• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
11 
12 namespace Eigen {
13 
14 /** \geometry_module \ingroup Geometry_Module
15   *
16   * \class Rotation2D
17   *
18   * \brief Represents a rotation/orientation in a 2 dimensional space.
19   *
20   * \param _Scalar the scalar type, i.e., the type of the coefficients
21   *
22   * This class is equivalent to a single scalar representing a counter clock wise rotation
23   * as a single angle in radian. It provides some additional features such as the automatic
24   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
25   * interface to Quaternion in order to facilitate the writing of generic algorithms
26   * dealing with rotations.
27   *
28   * \sa class Quaternion, class Transform
29   */
30 template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
31 {
32   typedef _Scalar Scalar;
33 };
34 
35 template<typename _Scalar>
36 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
37 {
38   typedef RotationBase<Rotation2D<_Scalar>,2> Base;
39 
40 public:
41 
42   using Base::operator*;
43 
44   enum { Dim = 2 };
45   /** the scalar type of the coefficients */
46   typedef _Scalar Scalar;
47   typedef Matrix<Scalar,2,1> Vector2;
48   typedef Matrix<Scalar,2,2> Matrix2;
49 
50 protected:
51 
52   Scalar m_angle;
53 
54 public:
55 
56   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
57   inline Rotation2D(Scalar a) : m_angle(a) {}
58 
59   /** \returns the rotation angle */
60   inline Scalar angle() const { return m_angle; }
61 
62   /** \returns a read-write reference to the rotation angle */
63   inline Scalar& angle() { return m_angle; }
64 
65   /** \returns the inverse rotation */
66   inline Rotation2D inverse() const { return -m_angle; }
67 
68   /** Concatenates two rotations */
69   inline Rotation2D operator*(const Rotation2D& other) const
70   { return m_angle + other.m_angle; }
71 
72   /** Concatenates two rotations */
73   inline Rotation2D& operator*=(const Rotation2D& other)
74   { return m_angle += other.m_angle; return *this; }
75 
76   /** Applies the rotation to a 2D vector */
77   Vector2 operator* (const Vector2& vec) const
78   { return toRotationMatrix() * vec; }
79 
80   template<typename Derived>
81   Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
82   Matrix2 toRotationMatrix(void) const;
83 
84   /** \returns the spherical interpolation between \c *this and \a other using
85     * parameter \a t. It is in fact equivalent to a linear interpolation.
86     */
87   inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
88   { return m_angle * (1-t) + other.angle() * t; }
89 
90   /** \returns \c *this with scalar type casted to \a NewScalarType
91     *
92     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
93     * then this function smartly returns a const reference to \c *this.
94     */
95   template<typename NewScalarType>
96   inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
97   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
98 
99   /** Copy constructor with scalar type conversion */
100   template<typename OtherScalarType>
101   inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
102   {
103     m_angle = Scalar(other.angle());
104   }
105 
106   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
107     * determined by \a prec.
108     *
109     * \sa MatrixBase::isApprox() */
110   bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
111   { return ei_isApprox(m_angle,other.m_angle, prec); }
112 };
113 
114 /** \ingroup Geometry_Module
115   * single precision 2D rotation type */
116 typedef Rotation2D<float> Rotation2Df;
117 /** \ingroup Geometry_Module
118   * double precision 2D rotation type */
119 typedef Rotation2D<double> Rotation2Dd;
120 
121 /** Set \c *this from a 2x2 rotation matrix \a mat.
122   * In other words, this function extract the rotation angle
123   * from the rotation matrix.
124   */
125 template<typename Scalar>
126 template<typename Derived>
127 Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
128 {
129   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
130   m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
131   return *this;
132 }
133 
134 /** Constructs and \returns an equivalent 2x2 rotation matrix.
135   */
136 template<typename Scalar>
137 typename Rotation2D<Scalar>::Matrix2
138 Rotation2D<Scalar>::toRotationMatrix(void) const
139 {
140   Scalar sinA = ei_sin(m_angle);
141   Scalar cosA = ei_cos(m_angle);
142   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
143 }
144 
145 } // end namespace Eigen
146