• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclFriend.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DependentDiagnostic.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/Sema/DelayedDiagnostic.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 
26 using namespace clang;
27 using namespace sema;
28 
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35 
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47 
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56 
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60 
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64 
FindDeclaringClass(NamedDecl * D)65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67 
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72 
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78 
79 namespace {
80 struct EffectiveContext {
EffectiveContext__anon10629a130111::EffectiveContext81   EffectiveContext() : Inner(0), Dependent(false) {}
82 
EffectiveContext__anon10629a130111::EffectiveContext83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86 
87     // C++11 [class.access.nest]p1:
88     //   A nested class is a member and as such has the same access
89     //   rights as any other member.
90     // C++11 [class.access]p2:
91     //   A member of a class can also access all the names to which
92     //   the class has access.  A local class of a member function
93     //   may access the same names that the member function itself
94     //   may access.
95     // This almost implies that the privileges of nesting are transitive.
96     // Technically it says nothing about the local classes of non-member
97     // functions (which can gain privileges through friendship), but we
98     // take that as an oversight.
99     while (true) {
100       // We want to add canonical declarations to the EC lists for
101       // simplicity of checking, but we need to walk up through the
102       // actual current DC chain.  Otherwise, something like a local
103       // extern or friend which happens to be the canonical
104       // declaration will really mess us up.
105 
106       if (isa<CXXRecordDecl>(DC)) {
107         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108         Records.push_back(Record->getCanonicalDecl());
109         DC = Record->getDeclContext();
110       } else if (isa<FunctionDecl>(DC)) {
111         FunctionDecl *Function = cast<FunctionDecl>(DC);
112         Functions.push_back(Function->getCanonicalDecl());
113         if (Function->getFriendObjectKind())
114           DC = Function->getLexicalDeclContext();
115         else
116           DC = Function->getDeclContext();
117       } else if (DC->isFileContext()) {
118         break;
119       } else {
120         DC = DC->getParent();
121       }
122     }
123   }
124 
isDependent__anon10629a130111::EffectiveContext125   bool isDependent() const { return Dependent; }
126 
includesClass__anon10629a130111::EffectiveContext127   bool includesClass(const CXXRecordDecl *R) const {
128     R = R->getCanonicalDecl();
129     return std::find(Records.begin(), Records.end(), R)
130              != Records.end();
131   }
132 
133   /// Retrieves the innermost "useful" context.  Can be null if we're
134   /// doing access-control without privileges.
getInnerContext__anon10629a130111::EffectiveContext135   DeclContext *getInnerContext() const {
136     return Inner;
137   }
138 
139   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140 
141   DeclContext *Inner;
142   SmallVector<FunctionDecl*, 4> Functions;
143   SmallVector<CXXRecordDecl*, 4> Records;
144   bool Dependent;
145 };
146 
147 /// Like sema::AccessedEntity, but kindly lets us scribble all over
148 /// it.
149 struct AccessTarget : public AccessedEntity {
AccessTarget__anon10629a130111::AccessTarget150   AccessTarget(const AccessedEntity &Entity)
151     : AccessedEntity(Entity) {
152     initialize();
153   }
154 
AccessTarget__anon10629a130111::AccessTarget155   AccessTarget(ASTContext &Context,
156                MemberNonce _,
157                CXXRecordDecl *NamingClass,
158                DeclAccessPair FoundDecl,
159                QualType BaseObjectType)
160     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                      FoundDecl, BaseObjectType) {
162     initialize();
163   }
164 
AccessTarget__anon10629a130111::AccessTarget165   AccessTarget(ASTContext &Context,
166                BaseNonce _,
167                CXXRecordDecl *BaseClass,
168                CXXRecordDecl *DerivedClass,
169                AccessSpecifier Access)
170     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                      Access) {
172     initialize();
173   }
174 
isInstanceMember__anon10629a130111::AccessTarget175   bool isInstanceMember() const {
176     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177   }
178 
hasInstanceContext__anon10629a130111::AccessTarget179   bool hasInstanceContext() const {
180     return HasInstanceContext;
181   }
182 
183   class SavedInstanceContext {
184   public:
~SavedInstanceContext()185     ~SavedInstanceContext() {
186       Target.HasInstanceContext = Has;
187     }
188 
189   private:
190     friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)191     explicit SavedInstanceContext(AccessTarget &Target)
192       : Target(Target), Has(Target.HasInstanceContext) {}
193     AccessTarget &Target;
194     bool Has;
195   };
196 
saveInstanceContext__anon10629a130111::AccessTarget197   SavedInstanceContext saveInstanceContext() {
198     return SavedInstanceContext(*this);
199   }
200 
suppressInstanceContext__anon10629a130111::AccessTarget201   void suppressInstanceContext() {
202     HasInstanceContext = false;
203   }
204 
resolveInstanceContext__anon10629a130111::AccessTarget205   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
206     assert(HasInstanceContext);
207     if (CalculatedInstanceContext)
208       return InstanceContext;
209 
210     CalculatedInstanceContext = true;
211     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
212     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
213     return InstanceContext;
214   }
215 
getDeclaringClass__anon10629a130111::AccessTarget216   const CXXRecordDecl *getDeclaringClass() const {
217     return DeclaringClass;
218   }
219 
220   /// The "effective" naming class is the canonical non-anonymous
221   /// class containing the actual naming class.
getEffectiveNamingClass__anon10629a130111::AccessTarget222   const CXXRecordDecl *getEffectiveNamingClass() const {
223     const CXXRecordDecl *namingClass = getNamingClass();
224     while (namingClass->isAnonymousStructOrUnion())
225       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
226     return namingClass->getCanonicalDecl();
227   }
228 
229 private:
initialize__anon10629a130111::AccessTarget230   void initialize() {
231     HasInstanceContext = (isMemberAccess() &&
232                           !getBaseObjectType().isNull() &&
233                           getTargetDecl()->isCXXInstanceMember());
234     CalculatedInstanceContext = false;
235     InstanceContext = 0;
236 
237     if (isMemberAccess())
238       DeclaringClass = FindDeclaringClass(getTargetDecl());
239     else
240       DeclaringClass = getBaseClass();
241     DeclaringClass = DeclaringClass->getCanonicalDecl();
242   }
243 
244   bool HasInstanceContext : 1;
245   mutable bool CalculatedInstanceContext : 1;
246   mutable const CXXRecordDecl *InstanceContext;
247   const CXXRecordDecl *DeclaringClass;
248 };
249 
250 }
251 
252 /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)253 static bool MightInstantiateTo(const CXXRecordDecl *From,
254                                const CXXRecordDecl *To) {
255   // Declaration names are always preserved by instantiation.
256   if (From->getDeclName() != To->getDeclName())
257     return false;
258 
259   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
260   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
261   if (FromDC == ToDC) return true;
262   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
263 
264   // Be conservative.
265   return true;
266 }
267 
268 /// Checks whether one class is derived from another, inclusively.
269 /// Properly indicates when it couldn't be determined due to
270 /// dependence.
271 ///
272 /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)273 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
274                                            const CXXRecordDecl *Target) {
275   assert(Derived->getCanonicalDecl() == Derived);
276   assert(Target->getCanonicalDecl() == Target);
277 
278   if (Derived == Target) return AR_accessible;
279 
280   bool CheckDependent = Derived->isDependentContext();
281   if (CheckDependent && MightInstantiateTo(Derived, Target))
282     return AR_dependent;
283 
284   AccessResult OnFailure = AR_inaccessible;
285   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
286 
287   while (true) {
288     if (Derived->isDependentContext() && !Derived->hasDefinition())
289       return AR_dependent;
290 
291     for (CXXRecordDecl::base_class_const_iterator
292            I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
293 
294       const CXXRecordDecl *RD;
295 
296       QualType T = I->getType();
297       if (const RecordType *RT = T->getAs<RecordType>()) {
298         RD = cast<CXXRecordDecl>(RT->getDecl());
299       } else if (const InjectedClassNameType *IT
300                    = T->getAs<InjectedClassNameType>()) {
301         RD = IT->getDecl();
302       } else {
303         assert(T->isDependentType() && "non-dependent base wasn't a record?");
304         OnFailure = AR_dependent;
305         continue;
306       }
307 
308       RD = RD->getCanonicalDecl();
309       if (RD == Target) return AR_accessible;
310       if (CheckDependent && MightInstantiateTo(RD, Target))
311         OnFailure = AR_dependent;
312 
313       Queue.push_back(RD);
314     }
315 
316     if (Queue.empty()) break;
317 
318     Derived = Queue.back();
319     Queue.pop_back();
320   }
321 
322   return OnFailure;
323 }
324 
325 
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)326 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
327                                DeclContext *Friend) {
328   if (Friend == Context)
329     return true;
330 
331   assert(!Friend->isDependentContext() &&
332          "can't handle friends with dependent contexts here");
333 
334   if (!Context->isDependentContext())
335     return false;
336 
337   if (Friend->isFileContext())
338     return false;
339 
340   // TODO: this is very conservative
341   return true;
342 }
343 
344 // Asks whether the type in 'context' can ever instantiate to the type
345 // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)346 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
347   if (Friend == Context)
348     return true;
349 
350   if (!Friend->isDependentType() && !Context->isDependentType())
351     return false;
352 
353   // TODO: this is very conservative.
354   return true;
355 }
356 
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)357 static bool MightInstantiateTo(Sema &S,
358                                FunctionDecl *Context,
359                                FunctionDecl *Friend) {
360   if (Context->getDeclName() != Friend->getDeclName())
361     return false;
362 
363   if (!MightInstantiateTo(S,
364                           Context->getDeclContext(),
365                           Friend->getDeclContext()))
366     return false;
367 
368   CanQual<FunctionProtoType> FriendTy
369     = S.Context.getCanonicalType(Friend->getType())
370          ->getAs<FunctionProtoType>();
371   CanQual<FunctionProtoType> ContextTy
372     = S.Context.getCanonicalType(Context->getType())
373          ->getAs<FunctionProtoType>();
374 
375   // There isn't any way that I know of to add qualifiers
376   // during instantiation.
377   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
378     return false;
379 
380   if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
381     return false;
382 
383   if (!MightInstantiateTo(S,
384                           ContextTy->getResultType(),
385                           FriendTy->getResultType()))
386     return false;
387 
388   for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
389     if (!MightInstantiateTo(S,
390                             ContextTy->getArgType(I),
391                             FriendTy->getArgType(I)))
392       return false;
393 
394   return true;
395 }
396 
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)397 static bool MightInstantiateTo(Sema &S,
398                                FunctionTemplateDecl *Context,
399                                FunctionTemplateDecl *Friend) {
400   return MightInstantiateTo(S,
401                             Context->getTemplatedDecl(),
402                             Friend->getTemplatedDecl());
403 }
404 
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)405 static AccessResult MatchesFriend(Sema &S,
406                                   const EffectiveContext &EC,
407                                   const CXXRecordDecl *Friend) {
408   if (EC.includesClass(Friend))
409     return AR_accessible;
410 
411   if (EC.isDependent()) {
412     CanQualType FriendTy
413       = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
414 
415     for (EffectiveContext::record_iterator
416            I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
417       CanQualType ContextTy
418         = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
419       if (MightInstantiateTo(S, ContextTy, FriendTy))
420         return AR_dependent;
421     }
422   }
423 
424   return AR_inaccessible;
425 }
426 
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)427 static AccessResult MatchesFriend(Sema &S,
428                                   const EffectiveContext &EC,
429                                   CanQualType Friend) {
430   if (const RecordType *RT = Friend->getAs<RecordType>())
431     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
432 
433   // TODO: we can do better than this
434   if (Friend->isDependentType())
435     return AR_dependent;
436 
437   return AR_inaccessible;
438 }
439 
440 /// Determines whether the given friend class template matches
441 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)442 static AccessResult MatchesFriend(Sema &S,
443                                   const EffectiveContext &EC,
444                                   ClassTemplateDecl *Friend) {
445   AccessResult OnFailure = AR_inaccessible;
446 
447   // Check whether the friend is the template of a class in the
448   // context chain.
449   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
450          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
451     CXXRecordDecl *Record = *I;
452 
453     // Figure out whether the current class has a template:
454     ClassTemplateDecl *CTD;
455 
456     // A specialization of the template...
457     if (isa<ClassTemplateSpecializationDecl>(Record)) {
458       CTD = cast<ClassTemplateSpecializationDecl>(Record)
459         ->getSpecializedTemplate();
460 
461     // ... or the template pattern itself.
462     } else {
463       CTD = Record->getDescribedClassTemplate();
464       if (!CTD) continue;
465     }
466 
467     // It's a match.
468     if (Friend == CTD->getCanonicalDecl())
469       return AR_accessible;
470 
471     // If the context isn't dependent, it can't be a dependent match.
472     if (!EC.isDependent())
473       continue;
474 
475     // If the template names don't match, it can't be a dependent
476     // match.
477     if (CTD->getDeclName() != Friend->getDeclName())
478       continue;
479 
480     // If the class's context can't instantiate to the friend's
481     // context, it can't be a dependent match.
482     if (!MightInstantiateTo(S, CTD->getDeclContext(),
483                             Friend->getDeclContext()))
484       continue;
485 
486     // Otherwise, it's a dependent match.
487     OnFailure = AR_dependent;
488   }
489 
490   return OnFailure;
491 }
492 
493 /// Determines whether the given friend function matches anything in
494 /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)495 static AccessResult MatchesFriend(Sema &S,
496                                   const EffectiveContext &EC,
497                                   FunctionDecl *Friend) {
498   AccessResult OnFailure = AR_inaccessible;
499 
500   for (SmallVectorImpl<FunctionDecl*>::const_iterator
501          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
502     if (Friend == *I)
503       return AR_accessible;
504 
505     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
506       OnFailure = AR_dependent;
507   }
508 
509   return OnFailure;
510 }
511 
512 /// Determines whether the given friend function template matches
513 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)514 static AccessResult MatchesFriend(Sema &S,
515                                   const EffectiveContext &EC,
516                                   FunctionTemplateDecl *Friend) {
517   if (EC.Functions.empty()) return AR_inaccessible;
518 
519   AccessResult OnFailure = AR_inaccessible;
520 
521   for (SmallVectorImpl<FunctionDecl*>::const_iterator
522          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
523 
524     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
525     if (!FTD)
526       FTD = (*I)->getDescribedFunctionTemplate();
527     if (!FTD)
528       continue;
529 
530     FTD = FTD->getCanonicalDecl();
531 
532     if (Friend == FTD)
533       return AR_accessible;
534 
535     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
536       OnFailure = AR_dependent;
537   }
538 
539   return OnFailure;
540 }
541 
542 /// Determines whether the given friend declaration matches anything
543 /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)544 static AccessResult MatchesFriend(Sema &S,
545                                   const EffectiveContext &EC,
546                                   FriendDecl *FriendD) {
547   // Whitelist accesses if there's an invalid or unsupported friend
548   // declaration.
549   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
550     return AR_accessible;
551 
552   if (TypeSourceInfo *T = FriendD->getFriendType())
553     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
554 
555   NamedDecl *Friend
556     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
557 
558   // FIXME: declarations with dependent or templated scope.
559 
560   if (isa<ClassTemplateDecl>(Friend))
561     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
562 
563   if (isa<FunctionTemplateDecl>(Friend))
564     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
565 
566   if (isa<CXXRecordDecl>(Friend))
567     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
568 
569   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
570   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
571 }
572 
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)573 static AccessResult GetFriendKind(Sema &S,
574                                   const EffectiveContext &EC,
575                                   const CXXRecordDecl *Class) {
576   AccessResult OnFailure = AR_inaccessible;
577 
578   // Okay, check friends.
579   for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
580          E = Class->friend_end(); I != E; ++I) {
581     FriendDecl *Friend = *I;
582 
583     switch (MatchesFriend(S, EC, Friend)) {
584     case AR_accessible:
585       return AR_accessible;
586 
587     case AR_inaccessible:
588       continue;
589 
590     case AR_dependent:
591       OnFailure = AR_dependent;
592       break;
593     }
594   }
595 
596   // That's it, give up.
597   return OnFailure;
598 }
599 
600 namespace {
601 
602 /// A helper class for checking for a friend which will grant access
603 /// to a protected instance member.
604 struct ProtectedFriendContext {
605   Sema &S;
606   const EffectiveContext &EC;
607   const CXXRecordDecl *NamingClass;
608   bool CheckDependent;
609   bool EverDependent;
610 
611   /// The path down to the current base class.
612   SmallVector<const CXXRecordDecl*, 20> CurPath;
613 
ProtectedFriendContext__anon10629a130211::ProtectedFriendContext614   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
615                          const CXXRecordDecl *InstanceContext,
616                          const CXXRecordDecl *NamingClass)
617     : S(S), EC(EC), NamingClass(NamingClass),
618       CheckDependent(InstanceContext->isDependentContext() ||
619                      NamingClass->isDependentContext()),
620       EverDependent(false) {}
621 
622   /// Check classes in the current path for friendship, starting at
623   /// the given index.
checkFriendshipAlongPath__anon10629a130211::ProtectedFriendContext624   bool checkFriendshipAlongPath(unsigned I) {
625     assert(I < CurPath.size());
626     for (unsigned E = CurPath.size(); I != E; ++I) {
627       switch (GetFriendKind(S, EC, CurPath[I])) {
628       case AR_accessible:   return true;
629       case AR_inaccessible: continue;
630       case AR_dependent:    EverDependent = true; continue;
631       }
632     }
633     return false;
634   }
635 
636   /// Perform a search starting at the given class.
637   ///
638   /// PrivateDepth is the index of the last (least derived) class
639   /// along the current path such that a notional public member of
640   /// the final class in the path would have access in that class.
findFriendship__anon10629a130211::ProtectedFriendContext641   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
642     // If we ever reach the naming class, check the current path for
643     // friendship.  We can also stop recursing because we obviously
644     // won't find the naming class there again.
645     if (Cur == NamingClass)
646       return checkFriendshipAlongPath(PrivateDepth);
647 
648     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
649       EverDependent = true;
650 
651     // Recurse into the base classes.
652     for (CXXRecordDecl::base_class_const_iterator
653            I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
654 
655       // If this is private inheritance, then a public member of the
656       // base will not have any access in classes derived from Cur.
657       unsigned BasePrivateDepth = PrivateDepth;
658       if (I->getAccessSpecifier() == AS_private)
659         BasePrivateDepth = CurPath.size() - 1;
660 
661       const CXXRecordDecl *RD;
662 
663       QualType T = I->getType();
664       if (const RecordType *RT = T->getAs<RecordType>()) {
665         RD = cast<CXXRecordDecl>(RT->getDecl());
666       } else if (const InjectedClassNameType *IT
667                    = T->getAs<InjectedClassNameType>()) {
668         RD = IT->getDecl();
669       } else {
670         assert(T->isDependentType() && "non-dependent base wasn't a record?");
671         EverDependent = true;
672         continue;
673       }
674 
675       // Recurse.  We don't need to clean up if this returns true.
676       CurPath.push_back(RD);
677       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
678         return true;
679       CurPath.pop_back();
680     }
681 
682     return false;
683   }
684 
findFriendship__anon10629a130211::ProtectedFriendContext685   bool findFriendship(const CXXRecordDecl *Cur) {
686     assert(CurPath.empty());
687     CurPath.push_back(Cur);
688     return findFriendship(Cur, 0);
689   }
690 };
691 }
692 
693 /// Search for a class P that EC is a friend of, under the constraint
694 ///   InstanceContext <= P
695 /// if InstanceContext exists, or else
696 ///   NamingClass <= P
697 /// and with the additional restriction that a protected member of
698 /// NamingClass would have some natural access in P, which implicitly
699 /// imposes the constraint that P <= NamingClass.
700 ///
701 /// This isn't quite the condition laid out in the standard.
702 /// Instead of saying that a notional protected member of NamingClass
703 /// would have to have some natural access in P, it says the actual
704 /// target has to have some natural access in P, which opens up the
705 /// possibility that the target (which is not necessarily a member
706 /// of NamingClass) might be more accessible along some path not
707 /// passing through it.  That's really a bad idea, though, because it
708 /// introduces two problems:
709 ///   - Most importantly, it breaks encapsulation because you can
710 ///     access a forbidden base class's members by directly subclassing
711 ///     it elsewhere.
712 ///   - It also makes access substantially harder to compute because it
713 ///     breaks the hill-climbing algorithm: knowing that the target is
714 ///     accessible in some base class would no longer let you change
715 ///     the question solely to whether the base class is accessible,
716 ///     because the original target might have been more accessible
717 ///     because of crazy subclassing.
718 /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)719 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
720                                            const CXXRecordDecl *InstanceContext,
721                                            const CXXRecordDecl *NamingClass) {
722   assert(InstanceContext == 0 ||
723          InstanceContext->getCanonicalDecl() == InstanceContext);
724   assert(NamingClass->getCanonicalDecl() == NamingClass);
725 
726   // If we don't have an instance context, our constraints give us
727   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
728   // This is just the usual friendship check.
729   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
730 
731   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
732   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
733   if (PRC.EverDependent) return AR_dependent;
734   return AR_inaccessible;
735 }
736 
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)737 static AccessResult HasAccess(Sema &S,
738                               const EffectiveContext &EC,
739                               const CXXRecordDecl *NamingClass,
740                               AccessSpecifier Access,
741                               const AccessTarget &Target) {
742   assert(NamingClass->getCanonicalDecl() == NamingClass &&
743          "declaration should be canonicalized before being passed here");
744 
745   if (Access == AS_public) return AR_accessible;
746   assert(Access == AS_private || Access == AS_protected);
747 
748   AccessResult OnFailure = AR_inaccessible;
749 
750   for (EffectiveContext::record_iterator
751          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
752     // All the declarations in EC have been canonicalized, so pointer
753     // equality from this point on will work fine.
754     const CXXRecordDecl *ECRecord = *I;
755 
756     // [B2] and [M2]
757     if (Access == AS_private) {
758       if (ECRecord == NamingClass)
759         return AR_accessible;
760 
761       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
762         OnFailure = AR_dependent;
763 
764     // [B3] and [M3]
765     } else {
766       assert(Access == AS_protected);
767       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
768       case AR_accessible: break;
769       case AR_inaccessible: continue;
770       case AR_dependent: OnFailure = AR_dependent; continue;
771       }
772 
773       // C++ [class.protected]p1:
774       //   An additional access check beyond those described earlier in
775       //   [class.access] is applied when a non-static data member or
776       //   non-static member function is a protected member of its naming
777       //   class.  As described earlier, access to a protected member is
778       //   granted because the reference occurs in a friend or member of
779       //   some class C.  If the access is to form a pointer to member,
780       //   the nested-name-specifier shall name C or a class derived from
781       //   C. All other accesses involve a (possibly implicit) object
782       //   expression. In this case, the class of the object expression
783       //   shall be C or a class derived from C.
784       //
785       // We interpret this as a restriction on [M3].
786 
787       // In this part of the code, 'C' is just our context class ECRecord.
788 
789       // These rules are different if we don't have an instance context.
790       if (!Target.hasInstanceContext()) {
791         // If it's not an instance member, these restrictions don't apply.
792         if (!Target.isInstanceMember()) return AR_accessible;
793 
794         // If it's an instance member, use the pointer-to-member rule
795         // that the naming class has to be derived from the effective
796         // context.
797 
798         // Emulate a MSVC bug where the creation of pointer-to-member
799         // to protected member of base class is allowed but only from
800         // static member functions.
801         if (S.getLangOpts().MicrosoftMode && !EC.Functions.empty())
802           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
803             if (MD->isStatic()) return AR_accessible;
804 
805         // Despite the standard's confident wording, there is a case
806         // where you can have an instance member that's neither in a
807         // pointer-to-member expression nor in a member access:  when
808         // it names a field in an unevaluated context that can't be an
809         // implicit member.  Pending clarification, we just apply the
810         // same naming-class restriction here.
811         //   FIXME: we're probably not correctly adding the
812         //   protected-member restriction when we retroactively convert
813         //   an expression to being evaluated.
814 
815         // We know that ECRecord derives from NamingClass.  The
816         // restriction says to check whether NamingClass derives from
817         // ECRecord, but that's not really necessary: two distinct
818         // classes can't be recursively derived from each other.  So
819         // along this path, we just need to check whether the classes
820         // are equal.
821         if (NamingClass == ECRecord) return AR_accessible;
822 
823         // Otherwise, this context class tells us nothing;  on to the next.
824         continue;
825       }
826 
827       assert(Target.isInstanceMember());
828 
829       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
830       if (!InstanceContext) {
831         OnFailure = AR_dependent;
832         continue;
833       }
834 
835       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
836       case AR_accessible: return AR_accessible;
837       case AR_inaccessible: continue;
838       case AR_dependent: OnFailure = AR_dependent; continue;
839       }
840     }
841   }
842 
843   // [M3] and [B3] say that, if the target is protected in N, we grant
844   // access if the access occurs in a friend or member of some class P
845   // that's a subclass of N and where the target has some natural
846   // access in P.  The 'member' aspect is easy to handle because P
847   // would necessarily be one of the effective-context records, and we
848   // address that above.  The 'friend' aspect is completely ridiculous
849   // to implement because there are no restrictions at all on P
850   // *unless* the [class.protected] restriction applies.  If it does,
851   // however, we should ignore whether the naming class is a friend,
852   // and instead rely on whether any potential P is a friend.
853   if (Access == AS_protected && Target.isInstanceMember()) {
854     // Compute the instance context if possible.
855     const CXXRecordDecl *InstanceContext = 0;
856     if (Target.hasInstanceContext()) {
857       InstanceContext = Target.resolveInstanceContext(S);
858       if (!InstanceContext) return AR_dependent;
859     }
860 
861     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
862     case AR_accessible: return AR_accessible;
863     case AR_inaccessible: return OnFailure;
864     case AR_dependent: return AR_dependent;
865     }
866     llvm_unreachable("impossible friendship kind");
867   }
868 
869   switch (GetFriendKind(S, EC, NamingClass)) {
870   case AR_accessible: return AR_accessible;
871   case AR_inaccessible: return OnFailure;
872   case AR_dependent: return AR_dependent;
873   }
874 
875   // Silence bogus warnings
876   llvm_unreachable("impossible friendship kind");
877 }
878 
879 /// Finds the best path from the naming class to the declaring class,
880 /// taking friend declarations into account.
881 ///
882 /// C++0x [class.access.base]p5:
883 ///   A member m is accessible at the point R when named in class N if
884 ///   [M1] m as a member of N is public, or
885 ///   [M2] m as a member of N is private, and R occurs in a member or
886 ///        friend of class N, or
887 ///   [M3] m as a member of N is protected, and R occurs in a member or
888 ///        friend of class N, or in a member or friend of a class P
889 ///        derived from N, where m as a member of P is public, private,
890 ///        or protected, or
891 ///   [M4] there exists a base class B of N that is accessible at R, and
892 ///        m is accessible at R when named in class B.
893 ///
894 /// C++0x [class.access.base]p4:
895 ///   A base class B of N is accessible at R, if
896 ///   [B1] an invented public member of B would be a public member of N, or
897 ///   [B2] R occurs in a member or friend of class N, and an invented public
898 ///        member of B would be a private or protected member of N, or
899 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
900 ///        invented public member of B would be a private or protected member
901 ///        of P, or
902 ///   [B4] there exists a class S such that B is a base class of S accessible
903 ///        at R and S is a base class of N accessible at R.
904 ///
905 /// Along a single inheritance path we can restate both of these
906 /// iteratively:
907 ///
908 /// First, we note that M1-4 are equivalent to B1-4 if the member is
909 /// treated as a notional base of its declaring class with inheritance
910 /// access equivalent to the member's access.  Therefore we need only
911 /// ask whether a class B is accessible from a class N in context R.
912 ///
913 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
914 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
915 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
916 /// closest accessible base in the path:
917 ///   Access(a, b) = (* access on the base specifier from a to b *)
918 ///   Merge(a, forbidden) = forbidden
919 ///   Merge(a, private) = forbidden
920 ///   Merge(a, b) = min(a,b)
921 ///   Accessible(c, forbidden) = false
922 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
923 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
924 ///   Accessible(c, public) = true
925 ///   ACAB(n) = public
926 ///   ACAB(i) =
927 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
928 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
929 ///
930 /// B is an accessible base of N at R iff ACAB(1) = public.
931 ///
932 /// \param FinalAccess the access of the "final step", or AS_public if
933 ///   there is no final step.
934 /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)935 static CXXBasePath *FindBestPath(Sema &S,
936                                  const EffectiveContext &EC,
937                                  AccessTarget &Target,
938                                  AccessSpecifier FinalAccess,
939                                  CXXBasePaths &Paths) {
940   // Derive the paths to the desired base.
941   const CXXRecordDecl *Derived = Target.getNamingClass();
942   const CXXRecordDecl *Base = Target.getDeclaringClass();
943 
944   // FIXME: fail correctly when there are dependent paths.
945   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
946                                           Paths);
947   assert(isDerived && "derived class not actually derived from base");
948   (void) isDerived;
949 
950   CXXBasePath *BestPath = 0;
951 
952   assert(FinalAccess != AS_none && "forbidden access after declaring class");
953 
954   bool AnyDependent = false;
955 
956   // Derive the friend-modified access along each path.
957   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
958          PI != PE; ++PI) {
959     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
960 
961     // Walk through the path backwards.
962     AccessSpecifier PathAccess = FinalAccess;
963     CXXBasePath::iterator I = PI->end(), E = PI->begin();
964     while (I != E) {
965       --I;
966 
967       assert(PathAccess != AS_none);
968 
969       // If the declaration is a private member of a base class, there
970       // is no level of friendship in derived classes that can make it
971       // accessible.
972       if (PathAccess == AS_private) {
973         PathAccess = AS_none;
974         break;
975       }
976 
977       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
978 
979       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
980       PathAccess = std::max(PathAccess, BaseAccess);
981 
982       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
983       case AR_inaccessible: break;
984       case AR_accessible:
985         PathAccess = AS_public;
986 
987         // Future tests are not against members and so do not have
988         // instance context.
989         Target.suppressInstanceContext();
990         break;
991       case AR_dependent:
992         AnyDependent = true;
993         goto Next;
994       }
995     }
996 
997     // Note that we modify the path's Access field to the
998     // friend-modified access.
999     if (BestPath == 0 || PathAccess < BestPath->Access) {
1000       BestPath = &*PI;
1001       BestPath->Access = PathAccess;
1002 
1003       // Short-circuit if we found a public path.
1004       if (BestPath->Access == AS_public)
1005         return BestPath;
1006     }
1007 
1008   Next: ;
1009   }
1010 
1011   assert((!BestPath || BestPath->Access != AS_public) &&
1012          "fell out of loop with public path");
1013 
1014   // We didn't find a public path, but at least one path was subject
1015   // to dependent friendship, so delay the check.
1016   if (AnyDependent)
1017     return 0;
1018 
1019   return BestPath;
1020 }
1021 
1022 /// Given that an entity has protected natural access, check whether
1023 /// access might be denied because of the protected member access
1024 /// restriction.
1025 ///
1026 /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1027 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1028                                        AccessTarget &Target) {
1029   // Only applies to instance accesses.
1030   if (!Target.isInstanceMember())
1031     return false;
1032 
1033   assert(Target.isMemberAccess());
1034 
1035   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1036 
1037   for (EffectiveContext::record_iterator
1038          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1039     const CXXRecordDecl *ECRecord = *I;
1040     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1041     case AR_accessible: break;
1042     case AR_inaccessible: continue;
1043     case AR_dependent: continue;
1044     }
1045 
1046     // The effective context is a subclass of the declaring class.
1047     // Check whether the [class.protected] restriction is limiting
1048     // access.
1049 
1050     // To get this exactly right, this might need to be checked more
1051     // holistically;  it's not necessarily the case that gaining
1052     // access here would grant us access overall.
1053 
1054     NamedDecl *D = Target.getTargetDecl();
1055 
1056     // If we don't have an instance context, [class.protected] says the
1057     // naming class has to equal the context class.
1058     if (!Target.hasInstanceContext()) {
1059       // If it does, the restriction doesn't apply.
1060       if (NamingClass == ECRecord) continue;
1061 
1062       // TODO: it would be great to have a fixit here, since this is
1063       // such an obvious error.
1064       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1065         << S.Context.getTypeDeclType(ECRecord);
1066       return true;
1067     }
1068 
1069     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1070     assert(InstanceContext && "diagnosing dependent access");
1071 
1072     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1073     case AR_accessible: continue;
1074     case AR_dependent: continue;
1075     case AR_inaccessible:
1076       break;
1077     }
1078 
1079     // Okay, the restriction seems to be what's limiting us.
1080 
1081     // Use a special diagnostic for constructors and destructors.
1082     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1083         (isa<FunctionTemplateDecl>(D) &&
1084          isa<CXXConstructorDecl>(
1085                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1086       S.Diag(D->getLocation(), diag::note_access_protected_restricted_ctordtor)
1087         << isa<CXXDestructorDecl>(D);
1088       return true;
1089     }
1090 
1091     // Otherwise, use the generic diagnostic.
1092     S.Diag(D->getLocation(), diag::note_access_protected_restricted_object)
1093       << S.Context.getTypeDeclType(ECRecord);
1094     return true;
1095   }
1096 
1097   return false;
1098 }
1099 
1100 /// We are unable to access a given declaration due to its direct
1101 /// access control;  diagnose that.
diagnoseBadDirectAccess(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1102 static void diagnoseBadDirectAccess(Sema &S,
1103                                     const EffectiveContext &EC,
1104                                     AccessTarget &entity) {
1105   assert(entity.isMemberAccess());
1106   NamedDecl *D = entity.getTargetDecl();
1107 
1108   if (D->getAccess() == AS_protected &&
1109       TryDiagnoseProtectedAccess(S, EC, entity))
1110     return;
1111 
1112   // Find an original declaration.
1113   while (D->isOutOfLine()) {
1114     NamedDecl *PrevDecl = 0;
1115     if (VarDecl *VD = dyn_cast<VarDecl>(D))
1116       PrevDecl = VD->getPreviousDecl();
1117     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1118       PrevDecl = FD->getPreviousDecl();
1119     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1120       PrevDecl = TND->getPreviousDecl();
1121     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1122       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1123         break;
1124       PrevDecl = TD->getPreviousDecl();
1125     }
1126     if (!PrevDecl) break;
1127     D = PrevDecl;
1128   }
1129 
1130   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1131   Decl *ImmediateChild;
1132   if (D->getDeclContext() == DeclaringClass)
1133     ImmediateChild = D;
1134   else {
1135     DeclContext *DC = D->getDeclContext();
1136     while (DC->getParent() != DeclaringClass)
1137       DC = DC->getParent();
1138     ImmediateChild = cast<Decl>(DC);
1139   }
1140 
1141   // Check whether there's an AccessSpecDecl preceding this in the
1142   // chain of the DeclContext.
1143   bool isImplicit = true;
1144   for (CXXRecordDecl::decl_iterator
1145          I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1146        I != E; ++I) {
1147     if (*I == ImmediateChild) break;
1148     if (isa<AccessSpecDecl>(*I)) {
1149       isImplicit = false;
1150       break;
1151     }
1152   }
1153 
1154   S.Diag(D->getLocation(), diag::note_access_natural)
1155     << (unsigned) (D->getAccess() == AS_protected)
1156     << isImplicit;
1157 }
1158 
1159 /// Diagnose the path which caused the given declaration or base class
1160 /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1161 static void DiagnoseAccessPath(Sema &S,
1162                                const EffectiveContext &EC,
1163                                AccessTarget &entity) {
1164   // Save the instance context to preserve invariants.
1165   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1166 
1167   // This basically repeats the main algorithm but keeps some more
1168   // information.
1169 
1170   // The natural access so far.
1171   AccessSpecifier accessSoFar = AS_public;
1172 
1173   // Check whether we have special rights to the declaring class.
1174   if (entity.isMemberAccess()) {
1175     NamedDecl *D = entity.getTargetDecl();
1176     accessSoFar = D->getAccess();
1177     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1178 
1179     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1180     // If the declaration is accessible when named in its declaring
1181     // class, then we must be constrained by the path.
1182     case AR_accessible:
1183       accessSoFar = AS_public;
1184       entity.suppressInstanceContext();
1185       break;
1186 
1187     case AR_inaccessible:
1188       if (accessSoFar == AS_private ||
1189           declaringClass == entity.getEffectiveNamingClass())
1190         return diagnoseBadDirectAccess(S, EC, entity);
1191       break;
1192 
1193     case AR_dependent:
1194       llvm_unreachable("cannot diagnose dependent access");
1195     }
1196   }
1197 
1198   CXXBasePaths paths;
1199   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1200   assert(path.Access != AS_public);
1201 
1202   CXXBasePath::iterator i = path.end(), e = path.begin();
1203   CXXBasePath::iterator constrainingBase = i;
1204   while (i != e) {
1205     --i;
1206 
1207     assert(accessSoFar != AS_none && accessSoFar != AS_private);
1208 
1209     // Is the entity accessible when named in the deriving class, as
1210     // modified by the base specifier?
1211     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1212     const CXXBaseSpecifier *base = i->Base;
1213 
1214     // If the access to this base is worse than the access we have to
1215     // the declaration, remember it.
1216     AccessSpecifier baseAccess = base->getAccessSpecifier();
1217     if (baseAccess > accessSoFar) {
1218       constrainingBase = i;
1219       accessSoFar = baseAccess;
1220     }
1221 
1222     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1223     case AR_inaccessible: break;
1224     case AR_accessible:
1225       accessSoFar = AS_public;
1226       entity.suppressInstanceContext();
1227       constrainingBase = 0;
1228       break;
1229     case AR_dependent:
1230       llvm_unreachable("cannot diagnose dependent access");
1231     }
1232 
1233     // If this was private inheritance, but we don't have access to
1234     // the deriving class, we're done.
1235     if (accessSoFar == AS_private) {
1236       assert(baseAccess == AS_private);
1237       assert(constrainingBase == i);
1238       break;
1239     }
1240   }
1241 
1242   // If we don't have a constraining base, the access failure must be
1243   // due to the original declaration.
1244   if (constrainingBase == path.end())
1245     return diagnoseBadDirectAccess(S, EC, entity);
1246 
1247   // We're constrained by inheritance, but we want to say
1248   // "declared private here" if we're diagnosing a hierarchy
1249   // conversion and this is the final step.
1250   unsigned diagnostic;
1251   if (entity.isMemberAccess() ||
1252       constrainingBase + 1 != path.end()) {
1253     diagnostic = diag::note_access_constrained_by_path;
1254   } else {
1255     diagnostic = diag::note_access_natural;
1256   }
1257 
1258   const CXXBaseSpecifier *base = constrainingBase->Base;
1259 
1260   S.Diag(base->getSourceRange().getBegin(), diagnostic)
1261     << base->getSourceRange()
1262     << (base->getAccessSpecifier() == AS_protected)
1263     << (base->getAccessSpecifierAsWritten() == AS_none);
1264 
1265   if (entity.isMemberAccess())
1266     S.Diag(entity.getTargetDecl()->getLocation(), diag::note_field_decl);
1267 }
1268 
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1269 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1270                               const EffectiveContext &EC,
1271                               AccessTarget &Entity) {
1272   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1273   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1274   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1275 
1276   S.Diag(Loc, Entity.getDiag())
1277     << (Entity.getAccess() == AS_protected)
1278     << (D ? D->getDeclName() : DeclarationName())
1279     << S.Context.getTypeDeclType(NamingClass)
1280     << S.Context.getTypeDeclType(DeclaringClass);
1281   DiagnoseAccessPath(S, EC, Entity);
1282 }
1283 
1284 /// MSVC has a bug where if during an using declaration name lookup,
1285 /// the declaration found is unaccessible (private) and that declaration
1286 /// was bring into scope via another using declaration whose target
1287 /// declaration is accessible (public) then no error is generated.
1288 /// Example:
1289 ///   class A {
1290 ///   public:
1291 ///     int f();
1292 ///   };
1293 ///   class B : public A {
1294 ///   private:
1295 ///     using A::f;
1296 ///   };
1297 ///   class C : public B {
1298 ///   private:
1299 ///     using B::f;
1300 ///   };
1301 ///
1302 /// Here, B::f is private so this should fail in Standard C++, but
1303 /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1304 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1305                                                  SourceLocation AccessLoc,
1306                                                  AccessTarget &Entity) {
1307   if (UsingShadowDecl *Shadow =
1308                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1309     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1310     if (Entity.getTargetDecl()->getAccess() == AS_private &&
1311         (OrigDecl->getAccess() == AS_public ||
1312          OrigDecl->getAccess() == AS_protected)) {
1313       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1314         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1315         << OrigDecl->getQualifiedNameAsString();
1316       return true;
1317     }
1318   }
1319   return false;
1320 }
1321 
1322 /// Determines whether the accessed entity is accessible.  Public members
1323 /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1324 static AccessResult IsAccessible(Sema &S,
1325                                  const EffectiveContext &EC,
1326                                  AccessTarget &Entity) {
1327   // Determine the actual naming class.
1328   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1329 
1330   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1331   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1332 
1333   // Before we try to recalculate access paths, try to white-list
1334   // accesses which just trade in on the final step, i.e. accesses
1335   // which don't require [M4] or [B4]. These are by far the most
1336   // common forms of privileged access.
1337   if (UnprivilegedAccess != AS_none) {
1338     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1339     case AR_dependent:
1340       // This is actually an interesting policy decision.  We don't
1341       // *have* to delay immediately here: we can do the full access
1342       // calculation in the hope that friendship on some intermediate
1343       // class will make the declaration accessible non-dependently.
1344       // But that's not cheap, and odds are very good (note: assertion
1345       // made without data) that the friend declaration will determine
1346       // access.
1347       return AR_dependent;
1348 
1349     case AR_accessible: return AR_accessible;
1350     case AR_inaccessible: break;
1351     }
1352   }
1353 
1354   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1355 
1356   // We lower member accesses to base accesses by pretending that the
1357   // member is a base class of its declaring class.
1358   AccessSpecifier FinalAccess;
1359 
1360   if (Entity.isMemberAccess()) {
1361     // Determine if the declaration is accessible from EC when named
1362     // in its declaring class.
1363     NamedDecl *Target = Entity.getTargetDecl();
1364     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1365 
1366     FinalAccess = Target->getAccess();
1367     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1368     case AR_accessible:
1369       // Target is accessible at EC when named in its declaring class.
1370       // We can now hill-climb and simply check whether the declaring
1371       // class is accessible as a base of the naming class.  This is
1372       // equivalent to checking the access of a notional public
1373       // member with no instance context.
1374       FinalAccess = AS_public;
1375       Entity.suppressInstanceContext();
1376       break;
1377     case AR_inaccessible: break;
1378     case AR_dependent: return AR_dependent; // see above
1379     }
1380 
1381     if (DeclaringClass == NamingClass)
1382       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1383   } else {
1384     FinalAccess = AS_public;
1385   }
1386 
1387   assert(Entity.getDeclaringClass() != NamingClass);
1388 
1389   // Append the declaration's access if applicable.
1390   CXXBasePaths Paths;
1391   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1392   if (!Path)
1393     return AR_dependent;
1394 
1395   assert(Path->Access <= UnprivilegedAccess &&
1396          "access along best path worse than direct?");
1397   if (Path->Access == AS_public)
1398     return AR_accessible;
1399   return AR_inaccessible;
1400 }
1401 
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1402 static void DelayDependentAccess(Sema &S,
1403                                  const EffectiveContext &EC,
1404                                  SourceLocation Loc,
1405                                  const AccessTarget &Entity) {
1406   assert(EC.isDependent() && "delaying non-dependent access");
1407   DeclContext *DC = EC.getInnerContext();
1408   assert(DC->isDependentContext() && "delaying non-dependent access");
1409   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1410                               Loc,
1411                               Entity.isMemberAccess(),
1412                               Entity.getAccess(),
1413                               Entity.getTargetDecl(),
1414                               Entity.getNamingClass(),
1415                               Entity.getBaseObjectType(),
1416                               Entity.getDiag());
1417 }
1418 
1419 /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1420 static AccessResult CheckEffectiveAccess(Sema &S,
1421                                          const EffectiveContext &EC,
1422                                          SourceLocation Loc,
1423                                          AccessTarget &Entity) {
1424   assert(Entity.getAccess() != AS_public && "called for public access!");
1425 
1426   if (S.getLangOpts().MicrosoftMode &&
1427       IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1428     return AR_accessible;
1429 
1430   switch (IsAccessible(S, EC, Entity)) {
1431   case AR_dependent:
1432     DelayDependentAccess(S, EC, Loc, Entity);
1433     return AR_dependent;
1434 
1435   case AR_inaccessible:
1436     if (!Entity.isQuiet())
1437       DiagnoseBadAccess(S, Loc, EC, Entity);
1438     return AR_inaccessible;
1439 
1440   case AR_accessible:
1441     return AR_accessible;
1442   }
1443 
1444   // silence unnecessary warning
1445   llvm_unreachable("invalid access result");
1446 }
1447 
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1448 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1449                                       AccessTarget &Entity) {
1450   // If the access path is public, it's accessible everywhere.
1451   if (Entity.getAccess() == AS_public)
1452     return Sema::AR_accessible;
1453 
1454   // If we're currently parsing a declaration, we may need to delay
1455   // access control checking, because our effective context might be
1456   // different based on what the declaration comes out as.
1457   //
1458   // For example, we might be parsing a declaration with a scope
1459   // specifier, like this:
1460   //   A::private_type A::foo() { ... }
1461   //
1462   // Or we might be parsing something that will turn out to be a friend:
1463   //   void foo(A::private_type);
1464   //   void B::foo(A::private_type);
1465   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1466     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1467     return Sema::AR_delayed;
1468   }
1469 
1470   EffectiveContext EC(S.CurContext);
1471   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1472   case AR_accessible: return Sema::AR_accessible;
1473   case AR_inaccessible: return Sema::AR_inaccessible;
1474   case AR_dependent: return Sema::AR_dependent;
1475   }
1476   llvm_unreachable("falling off end");
1477 }
1478 
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * D)1479 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1480   // Access control for names used in the declarations of functions
1481   // and function templates should normally be evaluated in the context
1482   // of the declaration, just in case it's a friend of something.
1483   // However, this does not apply to local extern declarations.
1484 
1485   DeclContext *DC = D->getDeclContext();
1486   if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1487     if (!DC->isFunctionOrMethod())
1488       DC = FN;
1489   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1490     DC = cast<DeclContext>(TD->getTemplatedDecl());
1491   }
1492 
1493   EffectiveContext EC(DC);
1494 
1495   AccessTarget Target(DD.getAccessData());
1496 
1497   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1498     DD.Triggered = true;
1499 }
1500 
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1501 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1502                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1503   SourceLocation Loc = DD.getAccessLoc();
1504   AccessSpecifier Access = DD.getAccess();
1505 
1506   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1507                                        TemplateArgs);
1508   if (!NamingD) return;
1509   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1510                                        TemplateArgs);
1511   if (!TargetD) return;
1512 
1513   if (DD.isAccessToMember()) {
1514     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1515     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1516     QualType BaseObjectType = DD.getAccessBaseObjectType();
1517     if (!BaseObjectType.isNull()) {
1518       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1519                                  DeclarationName());
1520       if (BaseObjectType.isNull()) return;
1521     }
1522 
1523     AccessTarget Entity(Context,
1524                         AccessTarget::Member,
1525                         NamingClass,
1526                         DeclAccessPair::make(TargetDecl, Access),
1527                         BaseObjectType);
1528     Entity.setDiag(DD.getDiagnostic());
1529     CheckAccess(*this, Loc, Entity);
1530   } else {
1531     AccessTarget Entity(Context,
1532                         AccessTarget::Base,
1533                         cast<CXXRecordDecl>(TargetD),
1534                         cast<CXXRecordDecl>(NamingD),
1535                         Access);
1536     Entity.setDiag(DD.getDiagnostic());
1537     CheckAccess(*this, Loc, Entity);
1538   }
1539 }
1540 
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1541 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1542                                                      DeclAccessPair Found) {
1543   if (!getLangOpts().AccessControl ||
1544       !E->getNamingClass() ||
1545       Found.getAccess() == AS_public)
1546     return AR_accessible;
1547 
1548   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1549                       Found, QualType());
1550   Entity.setDiag(diag::err_access) << E->getSourceRange();
1551 
1552   return CheckAccess(*this, E->getNameLoc(), Entity);
1553 }
1554 
1555 /// Perform access-control checking on a previously-unresolved member
1556 /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1557 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1558                                                      DeclAccessPair Found) {
1559   if (!getLangOpts().AccessControl ||
1560       Found.getAccess() == AS_public)
1561     return AR_accessible;
1562 
1563   QualType BaseType = E->getBaseType();
1564   if (E->isArrow())
1565     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1566 
1567   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1568                       Found, BaseType);
1569   Entity.setDiag(diag::err_access) << E->getSourceRange();
1570 
1571   return CheckAccess(*this, E->getMemberLoc(), Entity);
1572 }
1573 
1574 /// Is the given special member function accessible for the purposes of
1575 /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1576 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1577                                                 AccessSpecifier access,
1578                                                 QualType objectType) {
1579   // Fast path.
1580   if (access == AS_public || !getLangOpts().AccessControl) return true;
1581 
1582   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1583                       DeclAccessPair::make(decl, access), objectType);
1584 
1585   // Suppress diagnostics.
1586   entity.setDiag(PDiag());
1587 
1588   switch (CheckAccess(*this, SourceLocation(), entity)) {
1589   case AR_accessible: return true;
1590   case AR_inaccessible: return false;
1591   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1592   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1593   }
1594   llvm_unreachable("bad access result");
1595 }
1596 
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1597 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1598                                                CXXDestructorDecl *Dtor,
1599                                                const PartialDiagnostic &PDiag,
1600                                                QualType ObjectTy) {
1601   if (!getLangOpts().AccessControl)
1602     return AR_accessible;
1603 
1604   // There's never a path involved when checking implicit destructor access.
1605   AccessSpecifier Access = Dtor->getAccess();
1606   if (Access == AS_public)
1607     return AR_accessible;
1608 
1609   CXXRecordDecl *NamingClass = Dtor->getParent();
1610   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1611 
1612   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1613                       DeclAccessPair::make(Dtor, Access),
1614                       ObjectTy);
1615   Entity.setDiag(PDiag); // TODO: avoid copy
1616 
1617   return CheckAccess(*this, Loc, Entity);
1618 }
1619 
1620 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,bool IsCopyBindingRefToTemp)1621 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1622                                                 CXXConstructorDecl *Constructor,
1623                                                 const InitializedEntity &Entity,
1624                                                 AccessSpecifier Access,
1625                                                 bool IsCopyBindingRefToTemp) {
1626   if (!getLangOpts().AccessControl || Access == AS_public)
1627     return AR_accessible;
1628 
1629   PartialDiagnostic PD(PDiag());
1630   switch (Entity.getKind()) {
1631   default:
1632     PD = PDiag(IsCopyBindingRefToTemp
1633                  ? diag::ext_rvalue_to_reference_access_ctor
1634                  : diag::err_access_ctor);
1635 
1636     break;
1637 
1638   case InitializedEntity::EK_Base:
1639     PD = PDiag(diag::err_access_base_ctor);
1640     PD << Entity.isInheritedVirtualBase()
1641        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1642     break;
1643 
1644   case InitializedEntity::EK_Member: {
1645     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1646     PD = PDiag(diag::err_access_field_ctor);
1647     PD << Field->getType() << getSpecialMember(Constructor);
1648     break;
1649   }
1650 
1651   case InitializedEntity::EK_LambdaCapture: {
1652     const VarDecl *Var = Entity.getCapturedVar();
1653     PD = PDiag(diag::err_access_lambda_capture);
1654     PD << Var->getName() << Entity.getType() << getSpecialMember(Constructor);
1655     break;
1656   }
1657 
1658   }
1659 
1660   return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1661 }
1662 
1663 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,const PartialDiagnostic & PD)1664 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1665                                                 CXXConstructorDecl *Constructor,
1666                                                 const InitializedEntity &Entity,
1667                                                 AccessSpecifier Access,
1668                                                 const PartialDiagnostic &PD) {
1669   if (!getLangOpts().AccessControl ||
1670       Access == AS_public)
1671     return AR_accessible;
1672 
1673   CXXRecordDecl *NamingClass = Constructor->getParent();
1674 
1675   // Initializing a base sub-object is an instance method call on an
1676   // object of the derived class.  Otherwise, we have an instance method
1677   // call on an object of the constructed type.
1678   CXXRecordDecl *ObjectClass;
1679   if (Entity.getKind() == InitializedEntity::EK_Base) {
1680     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1681   } else {
1682     ObjectClass = NamingClass;
1683   }
1684 
1685   AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1686                             DeclAccessPair::make(Constructor, Access),
1687                             Context.getTypeDeclType(ObjectClass));
1688   AccessEntity.setDiag(PD);
1689 
1690   return CheckAccess(*this, UseLoc, AccessEntity);
1691 }
1692 
1693 /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1694 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1695                                                SourceRange PlacementRange,
1696                                                CXXRecordDecl *NamingClass,
1697                                                DeclAccessPair Found,
1698                                                bool Diagnose) {
1699   if (!getLangOpts().AccessControl ||
1700       !NamingClass ||
1701       Found.getAccess() == AS_public)
1702     return AR_accessible;
1703 
1704   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1705                       QualType());
1706   if (Diagnose)
1707     Entity.setDiag(diag::err_access)
1708       << PlacementRange;
1709 
1710   return CheckAccess(*this, OpLoc, Entity);
1711 }
1712 
1713 /// \brief Checks access to a member.
CheckMemberAccess(SourceLocation UseLoc,CXXRecordDecl * NamingClass,NamedDecl * D)1714 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1715                                            CXXRecordDecl *NamingClass,
1716                                            NamedDecl *D) {
1717   if (!getLangOpts().AccessControl ||
1718       !NamingClass ||
1719       D->getAccess() == AS_public)
1720     return AR_accessible;
1721 
1722   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1723                       DeclAccessPair::make(D, D->getAccess()), QualType());
1724 
1725   return CheckAccess(*this, UseLoc, Entity);
1726 }
1727 
1728 /// Checks access to an overloaded member operator, including
1729 /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1730 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1731                                                    Expr *ObjectExpr,
1732                                                    Expr *ArgExpr,
1733                                                    DeclAccessPair Found) {
1734   if (!getLangOpts().AccessControl ||
1735       Found.getAccess() == AS_public)
1736     return AR_accessible;
1737 
1738   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1739   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1740 
1741   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1742                       ObjectExpr->getType());
1743   Entity.setDiag(diag::err_access)
1744     << ObjectExpr->getSourceRange()
1745     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1746 
1747   return CheckAccess(*this, OpLoc, Entity);
1748 }
1749 
1750 /// Checks access to the target of a friend declaration.
CheckFriendAccess(NamedDecl * target)1751 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1752   assert(isa<CXXMethodDecl>(target) ||
1753          (isa<FunctionTemplateDecl>(target) &&
1754           isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(target)
1755                                ->getTemplatedDecl())));
1756 
1757   // Friendship lookup is a redeclaration lookup, so there's never an
1758   // inheritance path modifying access.
1759   AccessSpecifier access = target->getAccess();
1760 
1761   if (!getLangOpts().AccessControl || access == AS_public)
1762     return AR_accessible;
1763 
1764   CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(target);
1765   if (!method)
1766     method = cast<CXXMethodDecl>(
1767                      cast<FunctionTemplateDecl>(target)->getTemplatedDecl());
1768   assert(method->getQualifier());
1769 
1770   AccessTarget entity(Context, AccessTarget::Member,
1771                       cast<CXXRecordDecl>(target->getDeclContext()),
1772                       DeclAccessPair::make(target, access),
1773                       /*no instance context*/ QualType());
1774   entity.setDiag(diag::err_access_friend_function)
1775     << method->getQualifierLoc().getSourceRange();
1776 
1777   // We need to bypass delayed-diagnostics because we might be called
1778   // while the ParsingDeclarator is active.
1779   EffectiveContext EC(CurContext);
1780   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1781   case AR_accessible: return Sema::AR_accessible;
1782   case AR_inaccessible: return Sema::AR_inaccessible;
1783   case AR_dependent: return Sema::AR_dependent;
1784   }
1785   llvm_unreachable("falling off end");
1786 }
1787 
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1788 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1789                                                     DeclAccessPair Found) {
1790   if (!getLangOpts().AccessControl ||
1791       Found.getAccess() == AS_none ||
1792       Found.getAccess() == AS_public)
1793     return AR_accessible;
1794 
1795   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1796   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1797 
1798   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1799                       /*no instance context*/ QualType());
1800   Entity.setDiag(diag::err_access)
1801     << Ovl->getSourceRange();
1802 
1803   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1804 }
1805 
1806 /// Checks access for a hierarchy conversion.
1807 ///
1808 /// \param ForceCheck true if this check should be performed even if access
1809 ///     control is disabled;  some things rely on this for semantics
1810 /// \param ForceUnprivileged true if this check should proceed as if the
1811 ///     context had no special privileges
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1812 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1813                                               QualType Base,
1814                                               QualType Derived,
1815                                               const CXXBasePath &Path,
1816                                               unsigned DiagID,
1817                                               bool ForceCheck,
1818                                               bool ForceUnprivileged) {
1819   if (!ForceCheck && !getLangOpts().AccessControl)
1820     return AR_accessible;
1821 
1822   if (Path.Access == AS_public)
1823     return AR_accessible;
1824 
1825   CXXRecordDecl *BaseD, *DerivedD;
1826   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1827   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1828 
1829   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1830                       Path.Access);
1831   if (DiagID)
1832     Entity.setDiag(DiagID) << Derived << Base;
1833 
1834   if (ForceUnprivileged) {
1835     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1836                                  AccessLoc, Entity)) {
1837     case ::AR_accessible: return Sema::AR_accessible;
1838     case ::AR_inaccessible: return Sema::AR_inaccessible;
1839     case ::AR_dependent: return Sema::AR_dependent;
1840     }
1841     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1842   }
1843   return CheckAccess(*this, AccessLoc, Entity);
1844 }
1845 
1846 /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1847 void Sema::CheckLookupAccess(const LookupResult &R) {
1848   assert(getLangOpts().AccessControl
1849          && "performing access check without access control");
1850   assert(R.getNamingClass() && "performing access check without naming class");
1851 
1852   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1853     if (I.getAccess() != AS_public) {
1854       AccessTarget Entity(Context, AccessedEntity::Member,
1855                           R.getNamingClass(), I.getPair(),
1856                           R.getBaseObjectType());
1857       Entity.setDiag(diag::err_access);
1858       CheckAccess(*this, R.getNameLoc(), Entity);
1859     }
1860   }
1861 }
1862 
1863 /// Checks access to Decl from the given class. The check will take access
1864 /// specifiers into account, but no member access expressions and such.
1865 ///
1866 /// \param Decl the declaration to check if it can be accessed
1867 /// \param Ctx the class/context from which to start the search
1868 /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1869 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1870   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1871     if (!Decl->isCXXClassMember())
1872       return true;
1873 
1874     QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1875     AccessTarget Entity(Context, AccessedEntity::Member, Class,
1876                         DeclAccessPair::make(Decl, Decl->getAccess()),
1877                         qType);
1878     if (Entity.getAccess() == AS_public)
1879       return true;
1880 
1881     EffectiveContext EC(CurContext);
1882     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1883   }
1884 
1885   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1886     // @public and @package ivars are always accessible.
1887     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1888         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1889       return true;
1890 
1891     // If we are inside a class or category implementation, determine the
1892     // interface we're in.
1893     ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1894     if (ObjCMethodDecl *MD = getCurMethodDecl())
1895       ClassOfMethodDecl =  MD->getClassInterface();
1896     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1897       if (ObjCImplDecl *Impl
1898             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1899         if (ObjCImplementationDecl *IMPD
1900               = dyn_cast<ObjCImplementationDecl>(Impl))
1901           ClassOfMethodDecl = IMPD->getClassInterface();
1902         else if (ObjCCategoryImplDecl* CatImplClass
1903                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1904           ClassOfMethodDecl = CatImplClass->getClassInterface();
1905       }
1906     }
1907 
1908     // If we're not in an interface, this ivar is inaccessible.
1909     if (!ClassOfMethodDecl)
1910       return false;
1911 
1912     // If we're inside the same interface that owns the ivar, we're fine.
1913     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1914       return true;
1915 
1916     // If the ivar is private, it's inaccessible.
1917     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1918       return false;
1919 
1920     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1921   }
1922 
1923   return true;
1924 }
1925