parse correctly as a template, so suggest the keyword 'template'
1788 // before 'getAs' and treat this as a dependent template name.
1789 std::string Name;
1790 if (Id.getKind() == UnqualifiedId::IK_Identifier)
1791 Name = Id.Identifier->getName();
1792 else {
1793 Name = "operator ";
1794 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1795 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1796 else
1797 Name += Id.Identifier->getName();
1798 }
1799 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1800 << Name
1801 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1802 TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1803 SS, TemplateKWLoc, Id,
1804 ObjectType, EnteringContext,
1805 Template);
1806 if (TNK == TNK_Non_template)
1807 return true;
1808 }
1809 }
1810 break;
1811
1812 case UnqualifiedId::IK_ConstructorName: {
1813 UnqualifiedId TemplateName;
1814 bool MemberOfUnknownSpecialization;
1815 TemplateName.setIdentifier(Name, NameLoc);
1816 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1817 TemplateName, ObjectType,
1818 EnteringContext, Template,
1819 MemberOfUnknownSpecialization);
1820 break;
1821 }
1822
1823 case UnqualifiedId::IK_DestructorName: {
1824 UnqualifiedId TemplateName;
1825 bool MemberOfUnknownSpecialization;
1826 TemplateName.setIdentifier(Name, NameLoc);
1827 if (ObjectType) {
1828 TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1829 SS, TemplateKWLoc, TemplateName,
1830 ObjectType, EnteringContext,
1831 Template);
1832 if (TNK == TNK_Non_template)
1833 return true;
1834 } else {
1835 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1836 TemplateName, ObjectType,
1837 EnteringContext, Template,
1838 MemberOfUnknownSpecialization);
1839
1840 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1841 Diag(NameLoc, diag::err_destructor_template_id)
1842 << Name << SS.getRange();
1843 return true;
1844 }
1845 }
1846 break;
1847 }
1848
1849 default:
1850 return false;
1851 }
1852
1853 if (TNK == TNK_Non_template)
1854 return false;
1855
1856 // Parse the enclosed template argument list.
1857 SourceLocation LAngleLoc, RAngleLoc;
1858 TemplateArgList TemplateArgs;
1859 if (Tok.is(tok::less) &&
1860 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1861 SS, true, LAngleLoc,
1862 TemplateArgs,
1863 RAngleLoc))
1864 return true;
1865
1866 if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1867 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1868 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1869 // Form a parsed representation of the template-id to be stored in the
1870 // UnqualifiedId.
1871 TemplateIdAnnotation *TemplateId
1872 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
1873
1874 if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1875 TemplateId->Name = Id.Identifier;
1876 TemplateId->Operator = OO_None;
1877 TemplateId->TemplateNameLoc = Id.StartLocation;
1878 } else {
1879 TemplateId->Name = 0;
1880 TemplateId->Operator = Id.OperatorFunctionId.Operator;
1881 TemplateId->TemplateNameLoc = Id.StartLocation;
1882 }
1883
1884 TemplateId->SS = SS;
1885 TemplateId->TemplateKWLoc = TemplateKWLoc;
1886 TemplateId->Template = Template;
1887 TemplateId->Kind = TNK;
1888 TemplateId->LAngleLoc = LAngleLoc;
1889 TemplateId->RAngleLoc = RAngleLoc;
1890 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1891 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1892 Arg != ArgEnd; ++Arg)
1893 Args[Arg] = TemplateArgs[Arg];
1894
1895 Id.setTemplateId(TemplateId);
1896 return false;
1897 }
1898
1899 // Bundle the template arguments together.
1900 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
1901
1902 // Constructor and destructor names.
1903 TypeResult Type
1904 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1905 Template, NameLoc,
1906 LAngleLoc, TemplateArgsPtr, RAngleLoc,
1907 /*IsCtorOrDtorName=*/true);
1908 if (Type.isInvalid())
1909 return true;
1910
1911 if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1912 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1913 else
1914 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1915
1916 return false;
1917 }
1918
1919 /// \brief Parse an operator-function-id or conversion-function-id as part
1920 /// of a C++ unqualified-id.
1921 ///
1922 /// This routine is responsible only for parsing the operator-function-id or
1923 /// conversion-function-id; it does not handle template arguments in any way.
1924 ///
1925 /// \code
1926 /// operator-function-id: [C++ 13.5]
1927 /// 'operator' operator
1928 ///
1929 /// operator: one of
1930 /// new delete new[] delete[]
1931 /// + - * / % ^ & | ~
1932 /// ! = < > += -= *= /= %=
1933 /// ^= &= |= << >> >>= <<= == !=
1934 /// <= >= && || ++ -- , ->* ->
1935 /// () []
1936 ///
1937 /// conversion-function-id: [C++ 12.3.2]
1938 /// operator conversion-type-id
1939 ///
1940 /// conversion-type-id:
1941 /// type-specifier-seq conversion-declarator[opt]
1942 ///
1943 /// conversion-declarator:
1944 /// ptr-operator conversion-declarator[opt]
1945 /// \endcode
1946 ///
1947 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
1948 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
1949 ///
1950 /// \param EnteringContext whether we are entering the scope of the
1951 /// nested-name-specifier.
1952 ///
1953 /// \param ObjectType if this unqualified-id occurs within a member access
1954 /// expression, the type of the base object whose member is being accessed.
1955 ///
1956 /// \param Result on a successful parse, contains the parsed unqualified-id.
1957 ///
1958 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)1959 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1960 ParsedType ObjectType,
1961 UnqualifiedId &Result) {
1962 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1963
1964 // Consume the 'operator' keyword.
1965 SourceLocation KeywordLoc = ConsumeToken();
1966
1967 // Determine what kind of operator name we have.
1968 unsigned SymbolIdx = 0;
1969 SourceLocation SymbolLocations[3];
1970 OverloadedOperatorKind Op = OO_None;
1971 switch (Tok.getKind()) {
1972 case tok::kw_new:
1973 case tok::kw_delete: {
1974 bool isNew = Tok.getKind() == tok::kw_new;
1975 // Consume the 'new' or 'delete'.
1976 SymbolLocations[SymbolIdx++] = ConsumeToken();
1977 // Check for array new/delete.
1978 if (Tok.is(tok::l_square) &&
1979 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
1980 // Consume the '[' and ']'.
1981 BalancedDelimiterTracker T(*this, tok::l_square);
1982 T.consumeOpen();
1983 T.consumeClose();
1984 if (T.getCloseLocation().isInvalid())
1985 return true;
1986
1987 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1988 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1989 Op = isNew? OO_Array_New : OO_Array_Delete;
1990 } else {
1991 Op = isNew? OO_New : OO_Delete;
1992 }
1993 break;
1994 }
1995
1996 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1997 case tok::Token: \
1998 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
1999 Op = OO_##Name; \
2000 break;
2001 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2002 #include "clang/Basic/OperatorKinds.def"
2003
2004 case tok::l_paren: {
2005 // Consume the '(' and ')'.
2006 BalancedDelimiterTracker T(*this, tok::l_paren);
2007 T.consumeOpen();
2008 T.consumeClose();
2009 if (T.getCloseLocation().isInvalid())
2010 return true;
2011
2012 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2013 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2014 Op = OO_Call;
2015 break;
2016 }
2017
2018 case tok::l_square: {
2019 // Consume the '[' and ']'.
2020 BalancedDelimiterTracker T(*this, tok::l_square);
2021 T.consumeOpen();
2022 T.consumeClose();
2023 if (T.getCloseLocation().isInvalid())
2024 return true;
2025
2026 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2027 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2028 Op = OO_Subscript;
2029 break;
2030 }
2031
2032 case tok::code_completion: {
2033 // Code completion for the operator name.
2034 Actions.CodeCompleteOperatorName(getCurScope());
2035 cutOffParsing();
2036 // Don't try to parse any further.
2037 return true;
2038 }
2039
2040 default:
2041 break;
2042 }
2043
2044 if (Op != OO_None) {
2045 // We have parsed an operator-function-id.
2046 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2047 return false;
2048 }
2049
2050 // Parse a literal-operator-id.
2051 //
2052 // literal-operator-id: C++11 [over.literal]
2053 // operator string-literal identifier
2054 // operator user-defined-string-literal
2055
2056 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2057 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2058
2059 SourceLocation DiagLoc;
2060 unsigned DiagId = 0;
2061
2062 // We're past translation phase 6, so perform string literal concatenation
2063 // before checking for "".
2064 SmallVector<Token, 4> Toks;
2065 SmallVector<SourceLocation, 4> TokLocs;
2066 while (isTokenStringLiteral()) {
2067 if (!Tok.is(tok::string_literal) && !DiagId) {
2068 // C++11 [over.literal]p1:
2069 // The string-literal or user-defined-string-literal in a
2070 // literal-operator-id shall have no encoding-prefix [...].
2071 DiagLoc = Tok.getLocation();
2072 DiagId = diag::err_literal_operator_string_prefix;
2073 }
2074 Toks.push_back(Tok);
2075 TokLocs.push_back(ConsumeStringToken());
2076 }
2077
2078 StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
2079 if (Literal.hadError)
2080 return true;
2081
2082 // Grab the literal operator's suffix, which will be either the next token
2083 // or a ud-suffix from the string literal.
2084 IdentifierInfo *II = 0;
2085 SourceLocation SuffixLoc;
2086 if (!Literal.getUDSuffix().empty()) {
2087 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2088 SuffixLoc =
2089 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2090 Literal.getUDSuffixOffset(),
2091 PP.getSourceManager(), getLangOpts());
2092 } else if (Tok.is(tok::identifier)) {
2093 II = Tok.getIdentifierInfo();
2094 SuffixLoc = ConsumeToken();
2095 TokLocs.push_back(SuffixLoc);
2096 } else {
2097 Diag(Tok.getLocation(), diag::err_expected_ident);
2098 return true;
2099 }
2100
2101 // The string literal must be empty.
2102 if (!Literal.GetString().empty() || Literal.Pascal) {
2103 // C++11 [over.literal]p1:
2104 // The string-literal or user-defined-string-literal in a
2105 // literal-operator-id shall [...] contain no characters
2106 // other than the implicit terminating '\0'.
2107 DiagLoc = TokLocs.front();
2108 DiagId = diag::err_literal_operator_string_not_empty;
2109 }
2110
2111 if (DiagId) {
2112 // This isn't a valid literal-operator-id, but we think we know
2113 // what the user meant. Tell them what they should have written.
2114 SmallString<32> Str;
2115 Str += "\"\" ";
2116 Str += II->getName();
2117 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2118 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2119 }
2120
2121 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2122 return false;
2123 }
2124
2125 // Parse a conversion-function-id.
2126 //
2127 // conversion-function-id: [C++ 12.3.2]
2128 // operator conversion-type-id
2129 //
2130 // conversion-type-id:
2131 // type-specifier-seq conversion-declarator[opt]
2132 //
2133 // conversion-declarator:
2134 // ptr-operator conversion-declarator[opt]
2135
2136 // Parse the type-specifier-seq.
2137 DeclSpec DS(AttrFactory);
2138 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2139 return true;
2140
2141 // Parse the conversion-declarator, which is merely a sequence of
2142 // ptr-operators.
2143 Declarator D(DS, Declarator::ConversionIdContext);
2144 ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
2145
2146 // Finish up the type.
2147 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2148 if (Ty.isInvalid())
2149 return true;
2150
2151 // Note that this is a conversion-function-id.
2152 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2153 D.getSourceRange().getEnd());
2154 return false;
2155 }
2156
2157 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
2158 /// name of an entity.
2159 ///
2160 /// \code
2161 /// unqualified-id: [C++ expr.prim.general]
2162 /// identifier
2163 /// operator-function-id
2164 /// conversion-function-id
2165 /// [C++0x] literal-operator-id [TODO]
2166 /// ~ class-name
2167 /// template-id
2168 ///
2169 /// \endcode
2170 ///
2171 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2172 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2173 ///
2174 /// \param EnteringContext whether we are entering the scope of the
2175 /// nested-name-specifier.
2176 ///
2177 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2178 ///
2179 /// \param AllowConstructorName whether we allow parsing a constructor name.
2180 ///
2181 /// \param ObjectType if this unqualified-id occurs within a member access
2182 /// expression, the type of the base object whose member is being accessed.
2183 ///
2184 /// \param Result on a successful parse, contains the parsed unqualified-id.
2185 ///
2186 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,ParsedType ObjectType,SourceLocation & TemplateKWLoc,UnqualifiedId & Result)2187 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2188 bool AllowDestructorName,
2189 bool AllowConstructorName,
2190 ParsedType ObjectType,
2191 SourceLocation& TemplateKWLoc,
2192 UnqualifiedId &Result) {
2193
2194 // Handle 'A::template B'. This is for template-ids which have not
2195 // already been annotated by ParseOptionalCXXScopeSpecifier().
2196 bool TemplateSpecified = false;
2197 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2198 (ObjectType || SS.isSet())) {
2199 TemplateSpecified = true;
2200 TemplateKWLoc = ConsumeToken();
2201 }
2202
2203 // unqualified-id:
2204 // identifier
2205 // template-id (when it hasn't already been annotated)
2206 if (Tok.is(tok::identifier)) {
2207 // Consume the identifier.
2208 IdentifierInfo *Id = Tok.getIdentifierInfo();
2209 SourceLocation IdLoc = ConsumeToken();
2210
2211 if (!getLangOpts().CPlusPlus) {
2212 // If we're not in C++, only identifiers matter. Record the
2213 // identifier and return.
2214 Result.setIdentifier(Id, IdLoc);
2215 return false;
2216 }
2217
2218 if (AllowConstructorName &&
2219 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2220 // We have parsed a constructor name.
2221 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2222 &SS, false, false,
2223 ParsedType(),
2224 /*IsCtorOrDtorName=*/true,
2225 /*NonTrivialTypeSourceInfo=*/true);
2226 Result.setConstructorName(Ty, IdLoc, IdLoc);
2227 } else {
2228 // We have parsed an identifier.
2229 Result.setIdentifier(Id, IdLoc);
2230 }
2231
2232 // If the next token is a '<', we may have a template.
2233 if (TemplateSpecified || Tok.is(tok::less))
2234 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2235 EnteringContext, ObjectType,
2236 Result, TemplateSpecified);
2237
2238 return false;
2239 }
2240
2241 // unqualified-id:
2242 // template-id (already parsed and annotated)
2243 if (Tok.is(tok::annot_template_id)) {
2244 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2245
2246 // If the template-name names the current class, then this is a constructor
2247 if (AllowConstructorName && TemplateId->Name &&
2248 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2249 if (SS.isSet()) {
2250 // C++ [class.qual]p2 specifies that a qualified template-name
2251 // is taken as the constructor name where a constructor can be
2252 // declared. Thus, the template arguments are extraneous, so
2253 // complain about them and remove them entirely.
2254 Diag(TemplateId->TemplateNameLoc,
2255 diag::err_out_of_line_constructor_template_id)
2256 << TemplateId->Name
2257 << FixItHint::CreateRemoval(
2258 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2259 ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2260 TemplateId->TemplateNameLoc,
2261 getCurScope(),
2262 &SS, false, false,
2263 ParsedType(),
2264 /*IsCtorOrDtorName=*/true,
2265 /*NontrivialTypeSourceInfo=*/true);
2266 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2267 TemplateId->RAngleLoc);
2268 ConsumeToken();
2269 return false;
2270 }
2271
2272 Result.setConstructorTemplateId(TemplateId);
2273 ConsumeToken();
2274 return false;
2275 }
2276
2277 // We have already parsed a template-id; consume the annotation token as
2278 // our unqualified-id.
2279 Result.setTemplateId(TemplateId);
2280 TemplateKWLoc = TemplateId->TemplateKWLoc;
2281 ConsumeToken();
2282 return false;
2283 }
2284
2285 // unqualified-id:
2286 // operator-function-id
2287 // conversion-function-id
2288 if (Tok.is(tok::kw_operator)) {
2289 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2290 return true;
2291
2292 // If we have an operator-function-id or a literal-operator-id and the next
2293 // token is a '<', we may have a
2294 //
2295 // template-id:
2296 // operator-function-id < template-argument-list[opt] >
2297 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2298 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2299 (TemplateSpecified || Tok.is(tok::less)))
2300 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2301 0, SourceLocation(),
2302 EnteringContext, ObjectType,
2303 Result, TemplateSpecified);
2304
2305 return false;
2306 }
2307
2308 if (getLangOpts().CPlusPlus &&
2309 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2310 // C++ [expr.unary.op]p10:
2311 // There is an ambiguity in the unary-expression ~X(), where X is a
2312 // class-name. The ambiguity is resolved in favor of treating ~ as a
2313 // unary complement rather than treating ~X as referring to a destructor.
2314
2315 // Parse the '~'.
2316 SourceLocation TildeLoc = ConsumeToken();
2317
2318 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2319 DeclSpec DS(AttrFactory);
2320 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2321 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2322 Result.setDestructorName(TildeLoc, Type, EndLoc);
2323 return false;
2324 }
2325 return true;
2326 }
2327
2328 // Parse the class-name.
2329 if (Tok.isNot(tok::identifier)) {
2330 Diag(Tok, diag::err_destructor_tilde_identifier);
2331 return true;
2332 }
2333
2334 // Parse the class-name (or template-name in a simple-template-id).
2335 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2336 SourceLocation ClassNameLoc = ConsumeToken();
2337
2338 if (TemplateSpecified || Tok.is(tok::less)) {
2339 Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2340 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2341 ClassName, ClassNameLoc,
2342 EnteringContext, ObjectType,
2343 Result, TemplateSpecified);
2344 }
2345
2346 // Note that this is a destructor name.
2347 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2348 ClassNameLoc, getCurScope(),
2349 SS, ObjectType,
2350 EnteringContext);
2351 if (!Ty)
2352 return true;
2353
2354 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2355 return false;
2356 }
2357
2358 Diag(Tok, diag::err_expected_unqualified_id)
2359 << getLangOpts().CPlusPlus;
2360 return true;
2361 }
2362
2363 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2364 /// memory in a typesafe manner and call constructors.
2365 ///
2366 /// This method is called to parse the new expression after the optional :: has
2367 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
2368 /// is its location. Otherwise, "Start" is the location of the 'new' token.
2369 ///
2370 /// new-expression:
2371 /// '::'[opt] 'new' new-placement[opt] new-type-id
2372 /// new-initializer[opt]
2373 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2374 /// new-initializer[opt]
2375 ///
2376 /// new-placement:
2377 /// '(' expression-list ')'
2378 ///
2379 /// new-type-id:
2380 /// type-specifier-seq new-declarator[opt]
2381 /// [GNU] attributes type-specifier-seq new-declarator[opt]
2382 ///
2383 /// new-declarator:
2384 /// ptr-operator new-declarator[opt]
2385 /// direct-new-declarator
2386 ///
2387 /// new-initializer:
2388 /// '(' expression-list[opt] ')'
2389 /// [C++0x] braced-init-list
2390 ///
2391 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)2392 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2393 assert(Tok.is(tok::kw_new) && "expected 'new' token");
2394 ConsumeToken(); // Consume 'new'
2395
2396 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2397 // second form of new-expression. It can't be a new-type-id.
2398
2399 ExprVector PlacementArgs;
2400 SourceLocation PlacementLParen, PlacementRParen;
2401
2402 SourceRange TypeIdParens;
2403 DeclSpec DS(AttrFactory);
2404 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2405 if (Tok.is(tok::l_paren)) {
2406 // If it turns out to be a placement, we change the type location.
2407 BalancedDelimiterTracker T(*this, tok::l_paren);
2408 T.consumeOpen();
2409 PlacementLParen = T.getOpenLocation();
2410 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2411 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2412 return ExprError();
2413 }
2414
2415 T.consumeClose();
2416 PlacementRParen = T.getCloseLocation();
2417 if (PlacementRParen.isInvalid()) {
2418 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2419 return ExprError();
2420 }
2421
2422 if (PlacementArgs.empty()) {
2423 // Reset the placement locations. There was no placement.
2424 TypeIdParens = T.getRange();
2425 PlacementLParen = PlacementRParen = SourceLocation();
2426 } else {
2427 // We still need the type.
2428 if (Tok.is(tok::l_paren)) {
2429 BalancedDelimiterTracker T(*this, tok::l_paren);
2430 T.consumeOpen();
2431 MaybeParseGNUAttributes(DeclaratorInfo);
2432 ParseSpecifierQualifierList(DS);
2433 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2434 ParseDeclarator(DeclaratorInfo);
2435 T.consumeClose();
2436 TypeIdParens = T.getRange();
2437 } else {
2438 MaybeParseGNUAttributes(DeclaratorInfo);
2439 if (ParseCXXTypeSpecifierSeq(DS))
2440 DeclaratorInfo.setInvalidType(true);
2441 else {
2442 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2443 ParseDeclaratorInternal(DeclaratorInfo,
2444 &Parser::ParseDirectNewDeclarator);
2445 }
2446 }
2447 }
2448 } else {
2449 // A new-type-id is a simplified type-id, where essentially the
2450 // direct-declarator is replaced by a direct-new-declarator.
2451 MaybeParseGNUAttributes(DeclaratorInfo);
2452 if (ParseCXXTypeSpecifierSeq(DS))
2453 DeclaratorInfo.setInvalidType(true);
2454 else {
2455 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2456 ParseDeclaratorInternal(DeclaratorInfo,
2457 &Parser::ParseDirectNewDeclarator);
2458 }
2459 }
2460 if (DeclaratorInfo.isInvalidType()) {
2461 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2462 return ExprError();
2463 }
2464
2465 ExprResult Initializer;
2466
2467 if (Tok.is(tok::l_paren)) {
2468 SourceLocation ConstructorLParen, ConstructorRParen;
2469 ExprVector ConstructorArgs;
2470 BalancedDelimiterTracker T(*this, tok::l_paren);
2471 T.consumeOpen();
2472 ConstructorLParen = T.getOpenLocation();
2473 if (Tok.isNot(tok::r_paren)) {
2474 CommaLocsTy CommaLocs;
2475 if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2476 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2477 return ExprError();
2478 }
2479 }
2480 T.consumeClose();
2481 ConstructorRParen = T.getCloseLocation();
2482 if (ConstructorRParen.isInvalid()) {
2483 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2484 return ExprError();
2485 }
2486 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2487 ConstructorRParen,
2488 ConstructorArgs);
2489 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
2490 Diag(Tok.getLocation(),
2491 diag::warn_cxx98_compat_generalized_initializer_lists);
2492 Initializer = ParseBraceInitializer();
2493 }
2494 if (Initializer.isInvalid())
2495 return Initializer;
2496
2497 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2498 PlacementArgs, PlacementRParen,
2499 TypeIdParens, DeclaratorInfo, Initializer.take());
2500 }
2501
2502 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2503 /// passed to ParseDeclaratorInternal.
2504 ///
2505 /// direct-new-declarator:
2506 /// '[' expression ']'
2507 /// direct-new-declarator '[' constant-expression ']'
2508 ///
ParseDirectNewDeclarator(Declarator & D)2509 void Parser::ParseDirectNewDeclarator(Declarator &D) {
2510 // Parse the array dimensions.
2511 bool first = true;
2512 while (Tok.is(tok::l_square)) {
2513 // An array-size expression can't start with a lambda.
2514 if (CheckProhibitedCXX11Attribute())
2515 continue;
2516
2517 BalancedDelimiterTracker T(*this, tok::l_square);
2518 T.consumeOpen();
2519
2520 ExprResult Size(first ? ParseExpression()
2521 : ParseConstantExpression());
2522 if (Size.isInvalid()) {
2523 // Recover
2524 SkipUntil(tok::r_square);
2525 return;
2526 }
2527 first = false;
2528
2529 T.consumeClose();
2530
2531 // Attributes here appertain to the array type. C++11 [expr.new]p5.
2532 ParsedAttributes Attrs(AttrFactory);
2533 MaybeParseCXX11Attributes(Attrs);
2534
2535 D.AddTypeInfo(DeclaratorChunk::getArray(0,
2536 /*static=*/false, /*star=*/false,
2537 Size.release(),
2538 T.getOpenLocation(),
2539 T.getCloseLocation()),
2540 Attrs, T.getCloseLocation());
2541
2542 if (T.getCloseLocation().isInvalid())
2543 return;
2544 }
2545 }
2546
2547 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2548 /// This ambiguity appears in the syntax of the C++ new operator.
2549 ///
2550 /// new-expression:
2551 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2552 /// new-initializer[opt]
2553 ///
2554 /// new-placement:
2555 /// '(' expression-list ')'
2556 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)2557 bool Parser::ParseExpressionListOrTypeId(
2558 SmallVectorImpl<Expr*> &PlacementArgs,
2559 Declarator &D) {
2560 // The '(' was already consumed.
2561 if (isTypeIdInParens()) {
2562 ParseSpecifierQualifierList(D.getMutableDeclSpec());
2563 D.SetSourceRange(D.getDeclSpec().getSourceRange());
2564 ParseDeclarator(D);
2565 return D.isInvalidType();
2566 }
2567
2568 // It's not a type, it has to be an expression list.
2569 // Discard the comma locations - ActOnCXXNew has enough parameters.
2570 CommaLocsTy CommaLocs;
2571 return ParseExpressionList(PlacementArgs, CommaLocs);
2572 }
2573
2574 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2575 /// to free memory allocated by new.
2576 ///
2577 /// This method is called to parse the 'delete' expression after the optional
2578 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
2579 /// and "Start" is its location. Otherwise, "Start" is the location of the
2580 /// 'delete' token.
2581 ///
2582 /// delete-expression:
2583 /// '::'[opt] 'delete' cast-expression
2584 /// '::'[opt] 'delete' '[' ']' cast-expression
2585 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)2586 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2587 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2588 ConsumeToken(); // Consume 'delete'
2589
2590 // Array delete?
2591 bool ArrayDelete = false;
2592 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2593 // C++11 [expr.delete]p1:
2594 // Whenever the delete keyword is followed by empty square brackets, it
2595 // shall be interpreted as [array delete].
2596 // [Footnote: A lambda expression with a lambda-introducer that consists
2597 // of empty square brackets can follow the delete keyword if
2598 // the lambda expression is enclosed in parentheses.]
2599 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
2600 // lambda-introducer.
2601 ArrayDelete = true;
2602 BalancedDelimiterTracker T(*this, tok::l_square);
2603
2604 T.consumeOpen();
2605 T.consumeClose();
2606 if (T.getCloseLocation().isInvalid())
2607 return ExprError();
2608 }
2609
2610 ExprResult Operand(ParseCastExpression(false));
2611 if (Operand.isInvalid())
2612 return Operand;
2613
2614 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2615 }
2616
UnaryTypeTraitFromTokKind(tok::TokenKind kind)2617 static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2618 switch(kind) {
2619 default: llvm_unreachable("Not a known unary type trait.");
2620 case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign;
2621 case tok::kw___has_nothrow_move_assign: return UTT_HasNothrowMoveAssign;
2622 case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2623 case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy;
2624 case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign;
2625 case tok::kw___has_trivial_move_assign: return UTT_HasTrivialMoveAssign;
2626 case tok::kw___has_trivial_constructor:
2627 return UTT_HasTrivialDefaultConstructor;
2628 case tok::kw___has_trivial_move_constructor:
2629 return UTT_HasTrivialMoveConstructor;
2630 case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy;
2631 case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor;
2632 case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor;
2633 case tok::kw___is_abstract: return UTT_IsAbstract;
2634 case tok::kw___is_arithmetic: return UTT_IsArithmetic;
2635 case tok::kw___is_array: return UTT_IsArray;
2636 case tok::kw___is_class: return UTT_IsClass;
2637 case tok::kw___is_complete_type: return UTT_IsCompleteType;
2638 case tok::kw___is_compound: return UTT_IsCompound;
2639 case tok::kw___is_const: return UTT_IsConst;
2640 case tok::kw___is_empty: return UTT_IsEmpty;
2641 case tok::kw___is_enum: return UTT_IsEnum;
2642 case tok::kw___is_final: return UTT_IsFinal;
2643 case tok::kw___is_floating_point: return UTT_IsFloatingPoint;
2644 case tok::kw___is_function: return UTT_IsFunction;
2645 case tok::kw___is_fundamental: return UTT_IsFundamental;
2646 case tok::kw___is_integral: return UTT_IsIntegral;
2647 case tok::kw___is_interface_class: return UTT_IsInterfaceClass;
2648 case tok::kw___is_lvalue_reference: return UTT_IsLvalueReference;
2649 case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2650 case tok::kw___is_member_object_pointer: return UTT_IsMemberObjectPointer;
2651 case tok::kw___is_member_pointer: return UTT_IsMemberPointer;
2652 case tok::kw___is_object: return UTT_IsObject;
2653 case tok::kw___is_literal: return UTT_IsLiteral;
2654 case tok::kw___is_literal_type: return UTT_IsLiteral;
2655 case tok::kw___is_pod: return UTT_IsPOD;
2656 case tok::kw___is_pointer: return UTT_IsPointer;
2657 case tok::kw___is_polymorphic: return UTT_IsPolymorphic;
2658 case tok::kw___is_reference: return UTT_IsReference;
2659 case tok::kw___is_rvalue_reference: return UTT_IsRvalueReference;
2660 case tok::kw___is_scalar: return UTT_IsScalar;
2661 case tok::kw___is_signed: return UTT_IsSigned;
2662 case tok::kw___is_standard_layout: return UTT_IsStandardLayout;
2663 case tok::kw___is_trivial: return UTT_IsTrivial;
2664 case tok::kw___is_trivially_copyable: return UTT_IsTriviallyCopyable;
2665 case tok::kw___is_union: return UTT_IsUnion;
2666 case tok::kw___is_unsigned: return UTT_IsUnsigned;
2667 case tok::kw___is_void: return UTT_IsVoid;
2668 case tok::kw___is_volatile: return UTT_IsVolatile;
2669 }
2670 }
2671
BinaryTypeTraitFromTokKind(tok::TokenKind kind)2672 static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2673 switch(kind) {
2674 default: llvm_unreachable("Not a known binary type trait");
2675 case tok::kw___is_base_of: return BTT_IsBaseOf;
2676 case tok::kw___is_convertible: return BTT_IsConvertible;
2677 case tok::kw___is_same: return BTT_IsSame;
2678 case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2679 case tok::kw___is_convertible_to: return BTT_IsConvertibleTo;
2680 case tok::kw___is_trivially_assignable: return BTT_IsTriviallyAssignable;
2681 }
2682 }
2683
TypeTraitFromTokKind(tok::TokenKind kind)2684 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2685 switch (kind) {
2686 default: llvm_unreachable("Not a known type trait");
2687 case tok::kw___is_trivially_constructible:
2688 return TT_IsTriviallyConstructible;
2689 }
2690 }
2691
ArrayTypeTraitFromTokKind(tok::TokenKind kind)2692 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2693 switch(kind) {
2694 default: llvm_unreachable("Not a known binary type trait");
2695 case tok::kw___array_rank: return ATT_ArrayRank;
2696 case tok::kw___array_extent: return ATT_ArrayExtent;
2697 }
2698 }
2699
ExpressionTraitFromTokKind(tok::TokenKind kind)2700 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2701 switch(kind) {
2702 default: llvm_unreachable("Not a known unary expression trait.");
2703 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr;
2704 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr;
2705 }
2706 }
2707
2708 /// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2709 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
2710 /// templates.
2711 ///
2712 /// primary-expression:
2713 /// [GNU] unary-type-trait '(' type-id ')'
2714 ///
ParseUnaryTypeTrait()2715 ExprResult Parser::ParseUnaryTypeTrait() {
2716 UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2717 SourceLocation Loc = ConsumeToken();
2718
2719 BalancedDelimiterTracker T(*this, tok::l_paren);
2720 if (T.expectAndConsume(diag::err_expected_lparen))
2721 return ExprError();
2722
2723 // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2724 // there will be cryptic errors about mismatched parentheses and missing
2725 // specifiers.
2726 TypeResult Ty = ParseTypeName();
2727
2728 T.consumeClose();
2729
2730 if (Ty.isInvalid())
2731 return ExprError();
2732
2733 return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2734 }
2735
2736 /// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2737 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
2738 /// templates.
2739 ///
2740 /// primary-expression:
2741 /// [GNU] binary-type-trait '(' type-id ',' type-id ')'
2742 ///
ParseBinaryTypeTrait()2743 ExprResult Parser::ParseBinaryTypeTrait() {
2744 BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2745 SourceLocation Loc = ConsumeToken();
2746
2747 BalancedDelimiterTracker T(*this, tok::l_paren);
2748 if (T.expectAndConsume(diag::err_expected_lparen))
2749 return ExprError();
2750
2751 TypeResult LhsTy = ParseTypeName();
2752 if (LhsTy.isInvalid()) {
2753 SkipUntil(tok::r_paren);
2754 return ExprError();
2755 }
2756
2757 if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2758 SkipUntil(tok::r_paren);
2759 return ExprError();
2760 }
2761
2762 TypeResult RhsTy = ParseTypeName();
2763 if (RhsTy.isInvalid()) {
2764 SkipUntil(tok::r_paren);
2765 return ExprError();
2766 }
2767
2768 T.consumeClose();
2769
2770 return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2771 T.getCloseLocation());
2772 }
2773
2774 /// \brief Parse the built-in type-trait pseudo-functions that allow
2775 /// implementation of the TR1/C++11 type traits templates.
2776 ///
2777 /// primary-expression:
2778 /// type-trait '(' type-id-seq ')'
2779 ///
2780 /// type-id-seq:
2781 /// type-id ...[opt] type-id-seq[opt]
2782 ///
ParseTypeTrait()2783 ExprResult Parser::ParseTypeTrait() {
2784 TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2785 SourceLocation Loc = ConsumeToken();
2786
2787 BalancedDelimiterTracker Parens(*this, tok::l_paren);
2788 if (Parens.expectAndConsume(diag::err_expected_lparen))
2789 return ExprError();
2790
2791 SmallVector<ParsedType, 2> Args;
2792 do {
2793 // Parse the next type.
2794 TypeResult Ty = ParseTypeName();
2795 if (Ty.isInvalid()) {
2796 Parens.skipToEnd();
2797 return ExprError();
2798 }
2799
2800 // Parse the ellipsis, if present.
2801 if (Tok.is(tok::ellipsis)) {
2802 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2803 if (Ty.isInvalid()) {
2804 Parens.skipToEnd();
2805 return ExprError();
2806 }
2807 }
2808
2809 // Add this type to the list of arguments.
2810 Args.push_back(Ty.get());
2811
2812 if (Tok.is(tok::comma)) {
2813 ConsumeToken();
2814 continue;
2815 }
2816
2817 break;
2818 } while (true);
2819
2820 if (Parens.consumeClose())
2821 return ExprError();
2822
2823 return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2824 }
2825
2826 /// ParseArrayTypeTrait - Parse the built-in array type-trait
2827 /// pseudo-functions.
2828 ///
2829 /// primary-expression:
2830 /// [Embarcadero] '__array_rank' '(' type-id ')'
2831 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
2832 ///
ParseArrayTypeTrait()2833 ExprResult Parser::ParseArrayTypeTrait() {
2834 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2835 SourceLocation Loc = ConsumeToken();
2836
2837 BalancedDelimiterTracker T(*this, tok::l_paren);
2838 if (T.expectAndConsume(diag::err_expected_lparen))
2839 return ExprError();
2840
2841 TypeResult Ty = ParseTypeName();
2842 if (Ty.isInvalid()) {
2843 SkipUntil(tok::comma);
2844 SkipUntil(tok::r_paren);
2845 return ExprError();
2846 }
2847
2848 switch (ATT) {
2849 case ATT_ArrayRank: {
2850 T.consumeClose();
2851 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2852 T.getCloseLocation());
2853 }
2854 case ATT_ArrayExtent: {
2855 if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2856 SkipUntil(tok::r_paren);
2857 return ExprError();
2858 }
2859
2860 ExprResult DimExpr = ParseExpression();
2861 T.consumeClose();
2862
2863 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2864 T.getCloseLocation());
2865 }
2866 }
2867 llvm_unreachable("Invalid ArrayTypeTrait!");
2868 }
2869
2870 /// ParseExpressionTrait - Parse built-in expression-trait
2871 /// pseudo-functions like __is_lvalue_expr( xxx ).
2872 ///
2873 /// primary-expression:
2874 /// [Embarcadero] expression-trait '(' expression ')'
2875 ///
ParseExpressionTrait()2876 ExprResult Parser::ParseExpressionTrait() {
2877 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2878 SourceLocation Loc = ConsumeToken();
2879
2880 BalancedDelimiterTracker T(*this, tok::l_paren);
2881 if (T.expectAndConsume(diag::err_expected_lparen))
2882 return ExprError();
2883
2884 ExprResult Expr = ParseExpression();
2885
2886 T.consumeClose();
2887
2888 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2889 T.getCloseLocation());
2890 }
2891
2892
2893 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2894 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2895 /// based on the context past the parens.
2896 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker)2897 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2898 ParsedType &CastTy,
2899 BalancedDelimiterTracker &Tracker) {
2900 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2901 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2902 assert(isTypeIdInParens() && "Not a type-id!");
2903
2904 ExprResult Result(true);
2905 CastTy = ParsedType();
2906
2907 // We need to disambiguate a very ugly part of the C++ syntax:
2908 //
2909 // (T())x; - type-id
2910 // (T())*x; - type-id
2911 // (T())/x; - expression
2912 // (T()); - expression
2913 //
2914 // The bad news is that we cannot use the specialized tentative parser, since
2915 // it can only verify that the thing inside the parens can be parsed as
2916 // type-id, it is not useful for determining the context past the parens.
2917 //
2918 // The good news is that the parser can disambiguate this part without
2919 // making any unnecessary Action calls.
2920 //
2921 // It uses a scheme similar to parsing inline methods. The parenthesized
2922 // tokens are cached, the context that follows is determined (possibly by
2923 // parsing a cast-expression), and then we re-introduce the cached tokens
2924 // into the token stream and parse them appropriately.
2925
2926 ParenParseOption ParseAs;
2927 CachedTokens Toks;
2928
2929 // Store the tokens of the parentheses. We will parse them after we determine
2930 // the context that follows them.
2931 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2932 // We didn't find the ')' we expected.
2933 Tracker.consumeClose();
2934 return ExprError();
2935 }
2936
2937 if (Tok.is(tok::l_brace)) {
2938 ParseAs = CompoundLiteral;
2939 } else {
2940 bool NotCastExpr;
2941 // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2942 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2943 NotCastExpr = true;
2944 } else {
2945 // Try parsing the cast-expression that may follow.
2946 // If it is not a cast-expression, NotCastExpr will be true and no token
2947 // will be consumed.
2948 Result = ParseCastExpression(false/*isUnaryExpression*/,
2949 false/*isAddressofOperand*/,
2950 NotCastExpr,
2951 // type-id has priority.
2952 IsTypeCast);
2953 }
2954
2955 // If we parsed a cast-expression, it's really a type-id, otherwise it's
2956 // an expression.
2957 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2958 }
2959
2960 // The current token should go after the cached tokens.
2961 Toks.push_back(Tok);
2962 // Re-enter the stored parenthesized tokens into the token stream, so we may
2963 // parse them now.
2964 PP.EnterTokenStream(Toks.data(), Toks.size(),
2965 true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2966 // Drop the current token and bring the first cached one. It's the same token
2967 // as when we entered this function.
2968 ConsumeAnyToken();
2969
2970 if (ParseAs >= CompoundLiteral) {
2971 // Parse the type declarator.
2972 DeclSpec DS(AttrFactory);
2973 ParseSpecifierQualifierList(DS);
2974 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2975 ParseDeclarator(DeclaratorInfo);
2976
2977 // Match the ')'.
2978 Tracker.consumeClose();
2979
2980 if (ParseAs == CompoundLiteral) {
2981 ExprType = CompoundLiteral;
2982 TypeResult Ty = ParseTypeName();
2983 return ParseCompoundLiteralExpression(Ty.get(),
2984 Tracker.getOpenLocation(),
2985 Tracker.getCloseLocation());
2986 }
2987
2988 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2989 assert(ParseAs == CastExpr);
2990
2991 if (DeclaratorInfo.isInvalidType())
2992 return ExprError();
2993
2994 // Result is what ParseCastExpression returned earlier.
2995 if (!Result.isInvalid())
2996 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2997 DeclaratorInfo, CastTy,
2998 Tracker.getCloseLocation(), Result.take());
2999 return Result;
3000 }
3001
3002 // Not a compound literal, and not followed by a cast-expression.
3003 assert(ParseAs == SimpleExpr);
3004
3005 ExprType = SimpleExpr;
3006 Result = ParseExpression();
3007 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3008 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3009 Tok.getLocation(), Result.take());
3010
3011 // Match the ')'.
3012 if (Result.isInvalid()) {
3013 SkipUntil(tok::r_paren);
3014 return ExprError();
3015 }
3016
3017 Tracker.consumeClose();
3018 return Result;
3019 }
3020