• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_BLASUTIL_H
11 #define EIGEN_BLASUTIL_H
12 
13 // This file contains many lightweight helper classes used to
14 // implement and control fast level 2 and level 3 BLAS-like routines.
15 
16 namespace Eigen {
17 
18 namespace internal {
19 
20 // forward declarations
21 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false>
22 struct gebp_kernel;
23 
24 template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
25 struct gemm_pack_rhs;
26 
27 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
28 struct gemm_pack_lhs;
29 
30 template<
31   typename Index,
32   typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
33   typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
34   int ResStorageOrder>
35 struct general_matrix_matrix_product;
36 
37 template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version=Specialized>
38 struct general_matrix_vector_product;
39 
40 
41 template<bool Conjugate> struct conj_if;
42 
43 template<> struct conj_if<true> {
44   template<typename T>
45   inline T operator()(const T& x) { return conj(x); }
46   template<typename T>
47   inline T pconj(const T& x) { return internal::pconj(x); }
48 };
49 
50 template<> struct conj_if<false> {
51   template<typename T>
52   inline const T& operator()(const T& x) { return x; }
53   template<typename T>
54   inline const T& pconj(const T& x) { return x; }
55 };
56 
57 template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
58 {
59   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); }
60   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); }
61 };
62 
63 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true>
64 {
65   typedef std::complex<RealScalar> Scalar;
66   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
67   { return c + pmul(x,y); }
68 
69   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
70   { return Scalar(real(x)*real(y) + imag(x)*imag(y), imag(x)*real(y) - real(x)*imag(y)); }
71 };
72 
73 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false>
74 {
75   typedef std::complex<RealScalar> Scalar;
76   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
77   { return c + pmul(x,y); }
78 
79   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
80   { return Scalar(real(x)*real(y) + imag(x)*imag(y), real(x)*imag(y) - imag(x)*real(y)); }
81 };
82 
83 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true>
84 {
85   typedef std::complex<RealScalar> Scalar;
86   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
87   { return c + pmul(x,y); }
88 
89   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
90   { return Scalar(real(x)*real(y) - imag(x)*imag(y), - real(x)*imag(y) - imag(x)*real(y)); }
91 };
92 
93 template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false>
94 {
95   typedef std::complex<RealScalar> Scalar;
96   EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const
97   { return padd(c, pmul(x,y)); }
98   EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const
99   { return conj_if<Conj>()(x)*y; }
100 };
101 
102 template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj>
103 {
104   typedef std::complex<RealScalar> Scalar;
105   EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const
106   { return padd(c, pmul(x,y)); }
107   EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const
108   { return x*conj_if<Conj>()(y); }
109 };
110 
111 template<typename From,typename To> struct get_factor {
112   static EIGEN_STRONG_INLINE To run(const From& x) { return x; }
113 };
114 
115 template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> {
116   static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return real(x); }
117 };
118 
119 // Lightweight helper class to access matrix coefficients.
120 // Yes, this is somehow redundant with Map<>, but this version is much much lighter,
121 // and so I hope better compilation performance (time and code quality).
122 template<typename Scalar, typename Index, int StorageOrder>
123 class blas_data_mapper
124 {
125   public:
126     blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
127     EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
128     { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
129   protected:
130     Scalar* EIGEN_RESTRICT m_data;
131     Index m_stride;
132 };
133 
134 // lightweight helper class to access matrix coefficients (const version)
135 template<typename Scalar, typename Index, int StorageOrder>
136 class const_blas_data_mapper
137 {
138   public:
139     const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
140     EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
141     { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
142   protected:
143     const Scalar* EIGEN_RESTRICT m_data;
144     Index m_stride;
145 };
146 
147 
148 /* Helper class to analyze the factors of a Product expression.
149  * In particular it allows to pop out operator-, scalar multiples,
150  * and conjugate */
151 template<typename XprType> struct blas_traits
152 {
153   typedef typename traits<XprType>::Scalar Scalar;
154   typedef const XprType& ExtractType;
155   typedef XprType _ExtractType;
156   enum {
157     IsComplex = NumTraits<Scalar>::IsComplex,
158     IsTransposed = false,
159     NeedToConjugate = false,
160     HasUsableDirectAccess = (    (int(XprType::Flags)&DirectAccessBit)
161                               && (   bool(XprType::IsVectorAtCompileTime)
162                                   || int(inner_stride_at_compile_time<XprType>::ret) == 1)
163                              ) ?  1 : 0
164   };
165   typedef typename conditional<bool(HasUsableDirectAccess),
166     ExtractType,
167     typename _ExtractType::PlainObject
168     >::type DirectLinearAccessType;
169   static inline ExtractType extract(const XprType& x) { return x; }
170   static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
171 };
172 
173 // pop conjugate
174 template<typename Scalar, typename NestedXpr>
175 struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
176  : blas_traits<NestedXpr>
177 {
178   typedef blas_traits<NestedXpr> Base;
179   typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
180   typedef typename Base::ExtractType ExtractType;
181 
182   enum {
183     IsComplex = NumTraits<Scalar>::IsComplex,
184     NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
185   };
186   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
187   static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); }
188 };
189 
190 // pop scalar multiple
191 template<typename Scalar, typename NestedXpr>
192 struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
193  : blas_traits<NestedXpr>
194 {
195   typedef blas_traits<NestedXpr> Base;
196   typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType;
197   typedef typename Base::ExtractType ExtractType;
198   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
199   static inline Scalar extractScalarFactor(const XprType& x)
200   { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
201 };
202 
203 // pop opposite
204 template<typename Scalar, typename NestedXpr>
205 struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
206  : blas_traits<NestedXpr>
207 {
208   typedef blas_traits<NestedXpr> Base;
209   typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
210   typedef typename Base::ExtractType ExtractType;
211   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
212   static inline Scalar extractScalarFactor(const XprType& x)
213   { return - Base::extractScalarFactor(x.nestedExpression()); }
214 };
215 
216 // pop/push transpose
217 template<typename NestedXpr>
218 struct blas_traits<Transpose<NestedXpr> >
219  : blas_traits<NestedXpr>
220 {
221   typedef typename NestedXpr::Scalar Scalar;
222   typedef blas_traits<NestedXpr> Base;
223   typedef Transpose<NestedXpr> XprType;
224   typedef Transpose<const typename Base::_ExtractType>  ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
225   typedef Transpose<const typename Base::_ExtractType> _ExtractType;
226   typedef typename conditional<bool(Base::HasUsableDirectAccess),
227     ExtractType,
228     typename ExtractType::PlainObject
229     >::type DirectLinearAccessType;
230   enum {
231     IsTransposed = Base::IsTransposed ? 0 : 1
232   };
233   static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
234   static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
235 };
236 
237 template<typename T>
238 struct blas_traits<const T>
239      : blas_traits<T>
240 {};
241 
242 template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess>
243 struct extract_data_selector {
244   static const typename T::Scalar* run(const T& m)
245   {
246     return blas_traits<T>::extract(m).data();
247   }
248 };
249 
250 template<typename T>
251 struct extract_data_selector<T,false> {
252   static typename T::Scalar* run(const T&) { return 0; }
253 };
254 
255 template<typename T> const typename T::Scalar* extract_data(const T& m)
256 {
257   return extract_data_selector<T>::run(m);
258 }
259 
260 } // end namespace internal
261 
262 } // end namespace Eigen
263 
264 #endif // EIGEN_BLASUTIL_H
265