• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (SL == 0)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
IsStringInit(Expr * init,QualType declType,ASTContext & Context)123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   uint64_t StrLength =
153     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154 
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::warn_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236   Sema &SemaRef;
237   bool hadError;
238   bool VerifyOnly; // no diagnostics, no structure building
239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240   InitListExpr *FullyStructuredList;
241 
242   void CheckImplicitInitList(const InitializedEntity &Entity,
243                              InitListExpr *ParentIList, QualType T,
244                              unsigned &Index, InitListExpr *StructuredList,
245                              unsigned &StructuredIndex);
246   void CheckExplicitInitList(const InitializedEntity &Entity,
247                              InitListExpr *IList, QualType &T,
248                              unsigned &Index, InitListExpr *StructuredList,
249                              unsigned &StructuredIndex,
250                              bool TopLevelObject = false);
251   void CheckListElementTypes(const InitializedEntity &Entity,
252                              InitListExpr *IList, QualType &DeclType,
253                              bool SubobjectIsDesignatorContext,
254                              unsigned &Index,
255                              InitListExpr *StructuredList,
256                              unsigned &StructuredIndex,
257                              bool TopLevelObject = false);
258   void CheckSubElementType(const InitializedEntity &Entity,
259                            InitListExpr *IList, QualType ElemType,
260                            unsigned &Index,
261                            InitListExpr *StructuredList,
262                            unsigned &StructuredIndex);
263   void CheckComplexType(const InitializedEntity &Entity,
264                         InitListExpr *IList, QualType DeclType,
265                         unsigned &Index,
266                         InitListExpr *StructuredList,
267                         unsigned &StructuredIndex);
268   void CheckScalarType(const InitializedEntity &Entity,
269                        InitListExpr *IList, QualType DeclType,
270                        unsigned &Index,
271                        InitListExpr *StructuredList,
272                        unsigned &StructuredIndex);
273   void CheckReferenceType(const InitializedEntity &Entity,
274                           InitListExpr *IList, QualType DeclType,
275                           unsigned &Index,
276                           InitListExpr *StructuredList,
277                           unsigned &StructuredIndex);
278   void CheckVectorType(const InitializedEntity &Entity,
279                        InitListExpr *IList, QualType DeclType, unsigned &Index,
280                        InitListExpr *StructuredList,
281                        unsigned &StructuredIndex);
282   void CheckStructUnionTypes(const InitializedEntity &Entity,
283                              InitListExpr *IList, QualType DeclType,
284                              RecordDecl::field_iterator Field,
285                              bool SubobjectIsDesignatorContext, unsigned &Index,
286                              InitListExpr *StructuredList,
287                              unsigned &StructuredIndex,
288                              bool TopLevelObject = false);
289   void CheckArrayType(const InitializedEntity &Entity,
290                       InitListExpr *IList, QualType &DeclType,
291                       llvm::APSInt elementIndex,
292                       bool SubobjectIsDesignatorContext, unsigned &Index,
293                       InitListExpr *StructuredList,
294                       unsigned &StructuredIndex);
295   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
296                                   InitListExpr *IList, DesignatedInitExpr *DIE,
297                                   unsigned DesigIdx,
298                                   QualType &CurrentObjectType,
299                                   RecordDecl::field_iterator *NextField,
300                                   llvm::APSInt *NextElementIndex,
301                                   unsigned &Index,
302                                   InitListExpr *StructuredList,
303                                   unsigned &StructuredIndex,
304                                   bool FinishSubobjectInit,
305                                   bool TopLevelObject);
306   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
307                                            QualType CurrentObjectType,
308                                            InitListExpr *StructuredList,
309                                            unsigned StructuredIndex,
310                                            SourceRange InitRange);
311   void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                    unsigned &StructuredIndex,
313                                    Expr *expr);
314   int numArrayElements(QualType DeclType);
315   int numStructUnionElements(QualType DeclType);
316 
317   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
318                                const InitializedEntity &ParentEntity,
319                                InitListExpr *ILE, bool &RequiresSecondPass);
320   void FillInValueInitializations(const InitializedEntity &Entity,
321                                   InitListExpr *ILE, bool &RequiresSecondPass);
322   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
323                               Expr *InitExpr, FieldDecl *Field,
324                               bool TopLevelObject);
325   void CheckValueInitializable(const InitializedEntity &Entity);
326 
327 public:
328   InitListChecker(Sema &S, const InitializedEntity &Entity,
329                   InitListExpr *IL, QualType &T, bool VerifyOnly);
HadError()330   bool HadError() { return hadError; }
331 
332   // @brief Retrieves the fully-structured initializer list used for
333   // semantic analysis and code generation.
getFullyStructuredList() const334   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
335 };
336 } // end anonymous namespace
337 
CheckValueInitializable(const InitializedEntity & Entity)338 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
339   assert(VerifyOnly &&
340          "CheckValueInitializable is only inteded for verification mode.");
341 
342   SourceLocation Loc;
343   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
344                                                             true);
345   InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
346   if (InitSeq.Failed())
347     hadError = true;
348 }
349 
FillInValueInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)350 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
351                                         const InitializedEntity &ParentEntity,
352                                               InitListExpr *ILE,
353                                               bool &RequiresSecondPass) {
354   SourceLocation Loc = ILE->getLocStart();
355   unsigned NumInits = ILE->getNumInits();
356   InitializedEntity MemberEntity
357     = InitializedEntity::InitializeMember(Field, &ParentEntity);
358   if (Init >= NumInits || !ILE->getInit(Init)) {
359     // If there's no explicit initializer but we have a default initializer, use
360     // that. This only happens in C++1y, since classes with default
361     // initializers are not aggregates in C++11.
362     if (Field->hasInClassInitializer()) {
363       Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
364                                              ILE->getRBraceLoc(), Field);
365       if (Init < NumInits)
366         ILE->setInit(Init, DIE);
367       else {
368         ILE->updateInit(SemaRef.Context, Init, DIE);
369         RequiresSecondPass = true;
370       }
371       return;
372     }
373 
374     // FIXME: We probably don't need to handle references
375     // specially here, since value-initialization of references is
376     // handled in InitializationSequence.
377     if (Field->getType()->isReferenceType()) {
378       // C++ [dcl.init.aggr]p9:
379       //   If an incomplete or empty initializer-list leaves a
380       //   member of reference type uninitialized, the program is
381       //   ill-formed.
382       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
383         << Field->getType()
384         << ILE->getSyntacticForm()->getSourceRange();
385       SemaRef.Diag(Field->getLocation(),
386                    diag::note_uninit_reference_member);
387       hadError = true;
388       return;
389     }
390 
391     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
392                                                               true);
393     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
394     if (!InitSeq) {
395       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
396       hadError = true;
397       return;
398     }
399 
400     ExprResult MemberInit
401       = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
402     if (MemberInit.isInvalid()) {
403       hadError = true;
404       return;
405     }
406 
407     if (hadError) {
408       // Do nothing
409     } else if (Init < NumInits) {
410       ILE->setInit(Init, MemberInit.takeAs<Expr>());
411     } else if (InitSeq.isConstructorInitialization()) {
412       // Value-initialization requires a constructor call, so
413       // extend the initializer list to include the constructor
414       // call and make a note that we'll need to take another pass
415       // through the initializer list.
416       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
417       RequiresSecondPass = true;
418     }
419   } else if (InitListExpr *InnerILE
420                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421     FillInValueInitializations(MemberEntity, InnerILE,
422                                RequiresSecondPass);
423 }
424 
425 /// Recursively replaces NULL values within the given initializer list
426 /// with expressions that perform value-initialization of the
427 /// appropriate type.
428 void
FillInValueInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)429 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
430                                             InitListExpr *ILE,
431                                             bool &RequiresSecondPass) {
432   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
433          "Should not have void type");
434   SourceLocation Loc = ILE->getLocStart();
435   if (ILE->getSyntacticForm())
436     Loc = ILE->getSyntacticForm()->getLocStart();
437 
438   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
439     const RecordDecl *RDecl = RType->getDecl();
440     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
441       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
442                               Entity, ILE, RequiresSecondPass);
443     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
444              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
445       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
446                                       FieldEnd = RDecl->field_end();
447            Field != FieldEnd; ++Field) {
448         if (Field->hasInClassInitializer()) {
449           FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
450           break;
451         }
452       }
453     } else {
454       unsigned Init = 0;
455       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
456                                       FieldEnd = RDecl->field_end();
457            Field != FieldEnd; ++Field) {
458         if (Field->isUnnamedBitfield())
459           continue;
460 
461         if (hadError)
462           return;
463 
464         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
465         if (hadError)
466           return;
467 
468         ++Init;
469 
470         // Only look at the first initialization of a union.
471         if (RDecl->isUnion())
472           break;
473       }
474     }
475 
476     return;
477   }
478 
479   QualType ElementType;
480 
481   InitializedEntity ElementEntity = Entity;
482   unsigned NumInits = ILE->getNumInits();
483   unsigned NumElements = NumInits;
484   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
485     ElementType = AType->getElementType();
486     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
487       NumElements = CAType->getSize().getZExtValue();
488     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                          0, Entity);
490   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
491     ElementType = VType->getElementType();
492     NumElements = VType->getNumElements();
493     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
494                                                          0, Entity);
495   } else
496     ElementType = ILE->getType();
497 
498 
499   for (unsigned Init = 0; Init != NumElements; ++Init) {
500     if (hadError)
501       return;
502 
503     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
504         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
505       ElementEntity.setElementIndex(Init);
506 
507     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
508     if (!InitExpr && !ILE->hasArrayFiller()) {
509       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
510                                                                 true);
511       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
512       if (!InitSeq) {
513         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
514         hadError = true;
515         return;
516       }
517 
518       ExprResult ElementInit
519         = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
520       if (ElementInit.isInvalid()) {
521         hadError = true;
522         return;
523       }
524 
525       if (hadError) {
526         // Do nothing
527       } else if (Init < NumInits) {
528         // For arrays, just set the expression used for value-initialization
529         // of the "holes" in the array.
530         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
531           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
532         else
533           ILE->setInit(Init, ElementInit.takeAs<Expr>());
534       } else {
535         // For arrays, just set the expression used for value-initialization
536         // of the rest of elements and exit.
537         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
538           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
539           return;
540         }
541 
542         if (InitSeq.isConstructorInitialization()) {
543           // Value-initialization requires a constructor call, so
544           // extend the initializer list to include the constructor
545           // call and make a note that we'll need to take another pass
546           // through the initializer list.
547           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
548           RequiresSecondPass = true;
549         }
550       }
551     } else if (InitListExpr *InnerILE
552                  = dyn_cast_or_null<InitListExpr>(InitExpr))
553       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
554   }
555 }
556 
557 
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly)558 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
559                                  InitListExpr *IL, QualType &T,
560                                  bool VerifyOnly)
561   : SemaRef(S), VerifyOnly(VerifyOnly) {
562   hadError = false;
563 
564   unsigned newIndex = 0;
565   unsigned newStructuredIndex = 0;
566   FullyStructuredList
567     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
568   CheckExplicitInitList(Entity, IL, T, newIndex,
569                         FullyStructuredList, newStructuredIndex,
570                         /*TopLevelObject=*/true);
571 
572   if (!hadError && !VerifyOnly) {
573     bool RequiresSecondPass = false;
574     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
575     if (RequiresSecondPass && !hadError)
576       FillInValueInitializations(Entity, FullyStructuredList,
577                                  RequiresSecondPass);
578   }
579 }
580 
numArrayElements(QualType DeclType)581 int InitListChecker::numArrayElements(QualType DeclType) {
582   // FIXME: use a proper constant
583   int maxElements = 0x7FFFFFFF;
584   if (const ConstantArrayType *CAT =
585         SemaRef.Context.getAsConstantArrayType(DeclType)) {
586     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
587   }
588   return maxElements;
589 }
590 
numStructUnionElements(QualType DeclType)591 int InitListChecker::numStructUnionElements(QualType DeclType) {
592   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
593   int InitializableMembers = 0;
594   for (RecordDecl::field_iterator
595          Field = structDecl->field_begin(),
596          FieldEnd = structDecl->field_end();
597        Field != FieldEnd; ++Field) {
598     if (!Field->isUnnamedBitfield())
599       ++InitializableMembers;
600   }
601   if (structDecl->isUnion())
602     return std::min(InitializableMembers, 1);
603   return InitializableMembers - structDecl->hasFlexibleArrayMember();
604 }
605 
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)606 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
607                                             InitListExpr *ParentIList,
608                                             QualType T, unsigned &Index,
609                                             InitListExpr *StructuredList,
610                                             unsigned &StructuredIndex) {
611   int maxElements = 0;
612 
613   if (T->isArrayType())
614     maxElements = numArrayElements(T);
615   else if (T->isRecordType())
616     maxElements = numStructUnionElements(T);
617   else if (T->isVectorType())
618     maxElements = T->getAs<VectorType>()->getNumElements();
619   else
620     llvm_unreachable("CheckImplicitInitList(): Illegal type");
621 
622   if (maxElements == 0) {
623     if (!VerifyOnly)
624       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
625                    diag::err_implicit_empty_initializer);
626     ++Index;
627     hadError = true;
628     return;
629   }
630 
631   // Build a structured initializer list corresponding to this subobject.
632   InitListExpr *StructuredSubobjectInitList
633     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
634                                  StructuredIndex,
635           SourceRange(ParentIList->getInit(Index)->getLocStart(),
636                       ParentIList->getSourceRange().getEnd()));
637   unsigned StructuredSubobjectInitIndex = 0;
638 
639   // Check the element types and build the structural subobject.
640   unsigned StartIndex = Index;
641   CheckListElementTypes(Entity, ParentIList, T,
642                         /*SubobjectIsDesignatorContext=*/false, Index,
643                         StructuredSubobjectInitList,
644                         StructuredSubobjectInitIndex);
645 
646   if (!VerifyOnly) {
647     StructuredSubobjectInitList->setType(T);
648 
649     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
650     // Update the structured sub-object initializer so that it's ending
651     // range corresponds with the end of the last initializer it used.
652     if (EndIndex < ParentIList->getNumInits()) {
653       SourceLocation EndLoc
654         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
655       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
656     }
657 
658     // Complain about missing braces.
659     if (T->isArrayType() || T->isRecordType()) {
660       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
661                    diag::warn_missing_braces)
662         << StructuredSubobjectInitList->getSourceRange()
663         << FixItHint::CreateInsertion(
664               StructuredSubobjectInitList->getLocStart(), "{")
665         << FixItHint::CreateInsertion(
666               SemaRef.PP.getLocForEndOfToken(
667                                       StructuredSubobjectInitList->getLocEnd()),
668               "}");
669     }
670   }
671 }
672 
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)673 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                             InitListExpr *IList, QualType &T,
675                                             unsigned &Index,
676                                             InitListExpr *StructuredList,
677                                             unsigned &StructuredIndex,
678                                             bool TopLevelObject) {
679   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
680   if (!VerifyOnly) {
681     SyntacticToSemantic[IList] = StructuredList;
682     StructuredList->setSyntacticForm(IList);
683   }
684   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                         Index, StructuredList, StructuredIndex, TopLevelObject);
686   if (!VerifyOnly) {
687     QualType ExprTy = T;
688     if (!ExprTy->isArrayType())
689       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690     IList->setType(ExprTy);
691     StructuredList->setType(ExprTy);
692   }
693   if (hadError)
694     return;
695 
696   if (Index < IList->getNumInits()) {
697     // We have leftover initializers
698     if (VerifyOnly) {
699       if (SemaRef.getLangOpts().CPlusPlus ||
700           (SemaRef.getLangOpts().OpenCL &&
701            IList->getType()->isVectorType())) {
702         hadError = true;
703       }
704       return;
705     }
706 
707     if (StructuredIndex == 1 &&
708         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709             SIF_None) {
710       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711       if (SemaRef.getLangOpts().CPlusPlus) {
712         DK = diag::err_excess_initializers_in_char_array_initializer;
713         hadError = true;
714       }
715       // Special-case
716       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717         << IList->getInit(Index)->getSourceRange();
718     } else if (!T->isIncompleteType()) {
719       // Don't complain for incomplete types, since we'll get an error
720       // elsewhere
721       QualType CurrentObjectType = StructuredList->getType();
722       int initKind =
723         CurrentObjectType->isArrayType()? 0 :
724         CurrentObjectType->isVectorType()? 1 :
725         CurrentObjectType->isScalarType()? 2 :
726         CurrentObjectType->isUnionType()? 3 :
727         4;
728 
729       unsigned DK = diag::warn_excess_initializers;
730       if (SemaRef.getLangOpts().CPlusPlus) {
731         DK = diag::err_excess_initializers;
732         hadError = true;
733       }
734       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735         DK = diag::err_excess_initializers;
736         hadError = true;
737       }
738 
739       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740         << initKind << IList->getInit(Index)->getSourceRange();
741     }
742   }
743 
744   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745       !TopLevelObject)
746     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747       << IList->getSourceRange()
748       << FixItHint::CreateRemoval(IList->getLocStart())
749       << FixItHint::CreateRemoval(IList->getLocEnd());
750 }
751 
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)752 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                             InitListExpr *IList,
754                                             QualType &DeclType,
755                                             bool SubobjectIsDesignatorContext,
756                                             unsigned &Index,
757                                             InitListExpr *StructuredList,
758                                             unsigned &StructuredIndex,
759                                             bool TopLevelObject) {
760   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761     // Explicitly braced initializer for complex type can be real+imaginary
762     // parts.
763     CheckComplexType(Entity, IList, DeclType, Index,
764                      StructuredList, StructuredIndex);
765   } else if (DeclType->isScalarType()) {
766     CheckScalarType(Entity, IList, DeclType, Index,
767                     StructuredList, StructuredIndex);
768   } else if (DeclType->isVectorType()) {
769     CheckVectorType(Entity, IList, DeclType, Index,
770                     StructuredList, StructuredIndex);
771   } else if (DeclType->isRecordType()) {
772     assert(DeclType->isAggregateType() &&
773            "non-aggregate records should be handed in CheckSubElementType");
774     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                           SubobjectIsDesignatorContext, Index,
777                           StructuredList, StructuredIndex,
778                           TopLevelObject);
779   } else if (DeclType->isArrayType()) {
780     llvm::APSInt Zero(
781                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                     false);
783     CheckArrayType(Entity, IList, DeclType, Zero,
784                    SubobjectIsDesignatorContext, Index,
785                    StructuredList, StructuredIndex);
786   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787     // This type is invalid, issue a diagnostic.
788     ++Index;
789     if (!VerifyOnly)
790       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791         << DeclType;
792     hadError = true;
793   } else if (DeclType->isReferenceType()) {
794     CheckReferenceType(Entity, IList, DeclType, Index,
795                        StructuredList, StructuredIndex);
796   } else if (DeclType->isObjCObjectType()) {
797     if (!VerifyOnly)
798       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799         << DeclType;
800     hadError = true;
801   } else {
802     if (!VerifyOnly)
803       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804         << DeclType;
805     hadError = true;
806   }
807 }
808 
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)809 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                           InitListExpr *IList,
811                                           QualType ElemType,
812                                           unsigned &Index,
813                                           InitListExpr *StructuredList,
814                                           unsigned &StructuredIndex) {
815   Expr *expr = IList->getInit(Index);
816 
817   if (ElemType->isReferenceType())
818     return CheckReferenceType(Entity, IList, ElemType, Index,
819                               StructuredList, StructuredIndex);
820 
821   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823       unsigned newIndex = 0;
824       unsigned newStructuredIndex = 0;
825       InitListExpr *newStructuredList
826         = getStructuredSubobjectInit(IList, Index, ElemType,
827                                      StructuredList, StructuredIndex,
828                                      SubInitList->getSourceRange());
829       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
830                             newStructuredList, newStructuredIndex);
831       ++StructuredIndex;
832       ++Index;
833       return;
834     }
835     assert(SemaRef.getLangOpts().CPlusPlus &&
836            "non-aggregate records are only possible in C++");
837     // C++ initialization is handled later.
838   }
839 
840   if (ElemType->isScalarType())
841     return CheckScalarType(Entity, IList, ElemType, Index,
842                            StructuredList, StructuredIndex);
843 
844   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
845     // arrayType can be incomplete if we're initializing a flexible
846     // array member.  There's nothing we can do with the completed
847     // type here, though.
848 
849     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
850       if (!VerifyOnly) {
851         CheckStringInit(expr, ElemType, arrayType, SemaRef);
852         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
853       }
854       ++Index;
855       return;
856     }
857 
858     // Fall through for subaggregate initialization.
859 
860   } else if (SemaRef.getLangOpts().CPlusPlus) {
861     // C++ [dcl.init.aggr]p12:
862     //   All implicit type conversions (clause 4) are considered when
863     //   initializing the aggregate member with an initializer from
864     //   an initializer-list. If the initializer can initialize a
865     //   member, the member is initialized. [...]
866 
867     // FIXME: Better EqualLoc?
868     InitializationKind Kind =
869       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
870     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
871 
872     if (Seq) {
873       if (!VerifyOnly) {
874         ExprResult Result =
875           Seq.Perform(SemaRef, Entity, Kind, expr);
876         if (Result.isInvalid())
877           hadError = true;
878 
879         UpdateStructuredListElement(StructuredList, StructuredIndex,
880                                     Result.takeAs<Expr>());
881       }
882       ++Index;
883       return;
884     }
885 
886     // Fall through for subaggregate initialization
887   } else {
888     // C99 6.7.8p13:
889     //
890     //   The initializer for a structure or union object that has
891     //   automatic storage duration shall be either an initializer
892     //   list as described below, or a single expression that has
893     //   compatible structure or union type. In the latter case, the
894     //   initial value of the object, including unnamed members, is
895     //   that of the expression.
896     ExprResult ExprRes = SemaRef.Owned(expr);
897     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
898         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
899                                                  !VerifyOnly)
900           == Sema::Compatible) {
901       if (ExprRes.isInvalid())
902         hadError = true;
903       else {
904         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
905           if (ExprRes.isInvalid())
906             hadError = true;
907       }
908       UpdateStructuredListElement(StructuredList, StructuredIndex,
909                                   ExprRes.takeAs<Expr>());
910       ++Index;
911       return;
912     }
913     ExprRes.release();
914     // Fall through for subaggregate initialization
915   }
916 
917   // C++ [dcl.init.aggr]p12:
918   //
919   //   [...] Otherwise, if the member is itself a non-empty
920   //   subaggregate, brace elision is assumed and the initializer is
921   //   considered for the initialization of the first member of
922   //   the subaggregate.
923   if (!SemaRef.getLangOpts().OpenCL &&
924       (ElemType->isAggregateType() || ElemType->isVectorType())) {
925     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
926                           StructuredIndex);
927     ++StructuredIndex;
928   } else {
929     if (!VerifyOnly) {
930       // We cannot initialize this element, so let
931       // PerformCopyInitialization produce the appropriate diagnostic.
932       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
933                                         SemaRef.Owned(expr),
934                                         /*TopLevelOfInitList=*/true);
935     }
936     hadError = true;
937     ++Index;
938     ++StructuredIndex;
939   }
940 }
941 
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)942 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
943                                        InitListExpr *IList, QualType DeclType,
944                                        unsigned &Index,
945                                        InitListExpr *StructuredList,
946                                        unsigned &StructuredIndex) {
947   assert(Index == 0 && "Index in explicit init list must be zero");
948 
949   // As an extension, clang supports complex initializers, which initialize
950   // a complex number component-wise.  When an explicit initializer list for
951   // a complex number contains two two initializers, this extension kicks in:
952   // it exepcts the initializer list to contain two elements convertible to
953   // the element type of the complex type. The first element initializes
954   // the real part, and the second element intitializes the imaginary part.
955 
956   if (IList->getNumInits() != 2)
957     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
958                            StructuredIndex);
959 
960   // This is an extension in C.  (The builtin _Complex type does not exist
961   // in the C++ standard.)
962   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
963     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
964       << IList->getSourceRange();
965 
966   // Initialize the complex number.
967   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
968   InitializedEntity ElementEntity =
969     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
970 
971   for (unsigned i = 0; i < 2; ++i) {
972     ElementEntity.setElementIndex(Index);
973     CheckSubElementType(ElementEntity, IList, elementType, Index,
974                         StructuredList, StructuredIndex);
975   }
976 }
977 
978 
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)979 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
980                                       InitListExpr *IList, QualType DeclType,
981                                       unsigned &Index,
982                                       InitListExpr *StructuredList,
983                                       unsigned &StructuredIndex) {
984   if (Index >= IList->getNumInits()) {
985     if (!VerifyOnly)
986       SemaRef.Diag(IList->getLocStart(),
987                    SemaRef.getLangOpts().CPlusPlus11 ?
988                      diag::warn_cxx98_compat_empty_scalar_initializer :
989                      diag::err_empty_scalar_initializer)
990         << IList->getSourceRange();
991     hadError = !SemaRef.getLangOpts().CPlusPlus11;
992     ++Index;
993     ++StructuredIndex;
994     return;
995   }
996 
997   Expr *expr = IList->getInit(Index);
998   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
999     if (!VerifyOnly)
1000       SemaRef.Diag(SubIList->getLocStart(),
1001                    diag::warn_many_braces_around_scalar_init)
1002         << SubIList->getSourceRange();
1003 
1004     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1005                     StructuredIndex);
1006     return;
1007   } else if (isa<DesignatedInitExpr>(expr)) {
1008     if (!VerifyOnly)
1009       SemaRef.Diag(expr->getLocStart(),
1010                    diag::err_designator_for_scalar_init)
1011         << DeclType << expr->getSourceRange();
1012     hadError = true;
1013     ++Index;
1014     ++StructuredIndex;
1015     return;
1016   }
1017 
1018   if (VerifyOnly) {
1019     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1020       hadError = true;
1021     ++Index;
1022     return;
1023   }
1024 
1025   ExprResult Result =
1026     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1027                                       SemaRef.Owned(expr),
1028                                       /*TopLevelOfInitList=*/true);
1029 
1030   Expr *ResultExpr = 0;
1031 
1032   if (Result.isInvalid())
1033     hadError = true; // types weren't compatible.
1034   else {
1035     ResultExpr = Result.takeAs<Expr>();
1036 
1037     if (ResultExpr != expr) {
1038       // The type was promoted, update initializer list.
1039       IList->setInit(Index, ResultExpr);
1040     }
1041   }
1042   if (hadError)
1043     ++StructuredIndex;
1044   else
1045     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1046   ++Index;
1047 }
1048 
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1049 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1050                                          InitListExpr *IList, QualType DeclType,
1051                                          unsigned &Index,
1052                                          InitListExpr *StructuredList,
1053                                          unsigned &StructuredIndex) {
1054   if (Index >= IList->getNumInits()) {
1055     // FIXME: It would be wonderful if we could point at the actual member. In
1056     // general, it would be useful to pass location information down the stack,
1057     // so that we know the location (or decl) of the "current object" being
1058     // initialized.
1059     if (!VerifyOnly)
1060       SemaRef.Diag(IList->getLocStart(),
1061                     diag::err_init_reference_member_uninitialized)
1062         << DeclType
1063         << IList->getSourceRange();
1064     hadError = true;
1065     ++Index;
1066     ++StructuredIndex;
1067     return;
1068   }
1069 
1070   Expr *expr = IList->getInit(Index);
1071   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1072     if (!VerifyOnly)
1073       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1074         << DeclType << IList->getSourceRange();
1075     hadError = true;
1076     ++Index;
1077     ++StructuredIndex;
1078     return;
1079   }
1080 
1081   if (VerifyOnly) {
1082     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1083       hadError = true;
1084     ++Index;
1085     return;
1086   }
1087 
1088   ExprResult Result =
1089     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1090                                       SemaRef.Owned(expr),
1091                                       /*TopLevelOfInitList=*/true);
1092 
1093   if (Result.isInvalid())
1094     hadError = true;
1095 
1096   expr = Result.takeAs<Expr>();
1097   IList->setInit(Index, expr);
1098 
1099   if (hadError)
1100     ++StructuredIndex;
1101   else
1102     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1103   ++Index;
1104 }
1105 
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1106 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1107                                       InitListExpr *IList, QualType DeclType,
1108                                       unsigned &Index,
1109                                       InitListExpr *StructuredList,
1110                                       unsigned &StructuredIndex) {
1111   const VectorType *VT = DeclType->getAs<VectorType>();
1112   unsigned maxElements = VT->getNumElements();
1113   unsigned numEltsInit = 0;
1114   QualType elementType = VT->getElementType();
1115 
1116   if (Index >= IList->getNumInits()) {
1117     // Make sure the element type can be value-initialized.
1118     if (VerifyOnly)
1119       CheckValueInitializable(
1120           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1121     return;
1122   }
1123 
1124   if (!SemaRef.getLangOpts().OpenCL) {
1125     // If the initializing element is a vector, try to copy-initialize
1126     // instead of breaking it apart (which is doomed to failure anyway).
1127     Expr *Init = IList->getInit(Index);
1128     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1129       if (VerifyOnly) {
1130         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1131           hadError = true;
1132         ++Index;
1133         return;
1134       }
1135 
1136       ExprResult Result =
1137         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1138                                           SemaRef.Owned(Init),
1139                                           /*TopLevelOfInitList=*/true);
1140 
1141       Expr *ResultExpr = 0;
1142       if (Result.isInvalid())
1143         hadError = true; // types weren't compatible.
1144       else {
1145         ResultExpr = Result.takeAs<Expr>();
1146 
1147         if (ResultExpr != Init) {
1148           // The type was promoted, update initializer list.
1149           IList->setInit(Index, ResultExpr);
1150         }
1151       }
1152       if (hadError)
1153         ++StructuredIndex;
1154       else
1155         UpdateStructuredListElement(StructuredList, StructuredIndex,
1156                                     ResultExpr);
1157       ++Index;
1158       return;
1159     }
1160 
1161     InitializedEntity ElementEntity =
1162       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1163 
1164     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1165       // Don't attempt to go past the end of the init list
1166       if (Index >= IList->getNumInits()) {
1167         if (VerifyOnly)
1168           CheckValueInitializable(ElementEntity);
1169         break;
1170       }
1171 
1172       ElementEntity.setElementIndex(Index);
1173       CheckSubElementType(ElementEntity, IList, elementType, Index,
1174                           StructuredList, StructuredIndex);
1175     }
1176     return;
1177   }
1178 
1179   InitializedEntity ElementEntity =
1180     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1181 
1182   // OpenCL initializers allows vectors to be constructed from vectors.
1183   for (unsigned i = 0; i < maxElements; ++i) {
1184     // Don't attempt to go past the end of the init list
1185     if (Index >= IList->getNumInits())
1186       break;
1187 
1188     ElementEntity.setElementIndex(Index);
1189 
1190     QualType IType = IList->getInit(Index)->getType();
1191     if (!IType->isVectorType()) {
1192       CheckSubElementType(ElementEntity, IList, elementType, Index,
1193                           StructuredList, StructuredIndex);
1194       ++numEltsInit;
1195     } else {
1196       QualType VecType;
1197       const VectorType *IVT = IType->getAs<VectorType>();
1198       unsigned numIElts = IVT->getNumElements();
1199 
1200       if (IType->isExtVectorType())
1201         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1202       else
1203         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1204                                                 IVT->getVectorKind());
1205       CheckSubElementType(ElementEntity, IList, VecType, Index,
1206                           StructuredList, StructuredIndex);
1207       numEltsInit += numIElts;
1208     }
1209   }
1210 
1211   // OpenCL requires all elements to be initialized.
1212   if (numEltsInit != maxElements) {
1213     if (!VerifyOnly)
1214       SemaRef.Diag(IList->getLocStart(),
1215                    diag::err_vector_incorrect_num_initializers)
1216         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1217     hadError = true;
1218   }
1219 }
1220 
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1221 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1222                                      InitListExpr *IList, QualType &DeclType,
1223                                      llvm::APSInt elementIndex,
1224                                      bool SubobjectIsDesignatorContext,
1225                                      unsigned &Index,
1226                                      InitListExpr *StructuredList,
1227                                      unsigned &StructuredIndex) {
1228   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1229 
1230   // Check for the special-case of initializing an array with a string.
1231   if (Index < IList->getNumInits()) {
1232     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1233         SIF_None) {
1234       // We place the string literal directly into the resulting
1235       // initializer list. This is the only place where the structure
1236       // of the structured initializer list doesn't match exactly,
1237       // because doing so would involve allocating one character
1238       // constant for each string.
1239       if (!VerifyOnly) {
1240         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1241         UpdateStructuredListElement(StructuredList, StructuredIndex,
1242                                     IList->getInit(Index));
1243         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1244       }
1245       ++Index;
1246       return;
1247     }
1248   }
1249   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1250     // Check for VLAs; in standard C it would be possible to check this
1251     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1252     // them in all sorts of strange places).
1253     if (!VerifyOnly)
1254       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1255                     diag::err_variable_object_no_init)
1256         << VAT->getSizeExpr()->getSourceRange();
1257     hadError = true;
1258     ++Index;
1259     ++StructuredIndex;
1260     return;
1261   }
1262 
1263   // We might know the maximum number of elements in advance.
1264   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1265                            elementIndex.isUnsigned());
1266   bool maxElementsKnown = false;
1267   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1268     maxElements = CAT->getSize();
1269     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1270     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1271     maxElementsKnown = true;
1272   }
1273 
1274   QualType elementType = arrayType->getElementType();
1275   while (Index < IList->getNumInits()) {
1276     Expr *Init = IList->getInit(Index);
1277     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1278       // If we're not the subobject that matches up with the '{' for
1279       // the designator, we shouldn't be handling the
1280       // designator. Return immediately.
1281       if (!SubobjectIsDesignatorContext)
1282         return;
1283 
1284       // Handle this designated initializer. elementIndex will be
1285       // updated to be the next array element we'll initialize.
1286       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1287                                      DeclType, 0, &elementIndex, Index,
1288                                      StructuredList, StructuredIndex, true,
1289                                      false)) {
1290         hadError = true;
1291         continue;
1292       }
1293 
1294       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1295         maxElements = maxElements.extend(elementIndex.getBitWidth());
1296       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1297         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1298       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1299 
1300       // If the array is of incomplete type, keep track of the number of
1301       // elements in the initializer.
1302       if (!maxElementsKnown && elementIndex > maxElements)
1303         maxElements = elementIndex;
1304 
1305       continue;
1306     }
1307 
1308     // If we know the maximum number of elements, and we've already
1309     // hit it, stop consuming elements in the initializer list.
1310     if (maxElementsKnown && elementIndex == maxElements)
1311       break;
1312 
1313     InitializedEntity ElementEntity =
1314       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1315                                            Entity);
1316     // Check this element.
1317     CheckSubElementType(ElementEntity, IList, elementType, Index,
1318                         StructuredList, StructuredIndex);
1319     ++elementIndex;
1320 
1321     // If the array is of incomplete type, keep track of the number of
1322     // elements in the initializer.
1323     if (!maxElementsKnown && elementIndex > maxElements)
1324       maxElements = elementIndex;
1325   }
1326   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1327     // If this is an incomplete array type, the actual type needs to
1328     // be calculated here.
1329     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1330     if (maxElements == Zero) {
1331       // Sizing an array implicitly to zero is not allowed by ISO C,
1332       // but is supported by GNU.
1333       SemaRef.Diag(IList->getLocStart(),
1334                     diag::ext_typecheck_zero_array_size);
1335     }
1336 
1337     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1338                                                      ArrayType::Normal, 0);
1339   }
1340   if (!hadError && VerifyOnly) {
1341     // Check if there are any members of the array that get value-initialized.
1342     // If so, check if doing that is possible.
1343     // FIXME: This needs to detect holes left by designated initializers too.
1344     if (maxElementsKnown && elementIndex < maxElements)
1345       CheckValueInitializable(InitializedEntity::InitializeElement(
1346                                                   SemaRef.Context, 0, Entity));
1347   }
1348 }
1349 
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1350 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1351                                              Expr *InitExpr,
1352                                              FieldDecl *Field,
1353                                              bool TopLevelObject) {
1354   // Handle GNU flexible array initializers.
1355   unsigned FlexArrayDiag;
1356   if (isa<InitListExpr>(InitExpr) &&
1357       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1358     // Empty flexible array init always allowed as an extension
1359     FlexArrayDiag = diag::ext_flexible_array_init;
1360   } else if (SemaRef.getLangOpts().CPlusPlus) {
1361     // Disallow flexible array init in C++; it is not required for gcc
1362     // compatibility, and it needs work to IRGen correctly in general.
1363     FlexArrayDiag = diag::err_flexible_array_init;
1364   } else if (!TopLevelObject) {
1365     // Disallow flexible array init on non-top-level object
1366     FlexArrayDiag = diag::err_flexible_array_init;
1367   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1368     // Disallow flexible array init on anything which is not a variable.
1369     FlexArrayDiag = diag::err_flexible_array_init;
1370   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1371     // Disallow flexible array init on local variables.
1372     FlexArrayDiag = diag::err_flexible_array_init;
1373   } else {
1374     // Allow other cases.
1375     FlexArrayDiag = diag::ext_flexible_array_init;
1376   }
1377 
1378   if (!VerifyOnly) {
1379     SemaRef.Diag(InitExpr->getLocStart(),
1380                  FlexArrayDiag)
1381       << InitExpr->getLocStart();
1382     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1383       << Field;
1384   }
1385 
1386   return FlexArrayDiag != diag::ext_flexible_array_init;
1387 }
1388 
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1389 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1390                                             InitListExpr *IList,
1391                                             QualType DeclType,
1392                                             RecordDecl::field_iterator Field,
1393                                             bool SubobjectIsDesignatorContext,
1394                                             unsigned &Index,
1395                                             InitListExpr *StructuredList,
1396                                             unsigned &StructuredIndex,
1397                                             bool TopLevelObject) {
1398   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1399 
1400   // If the record is invalid, some of it's members are invalid. To avoid
1401   // confusion, we forgo checking the intializer for the entire record.
1402   if (structDecl->isInvalidDecl()) {
1403     // Assume it was supposed to consume a single initializer.
1404     ++Index;
1405     hadError = true;
1406     return;
1407   }
1408 
1409   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1410     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1411 
1412     // If there's a default initializer, use it.
1413     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1414       if (VerifyOnly)
1415         return;
1416       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1417            Field != FieldEnd; ++Field) {
1418         if (Field->hasInClassInitializer()) {
1419           StructuredList->setInitializedFieldInUnion(*Field);
1420           // FIXME: Actually build a CXXDefaultInitExpr?
1421           return;
1422         }
1423       }
1424     }
1425 
1426     // Value-initialize the first named member of the union.
1427     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1428          Field != FieldEnd; ++Field) {
1429       if (Field->getDeclName()) {
1430         if (VerifyOnly)
1431           CheckValueInitializable(
1432               InitializedEntity::InitializeMember(*Field, &Entity));
1433         else
1434           StructuredList->setInitializedFieldInUnion(*Field);
1435         break;
1436       }
1437     }
1438     return;
1439   }
1440 
1441   // If structDecl is a forward declaration, this loop won't do
1442   // anything except look at designated initializers; That's okay,
1443   // because an error should get printed out elsewhere. It might be
1444   // worthwhile to skip over the rest of the initializer, though.
1445   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1446   RecordDecl::field_iterator FieldEnd = RD->field_end();
1447   bool InitializedSomething = false;
1448   bool CheckForMissingFields = true;
1449   while (Index < IList->getNumInits()) {
1450     Expr *Init = IList->getInit(Index);
1451 
1452     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1453       // If we're not the subobject that matches up with the '{' for
1454       // the designator, we shouldn't be handling the
1455       // designator. Return immediately.
1456       if (!SubobjectIsDesignatorContext)
1457         return;
1458 
1459       // Handle this designated initializer. Field will be updated to
1460       // the next field that we'll be initializing.
1461       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1462                                      DeclType, &Field, 0, Index,
1463                                      StructuredList, StructuredIndex,
1464                                      true, TopLevelObject))
1465         hadError = true;
1466 
1467       InitializedSomething = true;
1468 
1469       // Disable check for missing fields when designators are used.
1470       // This matches gcc behaviour.
1471       CheckForMissingFields = false;
1472       continue;
1473     }
1474 
1475     if (Field == FieldEnd) {
1476       // We've run out of fields. We're done.
1477       break;
1478     }
1479 
1480     // We've already initialized a member of a union. We're done.
1481     if (InitializedSomething && DeclType->isUnionType())
1482       break;
1483 
1484     // If we've hit the flexible array member at the end, we're done.
1485     if (Field->getType()->isIncompleteArrayType())
1486       break;
1487 
1488     if (Field->isUnnamedBitfield()) {
1489       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1490       ++Field;
1491       continue;
1492     }
1493 
1494     // Make sure we can use this declaration.
1495     bool InvalidUse;
1496     if (VerifyOnly)
1497       InvalidUse = !SemaRef.CanUseDecl(*Field);
1498     else
1499       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1500                                           IList->getInit(Index)->getLocStart());
1501     if (InvalidUse) {
1502       ++Index;
1503       ++Field;
1504       hadError = true;
1505       continue;
1506     }
1507 
1508     InitializedEntity MemberEntity =
1509       InitializedEntity::InitializeMember(*Field, &Entity);
1510     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1511                         StructuredList, StructuredIndex);
1512     InitializedSomething = true;
1513 
1514     if (DeclType->isUnionType() && !VerifyOnly) {
1515       // Initialize the first field within the union.
1516       StructuredList->setInitializedFieldInUnion(*Field);
1517     }
1518 
1519     ++Field;
1520   }
1521 
1522   // Emit warnings for missing struct field initializers.
1523   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1524       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1525       !DeclType->isUnionType()) {
1526     // It is possible we have one or more unnamed bitfields remaining.
1527     // Find first (if any) named field and emit warning.
1528     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1529          it != end; ++it) {
1530       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1531         SemaRef.Diag(IList->getSourceRange().getEnd(),
1532                      diag::warn_missing_field_initializers) << it->getName();
1533         break;
1534       }
1535     }
1536   }
1537 
1538   // Check that any remaining fields can be value-initialized.
1539   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1540       !Field->getType()->isIncompleteArrayType()) {
1541     // FIXME: Should check for holes left by designated initializers too.
1542     for (; Field != FieldEnd && !hadError; ++Field) {
1543       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1544         CheckValueInitializable(
1545             InitializedEntity::InitializeMember(*Field, &Entity));
1546     }
1547   }
1548 
1549   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1550       Index >= IList->getNumInits())
1551     return;
1552 
1553   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1554                              TopLevelObject)) {
1555     hadError = true;
1556     ++Index;
1557     return;
1558   }
1559 
1560   InitializedEntity MemberEntity =
1561     InitializedEntity::InitializeMember(*Field, &Entity);
1562 
1563   if (isa<InitListExpr>(IList->getInit(Index)))
1564     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1565                         StructuredList, StructuredIndex);
1566   else
1567     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1568                           StructuredList, StructuredIndex);
1569 }
1570 
1571 /// \brief Expand a field designator that refers to a member of an
1572 /// anonymous struct or union into a series of field designators that
1573 /// refers to the field within the appropriate subobject.
1574 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1575 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1576                                            DesignatedInitExpr *DIE,
1577                                            unsigned DesigIdx,
1578                                            IndirectFieldDecl *IndirectField) {
1579   typedef DesignatedInitExpr::Designator Designator;
1580 
1581   // Build the replacement designators.
1582   SmallVector<Designator, 4> Replacements;
1583   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1584        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1585     if (PI + 1 == PE)
1586       Replacements.push_back(Designator((IdentifierInfo *)0,
1587                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1588                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1589     else
1590       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1591                                         SourceLocation()));
1592     assert(isa<FieldDecl>(*PI));
1593     Replacements.back().setField(cast<FieldDecl>(*PI));
1594   }
1595 
1596   // Expand the current designator into the set of replacement
1597   // designators, so we have a full subobject path down to where the
1598   // member of the anonymous struct/union is actually stored.
1599   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1600                         &Replacements[0] + Replacements.size());
1601 }
1602 
1603 /// \brief Given an implicit anonymous field, search the IndirectField that
1604 ///  corresponds to FieldName.
FindIndirectFieldDesignator(FieldDecl * AnonField,IdentifierInfo * FieldName)1605 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1606                                                  IdentifierInfo *FieldName) {
1607   if (!FieldName)
1608     return 0;
1609 
1610   assert(AnonField->isAnonymousStructOrUnion());
1611   Decl *NextDecl = AnonField->getNextDeclInContext();
1612   while (IndirectFieldDecl *IF =
1613           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1614     if (FieldName == IF->getAnonField()->getIdentifier())
1615       return IF;
1616     NextDecl = NextDecl->getNextDeclInContext();
1617   }
1618   return 0;
1619 }
1620 
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1621 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1622                                                    DesignatedInitExpr *DIE) {
1623   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1624   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1625   for (unsigned I = 0; I < NumIndexExprs; ++I)
1626     IndexExprs[I] = DIE->getSubExpr(I + 1);
1627   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1628                                     DIE->size(), IndexExprs,
1629                                     DIE->getEqualOrColonLoc(),
1630                                     DIE->usesGNUSyntax(), DIE->getInit());
1631 }
1632 
1633 namespace {
1634 
1635 // Callback to only accept typo corrections that are for field members of
1636 // the given struct or union.
1637 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1638  public:
FieldInitializerValidatorCCC(RecordDecl * RD)1639   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1640       : Record(RD) {}
1641 
ValidateCandidate(const TypoCorrection & candidate)1642   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1643     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1644     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1645   }
1646 
1647  private:
1648   RecordDecl *Record;
1649 };
1650 
1651 }
1652 
1653 /// @brief Check the well-formedness of a C99 designated initializer.
1654 ///
1655 /// Determines whether the designated initializer @p DIE, which
1656 /// resides at the given @p Index within the initializer list @p
1657 /// IList, is well-formed for a current object of type @p DeclType
1658 /// (C99 6.7.8). The actual subobject that this designator refers to
1659 /// within the current subobject is returned in either
1660 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1661 ///
1662 /// @param IList  The initializer list in which this designated
1663 /// initializer occurs.
1664 ///
1665 /// @param DIE The designated initializer expression.
1666 ///
1667 /// @param DesigIdx  The index of the current designator.
1668 ///
1669 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1670 /// into which the designation in @p DIE should refer.
1671 ///
1672 /// @param NextField  If non-NULL and the first designator in @p DIE is
1673 /// a field, this will be set to the field declaration corresponding
1674 /// to the field named by the designator.
1675 ///
1676 /// @param NextElementIndex  If non-NULL and the first designator in @p
1677 /// DIE is an array designator or GNU array-range designator, this
1678 /// will be set to the last index initialized by this designator.
1679 ///
1680 /// @param Index  Index into @p IList where the designated initializer
1681 /// @p DIE occurs.
1682 ///
1683 /// @param StructuredList  The initializer list expression that
1684 /// describes all of the subobject initializers in the order they'll
1685 /// actually be initialized.
1686 ///
1687 /// @returns true if there was an error, false otherwise.
1688 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1689 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1690                                             InitListExpr *IList,
1691                                             DesignatedInitExpr *DIE,
1692                                             unsigned DesigIdx,
1693                                             QualType &CurrentObjectType,
1694                                           RecordDecl::field_iterator *NextField,
1695                                             llvm::APSInt *NextElementIndex,
1696                                             unsigned &Index,
1697                                             InitListExpr *StructuredList,
1698                                             unsigned &StructuredIndex,
1699                                             bool FinishSubobjectInit,
1700                                             bool TopLevelObject) {
1701   if (DesigIdx == DIE->size()) {
1702     // Check the actual initialization for the designated object type.
1703     bool prevHadError = hadError;
1704 
1705     // Temporarily remove the designator expression from the
1706     // initializer list that the child calls see, so that we don't try
1707     // to re-process the designator.
1708     unsigned OldIndex = Index;
1709     IList->setInit(OldIndex, DIE->getInit());
1710 
1711     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1712                         StructuredList, StructuredIndex);
1713 
1714     // Restore the designated initializer expression in the syntactic
1715     // form of the initializer list.
1716     if (IList->getInit(OldIndex) != DIE->getInit())
1717       DIE->setInit(IList->getInit(OldIndex));
1718     IList->setInit(OldIndex, DIE);
1719 
1720     return hadError && !prevHadError;
1721   }
1722 
1723   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1724   bool IsFirstDesignator = (DesigIdx == 0);
1725   if (!VerifyOnly) {
1726     assert((IsFirstDesignator || StructuredList) &&
1727            "Need a non-designated initializer list to start from");
1728 
1729     // Determine the structural initializer list that corresponds to the
1730     // current subobject.
1731     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1732       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1733                                    StructuredList, StructuredIndex,
1734                                    SourceRange(D->getLocStart(),
1735                                                DIE->getLocEnd()));
1736     assert(StructuredList && "Expected a structured initializer list");
1737   }
1738 
1739   if (D->isFieldDesignator()) {
1740     // C99 6.7.8p7:
1741     //
1742     //   If a designator has the form
1743     //
1744     //      . identifier
1745     //
1746     //   then the current object (defined below) shall have
1747     //   structure or union type and the identifier shall be the
1748     //   name of a member of that type.
1749     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1750     if (!RT) {
1751       SourceLocation Loc = D->getDotLoc();
1752       if (Loc.isInvalid())
1753         Loc = D->getFieldLoc();
1754       if (!VerifyOnly)
1755         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1756           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1757       ++Index;
1758       return true;
1759     }
1760 
1761     // Note: we perform a linear search of the fields here, despite
1762     // the fact that we have a faster lookup method, because we always
1763     // need to compute the field's index.
1764     FieldDecl *KnownField = D->getField();
1765     IdentifierInfo *FieldName = D->getFieldName();
1766     unsigned FieldIndex = 0;
1767     RecordDecl::field_iterator
1768       Field = RT->getDecl()->field_begin(),
1769       FieldEnd = RT->getDecl()->field_end();
1770     for (; Field != FieldEnd; ++Field) {
1771       if (Field->isUnnamedBitfield())
1772         continue;
1773 
1774       // If we find a field representing an anonymous field, look in the
1775       // IndirectFieldDecl that follow for the designated initializer.
1776       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1777         if (IndirectFieldDecl *IF =
1778             FindIndirectFieldDesignator(*Field, FieldName)) {
1779           // In verify mode, don't modify the original.
1780           if (VerifyOnly)
1781             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1782           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1783           D = DIE->getDesignator(DesigIdx);
1784           break;
1785         }
1786       }
1787       if (KnownField && KnownField == *Field)
1788         break;
1789       if (FieldName && FieldName == Field->getIdentifier())
1790         break;
1791 
1792       ++FieldIndex;
1793     }
1794 
1795     if (Field == FieldEnd) {
1796       if (VerifyOnly) {
1797         ++Index;
1798         return true; // No typo correction when just trying this out.
1799       }
1800 
1801       // There was no normal field in the struct with the designated
1802       // name. Perform another lookup for this name, which may find
1803       // something that we can't designate (e.g., a member function),
1804       // may find nothing, or may find a member of an anonymous
1805       // struct/union.
1806       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1807       FieldDecl *ReplacementField = 0;
1808       if (Lookup.empty()) {
1809         // Name lookup didn't find anything. Determine whether this
1810         // was a typo for another field name.
1811         FieldInitializerValidatorCCC Validator(RT->getDecl());
1812         TypoCorrection Corrected = SemaRef.CorrectTypo(
1813             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1814             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1815             RT->getDecl());
1816         if (Corrected) {
1817           std::string CorrectedStr(
1818               Corrected.getAsString(SemaRef.getLangOpts()));
1819           std::string CorrectedQuotedStr(
1820               Corrected.getQuoted(SemaRef.getLangOpts()));
1821           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1822           SemaRef.Diag(D->getFieldLoc(),
1823                        diag::err_field_designator_unknown_suggest)
1824             << FieldName << CurrentObjectType << CorrectedQuotedStr
1825             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1826           SemaRef.Diag(ReplacementField->getLocation(),
1827                        diag::note_previous_decl) << CorrectedQuotedStr;
1828           hadError = true;
1829         } else {
1830           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1831             << FieldName << CurrentObjectType;
1832           ++Index;
1833           return true;
1834         }
1835       }
1836 
1837       if (!ReplacementField) {
1838         // Name lookup found something, but it wasn't a field.
1839         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1840           << FieldName;
1841         SemaRef.Diag(Lookup.front()->getLocation(),
1842                       diag::note_field_designator_found);
1843         ++Index;
1844         return true;
1845       }
1846 
1847       if (!KnownField) {
1848         // The replacement field comes from typo correction; find it
1849         // in the list of fields.
1850         FieldIndex = 0;
1851         Field = RT->getDecl()->field_begin();
1852         for (; Field != FieldEnd; ++Field) {
1853           if (Field->isUnnamedBitfield())
1854             continue;
1855 
1856           if (ReplacementField == *Field ||
1857               Field->getIdentifier() == ReplacementField->getIdentifier())
1858             break;
1859 
1860           ++FieldIndex;
1861         }
1862       }
1863     }
1864 
1865     // All of the fields of a union are located at the same place in
1866     // the initializer list.
1867     if (RT->getDecl()->isUnion()) {
1868       FieldIndex = 0;
1869       if (!VerifyOnly)
1870         StructuredList->setInitializedFieldInUnion(*Field);
1871     }
1872 
1873     // Make sure we can use this declaration.
1874     bool InvalidUse;
1875     if (VerifyOnly)
1876       InvalidUse = !SemaRef.CanUseDecl(*Field);
1877     else
1878       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1879     if (InvalidUse) {
1880       ++Index;
1881       return true;
1882     }
1883 
1884     if (!VerifyOnly) {
1885       // Update the designator with the field declaration.
1886       D->setField(*Field);
1887 
1888       // Make sure that our non-designated initializer list has space
1889       // for a subobject corresponding to this field.
1890       if (FieldIndex >= StructuredList->getNumInits())
1891         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1892     }
1893 
1894     // This designator names a flexible array member.
1895     if (Field->getType()->isIncompleteArrayType()) {
1896       bool Invalid = false;
1897       if ((DesigIdx + 1) != DIE->size()) {
1898         // We can't designate an object within the flexible array
1899         // member (because GCC doesn't allow it).
1900         if (!VerifyOnly) {
1901           DesignatedInitExpr::Designator *NextD
1902             = DIE->getDesignator(DesigIdx + 1);
1903           SemaRef.Diag(NextD->getLocStart(),
1904                         diag::err_designator_into_flexible_array_member)
1905             << SourceRange(NextD->getLocStart(),
1906                            DIE->getLocEnd());
1907           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1908             << *Field;
1909         }
1910         Invalid = true;
1911       }
1912 
1913       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1914           !isa<StringLiteral>(DIE->getInit())) {
1915         // The initializer is not an initializer list.
1916         if (!VerifyOnly) {
1917           SemaRef.Diag(DIE->getInit()->getLocStart(),
1918                         diag::err_flexible_array_init_needs_braces)
1919             << DIE->getInit()->getSourceRange();
1920           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1921             << *Field;
1922         }
1923         Invalid = true;
1924       }
1925 
1926       // Check GNU flexible array initializer.
1927       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1928                                              TopLevelObject))
1929         Invalid = true;
1930 
1931       if (Invalid) {
1932         ++Index;
1933         return true;
1934       }
1935 
1936       // Initialize the array.
1937       bool prevHadError = hadError;
1938       unsigned newStructuredIndex = FieldIndex;
1939       unsigned OldIndex = Index;
1940       IList->setInit(Index, DIE->getInit());
1941 
1942       InitializedEntity MemberEntity =
1943         InitializedEntity::InitializeMember(*Field, &Entity);
1944       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1945                           StructuredList, newStructuredIndex);
1946 
1947       IList->setInit(OldIndex, DIE);
1948       if (hadError && !prevHadError) {
1949         ++Field;
1950         ++FieldIndex;
1951         if (NextField)
1952           *NextField = Field;
1953         StructuredIndex = FieldIndex;
1954         return true;
1955       }
1956     } else {
1957       // Recurse to check later designated subobjects.
1958       QualType FieldType = Field->getType();
1959       unsigned newStructuredIndex = FieldIndex;
1960 
1961       InitializedEntity MemberEntity =
1962         InitializedEntity::InitializeMember(*Field, &Entity);
1963       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1964                                      FieldType, 0, 0, Index,
1965                                      StructuredList, newStructuredIndex,
1966                                      true, false))
1967         return true;
1968     }
1969 
1970     // Find the position of the next field to be initialized in this
1971     // subobject.
1972     ++Field;
1973     ++FieldIndex;
1974 
1975     // If this the first designator, our caller will continue checking
1976     // the rest of this struct/class/union subobject.
1977     if (IsFirstDesignator) {
1978       if (NextField)
1979         *NextField = Field;
1980       StructuredIndex = FieldIndex;
1981       return false;
1982     }
1983 
1984     if (!FinishSubobjectInit)
1985       return false;
1986 
1987     // We've already initialized something in the union; we're done.
1988     if (RT->getDecl()->isUnion())
1989       return hadError;
1990 
1991     // Check the remaining fields within this class/struct/union subobject.
1992     bool prevHadError = hadError;
1993 
1994     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1995                           StructuredList, FieldIndex);
1996     return hadError && !prevHadError;
1997   }
1998 
1999   // C99 6.7.8p6:
2000   //
2001   //   If a designator has the form
2002   //
2003   //      [ constant-expression ]
2004   //
2005   //   then the current object (defined below) shall have array
2006   //   type and the expression shall be an integer constant
2007   //   expression. If the array is of unknown size, any
2008   //   nonnegative value is valid.
2009   //
2010   // Additionally, cope with the GNU extension that permits
2011   // designators of the form
2012   //
2013   //      [ constant-expression ... constant-expression ]
2014   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2015   if (!AT) {
2016     if (!VerifyOnly)
2017       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2018         << CurrentObjectType;
2019     ++Index;
2020     return true;
2021   }
2022 
2023   Expr *IndexExpr = 0;
2024   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2025   if (D->isArrayDesignator()) {
2026     IndexExpr = DIE->getArrayIndex(*D);
2027     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2028     DesignatedEndIndex = DesignatedStartIndex;
2029   } else {
2030     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2031 
2032     DesignatedStartIndex =
2033       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2034     DesignatedEndIndex =
2035       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2036     IndexExpr = DIE->getArrayRangeEnd(*D);
2037 
2038     // Codegen can't handle evaluating array range designators that have side
2039     // effects, because we replicate the AST value for each initialized element.
2040     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2041     // elements with something that has a side effect, so codegen can emit an
2042     // "error unsupported" error instead of miscompiling the app.
2043     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2044         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2045       FullyStructuredList->sawArrayRangeDesignator();
2046   }
2047 
2048   if (isa<ConstantArrayType>(AT)) {
2049     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2050     DesignatedStartIndex
2051       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2052     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2053     DesignatedEndIndex
2054       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2055     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2056     if (DesignatedEndIndex >= MaxElements) {
2057       if (!VerifyOnly)
2058         SemaRef.Diag(IndexExpr->getLocStart(),
2059                       diag::err_array_designator_too_large)
2060           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2061           << IndexExpr->getSourceRange();
2062       ++Index;
2063       return true;
2064     }
2065   } else {
2066     // Make sure the bit-widths and signedness match.
2067     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2068       DesignatedEndIndex
2069         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2070     else if (DesignatedStartIndex.getBitWidth() <
2071              DesignatedEndIndex.getBitWidth())
2072       DesignatedStartIndex
2073         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2074     DesignatedStartIndex.setIsUnsigned(true);
2075     DesignatedEndIndex.setIsUnsigned(true);
2076   }
2077 
2078   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2079     // We're modifying a string literal init; we have to decompose the string
2080     // so we can modify the individual characters.
2081     ASTContext &Context = SemaRef.Context;
2082     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2083 
2084     // Compute the character type
2085     QualType CharTy = AT->getElementType();
2086 
2087     // Compute the type of the integer literals.
2088     QualType PromotedCharTy = CharTy;
2089     if (CharTy->isPromotableIntegerType())
2090       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2091     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2092 
2093     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2094       // Get the length of the string.
2095       uint64_t StrLen = SL->getLength();
2096       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2097         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2098       StructuredList->resizeInits(Context, StrLen);
2099 
2100       // Build a literal for each character in the string, and put them into
2101       // the init list.
2102       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2103         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2104         Expr *Init = new (Context) IntegerLiteral(
2105             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2106         if (CharTy != PromotedCharTy)
2107           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2108                                           Init, 0, VK_RValue);
2109         StructuredList->updateInit(Context, i, Init);
2110       }
2111     } else {
2112       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2113       std::string Str;
2114       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2115 
2116       // Get the length of the string.
2117       uint64_t StrLen = Str.size();
2118       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2119         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2120       StructuredList->resizeInits(Context, StrLen);
2121 
2122       // Build a literal for each character in the string, and put them into
2123       // the init list.
2124       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2125         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2126         Expr *Init = new (Context) IntegerLiteral(
2127             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2128         if (CharTy != PromotedCharTy)
2129           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2130                                           Init, 0, VK_RValue);
2131         StructuredList->updateInit(Context, i, Init);
2132       }
2133     }
2134   }
2135 
2136   // Make sure that our non-designated initializer list has space
2137   // for a subobject corresponding to this array element.
2138   if (!VerifyOnly &&
2139       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2140     StructuredList->resizeInits(SemaRef.Context,
2141                                 DesignatedEndIndex.getZExtValue() + 1);
2142 
2143   // Repeatedly perform subobject initializations in the range
2144   // [DesignatedStartIndex, DesignatedEndIndex].
2145 
2146   // Move to the next designator
2147   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2148   unsigned OldIndex = Index;
2149 
2150   InitializedEntity ElementEntity =
2151     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2152 
2153   while (DesignatedStartIndex <= DesignatedEndIndex) {
2154     // Recurse to check later designated subobjects.
2155     QualType ElementType = AT->getElementType();
2156     Index = OldIndex;
2157 
2158     ElementEntity.setElementIndex(ElementIndex);
2159     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2160                                    ElementType, 0, 0, Index,
2161                                    StructuredList, ElementIndex,
2162                                    (DesignatedStartIndex == DesignatedEndIndex),
2163                                    false))
2164       return true;
2165 
2166     // Move to the next index in the array that we'll be initializing.
2167     ++DesignatedStartIndex;
2168     ElementIndex = DesignatedStartIndex.getZExtValue();
2169   }
2170 
2171   // If this the first designator, our caller will continue checking
2172   // the rest of this array subobject.
2173   if (IsFirstDesignator) {
2174     if (NextElementIndex)
2175       *NextElementIndex = DesignatedStartIndex;
2176     StructuredIndex = ElementIndex;
2177     return false;
2178   }
2179 
2180   if (!FinishSubobjectInit)
2181     return false;
2182 
2183   // Check the remaining elements within this array subobject.
2184   bool prevHadError = hadError;
2185   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2186                  /*SubobjectIsDesignatorContext=*/false, Index,
2187                  StructuredList, ElementIndex);
2188   return hadError && !prevHadError;
2189 }
2190 
2191 // Get the structured initializer list for a subobject of type
2192 // @p CurrentObjectType.
2193 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)2194 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2195                                             QualType CurrentObjectType,
2196                                             InitListExpr *StructuredList,
2197                                             unsigned StructuredIndex,
2198                                             SourceRange InitRange) {
2199   if (VerifyOnly)
2200     return 0; // No structured list in verification-only mode.
2201   Expr *ExistingInit = 0;
2202   if (!StructuredList)
2203     ExistingInit = SyntacticToSemantic.lookup(IList);
2204   else if (StructuredIndex < StructuredList->getNumInits())
2205     ExistingInit = StructuredList->getInit(StructuredIndex);
2206 
2207   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2208     return Result;
2209 
2210   if (ExistingInit) {
2211     // We are creating an initializer list that initializes the
2212     // subobjects of the current object, but there was already an
2213     // initialization that completely initialized the current
2214     // subobject, e.g., by a compound literal:
2215     //
2216     // struct X { int a, b; };
2217     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2218     //
2219     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2220     // designated initializer re-initializes the whole
2221     // subobject [0], overwriting previous initializers.
2222     SemaRef.Diag(InitRange.getBegin(),
2223                  diag::warn_subobject_initializer_overrides)
2224       << InitRange;
2225     SemaRef.Diag(ExistingInit->getLocStart(),
2226                   diag::note_previous_initializer)
2227       << /*FIXME:has side effects=*/0
2228       << ExistingInit->getSourceRange();
2229   }
2230 
2231   InitListExpr *Result
2232     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2233                                          InitRange.getBegin(), None,
2234                                          InitRange.getEnd());
2235 
2236   QualType ResultType = CurrentObjectType;
2237   if (!ResultType->isArrayType())
2238     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2239   Result->setType(ResultType);
2240 
2241   // Pre-allocate storage for the structured initializer list.
2242   unsigned NumElements = 0;
2243   unsigned NumInits = 0;
2244   bool GotNumInits = false;
2245   if (!StructuredList) {
2246     NumInits = IList->getNumInits();
2247     GotNumInits = true;
2248   } else if (Index < IList->getNumInits()) {
2249     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2250       NumInits = SubList->getNumInits();
2251       GotNumInits = true;
2252     }
2253   }
2254 
2255   if (const ArrayType *AType
2256       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2257     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2258       NumElements = CAType->getSize().getZExtValue();
2259       // Simple heuristic so that we don't allocate a very large
2260       // initializer with many empty entries at the end.
2261       if (GotNumInits && NumElements > NumInits)
2262         NumElements = 0;
2263     }
2264   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2265     NumElements = VType->getNumElements();
2266   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2267     RecordDecl *RDecl = RType->getDecl();
2268     if (RDecl->isUnion())
2269       NumElements = 1;
2270     else
2271       NumElements = std::distance(RDecl->field_begin(),
2272                                   RDecl->field_end());
2273   }
2274 
2275   Result->reserveInits(SemaRef.Context, NumElements);
2276 
2277   // Link this new initializer list into the structured initializer
2278   // lists.
2279   if (StructuredList)
2280     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2281   else {
2282     Result->setSyntacticForm(IList);
2283     SyntacticToSemantic[IList] = Result;
2284   }
2285 
2286   return Result;
2287 }
2288 
2289 /// Update the initializer at index @p StructuredIndex within the
2290 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2291 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2292                                                   unsigned &StructuredIndex,
2293                                                   Expr *expr) {
2294   // No structured initializer list to update
2295   if (!StructuredList)
2296     return;
2297 
2298   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2299                                                   StructuredIndex, expr)) {
2300     // This initializer overwrites a previous initializer. Warn.
2301     SemaRef.Diag(expr->getLocStart(),
2302                   diag::warn_initializer_overrides)
2303       << expr->getSourceRange();
2304     SemaRef.Diag(PrevInit->getLocStart(),
2305                   diag::note_previous_initializer)
2306       << /*FIXME:has side effects=*/0
2307       << PrevInit->getSourceRange();
2308   }
2309 
2310   ++StructuredIndex;
2311 }
2312 
2313 /// Check that the given Index expression is a valid array designator
2314 /// value. This is essentially just a wrapper around
2315 /// VerifyIntegerConstantExpression that also checks for negative values
2316 /// and produces a reasonable diagnostic if there is a
2317 /// failure. Returns the index expression, possibly with an implicit cast
2318 /// added, on success.  If everything went okay, Value will receive the
2319 /// value of the constant expression.
2320 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2321 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2322   SourceLocation Loc = Index->getLocStart();
2323 
2324   // Make sure this is an integer constant expression.
2325   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2326   if (Result.isInvalid())
2327     return Result;
2328 
2329   if (Value.isSigned() && Value.isNegative())
2330     return S.Diag(Loc, diag::err_array_designator_negative)
2331       << Value.toString(10) << Index->getSourceRange();
2332 
2333   Value.setIsUnsigned(true);
2334   return Result;
2335 }
2336 
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2337 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2338                                             SourceLocation Loc,
2339                                             bool GNUSyntax,
2340                                             ExprResult Init) {
2341   typedef DesignatedInitExpr::Designator ASTDesignator;
2342 
2343   bool Invalid = false;
2344   SmallVector<ASTDesignator, 32> Designators;
2345   SmallVector<Expr *, 32> InitExpressions;
2346 
2347   // Build designators and check array designator expressions.
2348   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2349     const Designator &D = Desig.getDesignator(Idx);
2350     switch (D.getKind()) {
2351     case Designator::FieldDesignator:
2352       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2353                                           D.getFieldLoc()));
2354       break;
2355 
2356     case Designator::ArrayDesignator: {
2357       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2358       llvm::APSInt IndexValue;
2359       if (!Index->isTypeDependent() && !Index->isValueDependent())
2360         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2361       if (!Index)
2362         Invalid = true;
2363       else {
2364         Designators.push_back(ASTDesignator(InitExpressions.size(),
2365                                             D.getLBracketLoc(),
2366                                             D.getRBracketLoc()));
2367         InitExpressions.push_back(Index);
2368       }
2369       break;
2370     }
2371 
2372     case Designator::ArrayRangeDesignator: {
2373       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2374       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2375       llvm::APSInt StartValue;
2376       llvm::APSInt EndValue;
2377       bool StartDependent = StartIndex->isTypeDependent() ||
2378                             StartIndex->isValueDependent();
2379       bool EndDependent = EndIndex->isTypeDependent() ||
2380                           EndIndex->isValueDependent();
2381       if (!StartDependent)
2382         StartIndex =
2383             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2384       if (!EndDependent)
2385         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2386 
2387       if (!StartIndex || !EndIndex)
2388         Invalid = true;
2389       else {
2390         // Make sure we're comparing values with the same bit width.
2391         if (StartDependent || EndDependent) {
2392           // Nothing to compute.
2393         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2394           EndValue = EndValue.extend(StartValue.getBitWidth());
2395         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2396           StartValue = StartValue.extend(EndValue.getBitWidth());
2397 
2398         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2399           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2400             << StartValue.toString(10) << EndValue.toString(10)
2401             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2402           Invalid = true;
2403         } else {
2404           Designators.push_back(ASTDesignator(InitExpressions.size(),
2405                                               D.getLBracketLoc(),
2406                                               D.getEllipsisLoc(),
2407                                               D.getRBracketLoc()));
2408           InitExpressions.push_back(StartIndex);
2409           InitExpressions.push_back(EndIndex);
2410         }
2411       }
2412       break;
2413     }
2414     }
2415   }
2416 
2417   if (Invalid || Init.isInvalid())
2418     return ExprError();
2419 
2420   // Clear out the expressions within the designation.
2421   Desig.ClearExprs(*this);
2422 
2423   DesignatedInitExpr *DIE
2424     = DesignatedInitExpr::Create(Context,
2425                                  Designators.data(), Designators.size(),
2426                                  InitExpressions, Loc, GNUSyntax,
2427                                  Init.takeAs<Expr>());
2428 
2429   if (!getLangOpts().C99)
2430     Diag(DIE->getLocStart(), diag::ext_designated_init)
2431       << DIE->getSourceRange();
2432 
2433   return Owned(DIE);
2434 }
2435 
2436 //===----------------------------------------------------------------------===//
2437 // Initialization entity
2438 //===----------------------------------------------------------------------===//
2439 
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2440 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2441                                      const InitializedEntity &Parent)
2442   : Parent(&Parent), Index(Index)
2443 {
2444   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2445     Kind = EK_ArrayElement;
2446     Type = AT->getElementType();
2447   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2448     Kind = EK_VectorElement;
2449     Type = VT->getElementType();
2450   } else {
2451     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2452     assert(CT && "Unexpected type");
2453     Kind = EK_ComplexElement;
2454     Type = CT->getElementType();
2455   }
2456 }
2457 
2458 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2459 InitializedEntity::InitializeBase(ASTContext &Context,
2460                                   const CXXBaseSpecifier *Base,
2461                                   bool IsInheritedVirtualBase) {
2462   InitializedEntity Result;
2463   Result.Kind = EK_Base;
2464   Result.Parent = 0;
2465   Result.Base = reinterpret_cast<uintptr_t>(Base);
2466   if (IsInheritedVirtualBase)
2467     Result.Base |= 0x01;
2468 
2469   Result.Type = Base->getType();
2470   return Result;
2471 }
2472 
getName() const2473 DeclarationName InitializedEntity::getName() const {
2474   switch (getKind()) {
2475   case EK_Parameter:
2476   case EK_Parameter_CF_Audited: {
2477     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2478     return (D ? D->getDeclName() : DeclarationName());
2479   }
2480 
2481   case EK_Variable:
2482   case EK_Member:
2483     return VariableOrMember->getDeclName();
2484 
2485   case EK_LambdaCapture:
2486     return Capture.Var->getDeclName();
2487 
2488   case EK_Result:
2489   case EK_Exception:
2490   case EK_New:
2491   case EK_Temporary:
2492   case EK_Base:
2493   case EK_Delegating:
2494   case EK_ArrayElement:
2495   case EK_VectorElement:
2496   case EK_ComplexElement:
2497   case EK_BlockElement:
2498   case EK_CompoundLiteralInit:
2499   case EK_RelatedResult:
2500     return DeclarationName();
2501   }
2502 
2503   llvm_unreachable("Invalid EntityKind!");
2504 }
2505 
getDecl() const2506 DeclaratorDecl *InitializedEntity::getDecl() const {
2507   switch (getKind()) {
2508   case EK_Variable:
2509   case EK_Member:
2510     return VariableOrMember;
2511 
2512   case EK_Parameter:
2513   case EK_Parameter_CF_Audited:
2514     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2515 
2516   case EK_Result:
2517   case EK_Exception:
2518   case EK_New:
2519   case EK_Temporary:
2520   case EK_Base:
2521   case EK_Delegating:
2522   case EK_ArrayElement:
2523   case EK_VectorElement:
2524   case EK_ComplexElement:
2525   case EK_BlockElement:
2526   case EK_LambdaCapture:
2527   case EK_CompoundLiteralInit:
2528   case EK_RelatedResult:
2529     return 0;
2530   }
2531 
2532   llvm_unreachable("Invalid EntityKind!");
2533 }
2534 
allowsNRVO() const2535 bool InitializedEntity::allowsNRVO() const {
2536   switch (getKind()) {
2537   case EK_Result:
2538   case EK_Exception:
2539     return LocAndNRVO.NRVO;
2540 
2541   case EK_Variable:
2542   case EK_Parameter:
2543   case EK_Parameter_CF_Audited:
2544   case EK_Member:
2545   case EK_New:
2546   case EK_Temporary:
2547   case EK_CompoundLiteralInit:
2548   case EK_Base:
2549   case EK_Delegating:
2550   case EK_ArrayElement:
2551   case EK_VectorElement:
2552   case EK_ComplexElement:
2553   case EK_BlockElement:
2554   case EK_LambdaCapture:
2555   case EK_RelatedResult:
2556     break;
2557   }
2558 
2559   return false;
2560 }
2561 
dumpImpl(raw_ostream & OS) const2562 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2563   assert(getParent() != this);
2564   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2565   for (unsigned I = 0; I != Depth; ++I)
2566     OS << "`-";
2567 
2568   switch (getKind()) {
2569   case EK_Variable: OS << "Variable"; break;
2570   case EK_Parameter: OS << "Parameter"; break;
2571   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2572     break;
2573   case EK_Result: OS << "Result"; break;
2574   case EK_Exception: OS << "Exception"; break;
2575   case EK_Member: OS << "Member"; break;
2576   case EK_New: OS << "New"; break;
2577   case EK_Temporary: OS << "Temporary"; break;
2578   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2579   case EK_RelatedResult: OS << "RelatedResult"; break;
2580   case EK_Base: OS << "Base"; break;
2581   case EK_Delegating: OS << "Delegating"; break;
2582   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2583   case EK_VectorElement: OS << "VectorElement " << Index; break;
2584   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2585   case EK_BlockElement: OS << "Block"; break;
2586   case EK_LambdaCapture:
2587     OS << "LambdaCapture ";
2588     getCapturedVar()->printName(OS);
2589     break;
2590   }
2591 
2592   if (Decl *D = getDecl()) {
2593     OS << " ";
2594     cast<NamedDecl>(D)->printQualifiedName(OS);
2595   }
2596 
2597   OS << " '" << getType().getAsString() << "'\n";
2598 
2599   return Depth + 1;
2600 }
2601 
dump() const2602 void InitializedEntity::dump() const {
2603   dumpImpl(llvm::errs());
2604 }
2605 
2606 //===----------------------------------------------------------------------===//
2607 // Initialization sequence
2608 //===----------------------------------------------------------------------===//
2609 
Destroy()2610 void InitializationSequence::Step::Destroy() {
2611   switch (Kind) {
2612   case SK_ResolveAddressOfOverloadedFunction:
2613   case SK_CastDerivedToBaseRValue:
2614   case SK_CastDerivedToBaseXValue:
2615   case SK_CastDerivedToBaseLValue:
2616   case SK_BindReference:
2617   case SK_BindReferenceToTemporary:
2618   case SK_ExtraneousCopyToTemporary:
2619   case SK_UserConversion:
2620   case SK_QualificationConversionRValue:
2621   case SK_QualificationConversionXValue:
2622   case SK_QualificationConversionLValue:
2623   case SK_LValueToRValue:
2624   case SK_ListInitialization:
2625   case SK_ListConstructorCall:
2626   case SK_UnwrapInitList:
2627   case SK_RewrapInitList:
2628   case SK_ConstructorInitialization:
2629   case SK_ZeroInitialization:
2630   case SK_CAssignment:
2631   case SK_StringInit:
2632   case SK_ObjCObjectConversion:
2633   case SK_ArrayInit:
2634   case SK_ParenthesizedArrayInit:
2635   case SK_PassByIndirectCopyRestore:
2636   case SK_PassByIndirectRestore:
2637   case SK_ProduceObjCObject:
2638   case SK_StdInitializerList:
2639   case SK_OCLSamplerInit:
2640   case SK_OCLZeroEvent:
2641     break;
2642 
2643   case SK_ConversionSequence:
2644     delete ICS;
2645   }
2646 }
2647 
isDirectReferenceBinding() const2648 bool InitializationSequence::isDirectReferenceBinding() const {
2649   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2650 }
2651 
isAmbiguous() const2652 bool InitializationSequence::isAmbiguous() const {
2653   if (!Failed())
2654     return false;
2655 
2656   switch (getFailureKind()) {
2657   case FK_TooManyInitsForReference:
2658   case FK_ArrayNeedsInitList:
2659   case FK_ArrayNeedsInitListOrStringLiteral:
2660   case FK_ArrayNeedsInitListOrWideStringLiteral:
2661   case FK_NarrowStringIntoWideCharArray:
2662   case FK_WideStringIntoCharArray:
2663   case FK_IncompatWideStringIntoWideChar:
2664   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2665   case FK_NonConstLValueReferenceBindingToTemporary:
2666   case FK_NonConstLValueReferenceBindingToUnrelated:
2667   case FK_RValueReferenceBindingToLValue:
2668   case FK_ReferenceInitDropsQualifiers:
2669   case FK_ReferenceInitFailed:
2670   case FK_ConversionFailed:
2671   case FK_ConversionFromPropertyFailed:
2672   case FK_TooManyInitsForScalar:
2673   case FK_ReferenceBindingToInitList:
2674   case FK_InitListBadDestinationType:
2675   case FK_DefaultInitOfConst:
2676   case FK_Incomplete:
2677   case FK_ArrayTypeMismatch:
2678   case FK_NonConstantArrayInit:
2679   case FK_ListInitializationFailed:
2680   case FK_VariableLengthArrayHasInitializer:
2681   case FK_PlaceholderType:
2682   case FK_ExplicitConstructor:
2683     return false;
2684 
2685   case FK_ReferenceInitOverloadFailed:
2686   case FK_UserConversionOverloadFailed:
2687   case FK_ConstructorOverloadFailed:
2688   case FK_ListConstructorOverloadFailed:
2689     return FailedOverloadResult == OR_Ambiguous;
2690   }
2691 
2692   llvm_unreachable("Invalid EntityKind!");
2693 }
2694 
isConstructorInitialization() const2695 bool InitializationSequence::isConstructorInitialization() const {
2696   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2697 }
2698 
2699 void
2700 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)2701 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2702                                    DeclAccessPair Found,
2703                                    bool HadMultipleCandidates) {
2704   Step S;
2705   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2706   S.Type = Function->getType();
2707   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2708   S.Function.Function = Function;
2709   S.Function.FoundDecl = Found;
2710   Steps.push_back(S);
2711 }
2712 
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2713 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2714                                                       ExprValueKind VK) {
2715   Step S;
2716   switch (VK) {
2717   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2718   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2719   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2720   }
2721   S.Type = BaseType;
2722   Steps.push_back(S);
2723 }
2724 
AddReferenceBindingStep(QualType T,bool BindingTemporary)2725 void InitializationSequence::AddReferenceBindingStep(QualType T,
2726                                                      bool BindingTemporary) {
2727   Step S;
2728   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2729   S.Type = T;
2730   Steps.push_back(S);
2731 }
2732 
AddExtraneousCopyToTemporary(QualType T)2733 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2734   Step S;
2735   S.Kind = SK_ExtraneousCopyToTemporary;
2736   S.Type = T;
2737   Steps.push_back(S);
2738 }
2739 
2740 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)2741 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2742                                               DeclAccessPair FoundDecl,
2743                                               QualType T,
2744                                               bool HadMultipleCandidates) {
2745   Step S;
2746   S.Kind = SK_UserConversion;
2747   S.Type = T;
2748   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2749   S.Function.Function = Function;
2750   S.Function.FoundDecl = FoundDecl;
2751   Steps.push_back(S);
2752 }
2753 
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2754 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2755                                                             ExprValueKind VK) {
2756   Step S;
2757   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2758   switch (VK) {
2759   case VK_RValue:
2760     S.Kind = SK_QualificationConversionRValue;
2761     break;
2762   case VK_XValue:
2763     S.Kind = SK_QualificationConversionXValue;
2764     break;
2765   case VK_LValue:
2766     S.Kind = SK_QualificationConversionLValue;
2767     break;
2768   }
2769   S.Type = Ty;
2770   Steps.push_back(S);
2771 }
2772 
AddLValueToRValueStep(QualType Ty)2773 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2774   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2775 
2776   Step S;
2777   S.Kind = SK_LValueToRValue;
2778   S.Type = Ty;
2779   Steps.push_back(S);
2780 }
2781 
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T)2782 void InitializationSequence::AddConversionSequenceStep(
2783                                        const ImplicitConversionSequence &ICS,
2784                                                        QualType T) {
2785   Step S;
2786   S.Kind = SK_ConversionSequence;
2787   S.Type = T;
2788   S.ICS = new ImplicitConversionSequence(ICS);
2789   Steps.push_back(S);
2790 }
2791 
AddListInitializationStep(QualType T)2792 void InitializationSequence::AddListInitializationStep(QualType T) {
2793   Step S;
2794   S.Kind = SK_ListInitialization;
2795   S.Type = T;
2796   Steps.push_back(S);
2797 }
2798 
2799 void
2800 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)2801 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2802                                    AccessSpecifier Access,
2803                                    QualType T,
2804                                    bool HadMultipleCandidates,
2805                                    bool FromInitList, bool AsInitList) {
2806   Step S;
2807   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2808                                        : SK_ConstructorInitialization;
2809   S.Type = T;
2810   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2811   S.Function.Function = Constructor;
2812   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2813   Steps.push_back(S);
2814 }
2815 
AddZeroInitializationStep(QualType T)2816 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2817   Step S;
2818   S.Kind = SK_ZeroInitialization;
2819   S.Type = T;
2820   Steps.push_back(S);
2821 }
2822 
AddCAssignmentStep(QualType T)2823 void InitializationSequence::AddCAssignmentStep(QualType T) {
2824   Step S;
2825   S.Kind = SK_CAssignment;
2826   S.Type = T;
2827   Steps.push_back(S);
2828 }
2829 
AddStringInitStep(QualType T)2830 void InitializationSequence::AddStringInitStep(QualType T) {
2831   Step S;
2832   S.Kind = SK_StringInit;
2833   S.Type = T;
2834   Steps.push_back(S);
2835 }
2836 
AddObjCObjectConversionStep(QualType T)2837 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2838   Step S;
2839   S.Kind = SK_ObjCObjectConversion;
2840   S.Type = T;
2841   Steps.push_back(S);
2842 }
2843 
AddArrayInitStep(QualType T)2844 void InitializationSequence::AddArrayInitStep(QualType T) {
2845   Step S;
2846   S.Kind = SK_ArrayInit;
2847   S.Type = T;
2848   Steps.push_back(S);
2849 }
2850 
AddParenthesizedArrayInitStep(QualType T)2851 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2852   Step S;
2853   S.Kind = SK_ParenthesizedArrayInit;
2854   S.Type = T;
2855   Steps.push_back(S);
2856 }
2857 
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2858 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2859                                                               bool shouldCopy) {
2860   Step s;
2861   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2862                        : SK_PassByIndirectRestore);
2863   s.Type = type;
2864   Steps.push_back(s);
2865 }
2866 
AddProduceObjCObjectStep(QualType T)2867 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2868   Step S;
2869   S.Kind = SK_ProduceObjCObject;
2870   S.Type = T;
2871   Steps.push_back(S);
2872 }
2873 
AddStdInitializerListConstructionStep(QualType T)2874 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2875   Step S;
2876   S.Kind = SK_StdInitializerList;
2877   S.Type = T;
2878   Steps.push_back(S);
2879 }
2880 
AddOCLSamplerInitStep(QualType T)2881 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2882   Step S;
2883   S.Kind = SK_OCLSamplerInit;
2884   S.Type = T;
2885   Steps.push_back(S);
2886 }
2887 
AddOCLZeroEventStep(QualType T)2888 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2889   Step S;
2890   S.Kind = SK_OCLZeroEvent;
2891   S.Type = T;
2892   Steps.push_back(S);
2893 }
2894 
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)2895 void InitializationSequence::RewrapReferenceInitList(QualType T,
2896                                                      InitListExpr *Syntactic) {
2897   assert(Syntactic->getNumInits() == 1 &&
2898          "Can only rewrap trivial init lists.");
2899   Step S;
2900   S.Kind = SK_UnwrapInitList;
2901   S.Type = Syntactic->getInit(0)->getType();
2902   Steps.insert(Steps.begin(), S);
2903 
2904   S.Kind = SK_RewrapInitList;
2905   S.Type = T;
2906   S.WrappingSyntacticList = Syntactic;
2907   Steps.push_back(S);
2908 }
2909 
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)2910 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2911                                                 OverloadingResult Result) {
2912   setSequenceKind(FailedSequence);
2913   this->Failure = Failure;
2914   this->FailedOverloadResult = Result;
2915 }
2916 
2917 //===----------------------------------------------------------------------===//
2918 // Attempt initialization
2919 //===----------------------------------------------------------------------===//
2920 
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)2921 static void MaybeProduceObjCObject(Sema &S,
2922                                    InitializationSequence &Sequence,
2923                                    const InitializedEntity &Entity) {
2924   if (!S.getLangOpts().ObjCAutoRefCount) return;
2925 
2926   /// When initializing a parameter, produce the value if it's marked
2927   /// __attribute__((ns_consumed)).
2928   if (Entity.isParameterKind()) {
2929     if (!Entity.isParameterConsumed())
2930       return;
2931 
2932     assert(Entity.getType()->isObjCRetainableType() &&
2933            "consuming an object of unretainable type?");
2934     Sequence.AddProduceObjCObjectStep(Entity.getType());
2935 
2936   /// When initializing a return value, if the return type is a
2937   /// retainable type, then returns need to immediately retain the
2938   /// object.  If an autorelease is required, it will be done at the
2939   /// last instant.
2940   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2941     if (!Entity.getType()->isObjCRetainableType())
2942       return;
2943 
2944     Sequence.AddProduceObjCObjectStep(Entity.getType());
2945   }
2946 }
2947 
2948 static void TryListInitialization(Sema &S,
2949                                   const InitializedEntity &Entity,
2950                                   const InitializationKind &Kind,
2951                                   InitListExpr *InitList,
2952                                   InitializationSequence &Sequence);
2953 
2954 /// \brief When initializing from init list via constructor, handle
2955 /// initialization of an object of type std::initializer_list<T>.
2956 ///
2957 /// \return true if we have handled initialization of an object of type
2958 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)2959 static bool TryInitializerListConstruction(Sema &S,
2960                                            InitListExpr *List,
2961                                            QualType DestType,
2962                                            InitializationSequence &Sequence) {
2963   QualType E;
2964   if (!S.isStdInitializerList(DestType, &E))
2965     return false;
2966 
2967   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2968     Sequence.setIncompleteTypeFailure(E);
2969     return true;
2970   }
2971 
2972   // Try initializing a temporary array from the init list.
2973   QualType ArrayType = S.Context.getConstantArrayType(
2974       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2975                                  List->getNumInits()),
2976       clang::ArrayType::Normal, 0);
2977   InitializedEntity HiddenArray =
2978       InitializedEntity::InitializeTemporary(ArrayType);
2979   InitializationKind Kind =
2980       InitializationKind::CreateDirectList(List->getExprLoc());
2981   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
2982   if (Sequence)
2983     Sequence.AddStdInitializerListConstructionStep(DestType);
2984   return true;
2985 }
2986 
2987 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,ArrayRef<NamedDecl * > Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool InitListSyntax)2988 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2989                            MultiExprArg Args,
2990                            OverloadCandidateSet &CandidateSet,
2991                            ArrayRef<NamedDecl *> Ctors,
2992                            OverloadCandidateSet::iterator &Best,
2993                            bool CopyInitializing, bool AllowExplicit,
2994                            bool OnlyListConstructors, bool InitListSyntax) {
2995   CandidateSet.clear();
2996 
2997   for (ArrayRef<NamedDecl *>::iterator
2998          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2999     NamedDecl *D = *Con;
3000     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3001     bool SuppressUserConversions = false;
3002 
3003     // Find the constructor (which may be a template).
3004     CXXConstructorDecl *Constructor = 0;
3005     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3006     if (ConstructorTmpl)
3007       Constructor = cast<CXXConstructorDecl>(
3008                                            ConstructorTmpl->getTemplatedDecl());
3009     else {
3010       Constructor = cast<CXXConstructorDecl>(D);
3011 
3012       // If we're performing copy initialization using a copy constructor, we
3013       // suppress user-defined conversions on the arguments. We do the same for
3014       // move constructors.
3015       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3016           Constructor->isCopyOrMoveConstructor())
3017         SuppressUserConversions = true;
3018     }
3019 
3020     if (!Constructor->isInvalidDecl() &&
3021         (AllowExplicit || !Constructor->isExplicit()) &&
3022         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3023       if (ConstructorTmpl)
3024         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3025                                        /*ExplicitArgs*/ 0, Args,
3026                                        CandidateSet, SuppressUserConversions);
3027       else {
3028         // C++ [over.match.copy]p1:
3029         //   - When initializing a temporary to be bound to the first parameter
3030         //     of a constructor that takes a reference to possibly cv-qualified
3031         //     T as its first argument, called with a single argument in the
3032         //     context of direct-initialization, explicit conversion functions
3033         //     are also considered.
3034         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3035                                  Args.size() == 1 &&
3036                                  Constructor->isCopyOrMoveConstructor();
3037         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3038                                SuppressUserConversions,
3039                                /*PartialOverloading=*/false,
3040                                /*AllowExplicit=*/AllowExplicitConv);
3041       }
3042     }
3043   }
3044 
3045   // Perform overload resolution and return the result.
3046   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3047 }
3048 
3049 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3050 /// enumerates the constructors of the initialized entity and performs overload
3051 /// resolution to select the best.
3052 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
3053 /// class type.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,InitializationSequence & Sequence,bool InitListSyntax=false)3054 static void TryConstructorInitialization(Sema &S,
3055                                          const InitializedEntity &Entity,
3056                                          const InitializationKind &Kind,
3057                                          MultiExprArg Args, QualType DestType,
3058                                          InitializationSequence &Sequence,
3059                                          bool InitListSyntax = false) {
3060   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3061          "InitListSyntax must come with a single initializer list argument.");
3062 
3063   // The type we're constructing needs to be complete.
3064   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3065     Sequence.setIncompleteTypeFailure(DestType);
3066     return;
3067   }
3068 
3069   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3070   assert(DestRecordType && "Constructor initialization requires record type");
3071   CXXRecordDecl *DestRecordDecl
3072     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3073 
3074   // Build the candidate set directly in the initialization sequence
3075   // structure, so that it will persist if we fail.
3076   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3077 
3078   // Determine whether we are allowed to call explicit constructors or
3079   // explicit conversion operators.
3080   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3081   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3082 
3083   //   - Otherwise, if T is a class type, constructors are considered. The
3084   //     applicable constructors are enumerated, and the best one is chosen
3085   //     through overload resolution.
3086   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3087   // The container holding the constructors can under certain conditions
3088   // be changed while iterating (e.g. because of deserialization).
3089   // To be safe we copy the lookup results to a new container.
3090   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3091 
3092   OverloadingResult Result = OR_No_Viable_Function;
3093   OverloadCandidateSet::iterator Best;
3094   bool AsInitializerList = false;
3095 
3096   // C++11 [over.match.list]p1:
3097   //   When objects of non-aggregate type T are list-initialized, overload
3098   //   resolution selects the constructor in two phases:
3099   //   - Initially, the candidate functions are the initializer-list
3100   //     constructors of the class T and the argument list consists of the
3101   //     initializer list as a single argument.
3102   if (InitListSyntax) {
3103     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3104     AsInitializerList = true;
3105 
3106     // If the initializer list has no elements and T has a default constructor,
3107     // the first phase is omitted.
3108     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3109       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3110                                           CandidateSet, Ctors, Best,
3111                                           CopyInitialization, AllowExplicit,
3112                                           /*OnlyListConstructor=*/true,
3113                                           InitListSyntax);
3114 
3115     // Time to unwrap the init list.
3116     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3117   }
3118 
3119   // C++11 [over.match.list]p1:
3120   //   - If no viable initializer-list constructor is found, overload resolution
3121   //     is performed again, where the candidate functions are all the
3122   //     constructors of the class T and the argument list consists of the
3123   //     elements of the initializer list.
3124   if (Result == OR_No_Viable_Function) {
3125     AsInitializerList = false;
3126     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3127                                         CandidateSet, Ctors, Best,
3128                                         CopyInitialization, AllowExplicit,
3129                                         /*OnlyListConstructors=*/false,
3130                                         InitListSyntax);
3131   }
3132   if (Result) {
3133     Sequence.SetOverloadFailure(InitListSyntax ?
3134                       InitializationSequence::FK_ListConstructorOverloadFailed :
3135                       InitializationSequence::FK_ConstructorOverloadFailed,
3136                                 Result);
3137     return;
3138   }
3139 
3140   // C++11 [dcl.init]p6:
3141   //   If a program calls for the default initialization of an object
3142   //   of a const-qualified type T, T shall be a class type with a
3143   //   user-provided default constructor.
3144   if (Kind.getKind() == InitializationKind::IK_Default &&
3145       Entity.getType().isConstQualified() &&
3146       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3147     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3148     return;
3149   }
3150 
3151   // C++11 [over.match.list]p1:
3152   //   In copy-list-initialization, if an explicit constructor is chosen, the
3153   //   initializer is ill-formed.
3154   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3155   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3156     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3157     return;
3158   }
3159 
3160   // Add the constructor initialization step. Any cv-qualification conversion is
3161   // subsumed by the initialization.
3162   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3163   Sequence.AddConstructorInitializationStep(CtorDecl,
3164                                             Best->FoundDecl.getAccess(),
3165                                             DestType, HadMultipleCandidates,
3166                                             InitListSyntax, AsInitializerList);
3167 }
3168 
3169 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)3170 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3171                                              Expr *Initializer,
3172                                              QualType &SourceType,
3173                                              QualType &UnqualifiedSourceType,
3174                                              QualType UnqualifiedTargetType,
3175                                              InitializationSequence &Sequence) {
3176   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3177         S.Context.OverloadTy) {
3178     DeclAccessPair Found;
3179     bool HadMultipleCandidates = false;
3180     if (FunctionDecl *Fn
3181         = S.ResolveAddressOfOverloadedFunction(Initializer,
3182                                                UnqualifiedTargetType,
3183                                                false, Found,
3184                                                &HadMultipleCandidates)) {
3185       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3186                                                 HadMultipleCandidates);
3187       SourceType = Fn->getType();
3188       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3189     } else if (!UnqualifiedTargetType->isRecordType()) {
3190       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3191       return true;
3192     }
3193   }
3194   return false;
3195 }
3196 
3197 static void TryReferenceInitializationCore(Sema &S,
3198                                            const InitializedEntity &Entity,
3199                                            const InitializationKind &Kind,
3200                                            Expr *Initializer,
3201                                            QualType cv1T1, QualType T1,
3202                                            Qualifiers T1Quals,
3203                                            QualType cv2T2, QualType T2,
3204                                            Qualifiers T2Quals,
3205                                            InitializationSequence &Sequence);
3206 
3207 static void TryValueInitialization(Sema &S,
3208                                    const InitializedEntity &Entity,
3209                                    const InitializationKind &Kind,
3210                                    InitializationSequence &Sequence,
3211                                    InitListExpr *InitList = 0);
3212 
3213 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3214 static void TryReferenceListInitialization(Sema &S,
3215                                            const InitializedEntity &Entity,
3216                                            const InitializationKind &Kind,
3217                                            InitListExpr *InitList,
3218                                            InitializationSequence &Sequence) {
3219   // First, catch C++03 where this isn't possible.
3220   if (!S.getLangOpts().CPlusPlus11) {
3221     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3222     return;
3223   }
3224 
3225   QualType DestType = Entity.getType();
3226   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3227   Qualifiers T1Quals;
3228   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3229 
3230   // Reference initialization via an initializer list works thus:
3231   // If the initializer list consists of a single element that is
3232   // reference-related to the referenced type, bind directly to that element
3233   // (possibly creating temporaries).
3234   // Otherwise, initialize a temporary with the initializer list and
3235   // bind to that.
3236   if (InitList->getNumInits() == 1) {
3237     Expr *Initializer = InitList->getInit(0);
3238     QualType cv2T2 = Initializer->getType();
3239     Qualifiers T2Quals;
3240     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3241 
3242     // If this fails, creating a temporary wouldn't work either.
3243     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3244                                                      T1, Sequence))
3245       return;
3246 
3247     SourceLocation DeclLoc = Initializer->getLocStart();
3248     bool dummy1, dummy2, dummy3;
3249     Sema::ReferenceCompareResult RefRelationship
3250       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3251                                        dummy2, dummy3);
3252     if (RefRelationship >= Sema::Ref_Related) {
3253       // Try to bind the reference here.
3254       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3255                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3256       if (Sequence)
3257         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3258       return;
3259     }
3260 
3261     // Update the initializer if we've resolved an overloaded function.
3262     if (Sequence.step_begin() != Sequence.step_end())
3263       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3264   }
3265 
3266   // Not reference-related. Create a temporary and bind to that.
3267   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3268 
3269   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3270   if (Sequence) {
3271     if (DestType->isRValueReferenceType() ||
3272         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3273       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3274     else
3275       Sequence.SetFailed(
3276           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3277   }
3278 }
3279 
3280 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3281 static void TryListInitialization(Sema &S,
3282                                   const InitializedEntity &Entity,
3283                                   const InitializationKind &Kind,
3284                                   InitListExpr *InitList,
3285                                   InitializationSequence &Sequence) {
3286   QualType DestType = Entity.getType();
3287 
3288   // C++ doesn't allow scalar initialization with more than one argument.
3289   // But C99 complex numbers are scalars and it makes sense there.
3290   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3291       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3292     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3293     return;
3294   }
3295   if (DestType->isReferenceType()) {
3296     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3297     return;
3298   }
3299   if (DestType->isRecordType()) {
3300     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3301       Sequence.setIncompleteTypeFailure(DestType);
3302       return;
3303     }
3304 
3305     // C++11 [dcl.init.list]p3:
3306     //   - If T is an aggregate, aggregate initialization is performed.
3307     if (!DestType->isAggregateType()) {
3308       if (S.getLangOpts().CPlusPlus11) {
3309         //   - Otherwise, if the initializer list has no elements and T is a
3310         //     class type with a default constructor, the object is
3311         //     value-initialized.
3312         if (InitList->getNumInits() == 0) {
3313           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3314           if (RD->hasDefaultConstructor()) {
3315             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3316             return;
3317           }
3318         }
3319 
3320         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3321         //     an initializer_list object constructed [...]
3322         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3323           return;
3324 
3325         //   - Otherwise, if T is a class type, constructors are considered.
3326         Expr *InitListAsExpr = InitList;
3327         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3328                                      Sequence, /*InitListSyntax*/true);
3329       } else
3330         Sequence.SetFailed(
3331             InitializationSequence::FK_InitListBadDestinationType);
3332       return;
3333     }
3334   }
3335 
3336   InitListChecker CheckInitList(S, Entity, InitList,
3337           DestType, /*VerifyOnly=*/true);
3338   if (CheckInitList.HadError()) {
3339     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3340     return;
3341   }
3342 
3343   // Add the list initialization step with the built init list.
3344   Sequence.AddListInitializationStep(DestType);
3345 }
3346 
3347 /// \brief Try a reference initialization that involves calling a conversion
3348 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3349 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3350                                              const InitializedEntity &Entity,
3351                                              const InitializationKind &Kind,
3352                                              Expr *Initializer,
3353                                              bool AllowRValues,
3354                                              InitializationSequence &Sequence) {
3355   QualType DestType = Entity.getType();
3356   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3357   QualType T1 = cv1T1.getUnqualifiedType();
3358   QualType cv2T2 = Initializer->getType();
3359   QualType T2 = cv2T2.getUnqualifiedType();
3360 
3361   bool DerivedToBase;
3362   bool ObjCConversion;
3363   bool ObjCLifetimeConversion;
3364   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3365                                          T1, T2, DerivedToBase,
3366                                          ObjCConversion,
3367                                          ObjCLifetimeConversion) &&
3368          "Must have incompatible references when binding via conversion");
3369   (void)DerivedToBase;
3370   (void)ObjCConversion;
3371   (void)ObjCLifetimeConversion;
3372 
3373   // Build the candidate set directly in the initialization sequence
3374   // structure, so that it will persist if we fail.
3375   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3376   CandidateSet.clear();
3377 
3378   // Determine whether we are allowed to call explicit constructors or
3379   // explicit conversion operators.
3380   bool AllowExplicit = Kind.AllowExplicit();
3381   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3382 
3383   const RecordType *T1RecordType = 0;
3384   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3385       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3386     // The type we're converting to is a class type. Enumerate its constructors
3387     // to see if there is a suitable conversion.
3388     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3389 
3390     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3391     // The container holding the constructors can under certain conditions
3392     // be changed while iterating (e.g. because of deserialization).
3393     // To be safe we copy the lookup results to a new container.
3394     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3395     for (SmallVectorImpl<NamedDecl *>::iterator
3396            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3397       NamedDecl *D = *CI;
3398       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3399 
3400       // Find the constructor (which may be a template).
3401       CXXConstructorDecl *Constructor = 0;
3402       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3403       if (ConstructorTmpl)
3404         Constructor = cast<CXXConstructorDecl>(
3405                                          ConstructorTmpl->getTemplatedDecl());
3406       else
3407         Constructor = cast<CXXConstructorDecl>(D);
3408 
3409       if (!Constructor->isInvalidDecl() &&
3410           Constructor->isConvertingConstructor(AllowExplicit)) {
3411         if (ConstructorTmpl)
3412           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3413                                          /*ExplicitArgs*/ 0,
3414                                          Initializer, CandidateSet,
3415                                          /*SuppressUserConversions=*/true);
3416         else
3417           S.AddOverloadCandidate(Constructor, FoundDecl,
3418                                  Initializer, CandidateSet,
3419                                  /*SuppressUserConversions=*/true);
3420       }
3421     }
3422   }
3423   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3424     return OR_No_Viable_Function;
3425 
3426   const RecordType *T2RecordType = 0;
3427   if ((T2RecordType = T2->getAs<RecordType>()) &&
3428       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3429     // The type we're converting from is a class type, enumerate its conversion
3430     // functions.
3431     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3432 
3433     std::pair<CXXRecordDecl::conversion_iterator,
3434               CXXRecordDecl::conversion_iterator>
3435       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3436     for (CXXRecordDecl::conversion_iterator
3437            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3438       NamedDecl *D = *I;
3439       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3440       if (isa<UsingShadowDecl>(D))
3441         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3442 
3443       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3444       CXXConversionDecl *Conv;
3445       if (ConvTemplate)
3446         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3447       else
3448         Conv = cast<CXXConversionDecl>(D);
3449 
3450       // If the conversion function doesn't return a reference type,
3451       // it can't be considered for this conversion unless we're allowed to
3452       // consider rvalues.
3453       // FIXME: Do we need to make sure that we only consider conversion
3454       // candidates with reference-compatible results? That might be needed to
3455       // break recursion.
3456       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3457           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3458         if (ConvTemplate)
3459           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3460                                            ActingDC, Initializer,
3461                                            DestType, CandidateSet);
3462         else
3463           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3464                                    Initializer, DestType, CandidateSet);
3465       }
3466     }
3467   }
3468   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3469     return OR_No_Viable_Function;
3470 
3471   SourceLocation DeclLoc = Initializer->getLocStart();
3472 
3473   // Perform overload resolution. If it fails, return the failed result.
3474   OverloadCandidateSet::iterator Best;
3475   if (OverloadingResult Result
3476         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3477     return Result;
3478 
3479   FunctionDecl *Function = Best->Function;
3480   // This is the overload that will be used for this initialization step if we
3481   // use this initialization. Mark it as referenced.
3482   Function->setReferenced();
3483 
3484   // Compute the returned type of the conversion.
3485   if (isa<CXXConversionDecl>(Function))
3486     T2 = Function->getResultType();
3487   else
3488     T2 = cv1T1;
3489 
3490   // Add the user-defined conversion step.
3491   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3492   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3493                                  T2.getNonLValueExprType(S.Context),
3494                                  HadMultipleCandidates);
3495 
3496   // Determine whether we need to perform derived-to-base or
3497   // cv-qualification adjustments.
3498   ExprValueKind VK = VK_RValue;
3499   if (T2->isLValueReferenceType())
3500     VK = VK_LValue;
3501   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3502     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3503 
3504   bool NewDerivedToBase = false;
3505   bool NewObjCConversion = false;
3506   bool NewObjCLifetimeConversion = false;
3507   Sema::ReferenceCompareResult NewRefRelationship
3508     = S.CompareReferenceRelationship(DeclLoc, T1,
3509                                      T2.getNonLValueExprType(S.Context),
3510                                      NewDerivedToBase, NewObjCConversion,
3511                                      NewObjCLifetimeConversion);
3512   if (NewRefRelationship == Sema::Ref_Incompatible) {
3513     // If the type we've converted to is not reference-related to the
3514     // type we're looking for, then there is another conversion step
3515     // we need to perform to produce a temporary of the right type
3516     // that we'll be binding to.
3517     ImplicitConversionSequence ICS;
3518     ICS.setStandard();
3519     ICS.Standard = Best->FinalConversion;
3520     T2 = ICS.Standard.getToType(2);
3521     Sequence.AddConversionSequenceStep(ICS, T2);
3522   } else if (NewDerivedToBase)
3523     Sequence.AddDerivedToBaseCastStep(
3524                                 S.Context.getQualifiedType(T1,
3525                                   T2.getNonReferenceType().getQualifiers()),
3526                                       VK);
3527   else if (NewObjCConversion)
3528     Sequence.AddObjCObjectConversionStep(
3529                                 S.Context.getQualifiedType(T1,
3530                                   T2.getNonReferenceType().getQualifiers()));
3531 
3532   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3533     Sequence.AddQualificationConversionStep(cv1T1, VK);
3534 
3535   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3536   return OR_Success;
3537 }
3538 
3539 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3540                                            const InitializedEntity &Entity,
3541                                            Expr *CurInitExpr);
3542 
3543 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3544 static void TryReferenceInitialization(Sema &S,
3545                                        const InitializedEntity &Entity,
3546                                        const InitializationKind &Kind,
3547                                        Expr *Initializer,
3548                                        InitializationSequence &Sequence) {
3549   QualType DestType = Entity.getType();
3550   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3551   Qualifiers T1Quals;
3552   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3553   QualType cv2T2 = Initializer->getType();
3554   Qualifiers T2Quals;
3555   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3556 
3557   // If the initializer is the address of an overloaded function, try
3558   // to resolve the overloaded function. If all goes well, T2 is the
3559   // type of the resulting function.
3560   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3561                                                    T1, Sequence))
3562     return;
3563 
3564   // Delegate everything else to a subfunction.
3565   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3566                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3567 }
3568 
3569 /// Converts the target of reference initialization so that it has the
3570 /// appropriate qualifiers and value kind.
3571 ///
3572 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3573 /// \code
3574 ///   int x;
3575 ///   const int &r = x;
3576 /// \endcode
3577 ///
3578 /// In this case the reference is binding to a bitfield lvalue, which isn't
3579 /// valid. Perform a load to create a lifetime-extended temporary instead.
3580 /// \code
3581 ///   const int &r = someStruct.bitfield;
3582 /// \endcode
3583 static ExprValueKind
convertQualifiersAndValueKindIfNecessary(Sema & S,InitializationSequence & Sequence,Expr * Initializer,QualType cv1T1,Qualifiers T1Quals,Qualifiers T2Quals,bool IsLValueRef)3584 convertQualifiersAndValueKindIfNecessary(Sema &S,
3585                                          InitializationSequence &Sequence,
3586                                          Expr *Initializer,
3587                                          QualType cv1T1,
3588                                          Qualifiers T1Quals,
3589                                          Qualifiers T2Quals,
3590                                          bool IsLValueRef) {
3591   bool IsNonAddressableType = Initializer->refersToBitField() ||
3592                               Initializer->refersToVectorElement();
3593 
3594   if (IsNonAddressableType) {
3595     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3596     // lvalue reference to a non-volatile const type, or the reference shall be
3597     // an rvalue reference.
3598     //
3599     // If not, we can't make a temporary and bind to that. Give up and allow the
3600     // error to be diagnosed later.
3601     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3602       assert(Initializer->isGLValue());
3603       return Initializer->getValueKind();
3604     }
3605 
3606     // Force a load so we can materialize a temporary.
3607     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3608     return VK_RValue;
3609   }
3610 
3611   if (T1Quals != T2Quals) {
3612     Sequence.AddQualificationConversionStep(cv1T1,
3613                                             Initializer->getValueKind());
3614   }
3615 
3616   return Initializer->getValueKind();
3617 }
3618 
3619 
3620 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)3621 static void TryReferenceInitializationCore(Sema &S,
3622                                            const InitializedEntity &Entity,
3623                                            const InitializationKind &Kind,
3624                                            Expr *Initializer,
3625                                            QualType cv1T1, QualType T1,
3626                                            Qualifiers T1Quals,
3627                                            QualType cv2T2, QualType T2,
3628                                            Qualifiers T2Quals,
3629                                            InitializationSequence &Sequence) {
3630   QualType DestType = Entity.getType();
3631   SourceLocation DeclLoc = Initializer->getLocStart();
3632   // Compute some basic properties of the types and the initializer.
3633   bool isLValueRef = DestType->isLValueReferenceType();
3634   bool isRValueRef = !isLValueRef;
3635   bool DerivedToBase = false;
3636   bool ObjCConversion = false;
3637   bool ObjCLifetimeConversion = false;
3638   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3639   Sema::ReferenceCompareResult RefRelationship
3640     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3641                                      ObjCConversion, ObjCLifetimeConversion);
3642 
3643   // C++0x [dcl.init.ref]p5:
3644   //   A reference to type "cv1 T1" is initialized by an expression of type
3645   //   "cv2 T2" as follows:
3646   //
3647   //     - If the reference is an lvalue reference and the initializer
3648   //       expression
3649   // Note the analogous bullet points for rvlaue refs to functions. Because
3650   // there are no function rvalues in C++, rvalue refs to functions are treated
3651   // like lvalue refs.
3652   OverloadingResult ConvOvlResult = OR_Success;
3653   bool T1Function = T1->isFunctionType();
3654   if (isLValueRef || T1Function) {
3655     if (InitCategory.isLValue() &&
3656         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3657          (Kind.isCStyleOrFunctionalCast() &&
3658           RefRelationship == Sema::Ref_Related))) {
3659       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3660       //     reference-compatible with "cv2 T2," or
3661       //
3662       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3663       // bit-field when we're determining whether the reference initialization
3664       // can occur. However, we do pay attention to whether it is a bit-field
3665       // to decide whether we're actually binding to a temporary created from
3666       // the bit-field.
3667       if (DerivedToBase)
3668         Sequence.AddDerivedToBaseCastStep(
3669                          S.Context.getQualifiedType(T1, T2Quals),
3670                          VK_LValue);
3671       else if (ObjCConversion)
3672         Sequence.AddObjCObjectConversionStep(
3673                                      S.Context.getQualifiedType(T1, T2Quals));
3674 
3675       ExprValueKind ValueKind =
3676         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3677                                                  cv1T1, T1Quals, T2Quals,
3678                                                  isLValueRef);
3679       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3680       return;
3681     }
3682 
3683     //     - has a class type (i.e., T2 is a class type), where T1 is not
3684     //       reference-related to T2, and can be implicitly converted to an
3685     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3686     //       with "cv3 T3" (this conversion is selected by enumerating the
3687     //       applicable conversion functions (13.3.1.6) and choosing the best
3688     //       one through overload resolution (13.3)),
3689     // If we have an rvalue ref to function type here, the rhs must be
3690     // an rvalue.
3691     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3692         (isLValueRef || InitCategory.isRValue())) {
3693       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3694                                                        Initializer,
3695                                                    /*AllowRValues=*/isRValueRef,
3696                                                        Sequence);
3697       if (ConvOvlResult == OR_Success)
3698         return;
3699       if (ConvOvlResult != OR_No_Viable_Function) {
3700         Sequence.SetOverloadFailure(
3701                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3702                                     ConvOvlResult);
3703       }
3704     }
3705   }
3706 
3707   //     - Otherwise, the reference shall be an lvalue reference to a
3708   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3709   //       shall be an rvalue reference.
3710   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3711     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3712       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3713     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3714       Sequence.SetOverloadFailure(
3715                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3716                                   ConvOvlResult);
3717     else
3718       Sequence.SetFailed(InitCategory.isLValue()
3719         ? (RefRelationship == Sema::Ref_Related
3720              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3721              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3722         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3723 
3724     return;
3725   }
3726 
3727   //    - If the initializer expression
3728   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3729   //        "cv1 T1" is reference-compatible with "cv2 T2"
3730   // Note: functions are handled below.
3731   if (!T1Function &&
3732       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3733        (Kind.isCStyleOrFunctionalCast() &&
3734         RefRelationship == Sema::Ref_Related)) &&
3735       (InitCategory.isXValue() ||
3736        (InitCategory.isPRValue() && T2->isRecordType()) ||
3737        (InitCategory.isPRValue() && T2->isArrayType()))) {
3738     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3739     if (InitCategory.isPRValue() && T2->isRecordType()) {
3740       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3741       // compiler the freedom to perform a copy here or bind to the
3742       // object, while C++0x requires that we bind directly to the
3743       // object. Hence, we always bind to the object without making an
3744       // extra copy. However, in C++03 requires that we check for the
3745       // presence of a suitable copy constructor:
3746       //
3747       //   The constructor that would be used to make the copy shall
3748       //   be callable whether or not the copy is actually done.
3749       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3750         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3751       else if (S.getLangOpts().CPlusPlus11)
3752         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3753     }
3754 
3755     if (DerivedToBase)
3756       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3757                                         ValueKind);
3758     else if (ObjCConversion)
3759       Sequence.AddObjCObjectConversionStep(
3760                                        S.Context.getQualifiedType(T1, T2Quals));
3761 
3762     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3763                                                          Initializer, cv1T1,
3764                                                          T1Quals, T2Quals,
3765                                                          isLValueRef);
3766 
3767     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3768     return;
3769   }
3770 
3771   //       - has a class type (i.e., T2 is a class type), where T1 is not
3772   //         reference-related to T2, and can be implicitly converted to an
3773   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3774   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3775   if (T2->isRecordType()) {
3776     if (RefRelationship == Sema::Ref_Incompatible) {
3777       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3778                                                        Kind, Initializer,
3779                                                        /*AllowRValues=*/true,
3780                                                        Sequence);
3781       if (ConvOvlResult)
3782         Sequence.SetOverloadFailure(
3783                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3784                                     ConvOvlResult);
3785 
3786       return;
3787     }
3788 
3789     if ((RefRelationship == Sema::Ref_Compatible ||
3790          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3791         isRValueRef && InitCategory.isLValue()) {
3792       Sequence.SetFailed(
3793         InitializationSequence::FK_RValueReferenceBindingToLValue);
3794       return;
3795     }
3796 
3797     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3798     return;
3799   }
3800 
3801   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3802   //        from the initializer expression using the rules for a non-reference
3803   //        copy-initialization (8.5). The reference is then bound to the
3804   //        temporary. [...]
3805 
3806   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3807 
3808   // FIXME: Why do we use an implicit conversion here rather than trying
3809   // copy-initialization?
3810   ImplicitConversionSequence ICS
3811     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3812                               /*SuppressUserConversions=*/false,
3813                               /*AllowExplicit=*/false,
3814                               /*FIXME:InOverloadResolution=*/false,
3815                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3816                               /*AllowObjCWritebackConversion=*/false);
3817 
3818   if (ICS.isBad()) {
3819     // FIXME: Use the conversion function set stored in ICS to turn
3820     // this into an overloading ambiguity diagnostic. However, we need
3821     // to keep that set as an OverloadCandidateSet rather than as some
3822     // other kind of set.
3823     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3824       Sequence.SetOverloadFailure(
3825                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3826                                   ConvOvlResult);
3827     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3828       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3829     else
3830       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3831     return;
3832   } else {
3833     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3834   }
3835 
3836   //        [...] If T1 is reference-related to T2, cv1 must be the
3837   //        same cv-qualification as, or greater cv-qualification
3838   //        than, cv2; otherwise, the program is ill-formed.
3839   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3840   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3841   if (RefRelationship == Sema::Ref_Related &&
3842       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3843     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3844     return;
3845   }
3846 
3847   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3848   //   reference, the initializer expression shall not be an lvalue.
3849   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3850       InitCategory.isLValue()) {
3851     Sequence.SetFailed(
3852                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3853     return;
3854   }
3855 
3856   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3857   return;
3858 }
3859 
3860 /// \brief Attempt character array initialization from a string literal
3861 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3862 static void TryStringLiteralInitialization(Sema &S,
3863                                            const InitializedEntity &Entity,
3864                                            const InitializationKind &Kind,
3865                                            Expr *Initializer,
3866                                        InitializationSequence &Sequence) {
3867   Sequence.AddStringInitStep(Entity.getType());
3868 }
3869 
3870 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)3871 static void TryValueInitialization(Sema &S,
3872                                    const InitializedEntity &Entity,
3873                                    const InitializationKind &Kind,
3874                                    InitializationSequence &Sequence,
3875                                    InitListExpr *InitList) {
3876   assert((!InitList || InitList->getNumInits() == 0) &&
3877          "Shouldn't use value-init for non-empty init lists");
3878 
3879   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3880   //
3881   //   To value-initialize an object of type T means:
3882   QualType T = Entity.getType();
3883 
3884   //     -- if T is an array type, then each element is value-initialized;
3885   T = S.Context.getBaseElementType(T);
3886 
3887   if (const RecordType *RT = T->getAs<RecordType>()) {
3888     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3889       bool NeedZeroInitialization = true;
3890       if (!S.getLangOpts().CPlusPlus11) {
3891         // C++98:
3892         // -- if T is a class type (clause 9) with a user-declared constructor
3893         //    (12.1), then the default constructor for T is called (and the
3894         //    initialization is ill-formed if T has no accessible default
3895         //    constructor);
3896         if (ClassDecl->hasUserDeclaredConstructor())
3897           NeedZeroInitialization = false;
3898       } else {
3899         // C++11:
3900         // -- if T is a class type (clause 9) with either no default constructor
3901         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3902         //    or deleted, then the object is default-initialized;
3903         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3904         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3905           NeedZeroInitialization = false;
3906       }
3907 
3908       // -- if T is a (possibly cv-qualified) non-union class type without a
3909       //    user-provided or deleted default constructor, then the object is
3910       //    zero-initialized and, if T has a non-trivial default constructor,
3911       //    default-initialized;
3912       // The 'non-union' here was removed by DR1502. The 'non-trivial default
3913       // constructor' part was removed by DR1507.
3914       if (NeedZeroInitialization)
3915         Sequence.AddZeroInitializationStep(Entity.getType());
3916 
3917       // C++03:
3918       // -- if T is a non-union class type without a user-declared constructor,
3919       //    then every non-static data member and base class component of T is
3920       //    value-initialized;
3921       // [...] A program that calls for [...] value-initialization of an
3922       // entity of reference type is ill-formed.
3923       //
3924       // C++11 doesn't need this handling, because value-initialization does not
3925       // occur recursively there, and the implicit default constructor is
3926       // defined as deleted in the problematic cases.
3927       if (!S.getLangOpts().CPlusPlus11 &&
3928           ClassDecl->hasUninitializedReferenceMember()) {
3929         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3930         return;
3931       }
3932 
3933       // If this is list-value-initialization, pass the empty init list on when
3934       // building the constructor call. This affects the semantics of a few
3935       // things (such as whether an explicit default constructor can be called).
3936       Expr *InitListAsExpr = InitList;
3937       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3938       bool InitListSyntax = InitList;
3939 
3940       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3941                                           InitListSyntax);
3942     }
3943   }
3944 
3945   Sequence.AddZeroInitializationStep(Entity.getType());
3946 }
3947 
3948 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)3949 static void TryDefaultInitialization(Sema &S,
3950                                      const InitializedEntity &Entity,
3951                                      const InitializationKind &Kind,
3952                                      InitializationSequence &Sequence) {
3953   assert(Kind.getKind() == InitializationKind::IK_Default);
3954 
3955   // C++ [dcl.init]p6:
3956   //   To default-initialize an object of type T means:
3957   //     - if T is an array type, each element is default-initialized;
3958   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3959 
3960   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3961   //       constructor for T is called (and the initialization is ill-formed if
3962   //       T has no accessible default constructor);
3963   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3964     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3965     return;
3966   }
3967 
3968   //     - otherwise, no initialization is performed.
3969 
3970   //   If a program calls for the default initialization of an object of
3971   //   a const-qualified type T, T shall be a class type with a user-provided
3972   //   default constructor.
3973   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3974     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3975     return;
3976   }
3977 
3978   // If the destination type has a lifetime property, zero-initialize it.
3979   if (DestType.getQualifiers().hasObjCLifetime()) {
3980     Sequence.AddZeroInitializationStep(Entity.getType());
3981     return;
3982   }
3983 }
3984 
3985 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3986 /// which enumerates all conversion functions and performs overload resolution
3987 /// to select the best.
TryUserDefinedConversion(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3988 static void TryUserDefinedConversion(Sema &S,
3989                                      const InitializedEntity &Entity,
3990                                      const InitializationKind &Kind,
3991                                      Expr *Initializer,
3992                                      InitializationSequence &Sequence) {
3993   QualType DestType = Entity.getType();
3994   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3995   QualType SourceType = Initializer->getType();
3996   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3997          "Must have a class type to perform a user-defined conversion");
3998 
3999   // Build the candidate set directly in the initialization sequence
4000   // structure, so that it will persist if we fail.
4001   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4002   CandidateSet.clear();
4003 
4004   // Determine whether we are allowed to call explicit constructors or
4005   // explicit conversion operators.
4006   bool AllowExplicit = Kind.AllowExplicit();
4007 
4008   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4009     // The type we're converting to is a class type. Enumerate its constructors
4010     // to see if there is a suitable conversion.
4011     CXXRecordDecl *DestRecordDecl
4012       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4013 
4014     // Try to complete the type we're converting to.
4015     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4016       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4017       // The container holding the constructors can under certain conditions
4018       // be changed while iterating. To be safe we copy the lookup results
4019       // to a new container.
4020       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4021       for (SmallVectorImpl<NamedDecl *>::iterator
4022              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4023            Con != ConEnd; ++Con) {
4024         NamedDecl *D = *Con;
4025         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4026 
4027         // Find the constructor (which may be a template).
4028         CXXConstructorDecl *Constructor = 0;
4029         FunctionTemplateDecl *ConstructorTmpl
4030           = dyn_cast<FunctionTemplateDecl>(D);
4031         if (ConstructorTmpl)
4032           Constructor = cast<CXXConstructorDecl>(
4033                                            ConstructorTmpl->getTemplatedDecl());
4034         else
4035           Constructor = cast<CXXConstructorDecl>(D);
4036 
4037         if (!Constructor->isInvalidDecl() &&
4038             Constructor->isConvertingConstructor(AllowExplicit)) {
4039           if (ConstructorTmpl)
4040             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4041                                            /*ExplicitArgs*/ 0,
4042                                            Initializer, CandidateSet,
4043                                            /*SuppressUserConversions=*/true);
4044           else
4045             S.AddOverloadCandidate(Constructor, FoundDecl,
4046                                    Initializer, CandidateSet,
4047                                    /*SuppressUserConversions=*/true);
4048         }
4049       }
4050     }
4051   }
4052 
4053   SourceLocation DeclLoc = Initializer->getLocStart();
4054 
4055   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4056     // The type we're converting from is a class type, enumerate its conversion
4057     // functions.
4058 
4059     // We can only enumerate the conversion functions for a complete type; if
4060     // the type isn't complete, simply skip this step.
4061     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4062       CXXRecordDecl *SourceRecordDecl
4063         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4064 
4065       std::pair<CXXRecordDecl::conversion_iterator,
4066                 CXXRecordDecl::conversion_iterator>
4067         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4068       for (CXXRecordDecl::conversion_iterator
4069              I = Conversions.first, E = Conversions.second; I != E; ++I) {
4070         NamedDecl *D = *I;
4071         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4072         if (isa<UsingShadowDecl>(D))
4073           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4074 
4075         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4076         CXXConversionDecl *Conv;
4077         if (ConvTemplate)
4078           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4079         else
4080           Conv = cast<CXXConversionDecl>(D);
4081 
4082         if (AllowExplicit || !Conv->isExplicit()) {
4083           if (ConvTemplate)
4084             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4085                                              ActingDC, Initializer, DestType,
4086                                              CandidateSet);
4087           else
4088             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4089                                      Initializer, DestType, CandidateSet);
4090         }
4091       }
4092     }
4093   }
4094 
4095   // Perform overload resolution. If it fails, return the failed result.
4096   OverloadCandidateSet::iterator Best;
4097   if (OverloadingResult Result
4098         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4099     Sequence.SetOverloadFailure(
4100                         InitializationSequence::FK_UserConversionOverloadFailed,
4101                                 Result);
4102     return;
4103   }
4104 
4105   FunctionDecl *Function = Best->Function;
4106   Function->setReferenced();
4107   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4108 
4109   if (isa<CXXConstructorDecl>(Function)) {
4110     // Add the user-defined conversion step. Any cv-qualification conversion is
4111     // subsumed by the initialization. Per DR5, the created temporary is of the
4112     // cv-unqualified type of the destination.
4113     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4114                                    DestType.getUnqualifiedType(),
4115                                    HadMultipleCandidates);
4116     return;
4117   }
4118 
4119   // Add the user-defined conversion step that calls the conversion function.
4120   QualType ConvType = Function->getCallResultType();
4121   if (ConvType->getAs<RecordType>()) {
4122     // If we're converting to a class type, there may be an copy of
4123     // the resulting temporary object (possible to create an object of
4124     // a base class type). That copy is not a separate conversion, so
4125     // we just make a note of the actual destination type (possibly a
4126     // base class of the type returned by the conversion function) and
4127     // let the user-defined conversion step handle the conversion.
4128     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4129                                    HadMultipleCandidates);
4130     return;
4131   }
4132 
4133   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4134                                  HadMultipleCandidates);
4135 
4136   // If the conversion following the call to the conversion function
4137   // is interesting, add it as a separate step.
4138   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4139       Best->FinalConversion.Third) {
4140     ImplicitConversionSequence ICS;
4141     ICS.setStandard();
4142     ICS.Standard = Best->FinalConversion;
4143     Sequence.AddConversionSequenceStep(ICS, DestType);
4144   }
4145 }
4146 
4147 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4148 /// a function with a pointer return type contains a 'return false;' statement.
4149 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4150 /// code using that header.
4151 ///
4152 /// Work around this by treating 'return false;' as zero-initializing the result
4153 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)4154 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4155                                               const InitializedEntity &Entity,
4156                                               const Expr *Init) {
4157   return S.getLangOpts().CPlusPlus11 &&
4158          Entity.getKind() == InitializedEntity::EK_Result &&
4159          Entity.getType()->isPointerType() &&
4160          isa<CXXBoolLiteralExpr>(Init) &&
4161          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4162          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4163 }
4164 
4165 /// The non-zero enum values here are indexes into diagnostic alternatives.
4166 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4167 
4168 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)4169 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4170                                          bool isAddressOf, bool &isWeakAccess) {
4171   // Skip parens.
4172   e = e->IgnoreParens();
4173 
4174   // Skip address-of nodes.
4175   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4176     if (op->getOpcode() == UO_AddrOf)
4177       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4178                                 isWeakAccess);
4179 
4180   // Skip certain casts.
4181   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4182     switch (ce->getCastKind()) {
4183     case CK_Dependent:
4184     case CK_BitCast:
4185     case CK_LValueBitCast:
4186     case CK_NoOp:
4187       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4188 
4189     case CK_ArrayToPointerDecay:
4190       return IIK_nonscalar;
4191 
4192     case CK_NullToPointer:
4193       return IIK_okay;
4194 
4195     default:
4196       break;
4197     }
4198 
4199   // If we have a declaration reference, it had better be a local variable.
4200   } else if (isa<DeclRefExpr>(e)) {
4201     // set isWeakAccess to true, to mean that there will be an implicit
4202     // load which requires a cleanup.
4203     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4204       isWeakAccess = true;
4205 
4206     if (!isAddressOf) return IIK_nonlocal;
4207 
4208     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4209     if (!var) return IIK_nonlocal;
4210 
4211     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4212 
4213   // If we have a conditional operator, check both sides.
4214   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4215     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4216                                                 isWeakAccess))
4217       return iik;
4218 
4219     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4220 
4221   // These are never scalar.
4222   } else if (isa<ArraySubscriptExpr>(e)) {
4223     return IIK_nonscalar;
4224 
4225   // Otherwise, it needs to be a null pointer constant.
4226   } else {
4227     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4228             ? IIK_okay : IIK_nonlocal);
4229   }
4230 
4231   return IIK_nonlocal;
4232 }
4233 
4234 /// Check whether the given expression is a valid operand for an
4235 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)4236 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4237   assert(src->isRValue());
4238   bool isWeakAccess = false;
4239   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4240   // If isWeakAccess to true, there will be an implicit
4241   // load which requires a cleanup.
4242   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4243     S.ExprNeedsCleanups = true;
4244 
4245   if (iik == IIK_okay) return;
4246 
4247   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4248     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4249     << src->getSourceRange();
4250 }
4251 
4252 /// \brief Determine whether we have compatible array types for the
4253 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)4254 static bool hasCompatibleArrayTypes(ASTContext &Context,
4255                                     const ArrayType *Dest,
4256                                     const ArrayType *Source) {
4257   // If the source and destination array types are equivalent, we're
4258   // done.
4259   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4260     return true;
4261 
4262   // Make sure that the element types are the same.
4263   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4264     return false;
4265 
4266   // The only mismatch we allow is when the destination is an
4267   // incomplete array type and the source is a constant array type.
4268   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4269 }
4270 
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)4271 static bool tryObjCWritebackConversion(Sema &S,
4272                                        InitializationSequence &Sequence,
4273                                        const InitializedEntity &Entity,
4274                                        Expr *Initializer) {
4275   bool ArrayDecay = false;
4276   QualType ArgType = Initializer->getType();
4277   QualType ArgPointee;
4278   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4279     ArrayDecay = true;
4280     ArgPointee = ArgArrayType->getElementType();
4281     ArgType = S.Context.getPointerType(ArgPointee);
4282   }
4283 
4284   // Handle write-back conversion.
4285   QualType ConvertedArgType;
4286   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4287                                    ConvertedArgType))
4288     return false;
4289 
4290   // We should copy unless we're passing to an argument explicitly
4291   // marked 'out'.
4292   bool ShouldCopy = true;
4293   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4294     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4295 
4296   // Do we need an lvalue conversion?
4297   if (ArrayDecay || Initializer->isGLValue()) {
4298     ImplicitConversionSequence ICS;
4299     ICS.setStandard();
4300     ICS.Standard.setAsIdentityConversion();
4301 
4302     QualType ResultType;
4303     if (ArrayDecay) {
4304       ICS.Standard.First = ICK_Array_To_Pointer;
4305       ResultType = S.Context.getPointerType(ArgPointee);
4306     } else {
4307       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4308       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4309     }
4310 
4311     Sequence.AddConversionSequenceStep(ICS, ResultType);
4312   }
4313 
4314   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4315   return true;
4316 }
4317 
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4318 static bool TryOCLSamplerInitialization(Sema &S,
4319                                         InitializationSequence &Sequence,
4320                                         QualType DestType,
4321                                         Expr *Initializer) {
4322   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4323     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4324     return false;
4325 
4326   Sequence.AddOCLSamplerInitStep(DestType);
4327   return true;
4328 }
4329 
4330 //
4331 // OpenCL 1.2 spec, s6.12.10
4332 //
4333 // The event argument can also be used to associate the
4334 // async_work_group_copy with a previous async copy allowing
4335 // an event to be shared by multiple async copies; otherwise
4336 // event should be zero.
4337 //
TryOCLZeroEventInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4338 static bool TryOCLZeroEventInitialization(Sema &S,
4339                                           InitializationSequence &Sequence,
4340                                           QualType DestType,
4341                                           Expr *Initializer) {
4342   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4343       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4344       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4345     return false;
4346 
4347   Sequence.AddOCLZeroEventStep(DestType);
4348   return true;
4349 }
4350 
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args)4351 InitializationSequence::InitializationSequence(Sema &S,
4352                                                const InitializedEntity &Entity,
4353                                                const InitializationKind &Kind,
4354                                                MultiExprArg Args)
4355     : FailedCandidateSet(Kind.getLocation()) {
4356   ASTContext &Context = S.Context;
4357 
4358   // Eliminate non-overload placeholder types in the arguments.  We
4359   // need to do this before checking whether types are dependent
4360   // because lowering a pseudo-object expression might well give us
4361   // something of dependent type.
4362   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4363     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4364       // FIXME: should we be doing this here?
4365       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4366       if (result.isInvalid()) {
4367         SetFailed(FK_PlaceholderType);
4368         return;
4369       }
4370       Args[I] = result.take();
4371     }
4372 
4373   // C++0x [dcl.init]p16:
4374   //   The semantics of initializers are as follows. The destination type is
4375   //   the type of the object or reference being initialized and the source
4376   //   type is the type of the initializer expression. The source type is not
4377   //   defined when the initializer is a braced-init-list or when it is a
4378   //   parenthesized list of expressions.
4379   QualType DestType = Entity.getType();
4380 
4381   if (DestType->isDependentType() ||
4382       Expr::hasAnyTypeDependentArguments(Args)) {
4383     SequenceKind = DependentSequence;
4384     return;
4385   }
4386 
4387   // Almost everything is a normal sequence.
4388   setSequenceKind(NormalSequence);
4389 
4390   QualType SourceType;
4391   Expr *Initializer = 0;
4392   if (Args.size() == 1) {
4393     Initializer = Args[0];
4394     if (!isa<InitListExpr>(Initializer))
4395       SourceType = Initializer->getType();
4396   }
4397 
4398   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4399   //       object is list-initialized (8.5.4).
4400   if (Kind.getKind() != InitializationKind::IK_Direct) {
4401     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4402       TryListInitialization(S, Entity, Kind, InitList, *this);
4403       return;
4404     }
4405   }
4406 
4407   //     - If the destination type is a reference type, see 8.5.3.
4408   if (DestType->isReferenceType()) {
4409     // C++0x [dcl.init.ref]p1:
4410     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4411     //   (8.3.2), shall be initialized by an object, or function, of type T or
4412     //   by an object that can be converted into a T.
4413     // (Therefore, multiple arguments are not permitted.)
4414     if (Args.size() != 1)
4415       SetFailed(FK_TooManyInitsForReference);
4416     else
4417       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4418     return;
4419   }
4420 
4421   //     - If the initializer is (), the object is value-initialized.
4422   if (Kind.getKind() == InitializationKind::IK_Value ||
4423       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4424     TryValueInitialization(S, Entity, Kind, *this);
4425     return;
4426   }
4427 
4428   // Handle default initialization.
4429   if (Kind.getKind() == InitializationKind::IK_Default) {
4430     TryDefaultInitialization(S, Entity, Kind, *this);
4431     return;
4432   }
4433 
4434   //     - If the destination type is an array of characters, an array of
4435   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4436   //       initializer is a string literal, see 8.5.2.
4437   //     - Otherwise, if the destination type is an array, the program is
4438   //       ill-formed.
4439   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4440     if (Initializer && isa<VariableArrayType>(DestAT)) {
4441       SetFailed(FK_VariableLengthArrayHasInitializer);
4442       return;
4443     }
4444 
4445     if (Initializer) {
4446       switch (IsStringInit(Initializer, DestAT, Context)) {
4447       case SIF_None:
4448         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4449         return;
4450       case SIF_NarrowStringIntoWideChar:
4451         SetFailed(FK_NarrowStringIntoWideCharArray);
4452         return;
4453       case SIF_WideStringIntoChar:
4454         SetFailed(FK_WideStringIntoCharArray);
4455         return;
4456       case SIF_IncompatWideStringIntoWideChar:
4457         SetFailed(FK_IncompatWideStringIntoWideChar);
4458         return;
4459       case SIF_Other:
4460         break;
4461       }
4462     }
4463 
4464     // Note: as an GNU C extension, we allow initialization of an
4465     // array from a compound literal that creates an array of the same
4466     // type, so long as the initializer has no side effects.
4467     if (!S.getLangOpts().CPlusPlus && Initializer &&
4468         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4469         Initializer->getType()->isArrayType()) {
4470       const ArrayType *SourceAT
4471         = Context.getAsArrayType(Initializer->getType());
4472       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4473         SetFailed(FK_ArrayTypeMismatch);
4474       else if (Initializer->HasSideEffects(S.Context))
4475         SetFailed(FK_NonConstantArrayInit);
4476       else {
4477         AddArrayInitStep(DestType);
4478       }
4479     }
4480     // Note: as a GNU C++ extension, we allow list-initialization of a
4481     // class member of array type from a parenthesized initializer list.
4482     else if (S.getLangOpts().CPlusPlus &&
4483              Entity.getKind() == InitializedEntity::EK_Member &&
4484              Initializer && isa<InitListExpr>(Initializer)) {
4485       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4486                             *this);
4487       AddParenthesizedArrayInitStep(DestType);
4488     } else if (DestAT->getElementType()->isCharType())
4489       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4490     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4491       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4492     else
4493       SetFailed(FK_ArrayNeedsInitList);
4494 
4495     return;
4496   }
4497 
4498   // Determine whether we should consider writeback conversions for
4499   // Objective-C ARC.
4500   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4501          Entity.isParameterKind();
4502 
4503   // We're at the end of the line for C: it's either a write-back conversion
4504   // or it's a C assignment. There's no need to check anything else.
4505   if (!S.getLangOpts().CPlusPlus) {
4506     // If allowed, check whether this is an Objective-C writeback conversion.
4507     if (allowObjCWritebackConversion &&
4508         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4509       return;
4510     }
4511 
4512     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4513       return;
4514 
4515     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4516       return;
4517 
4518     // Handle initialization in C
4519     AddCAssignmentStep(DestType);
4520     MaybeProduceObjCObject(S, *this, Entity);
4521     return;
4522   }
4523 
4524   assert(S.getLangOpts().CPlusPlus);
4525 
4526   //     - If the destination type is a (possibly cv-qualified) class type:
4527   if (DestType->isRecordType()) {
4528     //     - If the initialization is direct-initialization, or if it is
4529     //       copy-initialization where the cv-unqualified version of the
4530     //       source type is the same class as, or a derived class of, the
4531     //       class of the destination, constructors are considered. [...]
4532     if (Kind.getKind() == InitializationKind::IK_Direct ||
4533         (Kind.getKind() == InitializationKind::IK_Copy &&
4534          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4535           S.IsDerivedFrom(SourceType, DestType))))
4536       TryConstructorInitialization(S, Entity, Kind, Args,
4537                                    Entity.getType(), *this);
4538     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4539     //       user-defined conversion sequences that can convert from the source
4540     //       type to the destination type or (when a conversion function is
4541     //       used) to a derived class thereof are enumerated as described in
4542     //       13.3.1.4, and the best one is chosen through overload resolution
4543     //       (13.3).
4544     else
4545       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4546     return;
4547   }
4548 
4549   if (Args.size() > 1) {
4550     SetFailed(FK_TooManyInitsForScalar);
4551     return;
4552   }
4553   assert(Args.size() == 1 && "Zero-argument case handled above");
4554 
4555   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4556   //      type, conversion functions are considered.
4557   if (!SourceType.isNull() && SourceType->isRecordType()) {
4558     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4559     MaybeProduceObjCObject(S, *this, Entity);
4560     return;
4561   }
4562 
4563   //    - Otherwise, the initial value of the object being initialized is the
4564   //      (possibly converted) value of the initializer expression. Standard
4565   //      conversions (Clause 4) will be used, if necessary, to convert the
4566   //      initializer expression to the cv-unqualified version of the
4567   //      destination type; no user-defined conversions are considered.
4568 
4569   ImplicitConversionSequence ICS
4570     = S.TryImplicitConversion(Initializer, Entity.getType(),
4571                               /*SuppressUserConversions*/true,
4572                               /*AllowExplicitConversions*/ false,
4573                               /*InOverloadResolution*/ false,
4574                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4575                               allowObjCWritebackConversion);
4576 
4577   if (ICS.isStandard() &&
4578       ICS.Standard.Second == ICK_Writeback_Conversion) {
4579     // Objective-C ARC writeback conversion.
4580 
4581     // We should copy unless we're passing to an argument explicitly
4582     // marked 'out'.
4583     bool ShouldCopy = true;
4584     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4585       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4586 
4587     // If there was an lvalue adjustment, add it as a separate conversion.
4588     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4589         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4590       ImplicitConversionSequence LvalueICS;
4591       LvalueICS.setStandard();
4592       LvalueICS.Standard.setAsIdentityConversion();
4593       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4594       LvalueICS.Standard.First = ICS.Standard.First;
4595       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4596     }
4597 
4598     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4599   } else if (ICS.isBad()) {
4600     DeclAccessPair dap;
4601     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4602       AddZeroInitializationStep(Entity.getType());
4603     } else if (Initializer->getType() == Context.OverloadTy &&
4604                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4605                                                      false, dap))
4606       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4607     else
4608       SetFailed(InitializationSequence::FK_ConversionFailed);
4609   } else {
4610     AddConversionSequenceStep(ICS, Entity.getType());
4611 
4612     MaybeProduceObjCObject(S, *this, Entity);
4613   }
4614 }
4615 
~InitializationSequence()4616 InitializationSequence::~InitializationSequence() {
4617   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4618                                           StepEnd = Steps.end();
4619        Step != StepEnd; ++Step)
4620     Step->Destroy();
4621 }
4622 
4623 //===----------------------------------------------------------------------===//
4624 // Perform initialization
4625 //===----------------------------------------------------------------------===//
4626 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)4627 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4628   switch(Entity.getKind()) {
4629   case InitializedEntity::EK_Variable:
4630   case InitializedEntity::EK_New:
4631   case InitializedEntity::EK_Exception:
4632   case InitializedEntity::EK_Base:
4633   case InitializedEntity::EK_Delegating:
4634     return Sema::AA_Initializing;
4635 
4636   case InitializedEntity::EK_Parameter:
4637     if (Entity.getDecl() &&
4638         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4639       return Sema::AA_Sending;
4640 
4641     return Sema::AA_Passing;
4642 
4643   case InitializedEntity::EK_Parameter_CF_Audited:
4644     if (Entity.getDecl() &&
4645       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4646       return Sema::AA_Sending;
4647 
4648     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4649 
4650   case InitializedEntity::EK_Result:
4651     return Sema::AA_Returning;
4652 
4653   case InitializedEntity::EK_Temporary:
4654   case InitializedEntity::EK_RelatedResult:
4655     // FIXME: Can we tell apart casting vs. converting?
4656     return Sema::AA_Casting;
4657 
4658   case InitializedEntity::EK_Member:
4659   case InitializedEntity::EK_ArrayElement:
4660   case InitializedEntity::EK_VectorElement:
4661   case InitializedEntity::EK_ComplexElement:
4662   case InitializedEntity::EK_BlockElement:
4663   case InitializedEntity::EK_LambdaCapture:
4664   case InitializedEntity::EK_CompoundLiteralInit:
4665     return Sema::AA_Initializing;
4666   }
4667 
4668   llvm_unreachable("Invalid EntityKind!");
4669 }
4670 
4671 /// \brief Whether we should bind a created object as a temporary when
4672 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)4673 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4674   switch (Entity.getKind()) {
4675   case InitializedEntity::EK_ArrayElement:
4676   case InitializedEntity::EK_Member:
4677   case InitializedEntity::EK_Result:
4678   case InitializedEntity::EK_New:
4679   case InitializedEntity::EK_Variable:
4680   case InitializedEntity::EK_Base:
4681   case InitializedEntity::EK_Delegating:
4682   case InitializedEntity::EK_VectorElement:
4683   case InitializedEntity::EK_ComplexElement:
4684   case InitializedEntity::EK_Exception:
4685   case InitializedEntity::EK_BlockElement:
4686   case InitializedEntity::EK_LambdaCapture:
4687   case InitializedEntity::EK_CompoundLiteralInit:
4688     return false;
4689 
4690   case InitializedEntity::EK_Parameter:
4691   case InitializedEntity::EK_Parameter_CF_Audited:
4692   case InitializedEntity::EK_Temporary:
4693   case InitializedEntity::EK_RelatedResult:
4694     return true;
4695   }
4696 
4697   llvm_unreachable("missed an InitializedEntity kind?");
4698 }
4699 
4700 /// \brief Whether the given entity, when initialized with an object
4701 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)4702 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4703   switch (Entity.getKind()) {
4704     case InitializedEntity::EK_Result:
4705     case InitializedEntity::EK_New:
4706     case InitializedEntity::EK_Base:
4707     case InitializedEntity::EK_Delegating:
4708     case InitializedEntity::EK_VectorElement:
4709     case InitializedEntity::EK_ComplexElement:
4710     case InitializedEntity::EK_BlockElement:
4711     case InitializedEntity::EK_LambdaCapture:
4712       return false;
4713 
4714     case InitializedEntity::EK_Member:
4715     case InitializedEntity::EK_Variable:
4716     case InitializedEntity::EK_Parameter:
4717     case InitializedEntity::EK_Parameter_CF_Audited:
4718     case InitializedEntity::EK_Temporary:
4719     case InitializedEntity::EK_ArrayElement:
4720     case InitializedEntity::EK_Exception:
4721     case InitializedEntity::EK_CompoundLiteralInit:
4722     case InitializedEntity::EK_RelatedResult:
4723       return true;
4724   }
4725 
4726   llvm_unreachable("missed an InitializedEntity kind?");
4727 }
4728 
4729 /// \brief Look for copy and move constructors and constructor templates, for
4730 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)4731 static void LookupCopyAndMoveConstructors(Sema &S,
4732                                           OverloadCandidateSet &CandidateSet,
4733                                           CXXRecordDecl *Class,
4734                                           Expr *CurInitExpr) {
4735   DeclContext::lookup_result R = S.LookupConstructors(Class);
4736   // The container holding the constructors can under certain conditions
4737   // be changed while iterating (e.g. because of deserialization).
4738   // To be safe we copy the lookup results to a new container.
4739   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4740   for (SmallVectorImpl<NamedDecl *>::iterator
4741          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4742     NamedDecl *D = *CI;
4743     CXXConstructorDecl *Constructor = 0;
4744 
4745     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4746       // Handle copy/moveconstructors, only.
4747       if (!Constructor || Constructor->isInvalidDecl() ||
4748           !Constructor->isCopyOrMoveConstructor() ||
4749           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4750         continue;
4751 
4752       DeclAccessPair FoundDecl
4753         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4754       S.AddOverloadCandidate(Constructor, FoundDecl,
4755                              CurInitExpr, CandidateSet);
4756       continue;
4757     }
4758 
4759     // Handle constructor templates.
4760     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4761     if (ConstructorTmpl->isInvalidDecl())
4762       continue;
4763 
4764     Constructor = cast<CXXConstructorDecl>(
4765                                          ConstructorTmpl->getTemplatedDecl());
4766     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4767       continue;
4768 
4769     // FIXME: Do we need to limit this to copy-constructor-like
4770     // candidates?
4771     DeclAccessPair FoundDecl
4772       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4773     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4774                                    CurInitExpr, CandidateSet, true);
4775   }
4776 }
4777 
4778 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)4779 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4780                                            Expr *Initializer) {
4781   switch (Entity.getKind()) {
4782   case InitializedEntity::EK_Result:
4783     return Entity.getReturnLoc();
4784 
4785   case InitializedEntity::EK_Exception:
4786     return Entity.getThrowLoc();
4787 
4788   case InitializedEntity::EK_Variable:
4789     return Entity.getDecl()->getLocation();
4790 
4791   case InitializedEntity::EK_LambdaCapture:
4792     return Entity.getCaptureLoc();
4793 
4794   case InitializedEntity::EK_ArrayElement:
4795   case InitializedEntity::EK_Member:
4796   case InitializedEntity::EK_Parameter:
4797   case InitializedEntity::EK_Parameter_CF_Audited:
4798   case InitializedEntity::EK_Temporary:
4799   case InitializedEntity::EK_New:
4800   case InitializedEntity::EK_Base:
4801   case InitializedEntity::EK_Delegating:
4802   case InitializedEntity::EK_VectorElement:
4803   case InitializedEntity::EK_ComplexElement:
4804   case InitializedEntity::EK_BlockElement:
4805   case InitializedEntity::EK_CompoundLiteralInit:
4806   case InitializedEntity::EK_RelatedResult:
4807     return Initializer->getLocStart();
4808   }
4809   llvm_unreachable("missed an InitializedEntity kind?");
4810 }
4811 
4812 /// \brief Make a (potentially elidable) temporary copy of the object
4813 /// provided by the given initializer by calling the appropriate copy
4814 /// constructor.
4815 ///
4816 /// \param S The Sema object used for type-checking.
4817 ///
4818 /// \param T The type of the temporary object, which must either be
4819 /// the type of the initializer expression or a superclass thereof.
4820 ///
4821 /// \param Entity The entity being initialized.
4822 ///
4823 /// \param CurInit The initializer expression.
4824 ///
4825 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4826 /// is permitted in C++03 (but not C++0x) when binding a reference to
4827 /// an rvalue.
4828 ///
4829 /// \returns An expression that copies the initializer expression into
4830 /// a temporary object, or an error expression if a copy could not be
4831 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)4832 static ExprResult CopyObject(Sema &S,
4833                              QualType T,
4834                              const InitializedEntity &Entity,
4835                              ExprResult CurInit,
4836                              bool IsExtraneousCopy) {
4837   // Determine which class type we're copying to.
4838   Expr *CurInitExpr = (Expr *)CurInit.get();
4839   CXXRecordDecl *Class = 0;
4840   if (const RecordType *Record = T->getAs<RecordType>())
4841     Class = cast<CXXRecordDecl>(Record->getDecl());
4842   if (!Class)
4843     return CurInit;
4844 
4845   // C++0x [class.copy]p32:
4846   //   When certain criteria are met, an implementation is allowed to
4847   //   omit the copy/move construction of a class object, even if the
4848   //   copy/move constructor and/or destructor for the object have
4849   //   side effects. [...]
4850   //     - when a temporary class object that has not been bound to a
4851   //       reference (12.2) would be copied/moved to a class object
4852   //       with the same cv-unqualified type, the copy/move operation
4853   //       can be omitted by constructing the temporary object
4854   //       directly into the target of the omitted copy/move
4855   //
4856   // Note that the other three bullets are handled elsewhere. Copy
4857   // elision for return statements and throw expressions are handled as part
4858   // of constructor initialization, while copy elision for exception handlers
4859   // is handled by the run-time.
4860   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4861   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4862 
4863   // Make sure that the type we are copying is complete.
4864   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4865     return CurInit;
4866 
4867   // Perform overload resolution using the class's copy/move constructors.
4868   // Only consider constructors and constructor templates. Per
4869   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4870   // is direct-initialization.
4871   OverloadCandidateSet CandidateSet(Loc);
4872   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4873 
4874   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4875 
4876   OverloadCandidateSet::iterator Best;
4877   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4878   case OR_Success:
4879     break;
4880 
4881   case OR_No_Viable_Function:
4882     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4883            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4884            : diag::err_temp_copy_no_viable)
4885       << (int)Entity.getKind() << CurInitExpr->getType()
4886       << CurInitExpr->getSourceRange();
4887     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4888     if (!IsExtraneousCopy || S.isSFINAEContext())
4889       return ExprError();
4890     return CurInit;
4891 
4892   case OR_Ambiguous:
4893     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4894       << (int)Entity.getKind() << CurInitExpr->getType()
4895       << CurInitExpr->getSourceRange();
4896     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4897     return ExprError();
4898 
4899   case OR_Deleted:
4900     S.Diag(Loc, diag::err_temp_copy_deleted)
4901       << (int)Entity.getKind() << CurInitExpr->getType()
4902       << CurInitExpr->getSourceRange();
4903     S.NoteDeletedFunction(Best->Function);
4904     return ExprError();
4905   }
4906 
4907   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4908   SmallVector<Expr*, 8> ConstructorArgs;
4909   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4910 
4911   S.CheckConstructorAccess(Loc, Constructor, Entity,
4912                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4913 
4914   if (IsExtraneousCopy) {
4915     // If this is a totally extraneous copy for C++03 reference
4916     // binding purposes, just return the original initialization
4917     // expression. We don't generate an (elided) copy operation here
4918     // because doing so would require us to pass down a flag to avoid
4919     // infinite recursion, where each step adds another extraneous,
4920     // elidable copy.
4921 
4922     // Instantiate the default arguments of any extra parameters in
4923     // the selected copy constructor, as if we were going to create a
4924     // proper call to the copy constructor.
4925     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4926       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4927       if (S.RequireCompleteType(Loc, Parm->getType(),
4928                                 diag::err_call_incomplete_argument))
4929         break;
4930 
4931       // Build the default argument expression; we don't actually care
4932       // if this succeeds or not, because this routine will complain
4933       // if there was a problem.
4934       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4935     }
4936 
4937     return S.Owned(CurInitExpr);
4938   }
4939 
4940   // Determine the arguments required to actually perform the
4941   // constructor call (we might have derived-to-base conversions, or
4942   // the copy constructor may have default arguments).
4943   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4944     return ExprError();
4945 
4946   // Actually perform the constructor call.
4947   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4948                                     ConstructorArgs,
4949                                     HadMultipleCandidates,
4950                                     /*ListInit*/ false,
4951                                     /*ZeroInit*/ false,
4952                                     CXXConstructExpr::CK_Complete,
4953                                     SourceRange());
4954 
4955   // If we're supposed to bind temporaries, do so.
4956   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4957     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4958   return CurInit;
4959 }
4960 
4961 /// \brief Check whether elidable copy construction for binding a reference to
4962 /// a temporary would have succeeded if we were building in C++98 mode, for
4963 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)4964 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4965                                            const InitializedEntity &Entity,
4966                                            Expr *CurInitExpr) {
4967   assert(S.getLangOpts().CPlusPlus11);
4968 
4969   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4970   if (!Record)
4971     return;
4972 
4973   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4974   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4975         == DiagnosticsEngine::Ignored)
4976     return;
4977 
4978   // Find constructors which would have been considered.
4979   OverloadCandidateSet CandidateSet(Loc);
4980   LookupCopyAndMoveConstructors(
4981       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4982 
4983   // Perform overload resolution.
4984   OverloadCandidateSet::iterator Best;
4985   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4986 
4987   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4988     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4989     << CurInitExpr->getSourceRange();
4990 
4991   switch (OR) {
4992   case OR_Success:
4993     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4994                              Entity, Best->FoundDecl.getAccess(), Diag);
4995     // FIXME: Check default arguments as far as that's possible.
4996     break;
4997 
4998   case OR_No_Viable_Function:
4999     S.Diag(Loc, Diag);
5000     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5001     break;
5002 
5003   case OR_Ambiguous:
5004     S.Diag(Loc, Diag);
5005     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5006     break;
5007 
5008   case OR_Deleted:
5009     S.Diag(Loc, Diag);
5010     S.NoteDeletedFunction(Best->Function);
5011     break;
5012   }
5013 }
5014 
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)5015 void InitializationSequence::PrintInitLocationNote(Sema &S,
5016                                               const InitializedEntity &Entity) {
5017   if (Entity.isParameterKind() && Entity.getDecl()) {
5018     if (Entity.getDecl()->getLocation().isInvalid())
5019       return;
5020 
5021     if (Entity.getDecl()->getDeclName())
5022       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5023         << Entity.getDecl()->getDeclName();
5024     else
5025       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5026   }
5027   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5028            Entity.getMethodDecl())
5029     S.Diag(Entity.getMethodDecl()->getLocation(),
5030            diag::note_method_return_type_change)
5031       << Entity.getMethodDecl()->getDeclName();
5032 }
5033 
isReferenceBinding(const InitializationSequence::Step & s)5034 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5035   return s.Kind == InitializationSequence::SK_BindReference ||
5036          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5037 }
5038 
5039 /// Returns true if the parameters describe a constructor initialization of
5040 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)5041 static bool isExplicitTemporary(const InitializedEntity &Entity,
5042                                 const InitializationKind &Kind,
5043                                 unsigned NumArgs) {
5044   switch (Entity.getKind()) {
5045   case InitializedEntity::EK_Temporary:
5046   case InitializedEntity::EK_CompoundLiteralInit:
5047   case InitializedEntity::EK_RelatedResult:
5048     break;
5049   default:
5050     return false;
5051   }
5052 
5053   switch (Kind.getKind()) {
5054   case InitializationKind::IK_DirectList:
5055     return true;
5056   // FIXME: Hack to work around cast weirdness.
5057   case InitializationKind::IK_Direct:
5058   case InitializationKind::IK_Value:
5059     return NumArgs != 1;
5060   default:
5061     return false;
5062   }
5063 }
5064 
5065 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization)5066 PerformConstructorInitialization(Sema &S,
5067                                  const InitializedEntity &Entity,
5068                                  const InitializationKind &Kind,
5069                                  MultiExprArg Args,
5070                                  const InitializationSequence::Step& Step,
5071                                  bool &ConstructorInitRequiresZeroInit,
5072                                  bool IsListInitialization) {
5073   unsigned NumArgs = Args.size();
5074   CXXConstructorDecl *Constructor
5075     = cast<CXXConstructorDecl>(Step.Function.Function);
5076   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5077 
5078   // Build a call to the selected constructor.
5079   SmallVector<Expr*, 8> ConstructorArgs;
5080   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5081                          ? Kind.getEqualLoc()
5082                          : Kind.getLocation();
5083 
5084   if (Kind.getKind() == InitializationKind::IK_Default) {
5085     // Force even a trivial, implicit default constructor to be
5086     // semantically checked. We do this explicitly because we don't build
5087     // the definition for completely trivial constructors.
5088     assert(Constructor->getParent() && "No parent class for constructor.");
5089     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5090         Constructor->isTrivial() && !Constructor->isUsed(false))
5091       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5092   }
5093 
5094   ExprResult CurInit = S.Owned((Expr *)0);
5095 
5096   // C++ [over.match.copy]p1:
5097   //   - When initializing a temporary to be bound to the first parameter
5098   //     of a constructor that takes a reference to possibly cv-qualified
5099   //     T as its first argument, called with a single argument in the
5100   //     context of direct-initialization, explicit conversion functions
5101   //     are also considered.
5102   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5103                            Args.size() == 1 &&
5104                            Constructor->isCopyOrMoveConstructor();
5105 
5106   // Determine the arguments required to actually perform the constructor
5107   // call.
5108   if (S.CompleteConstructorCall(Constructor, Args,
5109                                 Loc, ConstructorArgs,
5110                                 AllowExplicitConv,
5111                                 IsListInitialization))
5112     return ExprError();
5113 
5114 
5115   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5116     // An explicitly-constructed temporary, e.g., X(1, 2).
5117     S.MarkFunctionReferenced(Loc, Constructor);
5118     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5119       return ExprError();
5120 
5121     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5122     if (!TSInfo)
5123       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5124     SourceRange ParenRange;
5125     if (Kind.getKind() != InitializationKind::IK_DirectList)
5126       ParenRange = Kind.getParenRange();
5127 
5128     CurInit = S.Owned(
5129       new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5130                                              TSInfo, ConstructorArgs,
5131                                              ParenRange, IsListInitialization,
5132                                              HadMultipleCandidates,
5133                                              ConstructorInitRequiresZeroInit));
5134   } else {
5135     CXXConstructExpr::ConstructionKind ConstructKind =
5136       CXXConstructExpr::CK_Complete;
5137 
5138     if (Entity.getKind() == InitializedEntity::EK_Base) {
5139       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5140         CXXConstructExpr::CK_VirtualBase :
5141         CXXConstructExpr::CK_NonVirtualBase;
5142     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5143       ConstructKind = CXXConstructExpr::CK_Delegating;
5144     }
5145 
5146     // Only get the parenthesis range if it is a direct construction.
5147     SourceRange parenRange =
5148         Kind.getKind() == InitializationKind::IK_Direct ?
5149         Kind.getParenRange() : SourceRange();
5150 
5151     // If the entity allows NRVO, mark the construction as elidable
5152     // unconditionally.
5153     if (Entity.allowsNRVO())
5154       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5155                                         Constructor, /*Elidable=*/true,
5156                                         ConstructorArgs,
5157                                         HadMultipleCandidates,
5158                                         IsListInitialization,
5159                                         ConstructorInitRequiresZeroInit,
5160                                         ConstructKind,
5161                                         parenRange);
5162     else
5163       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5164                                         Constructor,
5165                                         ConstructorArgs,
5166                                         HadMultipleCandidates,
5167                                         IsListInitialization,
5168                                         ConstructorInitRequiresZeroInit,
5169                                         ConstructKind,
5170                                         parenRange);
5171   }
5172   if (CurInit.isInvalid())
5173     return ExprError();
5174 
5175   // Only check access if all of that succeeded.
5176   S.CheckConstructorAccess(Loc, Constructor, Entity,
5177                            Step.Function.FoundDecl.getAccess());
5178   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5179     return ExprError();
5180 
5181   if (shouldBindAsTemporary(Entity))
5182     CurInit = S.MaybeBindToTemporary(CurInit.take());
5183 
5184   return CurInit;
5185 }
5186 
5187 /// Determine whether the specified InitializedEntity definitely has a lifetime
5188 /// longer than the current full-expression. Conservatively returns false if
5189 /// it's unclear.
5190 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)5191 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5192   const InitializedEntity *Top = &Entity;
5193   while (Top->getParent())
5194     Top = Top->getParent();
5195 
5196   switch (Top->getKind()) {
5197   case InitializedEntity::EK_Variable:
5198   case InitializedEntity::EK_Result:
5199   case InitializedEntity::EK_Exception:
5200   case InitializedEntity::EK_Member:
5201   case InitializedEntity::EK_New:
5202   case InitializedEntity::EK_Base:
5203   case InitializedEntity::EK_Delegating:
5204     return true;
5205 
5206   case InitializedEntity::EK_ArrayElement:
5207   case InitializedEntity::EK_VectorElement:
5208   case InitializedEntity::EK_BlockElement:
5209   case InitializedEntity::EK_ComplexElement:
5210     // Could not determine what the full initialization is. Assume it might not
5211     // outlive the full-expression.
5212     return false;
5213 
5214   case InitializedEntity::EK_Parameter:
5215   case InitializedEntity::EK_Parameter_CF_Audited:
5216   case InitializedEntity::EK_Temporary:
5217   case InitializedEntity::EK_LambdaCapture:
5218   case InitializedEntity::EK_CompoundLiteralInit:
5219   case InitializedEntity::EK_RelatedResult:
5220     // The entity being initialized might not outlive the full-expression.
5221     return false;
5222   }
5223 
5224   llvm_unreachable("unknown entity kind");
5225 }
5226 
5227 /// Determine the declaration which an initialized entity ultimately refers to,
5228 /// for the purpose of lifetime-extending a temporary bound to a reference in
5229 /// the initialization of \p Entity.
5230 static const ValueDecl *
getDeclForTemporaryLifetimeExtension(const InitializedEntity & Entity,const ValueDecl * FallbackDecl=0)5231 getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5232                                      const ValueDecl *FallbackDecl = 0) {
5233   // C++11 [class.temporary]p5:
5234   switch (Entity.getKind()) {
5235   case InitializedEntity::EK_Variable:
5236     //   The temporary [...] persists for the lifetime of the reference
5237     return Entity.getDecl();
5238 
5239   case InitializedEntity::EK_Member:
5240     // For subobjects, we look at the complete object.
5241     if (Entity.getParent())
5242       return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5243                                                   Entity.getDecl());
5244 
5245     //   except:
5246     //   -- A temporary bound to a reference member in a constructor's
5247     //      ctor-initializer persists until the constructor exits.
5248     return Entity.getDecl();
5249 
5250   case InitializedEntity::EK_Parameter:
5251   case InitializedEntity::EK_Parameter_CF_Audited:
5252     //   -- A temporary bound to a reference parameter in a function call
5253     //      persists until the completion of the full-expression containing
5254     //      the call.
5255   case InitializedEntity::EK_Result:
5256     //   -- The lifetime of a temporary bound to the returned value in a
5257     //      function return statement is not extended; the temporary is
5258     //      destroyed at the end of the full-expression in the return statement.
5259   case InitializedEntity::EK_New:
5260     //   -- A temporary bound to a reference in a new-initializer persists
5261     //      until the completion of the full-expression containing the
5262     //      new-initializer.
5263     return 0;
5264 
5265   case InitializedEntity::EK_Temporary:
5266   case InitializedEntity::EK_CompoundLiteralInit:
5267   case InitializedEntity::EK_RelatedResult:
5268     // We don't yet know the storage duration of the surrounding temporary.
5269     // Assume it's got full-expression duration for now, it will patch up our
5270     // storage duration if that's not correct.
5271     return 0;
5272 
5273   case InitializedEntity::EK_ArrayElement:
5274     // For subobjects, we look at the complete object.
5275     return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5276                                                 FallbackDecl);
5277 
5278   case InitializedEntity::EK_Base:
5279   case InitializedEntity::EK_Delegating:
5280     // We can reach this case for aggregate initialization in a constructor:
5281     //   struct A { int &&r; };
5282     //   struct B : A { B() : A{0} {} };
5283     // In this case, use the innermost field decl as the context.
5284     return FallbackDecl;
5285 
5286   case InitializedEntity::EK_BlockElement:
5287   case InitializedEntity::EK_LambdaCapture:
5288   case InitializedEntity::EK_Exception:
5289   case InitializedEntity::EK_VectorElement:
5290   case InitializedEntity::EK_ComplexElement:
5291     return 0;
5292   }
5293   llvm_unreachable("unknown entity kind");
5294 }
5295 
5296 static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5297 
5298 /// Update a glvalue expression that is used as the initializer of a reference
5299 /// to note that its lifetime is extended.
5300 /// \return \c true if any temporary had its lifetime extended.
performReferenceExtension(Expr * Init,const ValueDecl * ExtendingD)5301 static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5302   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5303     if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5304       // This is just redundant braces around an initializer. Step over it.
5305       Init = ILE->getInit(0);
5306     }
5307   }
5308 
5309   // Walk past any constructs which we can lifetime-extend across.
5310   Expr *Old;
5311   do {
5312     Old = Init;
5313 
5314     // Step over any subobject adjustments; we may have a materialized
5315     // temporary inside them.
5316     SmallVector<const Expr *, 2> CommaLHSs;
5317     SmallVector<SubobjectAdjustment, 2> Adjustments;
5318     Init = const_cast<Expr *>(
5319         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5320 
5321     // Per current approach for DR1376, look through casts to reference type
5322     // when performing lifetime extension.
5323     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5324       if (CE->getSubExpr()->isGLValue())
5325         Init = CE->getSubExpr();
5326 
5327     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5328     // It's unclear if binding a reference to that xvalue extends the array
5329     // temporary.
5330   } while (Init != Old);
5331 
5332   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5333     // Update the storage duration of the materialized temporary.
5334     // FIXME: Rebuild the expression instead of mutating it.
5335     ME->setExtendingDecl(ExtendingD);
5336     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5337     return true;
5338   }
5339 
5340   return false;
5341 }
5342 
5343 /// Update a prvalue expression that is going to be materialized as a
5344 /// lifetime-extended temporary.
performLifetimeExtension(Expr * Init,const ValueDecl * ExtendingD)5345 static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5346   // Dig out the expression which constructs the extended temporary.
5347   SmallVector<const Expr *, 2> CommaLHSs;
5348   SmallVector<SubobjectAdjustment, 2> Adjustments;
5349   Init = const_cast<Expr *>(
5350       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5351 
5352   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5353     Init = BTE->getSubExpr();
5354 
5355   if (CXXStdInitializerListExpr *ILE =
5356           dyn_cast<CXXStdInitializerListExpr>(Init)) {
5357     performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5358     return;
5359   }
5360 
5361   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5362     if (ILE->getType()->isArrayType()) {
5363       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5364         performLifetimeExtension(ILE->getInit(I), ExtendingD);
5365       return;
5366     }
5367 
5368     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5369       assert(RD->isAggregate() && "aggregate init on non-aggregate");
5370 
5371       // If we lifetime-extend a braced initializer which is initializing an
5372       // aggregate, and that aggregate contains reference members which are
5373       // bound to temporaries, those temporaries are also lifetime-extended.
5374       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5375           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5376         performReferenceExtension(ILE->getInit(0), ExtendingD);
5377       else {
5378         unsigned Index = 0;
5379         for (RecordDecl::field_iterator I = RD->field_begin(),
5380                                         E = RD->field_end();
5381              I != E; ++I) {
5382           if (Index >= ILE->getNumInits())
5383             break;
5384           if (I->isUnnamedBitfield())
5385             continue;
5386           Expr *SubInit = ILE->getInit(Index);
5387           if (I->getType()->isReferenceType())
5388             performReferenceExtension(SubInit, ExtendingD);
5389           else if (isa<InitListExpr>(SubInit) ||
5390                    isa<CXXStdInitializerListExpr>(SubInit))
5391             // This may be either aggregate-initialization of a member or
5392             // initialization of a std::initializer_list object. Either way,
5393             // we should recursively lifetime-extend that initializer.
5394             performLifetimeExtension(SubInit, ExtendingD);
5395           ++Index;
5396         }
5397       }
5398     }
5399   }
5400 }
5401 
warnOnLifetimeExtension(Sema & S,const InitializedEntity & Entity,const Expr * Init,bool IsInitializerList,const ValueDecl * ExtendingDecl)5402 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5403                                     const Expr *Init, bool IsInitializerList,
5404                                     const ValueDecl *ExtendingDecl) {
5405   // Warn if a field lifetime-extends a temporary.
5406   if (isa<FieldDecl>(ExtendingDecl)) {
5407     if (IsInitializerList) {
5408       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5409         << /*at end of constructor*/true;
5410       return;
5411     }
5412 
5413     bool IsSubobjectMember = false;
5414     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5415          Ent = Ent->getParent()) {
5416       if (Ent->getKind() != InitializedEntity::EK_Base) {
5417         IsSubobjectMember = true;
5418         break;
5419       }
5420     }
5421     S.Diag(Init->getExprLoc(),
5422            diag::warn_bind_ref_member_to_temporary)
5423       << ExtendingDecl << Init->getSourceRange()
5424       << IsSubobjectMember << IsInitializerList;
5425     if (IsSubobjectMember)
5426       S.Diag(ExtendingDecl->getLocation(),
5427              diag::note_ref_subobject_of_member_declared_here);
5428     else
5429       S.Diag(ExtendingDecl->getLocation(),
5430              diag::note_ref_or_ptr_member_declared_here)
5431         << /*is pointer*/false;
5432   }
5433 }
5434 
5435 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)5436 InitializationSequence::Perform(Sema &S,
5437                                 const InitializedEntity &Entity,
5438                                 const InitializationKind &Kind,
5439                                 MultiExprArg Args,
5440                                 QualType *ResultType) {
5441   if (Failed()) {
5442     Diagnose(S, Entity, Kind, Args);
5443     return ExprError();
5444   }
5445 
5446   if (getKind() == DependentSequence) {
5447     // If the declaration is a non-dependent, incomplete array type
5448     // that has an initializer, then its type will be completed once
5449     // the initializer is instantiated.
5450     if (ResultType && !Entity.getType()->isDependentType() &&
5451         Args.size() == 1) {
5452       QualType DeclType = Entity.getType();
5453       if (const IncompleteArrayType *ArrayT
5454                            = S.Context.getAsIncompleteArrayType(DeclType)) {
5455         // FIXME: We don't currently have the ability to accurately
5456         // compute the length of an initializer list without
5457         // performing full type-checking of the initializer list
5458         // (since we have to determine where braces are implicitly
5459         // introduced and such).  So, we fall back to making the array
5460         // type a dependently-sized array type with no specified
5461         // bound.
5462         if (isa<InitListExpr>((Expr *)Args[0])) {
5463           SourceRange Brackets;
5464 
5465           // Scavange the location of the brackets from the entity, if we can.
5466           if (DeclaratorDecl *DD = Entity.getDecl()) {
5467             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5468               TypeLoc TL = TInfo->getTypeLoc();
5469               if (IncompleteArrayTypeLoc ArrayLoc =
5470                       TL.getAs<IncompleteArrayTypeLoc>())
5471                 Brackets = ArrayLoc.getBracketsRange();
5472             }
5473           }
5474 
5475           *ResultType
5476             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5477                                                    /*NumElts=*/0,
5478                                                    ArrayT->getSizeModifier(),
5479                                        ArrayT->getIndexTypeCVRQualifiers(),
5480                                                    Brackets);
5481         }
5482 
5483       }
5484     }
5485     if (Kind.getKind() == InitializationKind::IK_Direct &&
5486         !Kind.isExplicitCast()) {
5487       // Rebuild the ParenListExpr.
5488       SourceRange ParenRange = Kind.getParenRange();
5489       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5490                                   Args);
5491     }
5492     assert(Kind.getKind() == InitializationKind::IK_Copy ||
5493            Kind.isExplicitCast() ||
5494            Kind.getKind() == InitializationKind::IK_DirectList);
5495     return ExprResult(Args[0]);
5496   }
5497 
5498   // No steps means no initialization.
5499   if (Steps.empty())
5500     return S.Owned((Expr *)0);
5501 
5502   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5503       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5504       !Entity.isParameterKind()) {
5505     // Produce a C++98 compatibility warning if we are initializing a reference
5506     // from an initializer list. For parameters, we produce a better warning
5507     // elsewhere.
5508     Expr *Init = Args[0];
5509     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5510       << Init->getSourceRange();
5511   }
5512 
5513   // Diagnose cases where we initialize a pointer to an array temporary, and the
5514   // pointer obviously outlives the temporary.
5515   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5516       Entity.getType()->isPointerType() &&
5517       InitializedEntityOutlivesFullExpression(Entity)) {
5518     Expr *Init = Args[0];
5519     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5520     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5521       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5522         << Init->getSourceRange();
5523   }
5524 
5525   QualType DestType = Entity.getType().getNonReferenceType();
5526   // FIXME: Ugly hack around the fact that Entity.getType() is not
5527   // the same as Entity.getDecl()->getType() in cases involving type merging,
5528   //  and we want latter when it makes sense.
5529   if (ResultType)
5530     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5531                                      Entity.getType();
5532 
5533   ExprResult CurInit = S.Owned((Expr *)0);
5534 
5535   // For initialization steps that start with a single initializer,
5536   // grab the only argument out the Args and place it into the "current"
5537   // initializer.
5538   switch (Steps.front().Kind) {
5539   case SK_ResolveAddressOfOverloadedFunction:
5540   case SK_CastDerivedToBaseRValue:
5541   case SK_CastDerivedToBaseXValue:
5542   case SK_CastDerivedToBaseLValue:
5543   case SK_BindReference:
5544   case SK_BindReferenceToTemporary:
5545   case SK_ExtraneousCopyToTemporary:
5546   case SK_UserConversion:
5547   case SK_QualificationConversionLValue:
5548   case SK_QualificationConversionXValue:
5549   case SK_QualificationConversionRValue:
5550   case SK_LValueToRValue:
5551   case SK_ConversionSequence:
5552   case SK_ListInitialization:
5553   case SK_UnwrapInitList:
5554   case SK_RewrapInitList:
5555   case SK_CAssignment:
5556   case SK_StringInit:
5557   case SK_ObjCObjectConversion:
5558   case SK_ArrayInit:
5559   case SK_ParenthesizedArrayInit:
5560   case SK_PassByIndirectCopyRestore:
5561   case SK_PassByIndirectRestore:
5562   case SK_ProduceObjCObject:
5563   case SK_StdInitializerList:
5564   case SK_OCLSamplerInit:
5565   case SK_OCLZeroEvent: {
5566     assert(Args.size() == 1);
5567     CurInit = Args[0];
5568     if (!CurInit.get()) return ExprError();
5569     break;
5570   }
5571 
5572   case SK_ConstructorInitialization:
5573   case SK_ListConstructorCall:
5574   case SK_ZeroInitialization:
5575     break;
5576   }
5577 
5578   // Walk through the computed steps for the initialization sequence,
5579   // performing the specified conversions along the way.
5580   bool ConstructorInitRequiresZeroInit = false;
5581   for (step_iterator Step = step_begin(), StepEnd = step_end();
5582        Step != StepEnd; ++Step) {
5583     if (CurInit.isInvalid())
5584       return ExprError();
5585 
5586     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5587 
5588     switch (Step->Kind) {
5589     case SK_ResolveAddressOfOverloadedFunction:
5590       // Overload resolution determined which function invoke; update the
5591       // initializer to reflect that choice.
5592       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5593       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5594         return ExprError();
5595       CurInit = S.FixOverloadedFunctionReference(CurInit,
5596                                                  Step->Function.FoundDecl,
5597                                                  Step->Function.Function);
5598       break;
5599 
5600     case SK_CastDerivedToBaseRValue:
5601     case SK_CastDerivedToBaseXValue:
5602     case SK_CastDerivedToBaseLValue: {
5603       // We have a derived-to-base cast that produces either an rvalue or an
5604       // lvalue. Perform that cast.
5605 
5606       CXXCastPath BasePath;
5607 
5608       // Casts to inaccessible base classes are allowed with C-style casts.
5609       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5610       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5611                                          CurInit.get()->getLocStart(),
5612                                          CurInit.get()->getSourceRange(),
5613                                          &BasePath, IgnoreBaseAccess))
5614         return ExprError();
5615 
5616       if (S.BasePathInvolvesVirtualBase(BasePath)) {
5617         QualType T = SourceType;
5618         if (const PointerType *Pointer = T->getAs<PointerType>())
5619           T = Pointer->getPointeeType();
5620         if (const RecordType *RecordTy = T->getAs<RecordType>())
5621           S.MarkVTableUsed(CurInit.get()->getLocStart(),
5622                            cast<CXXRecordDecl>(RecordTy->getDecl()));
5623       }
5624 
5625       ExprValueKind VK =
5626           Step->Kind == SK_CastDerivedToBaseLValue ?
5627               VK_LValue :
5628               (Step->Kind == SK_CastDerivedToBaseXValue ?
5629                    VK_XValue :
5630                    VK_RValue);
5631       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5632                                                  Step->Type,
5633                                                  CK_DerivedToBase,
5634                                                  CurInit.get(),
5635                                                  &BasePath, VK));
5636       break;
5637     }
5638 
5639     case SK_BindReference:
5640       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5641       if (CurInit.get()->refersToBitField()) {
5642         // We don't necessarily have an unambiguous source bit-field.
5643         FieldDecl *BitField = CurInit.get()->getSourceBitField();
5644         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5645           << Entity.getType().isVolatileQualified()
5646           << (BitField ? BitField->getDeclName() : DeclarationName())
5647           << (BitField != NULL)
5648           << CurInit.get()->getSourceRange();
5649         if (BitField)
5650           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5651 
5652         return ExprError();
5653       }
5654 
5655       if (CurInit.get()->refersToVectorElement()) {
5656         // References cannot bind to vector elements.
5657         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5658           << Entity.getType().isVolatileQualified()
5659           << CurInit.get()->getSourceRange();
5660         PrintInitLocationNote(S, Entity);
5661         return ExprError();
5662       }
5663 
5664       // Reference binding does not have any corresponding ASTs.
5665 
5666       // Check exception specifications
5667       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5668         return ExprError();
5669 
5670       // Even though we didn't materialize a temporary, the binding may still
5671       // extend the lifetime of a temporary. This happens if we bind a reference
5672       // to the result of a cast to reference type.
5673       if (const ValueDecl *ExtendingDecl =
5674               getDeclForTemporaryLifetimeExtension(Entity)) {
5675         if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5676           warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5677                                   ExtendingDecl);
5678       }
5679 
5680       break;
5681 
5682     case SK_BindReferenceToTemporary: {
5683       // Make sure the "temporary" is actually an rvalue.
5684       assert(CurInit.get()->isRValue() && "not a temporary");
5685 
5686       // Check exception specifications
5687       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5688         return ExprError();
5689 
5690       // Maybe lifetime-extend the temporary's subobjects to match the
5691       // entity's lifetime.
5692       const ValueDecl *ExtendingDecl =
5693           getDeclForTemporaryLifetimeExtension(Entity);
5694       if (ExtendingDecl) {
5695         performLifetimeExtension(CurInit.get(), ExtendingDecl);
5696         warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5697       }
5698 
5699       // Materialize the temporary into memory.
5700       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5701           Entity.getType().getNonReferenceType(), CurInit.get(),
5702           Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5703 
5704       // If we're binding to an Objective-C object that has lifetime, we
5705       // need cleanups. Likewise if we're extending this temporary to automatic
5706       // storage duration -- we need to register its cleanup during the
5707       // full-expression's cleanups.
5708       if ((S.getLangOpts().ObjCAutoRefCount &&
5709            MTE->getType()->isObjCLifetimeType()) ||
5710           (MTE->getStorageDuration() == SD_Automatic &&
5711            MTE->getType().isDestructedType()))
5712         S.ExprNeedsCleanups = true;
5713 
5714       CurInit = S.Owned(MTE);
5715       break;
5716     }
5717 
5718     case SK_ExtraneousCopyToTemporary:
5719       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5720                            /*IsExtraneousCopy=*/true);
5721       break;
5722 
5723     case SK_UserConversion: {
5724       // We have a user-defined conversion that invokes either a constructor
5725       // or a conversion function.
5726       CastKind CastKind;
5727       bool IsCopy = false;
5728       FunctionDecl *Fn = Step->Function.Function;
5729       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5730       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5731       bool CreatedObject = false;
5732       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5733         // Build a call to the selected constructor.
5734         SmallVector<Expr*, 8> ConstructorArgs;
5735         SourceLocation Loc = CurInit.get()->getLocStart();
5736         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5737 
5738         // Determine the arguments required to actually perform the constructor
5739         // call.
5740         Expr *Arg = CurInit.get();
5741         if (S.CompleteConstructorCall(Constructor,
5742                                       MultiExprArg(&Arg, 1),
5743                                       Loc, ConstructorArgs))
5744           return ExprError();
5745 
5746         // Build an expression that constructs a temporary.
5747         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5748                                           ConstructorArgs,
5749                                           HadMultipleCandidates,
5750                                           /*ListInit*/ false,
5751                                           /*ZeroInit*/ false,
5752                                           CXXConstructExpr::CK_Complete,
5753                                           SourceRange());
5754         if (CurInit.isInvalid())
5755           return ExprError();
5756 
5757         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5758                                  FoundFn.getAccess());
5759         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5760           return ExprError();
5761 
5762         CastKind = CK_ConstructorConversion;
5763         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5764         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5765             S.IsDerivedFrom(SourceType, Class))
5766           IsCopy = true;
5767 
5768         CreatedObject = true;
5769       } else {
5770         // Build a call to the conversion function.
5771         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5772         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5773                                     FoundFn);
5774         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5775           return ExprError();
5776 
5777         // FIXME: Should we move this initialization into a separate
5778         // derived-to-base conversion? I believe the answer is "no", because
5779         // we don't want to turn off access control here for c-style casts.
5780         ExprResult CurInitExprRes =
5781           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5782                                                 FoundFn, Conversion);
5783         if(CurInitExprRes.isInvalid())
5784           return ExprError();
5785         CurInit = CurInitExprRes;
5786 
5787         // Build the actual call to the conversion function.
5788         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5789                                            HadMultipleCandidates);
5790         if (CurInit.isInvalid() || !CurInit.get())
5791           return ExprError();
5792 
5793         CastKind = CK_UserDefinedConversion;
5794 
5795         CreatedObject = Conversion->getResultType()->isRecordType();
5796       }
5797 
5798       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5799       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5800 
5801       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5802         QualType T = CurInit.get()->getType();
5803         if (const RecordType *Record = T->getAs<RecordType>()) {
5804           CXXDestructorDecl *Destructor
5805             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5806           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5807                                   S.PDiag(diag::err_access_dtor_temp) << T);
5808           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5809           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5810             return ExprError();
5811         }
5812       }
5813 
5814       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5815                                                  CurInit.get()->getType(),
5816                                                  CastKind, CurInit.get(), 0,
5817                                                 CurInit.get()->getValueKind()));
5818       if (MaybeBindToTemp)
5819         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5820       if (RequiresCopy)
5821         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5822                              CurInit, /*IsExtraneousCopy=*/false);
5823       break;
5824     }
5825 
5826     case SK_QualificationConversionLValue:
5827     case SK_QualificationConversionXValue:
5828     case SK_QualificationConversionRValue: {
5829       // Perform a qualification conversion; these can never go wrong.
5830       ExprValueKind VK =
5831           Step->Kind == SK_QualificationConversionLValue ?
5832               VK_LValue :
5833               (Step->Kind == SK_QualificationConversionXValue ?
5834                    VK_XValue :
5835                    VK_RValue);
5836       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5837       break;
5838     }
5839 
5840     case SK_LValueToRValue: {
5841       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5842       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5843                                                  CK_LValueToRValue,
5844                                                  CurInit.take(),
5845                                                  /*BasePath=*/0,
5846                                                  VK_RValue));
5847       break;
5848     }
5849 
5850     case SK_ConversionSequence: {
5851       Sema::CheckedConversionKind CCK
5852         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5853         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5854         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5855         : Sema::CCK_ImplicitConversion;
5856       ExprResult CurInitExprRes =
5857         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5858                                     getAssignmentAction(Entity), CCK);
5859       if (CurInitExprRes.isInvalid())
5860         return ExprError();
5861       CurInit = CurInitExprRes;
5862       break;
5863     }
5864 
5865     case SK_ListInitialization: {
5866       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5867       // If we're not initializing the top-level entity, we need to create an
5868       // InitializeTemporary entity for our target type.
5869       QualType Ty = Step->Type;
5870       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5871       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5872       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5873       InitListChecker PerformInitList(S, InitEntity,
5874           InitList, Ty, /*VerifyOnly=*/false);
5875       if (PerformInitList.HadError())
5876         return ExprError();
5877 
5878       // Hack: We must update *ResultType if available in order to set the
5879       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5880       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5881       if (ResultType &&
5882           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5883         if ((*ResultType)->isRValueReferenceType())
5884           Ty = S.Context.getRValueReferenceType(Ty);
5885         else if ((*ResultType)->isLValueReferenceType())
5886           Ty = S.Context.getLValueReferenceType(Ty,
5887             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5888         *ResultType = Ty;
5889       }
5890 
5891       InitListExpr *StructuredInitList =
5892           PerformInitList.getFullyStructuredList();
5893       CurInit.release();
5894       CurInit = shouldBindAsTemporary(InitEntity)
5895           ? S.MaybeBindToTemporary(StructuredInitList)
5896           : S.Owned(StructuredInitList);
5897       break;
5898     }
5899 
5900     case SK_ListConstructorCall: {
5901       // When an initializer list is passed for a parameter of type "reference
5902       // to object", we don't get an EK_Temporary entity, but instead an
5903       // EK_Parameter entity with reference type.
5904       // FIXME: This is a hack. What we really should do is create a user
5905       // conversion step for this case, but this makes it considerably more
5906       // complicated. For now, this will do.
5907       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5908                                         Entity.getType().getNonReferenceType());
5909       bool UseTemporary = Entity.getType()->isReferenceType();
5910       assert(Args.size() == 1 && "expected a single argument for list init");
5911       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5912       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5913         << InitList->getSourceRange();
5914       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5915       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5916                                                                    Entity,
5917                                                  Kind, Arg, *Step,
5918                                                ConstructorInitRequiresZeroInit,
5919                                                /*IsListInitialization*/ true);
5920       break;
5921     }
5922 
5923     case SK_UnwrapInitList:
5924       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5925       break;
5926 
5927     case SK_RewrapInitList: {
5928       Expr *E = CurInit.take();
5929       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5930       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5931           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5932       ILE->setSyntacticForm(Syntactic);
5933       ILE->setType(E->getType());
5934       ILE->setValueKind(E->getValueKind());
5935       CurInit = S.Owned(ILE);
5936       break;
5937     }
5938 
5939     case SK_ConstructorInitialization: {
5940       // When an initializer list is passed for a parameter of type "reference
5941       // to object", we don't get an EK_Temporary entity, but instead an
5942       // EK_Parameter entity with reference type.
5943       // FIXME: This is a hack. What we really should do is create a user
5944       // conversion step for this case, but this makes it considerably more
5945       // complicated. For now, this will do.
5946       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5947                                         Entity.getType().getNonReferenceType());
5948       bool UseTemporary = Entity.getType()->isReferenceType();
5949       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5950                                                                  : Entity,
5951                                                  Kind, Args, *Step,
5952                                                ConstructorInitRequiresZeroInit,
5953                                                /*IsListInitialization*/ false);
5954       break;
5955     }
5956 
5957     case SK_ZeroInitialization: {
5958       step_iterator NextStep = Step;
5959       ++NextStep;
5960       if (NextStep != StepEnd &&
5961           (NextStep->Kind == SK_ConstructorInitialization ||
5962            NextStep->Kind == SK_ListConstructorCall)) {
5963         // The need for zero-initialization is recorded directly into
5964         // the call to the object's constructor within the next step.
5965         ConstructorInitRequiresZeroInit = true;
5966       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5967                  S.getLangOpts().CPlusPlus &&
5968                  !Kind.isImplicitValueInit()) {
5969         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5970         if (!TSInfo)
5971           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5972                                                     Kind.getRange().getBegin());
5973 
5974         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5975                               TSInfo->getType().getNonLValueExprType(S.Context),
5976                                                                  TSInfo,
5977                                                     Kind.getRange().getEnd()));
5978       } else {
5979         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5980       }
5981       break;
5982     }
5983 
5984     case SK_CAssignment: {
5985       QualType SourceType = CurInit.get()->getType();
5986       ExprResult Result = CurInit;
5987       Sema::AssignConvertType ConvTy =
5988         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
5989             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
5990       if (Result.isInvalid())
5991         return ExprError();
5992       CurInit = Result;
5993 
5994       // If this is a call, allow conversion to a transparent union.
5995       ExprResult CurInitExprRes = CurInit;
5996       if (ConvTy != Sema::Compatible &&
5997           Entity.isParameterKind() &&
5998           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5999             == Sema::Compatible)
6000         ConvTy = Sema::Compatible;
6001       if (CurInitExprRes.isInvalid())
6002         return ExprError();
6003       CurInit = CurInitExprRes;
6004 
6005       bool Complained;
6006       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6007                                      Step->Type, SourceType,
6008                                      CurInit.get(),
6009                                      getAssignmentAction(Entity, true),
6010                                      &Complained)) {
6011         PrintInitLocationNote(S, Entity);
6012         return ExprError();
6013       } else if (Complained)
6014         PrintInitLocationNote(S, Entity);
6015       break;
6016     }
6017 
6018     case SK_StringInit: {
6019       QualType Ty = Step->Type;
6020       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6021                       S.Context.getAsArrayType(Ty), S);
6022       break;
6023     }
6024 
6025     case SK_ObjCObjectConversion:
6026       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6027                           CK_ObjCObjectLValueCast,
6028                           CurInit.get()->getValueKind());
6029       break;
6030 
6031     case SK_ArrayInit:
6032       // Okay: we checked everything before creating this step. Note that
6033       // this is a GNU extension.
6034       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6035         << Step->Type << CurInit.get()->getType()
6036         << CurInit.get()->getSourceRange();
6037 
6038       // If the destination type is an incomplete array type, update the
6039       // type accordingly.
6040       if (ResultType) {
6041         if (const IncompleteArrayType *IncompleteDest
6042                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
6043           if (const ConstantArrayType *ConstantSource
6044                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6045             *ResultType = S.Context.getConstantArrayType(
6046                                              IncompleteDest->getElementType(),
6047                                              ConstantSource->getSize(),
6048                                              ArrayType::Normal, 0);
6049           }
6050         }
6051       }
6052       break;
6053 
6054     case SK_ParenthesizedArrayInit:
6055       // Okay: we checked everything before creating this step. Note that
6056       // this is a GNU extension.
6057       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6058         << CurInit.get()->getSourceRange();
6059       break;
6060 
6061     case SK_PassByIndirectCopyRestore:
6062     case SK_PassByIndirectRestore:
6063       checkIndirectCopyRestoreSource(S, CurInit.get());
6064       CurInit = S.Owned(new (S.Context)
6065                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6066                                 Step->Kind == SK_PassByIndirectCopyRestore));
6067       break;
6068 
6069     case SK_ProduceObjCObject:
6070       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6071                                                  CK_ARCProduceObject,
6072                                                  CurInit.take(), 0, VK_RValue));
6073       break;
6074 
6075     case SK_StdInitializerList: {
6076       S.Diag(CurInit.get()->getExprLoc(),
6077              diag::warn_cxx98_compat_initializer_list_init)
6078         << CurInit.get()->getSourceRange();
6079 
6080       // Maybe lifetime-extend the array temporary's subobjects to match the
6081       // entity's lifetime.
6082       const ValueDecl *ExtendingDecl =
6083           getDeclForTemporaryLifetimeExtension(Entity);
6084       if (ExtendingDecl) {
6085         performLifetimeExtension(CurInit.get(), ExtendingDecl);
6086         warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6087       }
6088 
6089       // Materialize the temporary into memory.
6090       MaterializeTemporaryExpr *MTE = new (S.Context)
6091           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6092                                    /*lvalue reference*/ false, ExtendingDecl);
6093 
6094       // Wrap it in a construction of a std::initializer_list<T>.
6095       CurInit = S.Owned(
6096           new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6097 
6098       // Bind the result, in case the library has given initializer_list a
6099       // non-trivial destructor.
6100       if (shouldBindAsTemporary(Entity))
6101         CurInit = S.MaybeBindToTemporary(CurInit.take());
6102       break;
6103     }
6104 
6105     case SK_OCLSamplerInit: {
6106       assert(Step->Type->isSamplerT() &&
6107              "Sampler initialization on non sampler type.");
6108 
6109       QualType SourceType = CurInit.get()->getType();
6110 
6111       if (Entity.isParameterKind()) {
6112         if (!SourceType->isSamplerT())
6113           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6114             << SourceType;
6115       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6116         llvm_unreachable("Invalid EntityKind!");
6117       }
6118 
6119       break;
6120     }
6121     case SK_OCLZeroEvent: {
6122       assert(Step->Type->isEventT() &&
6123              "Event initialization on non event type.");
6124 
6125       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6126                                     CK_ZeroToOCLEvent,
6127                                     CurInit.get()->getValueKind());
6128       break;
6129     }
6130     }
6131   }
6132 
6133   // Diagnose non-fatal problems with the completed initialization.
6134   if (Entity.getKind() == InitializedEntity::EK_Member &&
6135       cast<FieldDecl>(Entity.getDecl())->isBitField())
6136     S.CheckBitFieldInitialization(Kind.getLocation(),
6137                                   cast<FieldDecl>(Entity.getDecl()),
6138                                   CurInit.get());
6139 
6140   return CurInit;
6141 }
6142 
6143 /// Somewhere within T there is an uninitialized reference subobject.
6144 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)6145 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6146                                            QualType T) {
6147   if (T->isReferenceType()) {
6148     S.Diag(Loc, diag::err_reference_without_init)
6149       << T.getNonReferenceType();
6150     return true;
6151   }
6152 
6153   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6154   if (!RD || !RD->hasUninitializedReferenceMember())
6155     return false;
6156 
6157   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6158                                      FE = RD->field_end(); FI != FE; ++FI) {
6159     if (FI->isUnnamedBitfield())
6160       continue;
6161 
6162     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6163       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6164       return true;
6165     }
6166   }
6167 
6168   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6169                                           BE = RD->bases_end();
6170        BI != BE; ++BI) {
6171     if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6172       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6173       return true;
6174     }
6175   }
6176 
6177   return false;
6178 }
6179 
6180 
6181 //===----------------------------------------------------------------------===//
6182 // Diagnose initialization failures
6183 //===----------------------------------------------------------------------===//
6184 
6185 /// Emit notes associated with an initialization that failed due to a
6186 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)6187 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6188                                    Expr *op) {
6189   QualType destType = entity.getType();
6190   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6191       op->getType()->isObjCObjectPointerType()) {
6192 
6193     // Emit a possible note about the conversion failing because the
6194     // operand is a message send with a related result type.
6195     S.EmitRelatedResultTypeNote(op);
6196 
6197     // Emit a possible note about a return failing because we're
6198     // expecting a related result type.
6199     if (entity.getKind() == InitializedEntity::EK_Result)
6200       S.EmitRelatedResultTypeNoteForReturn(destType);
6201   }
6202 }
6203 
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)6204 bool InitializationSequence::Diagnose(Sema &S,
6205                                       const InitializedEntity &Entity,
6206                                       const InitializationKind &Kind,
6207                                       ArrayRef<Expr *> Args) {
6208   if (!Failed())
6209     return false;
6210 
6211   QualType DestType = Entity.getType();
6212   switch (Failure) {
6213   case FK_TooManyInitsForReference:
6214     // FIXME: Customize for the initialized entity?
6215     if (Args.empty()) {
6216       // Dig out the reference subobject which is uninitialized and diagnose it.
6217       // If this is value-initialization, this could be nested some way within
6218       // the target type.
6219       assert(Kind.getKind() == InitializationKind::IK_Value ||
6220              DestType->isReferenceType());
6221       bool Diagnosed =
6222         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6223       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6224       (void)Diagnosed;
6225     } else  // FIXME: diagnostic below could be better!
6226       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6227         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6228     break;
6229 
6230   case FK_ArrayNeedsInitList:
6231     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6232     break;
6233   case FK_ArrayNeedsInitListOrStringLiteral:
6234     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6235     break;
6236   case FK_ArrayNeedsInitListOrWideStringLiteral:
6237     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6238     break;
6239   case FK_NarrowStringIntoWideCharArray:
6240     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6241     break;
6242   case FK_WideStringIntoCharArray:
6243     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6244     break;
6245   case FK_IncompatWideStringIntoWideChar:
6246     S.Diag(Kind.getLocation(),
6247            diag::err_array_init_incompat_wide_string_into_wchar);
6248     break;
6249   case FK_ArrayTypeMismatch:
6250   case FK_NonConstantArrayInit:
6251     S.Diag(Kind.getLocation(),
6252            (Failure == FK_ArrayTypeMismatch
6253               ? diag::err_array_init_different_type
6254               : diag::err_array_init_non_constant_array))
6255       << DestType.getNonReferenceType()
6256       << Args[0]->getType()
6257       << Args[0]->getSourceRange();
6258     break;
6259 
6260   case FK_VariableLengthArrayHasInitializer:
6261     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6262       << Args[0]->getSourceRange();
6263     break;
6264 
6265   case FK_AddressOfOverloadFailed: {
6266     DeclAccessPair Found;
6267     S.ResolveAddressOfOverloadedFunction(Args[0],
6268                                          DestType.getNonReferenceType(),
6269                                          true,
6270                                          Found);
6271     break;
6272   }
6273 
6274   case FK_ReferenceInitOverloadFailed:
6275   case FK_UserConversionOverloadFailed:
6276     switch (FailedOverloadResult) {
6277     case OR_Ambiguous:
6278       if (Failure == FK_UserConversionOverloadFailed)
6279         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6280           << Args[0]->getType() << DestType
6281           << Args[0]->getSourceRange();
6282       else
6283         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6284           << DestType << Args[0]->getType()
6285           << Args[0]->getSourceRange();
6286 
6287       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6288       break;
6289 
6290     case OR_No_Viable_Function:
6291       if (!S.RequireCompleteType(Kind.getLocation(),
6292                                  DestType.getNonReferenceType(),
6293                           diag::err_typecheck_nonviable_condition_incomplete,
6294                                Args[0]->getType(), Args[0]->getSourceRange()))
6295         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6296           << Args[0]->getType() << Args[0]->getSourceRange()
6297           << DestType.getNonReferenceType();
6298 
6299       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6300       break;
6301 
6302     case OR_Deleted: {
6303       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6304         << Args[0]->getType() << DestType.getNonReferenceType()
6305         << Args[0]->getSourceRange();
6306       OverloadCandidateSet::iterator Best;
6307       OverloadingResult Ovl
6308         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6309                                                 true);
6310       if (Ovl == OR_Deleted) {
6311         S.NoteDeletedFunction(Best->Function);
6312       } else {
6313         llvm_unreachable("Inconsistent overload resolution?");
6314       }
6315       break;
6316     }
6317 
6318     case OR_Success:
6319       llvm_unreachable("Conversion did not fail!");
6320     }
6321     break;
6322 
6323   case FK_NonConstLValueReferenceBindingToTemporary:
6324     if (isa<InitListExpr>(Args[0])) {
6325       S.Diag(Kind.getLocation(),
6326              diag::err_lvalue_reference_bind_to_initlist)
6327       << DestType.getNonReferenceType().isVolatileQualified()
6328       << DestType.getNonReferenceType()
6329       << Args[0]->getSourceRange();
6330       break;
6331     }
6332     // Intentional fallthrough
6333 
6334   case FK_NonConstLValueReferenceBindingToUnrelated:
6335     S.Diag(Kind.getLocation(),
6336            Failure == FK_NonConstLValueReferenceBindingToTemporary
6337              ? diag::err_lvalue_reference_bind_to_temporary
6338              : diag::err_lvalue_reference_bind_to_unrelated)
6339       << DestType.getNonReferenceType().isVolatileQualified()
6340       << DestType.getNonReferenceType()
6341       << Args[0]->getType()
6342       << Args[0]->getSourceRange();
6343     break;
6344 
6345   case FK_RValueReferenceBindingToLValue:
6346     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6347       << DestType.getNonReferenceType() << Args[0]->getType()
6348       << Args[0]->getSourceRange();
6349     break;
6350 
6351   case FK_ReferenceInitDropsQualifiers:
6352     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6353       << DestType.getNonReferenceType()
6354       << Args[0]->getType()
6355       << Args[0]->getSourceRange();
6356     break;
6357 
6358   case FK_ReferenceInitFailed:
6359     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6360       << DestType.getNonReferenceType()
6361       << Args[0]->isLValue()
6362       << Args[0]->getType()
6363       << Args[0]->getSourceRange();
6364     emitBadConversionNotes(S, Entity, Args[0]);
6365     break;
6366 
6367   case FK_ConversionFailed: {
6368     QualType FromType = Args[0]->getType();
6369     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6370       << (int)Entity.getKind()
6371       << DestType
6372       << Args[0]->isLValue()
6373       << FromType
6374       << Args[0]->getSourceRange();
6375     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6376     S.Diag(Kind.getLocation(), PDiag);
6377     emitBadConversionNotes(S, Entity, Args[0]);
6378     break;
6379   }
6380 
6381   case FK_ConversionFromPropertyFailed:
6382     // No-op. This error has already been reported.
6383     break;
6384 
6385   case FK_TooManyInitsForScalar: {
6386     SourceRange R;
6387 
6388     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6389       R = SourceRange(InitList->getInit(0)->getLocEnd(),
6390                       InitList->getLocEnd());
6391     else
6392       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6393 
6394     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6395     if (Kind.isCStyleOrFunctionalCast())
6396       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6397         << R;
6398     else
6399       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6400         << /*scalar=*/2 << R;
6401     break;
6402   }
6403 
6404   case FK_ReferenceBindingToInitList:
6405     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6406       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6407     break;
6408 
6409   case FK_InitListBadDestinationType:
6410     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6411       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6412     break;
6413 
6414   case FK_ListConstructorOverloadFailed:
6415   case FK_ConstructorOverloadFailed: {
6416     SourceRange ArgsRange;
6417     if (Args.size())
6418       ArgsRange = SourceRange(Args.front()->getLocStart(),
6419                               Args.back()->getLocEnd());
6420 
6421     if (Failure == FK_ListConstructorOverloadFailed) {
6422       assert(Args.size() == 1 && "List construction from other than 1 argument.");
6423       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6424       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6425     }
6426 
6427     // FIXME: Using "DestType" for the entity we're printing is probably
6428     // bad.
6429     switch (FailedOverloadResult) {
6430       case OR_Ambiguous:
6431         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6432           << DestType << ArgsRange;
6433         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6434         break;
6435 
6436       case OR_No_Viable_Function:
6437         if (Kind.getKind() == InitializationKind::IK_Default &&
6438             (Entity.getKind() == InitializedEntity::EK_Base ||
6439              Entity.getKind() == InitializedEntity::EK_Member) &&
6440             isa<CXXConstructorDecl>(S.CurContext)) {
6441           // This is implicit default initialization of a member or
6442           // base within a constructor. If no viable function was
6443           // found, notify the user that she needs to explicitly
6444           // initialize this base/member.
6445           CXXConstructorDecl *Constructor
6446             = cast<CXXConstructorDecl>(S.CurContext);
6447           if (Entity.getKind() == InitializedEntity::EK_Base) {
6448             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6449               << (Constructor->getInheritedConstructor() ? 2 :
6450                   Constructor->isImplicit() ? 1 : 0)
6451               << S.Context.getTypeDeclType(Constructor->getParent())
6452               << /*base=*/0
6453               << Entity.getType();
6454 
6455             RecordDecl *BaseDecl
6456               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6457                                                                   ->getDecl();
6458             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6459               << S.Context.getTagDeclType(BaseDecl);
6460           } else {
6461             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6462               << (Constructor->getInheritedConstructor() ? 2 :
6463                   Constructor->isImplicit() ? 1 : 0)
6464               << S.Context.getTypeDeclType(Constructor->getParent())
6465               << /*member=*/1
6466               << Entity.getName();
6467             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6468 
6469             if (const RecordType *Record
6470                                  = Entity.getType()->getAs<RecordType>())
6471               S.Diag(Record->getDecl()->getLocation(),
6472                      diag::note_previous_decl)
6473                 << S.Context.getTagDeclType(Record->getDecl());
6474           }
6475           break;
6476         }
6477 
6478         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6479           << DestType << ArgsRange;
6480         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6481         break;
6482 
6483       case OR_Deleted: {
6484         OverloadCandidateSet::iterator Best;
6485         OverloadingResult Ovl
6486           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6487         if (Ovl != OR_Deleted) {
6488           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6489             << true << DestType << ArgsRange;
6490           llvm_unreachable("Inconsistent overload resolution?");
6491           break;
6492         }
6493 
6494         // If this is a defaulted or implicitly-declared function, then
6495         // it was implicitly deleted. Make it clear that the deletion was
6496         // implicit.
6497         if (S.isImplicitlyDeleted(Best->Function))
6498           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6499             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6500             << DestType << ArgsRange;
6501         else
6502           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6503             << true << DestType << ArgsRange;
6504 
6505         S.NoteDeletedFunction(Best->Function);
6506         break;
6507       }
6508 
6509       case OR_Success:
6510         llvm_unreachable("Conversion did not fail!");
6511     }
6512   }
6513   break;
6514 
6515   case FK_DefaultInitOfConst:
6516     if (Entity.getKind() == InitializedEntity::EK_Member &&
6517         isa<CXXConstructorDecl>(S.CurContext)) {
6518       // This is implicit default-initialization of a const member in
6519       // a constructor. Complain that it needs to be explicitly
6520       // initialized.
6521       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6522       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6523         << (Constructor->getInheritedConstructor() ? 2 :
6524             Constructor->isImplicit() ? 1 : 0)
6525         << S.Context.getTypeDeclType(Constructor->getParent())
6526         << /*const=*/1
6527         << Entity.getName();
6528       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6529         << Entity.getName();
6530     } else {
6531       S.Diag(Kind.getLocation(), diag::err_default_init_const)
6532         << DestType << (bool)DestType->getAs<RecordType>();
6533     }
6534     break;
6535 
6536   case FK_Incomplete:
6537     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6538                           diag::err_init_incomplete_type);
6539     break;
6540 
6541   case FK_ListInitializationFailed: {
6542     // Run the init list checker again to emit diagnostics.
6543     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6544     QualType DestType = Entity.getType();
6545     InitListChecker DiagnoseInitList(S, Entity, InitList,
6546             DestType, /*VerifyOnly=*/false);
6547     assert(DiagnoseInitList.HadError() &&
6548            "Inconsistent init list check result.");
6549     break;
6550   }
6551 
6552   case FK_PlaceholderType: {
6553     // FIXME: Already diagnosed!
6554     break;
6555   }
6556 
6557   case FK_ExplicitConstructor: {
6558     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6559       << Args[0]->getSourceRange();
6560     OverloadCandidateSet::iterator Best;
6561     OverloadingResult Ovl
6562       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6563     (void)Ovl;
6564     assert(Ovl == OR_Success && "Inconsistent overload resolution");
6565     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6566     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6567     break;
6568   }
6569   }
6570 
6571   PrintInitLocationNote(S, Entity);
6572   return true;
6573 }
6574 
dump(raw_ostream & OS) const6575 void InitializationSequence::dump(raw_ostream &OS) const {
6576   switch (SequenceKind) {
6577   case FailedSequence: {
6578     OS << "Failed sequence: ";
6579     switch (Failure) {
6580     case FK_TooManyInitsForReference:
6581       OS << "too many initializers for reference";
6582       break;
6583 
6584     case FK_ArrayNeedsInitList:
6585       OS << "array requires initializer list";
6586       break;
6587 
6588     case FK_ArrayNeedsInitListOrStringLiteral:
6589       OS << "array requires initializer list or string literal";
6590       break;
6591 
6592     case FK_ArrayNeedsInitListOrWideStringLiteral:
6593       OS << "array requires initializer list or wide string literal";
6594       break;
6595 
6596     case FK_NarrowStringIntoWideCharArray:
6597       OS << "narrow string into wide char array";
6598       break;
6599 
6600     case FK_WideStringIntoCharArray:
6601       OS << "wide string into char array";
6602       break;
6603 
6604     case FK_IncompatWideStringIntoWideChar:
6605       OS << "incompatible wide string into wide char array";
6606       break;
6607 
6608     case FK_ArrayTypeMismatch:
6609       OS << "array type mismatch";
6610       break;
6611 
6612     case FK_NonConstantArrayInit:
6613       OS << "non-constant array initializer";
6614       break;
6615 
6616     case FK_AddressOfOverloadFailed:
6617       OS << "address of overloaded function failed";
6618       break;
6619 
6620     case FK_ReferenceInitOverloadFailed:
6621       OS << "overload resolution for reference initialization failed";
6622       break;
6623 
6624     case FK_NonConstLValueReferenceBindingToTemporary:
6625       OS << "non-const lvalue reference bound to temporary";
6626       break;
6627 
6628     case FK_NonConstLValueReferenceBindingToUnrelated:
6629       OS << "non-const lvalue reference bound to unrelated type";
6630       break;
6631 
6632     case FK_RValueReferenceBindingToLValue:
6633       OS << "rvalue reference bound to an lvalue";
6634       break;
6635 
6636     case FK_ReferenceInitDropsQualifiers:
6637       OS << "reference initialization drops qualifiers";
6638       break;
6639 
6640     case FK_ReferenceInitFailed:
6641       OS << "reference initialization failed";
6642       break;
6643 
6644     case FK_ConversionFailed:
6645       OS << "conversion failed";
6646       break;
6647 
6648     case FK_ConversionFromPropertyFailed:
6649       OS << "conversion from property failed";
6650       break;
6651 
6652     case FK_TooManyInitsForScalar:
6653       OS << "too many initializers for scalar";
6654       break;
6655 
6656     case FK_ReferenceBindingToInitList:
6657       OS << "referencing binding to initializer list";
6658       break;
6659 
6660     case FK_InitListBadDestinationType:
6661       OS << "initializer list for non-aggregate, non-scalar type";
6662       break;
6663 
6664     case FK_UserConversionOverloadFailed:
6665       OS << "overloading failed for user-defined conversion";
6666       break;
6667 
6668     case FK_ConstructorOverloadFailed:
6669       OS << "constructor overloading failed";
6670       break;
6671 
6672     case FK_DefaultInitOfConst:
6673       OS << "default initialization of a const variable";
6674       break;
6675 
6676     case FK_Incomplete:
6677       OS << "initialization of incomplete type";
6678       break;
6679 
6680     case FK_ListInitializationFailed:
6681       OS << "list initialization checker failure";
6682       break;
6683 
6684     case FK_VariableLengthArrayHasInitializer:
6685       OS << "variable length array has an initializer";
6686       break;
6687 
6688     case FK_PlaceholderType:
6689       OS << "initializer expression isn't contextually valid";
6690       break;
6691 
6692     case FK_ListConstructorOverloadFailed:
6693       OS << "list constructor overloading failed";
6694       break;
6695 
6696     case FK_ExplicitConstructor:
6697       OS << "list copy initialization chose explicit constructor";
6698       break;
6699     }
6700     OS << '\n';
6701     return;
6702   }
6703 
6704   case DependentSequence:
6705     OS << "Dependent sequence\n";
6706     return;
6707 
6708   case NormalSequence:
6709     OS << "Normal sequence: ";
6710     break;
6711   }
6712 
6713   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6714     if (S != step_begin()) {
6715       OS << " -> ";
6716     }
6717 
6718     switch (S->Kind) {
6719     case SK_ResolveAddressOfOverloadedFunction:
6720       OS << "resolve address of overloaded function";
6721       break;
6722 
6723     case SK_CastDerivedToBaseRValue:
6724       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6725       break;
6726 
6727     case SK_CastDerivedToBaseXValue:
6728       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6729       break;
6730 
6731     case SK_CastDerivedToBaseLValue:
6732       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6733       break;
6734 
6735     case SK_BindReference:
6736       OS << "bind reference to lvalue";
6737       break;
6738 
6739     case SK_BindReferenceToTemporary:
6740       OS << "bind reference to a temporary";
6741       break;
6742 
6743     case SK_ExtraneousCopyToTemporary:
6744       OS << "extraneous C++03 copy to temporary";
6745       break;
6746 
6747     case SK_UserConversion:
6748       OS << "user-defined conversion via " << *S->Function.Function;
6749       break;
6750 
6751     case SK_QualificationConversionRValue:
6752       OS << "qualification conversion (rvalue)";
6753       break;
6754 
6755     case SK_QualificationConversionXValue:
6756       OS << "qualification conversion (xvalue)";
6757       break;
6758 
6759     case SK_QualificationConversionLValue:
6760       OS << "qualification conversion (lvalue)";
6761       break;
6762 
6763     case SK_LValueToRValue:
6764       OS << "load (lvalue to rvalue)";
6765       break;
6766 
6767     case SK_ConversionSequence:
6768       OS << "implicit conversion sequence (";
6769       S->ICS->DebugPrint(); // FIXME: use OS
6770       OS << ")";
6771       break;
6772 
6773     case SK_ListInitialization:
6774       OS << "list aggregate initialization";
6775       break;
6776 
6777     case SK_ListConstructorCall:
6778       OS << "list initialization via constructor";
6779       break;
6780 
6781     case SK_UnwrapInitList:
6782       OS << "unwrap reference initializer list";
6783       break;
6784 
6785     case SK_RewrapInitList:
6786       OS << "rewrap reference initializer list";
6787       break;
6788 
6789     case SK_ConstructorInitialization:
6790       OS << "constructor initialization";
6791       break;
6792 
6793     case SK_ZeroInitialization:
6794       OS << "zero initialization";
6795       break;
6796 
6797     case SK_CAssignment:
6798       OS << "C assignment";
6799       break;
6800 
6801     case SK_StringInit:
6802       OS << "string initialization";
6803       break;
6804 
6805     case SK_ObjCObjectConversion:
6806       OS << "Objective-C object conversion";
6807       break;
6808 
6809     case SK_ArrayInit:
6810       OS << "array initialization";
6811       break;
6812 
6813     case SK_ParenthesizedArrayInit:
6814       OS << "parenthesized array initialization";
6815       break;
6816 
6817     case SK_PassByIndirectCopyRestore:
6818       OS << "pass by indirect copy and restore";
6819       break;
6820 
6821     case SK_PassByIndirectRestore:
6822       OS << "pass by indirect restore";
6823       break;
6824 
6825     case SK_ProduceObjCObject:
6826       OS << "Objective-C object retension";
6827       break;
6828 
6829     case SK_StdInitializerList:
6830       OS << "std::initializer_list from initializer list";
6831       break;
6832 
6833     case SK_OCLSamplerInit:
6834       OS << "OpenCL sampler_t from integer constant";
6835       break;
6836 
6837     case SK_OCLZeroEvent:
6838       OS << "OpenCL event_t from zero";
6839       break;
6840     }
6841 
6842     OS << " [" << S->Type.getAsString() << ']';
6843   }
6844 
6845   OS << '\n';
6846 }
6847 
dump() const6848 void InitializationSequence::dump() const {
6849   dump(llvm::errs());
6850 }
6851 
DiagnoseNarrowingInInitList(Sema & S,InitializationSequence & Seq,QualType EntityType,const Expr * PreInit,const Expr * PostInit)6852 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6853                                         QualType EntityType,
6854                                         const Expr *PreInit,
6855                                         const Expr *PostInit) {
6856   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6857     return;
6858 
6859   // A narrowing conversion can only appear as the final implicit conversion in
6860   // an initialization sequence.
6861   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6862   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6863     return;
6864 
6865   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6866   const StandardConversionSequence *SCS = 0;
6867   switch (ICS.getKind()) {
6868   case ImplicitConversionSequence::StandardConversion:
6869     SCS = &ICS.Standard;
6870     break;
6871   case ImplicitConversionSequence::UserDefinedConversion:
6872     SCS = &ICS.UserDefined.After;
6873     break;
6874   case ImplicitConversionSequence::AmbiguousConversion:
6875   case ImplicitConversionSequence::EllipsisConversion:
6876   case ImplicitConversionSequence::BadConversion:
6877     return;
6878   }
6879 
6880   // Determine the type prior to the narrowing conversion. If a conversion
6881   // operator was used, this may be different from both the type of the entity
6882   // and of the pre-initialization expression.
6883   QualType PreNarrowingType = PreInit->getType();
6884   if (Seq.step_begin() + 1 != Seq.step_end())
6885     PreNarrowingType = Seq.step_end()[-2].Type;
6886 
6887   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6888   APValue ConstantValue;
6889   QualType ConstantType;
6890   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6891                                 ConstantType)) {
6892   case NK_Not_Narrowing:
6893     // No narrowing occurred.
6894     return;
6895 
6896   case NK_Type_Narrowing:
6897     // This was a floating-to-integer conversion, which is always considered a
6898     // narrowing conversion even if the value is a constant and can be
6899     // represented exactly as an integer.
6900     S.Diag(PostInit->getLocStart(),
6901            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6902              diag::warn_init_list_type_narrowing
6903            : S.isSFINAEContext()?
6904              diag::err_init_list_type_narrowing_sfinae
6905            : diag::err_init_list_type_narrowing)
6906       << PostInit->getSourceRange()
6907       << PreNarrowingType.getLocalUnqualifiedType()
6908       << EntityType.getLocalUnqualifiedType();
6909     break;
6910 
6911   case NK_Constant_Narrowing:
6912     // A constant value was narrowed.
6913     S.Diag(PostInit->getLocStart(),
6914            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6915              diag::warn_init_list_constant_narrowing
6916            : S.isSFINAEContext()?
6917              diag::err_init_list_constant_narrowing_sfinae
6918            : diag::err_init_list_constant_narrowing)
6919       << PostInit->getSourceRange()
6920       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6921       << EntityType.getLocalUnqualifiedType();
6922     break;
6923 
6924   case NK_Variable_Narrowing:
6925     // A variable's value may have been narrowed.
6926     S.Diag(PostInit->getLocStart(),
6927            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6928              diag::warn_init_list_variable_narrowing
6929            : S.isSFINAEContext()?
6930              diag::err_init_list_variable_narrowing_sfinae
6931            : diag::err_init_list_variable_narrowing)
6932       << PostInit->getSourceRange()
6933       << PreNarrowingType.getLocalUnqualifiedType()
6934       << EntityType.getLocalUnqualifiedType();
6935     break;
6936   }
6937 
6938   SmallString<128> StaticCast;
6939   llvm::raw_svector_ostream OS(StaticCast);
6940   OS << "static_cast<";
6941   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6942     // It's important to use the typedef's name if there is one so that the
6943     // fixit doesn't break code using types like int64_t.
6944     //
6945     // FIXME: This will break if the typedef requires qualification.  But
6946     // getQualifiedNameAsString() includes non-machine-parsable components.
6947     OS << *TT->getDecl();
6948   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6949     OS << BT->getName(S.getLangOpts());
6950   else {
6951     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6952     // with a broken cast.
6953     return;
6954   }
6955   OS << ">(";
6956   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6957     << PostInit->getSourceRange()
6958     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6959     << FixItHint::CreateInsertion(
6960       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6961 }
6962 
6963 //===----------------------------------------------------------------------===//
6964 // Initialization helper functions
6965 //===----------------------------------------------------------------------===//
6966 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)6967 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6968                                    ExprResult Init) {
6969   if (Init.isInvalid())
6970     return false;
6971 
6972   Expr *InitE = Init.get();
6973   assert(InitE && "No initialization expression");
6974 
6975   InitializationKind Kind
6976     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6977   InitializationSequence Seq(*this, Entity, Kind, InitE);
6978   return !Seq.Failed();
6979 }
6980 
6981 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)6982 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6983                                 SourceLocation EqualLoc,
6984                                 ExprResult Init,
6985                                 bool TopLevelOfInitList,
6986                                 bool AllowExplicit) {
6987   if (Init.isInvalid())
6988     return ExprError();
6989 
6990   Expr *InitE = Init.get();
6991   assert(InitE && "No initialization expression?");
6992 
6993   if (EqualLoc.isInvalid())
6994     EqualLoc = InitE->getLocStart();
6995 
6996   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6997                                                            EqualLoc,
6998                                                            AllowExplicit);
6999   InitializationSequence Seq(*this, Entity, Kind, InitE);
7000   Init.release();
7001 
7002   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7003 
7004   if (!Result.isInvalid() && TopLevelOfInitList)
7005     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
7006                                 InitE, Result.get());
7007 
7008   return Result;
7009 }
7010