• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_COMPLEX_NEON_H
11 #define EIGEN_COMPLEX_NEON_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
18 static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
19 
20 //---------- float ----------
21 struct Packet2cf
22 {
Packet2cfPacket2cf23   EIGEN_STRONG_INLINE Packet2cf() {}
Packet2cfPacket2cf24   EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
25   Packet4f  v;
26 };
27 
28 template<> struct packet_traits<std::complex<float> >  : default_packet_traits
29 {
30   typedef Packet2cf type;
31   enum {
32     Vectorizable = 1,
33     AlignedOnScalar = 1,
34     size = 2,
35 
36     HasAdd    = 1,
37     HasSub    = 1,
38     HasMul    = 1,
39     HasDiv    = 1,
40     HasNegate = 1,
41     HasAbs    = 0,
42     HasAbs2   = 0,
43     HasMin    = 0,
44     HasMax    = 0,
45     HasSetLinear = 0
46   };
47 };
48 
49 template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
50 
51 template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>&  from)
52 {
53   float32x2_t r64;
54   r64 = vld1_f32((float *)&from);
55 
56   return Packet2cf(vcombine_f32(r64, r64));
57 }
58 
59 template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
60 template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
61 template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
62 template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
63 {
64   Packet4ui b = vreinterpretq_u32_f32(a.v);
65   return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
66 }
67 
68 template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
69 {
70   Packet4f v1, v2;
71   float32x2_t a_lo, a_hi;
72 
73   // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
74   v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
75   // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
76   v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
77   // Multiply the real a with b
78   v1 = vmulq_f32(v1, b.v);
79   // Multiply the imag a with b
80   v2 = vmulq_f32(v2, b.v);
81   // Conjugate v2
82   v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
83   // Swap real/imag elements in v2.
84   a_lo = vrev64_f32(vget_low_f32(v2));
85   a_hi = vrev64_f32(vget_high_f32(v2));
86   v2 = vcombine_f32(a_lo, a_hi);
87   // Add and return the result
88   return Packet2cf(vaddq_f32(v1, v2));
89 }
90 
91 template<> EIGEN_STRONG_INLINE Packet2cf pand   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
92 {
93   return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
94 }
95 template<> EIGEN_STRONG_INLINE Packet2cf por    <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
96 {
97   return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
98 }
99 template<> EIGEN_STRONG_INLINE Packet2cf pxor   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
100 {
101   return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
102 }
103 template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
104 {
105   return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
106 }
107 
108 template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
109 template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
110 
111 template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
112 
113 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
114 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
115 
116 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> *   addr) { __pld((float *)addr); }
117 
118 template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet2cf>(const Packet2cf& a)
119 {
120   std::complex<float> EIGEN_ALIGN16 x[2];
121   vst1q_f32((float *)x, a.v);
122   return x[0];
123 }
124 
125 template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
126 {
127   float32x2_t a_lo, a_hi;
128   Packet4f a_r128;
129 
130   a_lo = vget_low_f32(a.v);
131   a_hi = vget_high_f32(a.v);
132   a_r128 = vcombine_f32(a_hi, a_lo);
133 
134   return Packet2cf(a_r128);
135 }
136 
137 template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
138 {
139   return Packet2cf(vrev64q_f32(a.v));
140 }
141 
142 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
143 {
144   float32x2_t a1, a2;
145   std::complex<float> s;
146 
147   a1 = vget_low_f32(a.v);
148   a2 = vget_high_f32(a.v);
149   a2 = vadd_f32(a1, a2);
150   vst1_f32((float *)&s, a2);
151 
152   return s;
153 }
154 
155 template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
156 {
157   Packet4f sum1, sum2, sum;
158 
159   // Add the first two 64-bit float32x2_t of vecs[0]
160   sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
161   sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
162   sum = vaddq_f32(sum1, sum2);
163 
164   return Packet2cf(sum);
165 }
166 
167 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
168 {
169   float32x2_t a1, a2, v1, v2, prod;
170   std::complex<float> s;
171 
172   a1 = vget_low_f32(a.v);
173   a2 = vget_high_f32(a.v);
174    // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
175   v1 = vdup_lane_f32(a1, 0);
176   // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
177   v2 = vdup_lane_f32(a1, 1);
178   // Multiply the real a with b
179   v1 = vmul_f32(v1, a2);
180   // Multiply the imag a with b
181   v2 = vmul_f32(v2, a2);
182   // Conjugate v2
183   v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
184   // Swap real/imag elements in v2.
185   v2 = vrev64_f32(v2);
186   // Add v1, v2
187   prod = vadd_f32(v1, v2);
188 
189   vst1_f32((float *)&s, prod);
190 
191   return s;
192 }
193 
194 template<int Offset>
195 struct palign_impl<Offset,Packet2cf>
196 {
197   EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
198   {
199     if (Offset==1)
200     {
201       first.v = vextq_f32(first.v, second.v, 2);
202     }
203   }
204 };
205 
206 template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
207 {
208   EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
209   { return padd(pmul(x,y),c); }
210 
211   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
212   {
213     return internal::pmul(a, pconj(b));
214   }
215 };
216 
217 template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
218 {
219   EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
220   { return padd(pmul(x,y),c); }
221 
222   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
223   {
224     return internal::pmul(pconj(a), b);
225   }
226 };
227 
228 template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
229 {
230   EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
231   { return padd(pmul(x,y),c); }
232 
233   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
234   {
235     return pconj(internal::pmul(a, b));
236   }
237 };
238 
239 template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
240 {
241   // TODO optimize it for AltiVec
242   Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
243   Packet4f s, rev_s;
244   float32x2_t a_lo, a_hi;
245 
246   // this computes the norm
247   s = vmulq_f32(b.v, b.v);
248   a_lo = vrev64_f32(vget_low_f32(s));
249   a_hi = vrev64_f32(vget_high_f32(s));
250   rev_s = vcombine_f32(a_lo, a_hi);
251 
252   return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
253 }
254 
255 } // end namespace internal
256 
257 } // end namespace Eigen
258 
259 #endif // EIGEN_COMPLEX_NEON_H
260