• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Claire Maurice
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_COMPLEX_SCHUR_H
13 #define EIGEN_COMPLEX_SCHUR_H
14 
15 #include "./HessenbergDecomposition.h"
16 
17 namespace Eigen {
18 
19 namespace internal {
20 template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21 }
22 
23 /** \eigenvalues_module \ingroup Eigenvalues_Module
24   *
25   *
26   * \class ComplexSchur
27   *
28   * \brief Performs a complex Schur decomposition of a real or complex square matrix
29   *
30   * \tparam _MatrixType the type of the matrix of which we are
31   * computing the Schur decomposition; this is expected to be an
32   * instantiation of the Matrix class template.
33   *
34   * Given a real or complex square matrix A, this class computes the
35   * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
36   * complex matrix, and T is a complex upper triangular matrix.  The
37   * diagonal of the matrix T corresponds to the eigenvalues of the
38   * matrix A.
39   *
40   * Call the function compute() to compute the Schur decomposition of
41   * a given matrix. Alternatively, you can use the
42   * ComplexSchur(const MatrixType&, bool) constructor which computes
43   * the Schur decomposition at construction time. Once the
44   * decomposition is computed, you can use the matrixU() and matrixT()
45   * functions to retrieve the matrices U and V in the decomposition.
46   *
47   * \note This code is inspired from Jampack
48   *
49   * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
50   */
51 template<typename _MatrixType> class ComplexSchur
52 {
53   public:
54     typedef _MatrixType MatrixType;
55     enum {
56       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58       Options = MatrixType::Options,
59       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61     };
62 
63     /** \brief Scalar type for matrices of type \p _MatrixType. */
64     typedef typename MatrixType::Scalar Scalar;
65     typedef typename NumTraits<Scalar>::Real RealScalar;
66     typedef typename MatrixType::Index Index;
67 
68     /** \brief Complex scalar type for \p _MatrixType.
69       *
70       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
71       * \c float or \c double) and just \c Scalar if #Scalar is
72       * complex.
73       */
74     typedef std::complex<RealScalar> ComplexScalar;
75 
76     /** \brief Type for the matrices in the Schur decomposition.
77       *
78       * This is a square matrix with entries of type #ComplexScalar.
79       * The size is the same as the size of \p _MatrixType.
80       */
81     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
82 
83     /** \brief Default constructor.
84       *
85       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
86       *
87       * The default constructor is useful in cases in which the user
88       * intends to perform decompositions via compute().  The \p size
89       * parameter is only used as a hint. It is not an error to give a
90       * wrong \p size, but it may impair performance.
91       *
92       * \sa compute() for an example.
93       */
94     ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
m_matT(size,size)95       : m_matT(size,size),
96         m_matU(size,size),
97         m_hess(size),
98         m_isInitialized(false),
99         m_matUisUptodate(false)
100     {}
101 
102     /** \brief Constructor; computes Schur decomposition of given matrix.
103       *
104       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
105       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
106       *
107       * This constructor calls compute() to compute the Schur decomposition.
108       *
109       * \sa matrixT() and matrixU() for examples.
110       */
111     ComplexSchur(const MatrixType& matrix, bool computeU = true)
112             : m_matT(matrix.rows(),matrix.cols()),
113               m_matU(matrix.rows(),matrix.cols()),
114               m_hess(matrix.rows()),
115               m_isInitialized(false),
116               m_matUisUptodate(false)
117     {
118       compute(matrix, computeU);
119     }
120 
121     /** \brief Returns the unitary matrix in the Schur decomposition.
122       *
123       * \returns A const reference to the matrix U.
124       *
125       * It is assumed that either the constructor
126       * ComplexSchur(const MatrixType& matrix, bool computeU) or the
127       * member function compute(const MatrixType& matrix, bool computeU)
128       * has been called before to compute the Schur decomposition of a
129       * matrix, and that \p computeU was set to true (the default
130       * value).
131       *
132       * Example: \include ComplexSchur_matrixU.cpp
133       * Output: \verbinclude ComplexSchur_matrixU.out
134       */
matrixU()135     const ComplexMatrixType& matrixU() const
136     {
137       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
138       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
139       return m_matU;
140     }
141 
142     /** \brief Returns the triangular matrix in the Schur decomposition.
143       *
144       * \returns A const reference to the matrix T.
145       *
146       * It is assumed that either the constructor
147       * ComplexSchur(const MatrixType& matrix, bool computeU) or the
148       * member function compute(const MatrixType& matrix, bool computeU)
149       * has been called before to compute the Schur decomposition of a
150       * matrix.
151       *
152       * Note that this function returns a plain square matrix. If you want to reference
153       * only the upper triangular part, use:
154       * \code schur.matrixT().triangularView<Upper>() \endcode
155       *
156       * Example: \include ComplexSchur_matrixT.cpp
157       * Output: \verbinclude ComplexSchur_matrixT.out
158       */
matrixT()159     const ComplexMatrixType& matrixT() const
160     {
161       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
162       return m_matT;
163     }
164 
165     /** \brief Computes Schur decomposition of given matrix.
166       *
167       * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
168       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
169       * \returns    Reference to \c *this
170       *
171       * The Schur decomposition is computed by first reducing the
172       * matrix to Hessenberg form using the class
173       * HessenbergDecomposition. The Hessenberg matrix is then reduced
174       * to triangular form by performing QR iterations with a single
175       * shift. The cost of computing the Schur decomposition depends
176       * on the number of iterations; as a rough guide, it may be taken
177       * on the number of iterations; as a rough guide, it may be taken
178       * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
179       * if \a computeU is false.
180       *
181       * Example: \include ComplexSchur_compute.cpp
182       * Output: \verbinclude ComplexSchur_compute.out
183       */
184     ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
185 
186     /** \brief Reports whether previous computation was successful.
187       *
188       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
189       */
info()190     ComputationInfo info() const
191     {
192       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
193       return m_info;
194     }
195 
196     /** \brief Maximum number of iterations.
197       *
198       * Maximum number of iterations allowed for an eigenvalue to converge.
199       */
200     static const int m_maxIterations = 30;
201 
202   protected:
203     ComplexMatrixType m_matT, m_matU;
204     HessenbergDecomposition<MatrixType> m_hess;
205     ComputationInfo m_info;
206     bool m_isInitialized;
207     bool m_matUisUptodate;
208 
209   private:
210     bool subdiagonalEntryIsNeglegible(Index i);
211     ComplexScalar computeShift(Index iu, Index iter);
212     void reduceToTriangularForm(bool computeU);
213     friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
214 };
215 
216 /** If m_matT(i+1,i) is neglegible in floating point arithmetic
217   * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
218   * return true, else return false. */
219 template<typename MatrixType>
220 inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
221 {
222   RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1));
223   RealScalar sd = internal::norm1(m_matT.coeff(i+1,i));
224   if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
225   {
226     m_matT.coeffRef(i+1,i) = ComplexScalar(0);
227     return true;
228   }
229   return false;
230 }
231 
232 
233 /** Compute the shift in the current QR iteration. */
234 template<typename MatrixType>
235 typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
236 {
237   if (iter == 10 || iter == 20)
238   {
239     // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
240     return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2)));
241   }
242 
243   // compute the shift as one of the eigenvalues of t, the 2x2
244   // diagonal block on the bottom of the active submatrix
245   Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
246   RealScalar normt = t.cwiseAbs().sum();
247   t /= normt;     // the normalization by sf is to avoid under/overflow
248 
249   ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
250   ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
251   ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
252   ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
253   ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
254   ComplexScalar eival1 = (trace + disc) / RealScalar(2);
255   ComplexScalar eival2 = (trace - disc) / RealScalar(2);
256 
257   if(internal::norm1(eival1) > internal::norm1(eival2))
258     eival2 = det / eival1;
259   else
260     eival1 = det / eival2;
261 
262   // choose the eigenvalue closest to the bottom entry of the diagonal
263   if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1)))
264     return normt * eival1;
265   else
266     return normt * eival2;
267 }
268 
269 
270 template<typename MatrixType>
271 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
272 {
273   m_matUisUptodate = false;
274   eigen_assert(matrix.cols() == matrix.rows());
275 
276   if(matrix.cols() == 1)
277   {
278     m_matT = matrix.template cast<ComplexScalar>();
279     if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
280     m_info = Success;
281     m_isInitialized = true;
282     m_matUisUptodate = computeU;
283     return *this;
284   }
285 
286   internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
287   reduceToTriangularForm(computeU);
288   return *this;
289 }
290 
291 namespace internal {
292 
293 /* Reduce given matrix to Hessenberg form */
294 template<typename MatrixType, bool IsComplex>
295 struct complex_schur_reduce_to_hessenberg
296 {
297   // this is the implementation for the case IsComplex = true
298   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
299   {
300     _this.m_hess.compute(matrix);
301     _this.m_matT = _this.m_hess.matrixH();
302     if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
303   }
304 };
305 
306 template<typename MatrixType>
307 struct complex_schur_reduce_to_hessenberg<MatrixType, false>
308 {
309   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
310   {
311     typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
312     typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
313 
314     // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
315     _this.m_hess.compute(matrix);
316     _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
317     if(computeU)
318     {
319       // This may cause an allocation which seems to be avoidable
320       MatrixType Q = _this.m_hess.matrixQ();
321       _this.m_matU = Q.template cast<ComplexScalar>();
322     }
323   }
324 };
325 
326 } // end namespace internal
327 
328 // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
329 template<typename MatrixType>
330 void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
331 {
332   // The matrix m_matT is divided in three parts.
333   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
334   // Rows il,...,iu is the part we are working on (the active submatrix).
335   // Rows iu+1,...,end are already brought in triangular form.
336   Index iu = m_matT.cols() - 1;
337   Index il;
338   Index iter = 0; // number of iterations we are working on the (iu,iu) element
339 
340   while(true)
341   {
342     // find iu, the bottom row of the active submatrix
343     while(iu > 0)
344     {
345       if(!subdiagonalEntryIsNeglegible(iu-1)) break;
346       iter = 0;
347       --iu;
348     }
349 
350     // if iu is zero then we are done; the whole matrix is triangularized
351     if(iu==0) break;
352 
353     // if we spent too many iterations on the current element, we give up
354     iter++;
355     if(iter > m_maxIterations * m_matT.cols()) break;
356 
357     // find il, the top row of the active submatrix
358     il = iu-1;
359     while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
360     {
361       --il;
362     }
363 
364     /* perform the QR step using Givens rotations. The first rotation
365        creates a bulge; the (il+2,il) element becomes nonzero. This
366        bulge is chased down to the bottom of the active submatrix. */
367 
368     ComplexScalar shift = computeShift(iu, iter);
369     JacobiRotation<ComplexScalar> rot;
370     rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
371     m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
372     m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
373     if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
374 
375     for(Index i=il+1 ; i<iu ; i++)
376     {
377       rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
378       m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
379       m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
380       m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
381       if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
382     }
383   }
384 
385   if(iter <= m_maxIterations * m_matT.cols())
386     m_info = Success;
387   else
388     m_info = NoConvergence;
389 
390   m_isInitialized = true;
391   m_matUisUptodate = computeU;
392 }
393 
394 } // end namespace Eigen
395 
396 #endif // EIGEN_COMPLEX_SCHUR_H
397