• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_QUATERNION_H
12 #define EIGEN_QUATERNION_H
13 namespace Eigen {
14 
15 
16 /***************************************************************************
17 * Definition of QuaternionBase<Derived>
18 * The implementation is at the end of the file
19 ***************************************************************************/
20 
21 namespace internal {
22 template<typename Other,
23          int OtherRows=Other::RowsAtCompileTime,
24          int OtherCols=Other::ColsAtCompileTime>
25 struct quaternionbase_assign_impl;
26 }
27 
28 /** \geometry_module \ingroup Geometry_Module
29   * \class QuaternionBase
30   * \brief Base class for quaternion expressions
31   * \tparam Derived derived type (CRTP)
32   * \sa class Quaternion
33   */
34 template<class Derived>
35 class QuaternionBase : public RotationBase<Derived, 3>
36 {
37   typedef RotationBase<Derived, 3> Base;
38 public:
39   using Base::operator*;
40   using Base::derived;
41 
42   typedef typename internal::traits<Derived>::Scalar Scalar;
43   typedef typename NumTraits<Scalar>::Real RealScalar;
44   typedef typename internal::traits<Derived>::Coefficients Coefficients;
45   enum {
46     Flags = Eigen::internal::traits<Derived>::Flags
47   };
48 
49  // typedef typename Matrix<Scalar,4,1> Coefficients;
50   /** the type of a 3D vector */
51   typedef Matrix<Scalar,3,1> Vector3;
52   /** the equivalent rotation matrix type */
53   typedef Matrix<Scalar,3,3> Matrix3;
54   /** the equivalent angle-axis type */
55   typedef AngleAxis<Scalar> AngleAxisType;
56 
57 
58 
59   /** \returns the \c x coefficient */
x()60   inline Scalar x() const { return this->derived().coeffs().coeff(0); }
61   /** \returns the \c y coefficient */
y()62   inline Scalar y() const { return this->derived().coeffs().coeff(1); }
63   /** \returns the \c z coefficient */
z()64   inline Scalar z() const { return this->derived().coeffs().coeff(2); }
65   /** \returns the \c w coefficient */
w()66   inline Scalar w() const { return this->derived().coeffs().coeff(3); }
67 
68   /** \returns a reference to the \c x coefficient */
x()69   inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
70   /** \returns a reference to the \c y coefficient */
y()71   inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
72   /** \returns a reference to the \c z coefficient */
z()73   inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
74   /** \returns a reference to the \c w coefficient */
w()75   inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
76 
77   /** \returns a read-only vector expression of the imaginary part (x,y,z) */
vec()78   inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
79 
80   /** \returns a vector expression of the imaginary part (x,y,z) */
vec()81   inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
82 
83   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
coeffs()84   inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
85 
86   /** \returns a vector expression of the coefficients (x,y,z,w) */
coeffs()87   inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
88 
89   EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
90   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
91 
92 // disabled this copy operator as it is giving very strange compilation errors when compiling
93 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
94 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
95 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
96 //  Derived& operator=(const QuaternionBase& other)
97 //  { return operator=<Derived>(other); }
98 
99   Derived& operator=(const AngleAxisType& aa);
100   template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
101 
102   /** \returns a quaternion representing an identity rotation
103     * \sa MatrixBase::Identity()
104     */
Identity()105   static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
106 
107   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
108     */
setIdentity()109   inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
110 
111   /** \returns the squared norm of the quaternion's coefficients
112     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
113     */
squaredNorm()114   inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
115 
116   /** \returns the norm of the quaternion's coefficients
117     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
118     */
norm()119   inline Scalar norm() const { return coeffs().norm(); }
120 
121   /** Normalizes the quaternion \c *this
122     * \sa normalized(), MatrixBase::normalize() */
normalize()123   inline void normalize() { coeffs().normalize(); }
124   /** \returns a normalized copy of \c *this
125     * \sa normalize(), MatrixBase::normalized() */
normalized()126   inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
127 
128     /** \returns the dot product of \c *this and \a other
129     * Geometrically speaking, the dot product of two unit quaternions
130     * corresponds to the cosine of half the angle between the two rotations.
131     * \sa angularDistance()
132     */
dot(const QuaternionBase<OtherDerived> & other)133   template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
134 
135   template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
136 
137   /** \returns an equivalent 3x3 rotation matrix */
138   Matrix3 toRotationMatrix() const;
139 
140   /** \returns the quaternion which transform \a a into \a b through a rotation */
141   template<typename Derived1, typename Derived2>
142   Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
143 
144   template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
145   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
146 
147   /** \returns the quaternion describing the inverse rotation */
148   Quaternion<Scalar> inverse() const;
149 
150   /** \returns the conjugated quaternion */
151   Quaternion<Scalar> conjugate() const;
152 
153   /** \returns an interpolation for a constant motion between \a other and \c *this
154     * \a t in [0;1]
155     * see http://en.wikipedia.org/wiki/Slerp
156     */
157   template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
158 
159   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
160     * determined by \a prec.
161     *
162     * \sa MatrixBase::isApprox() */
163   template<class OtherDerived>
164   bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
165   { return coeffs().isApprox(other.coeffs(), prec); }
166 
167 	/** return the result vector of \a v through the rotation*/
168   EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
169 
170   /** \returns \c *this with scalar type casted to \a NewScalarType
171     *
172     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
173     * then this function smartly returns a const reference to \c *this.
174     */
175   template<typename NewScalarType>
cast()176   inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
177   {
178     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
179   }
180 
181 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
182 # include EIGEN_QUATERNIONBASE_PLUGIN
183 #endif
184 };
185 
186 /***************************************************************************
187 * Definition/implementation of Quaternion<Scalar>
188 ***************************************************************************/
189 
190 /** \geometry_module \ingroup Geometry_Module
191   *
192   * \class Quaternion
193   *
194   * \brief The quaternion class used to represent 3D orientations and rotations
195   *
196   * \param _Scalar the scalar type, i.e., the type of the coefficients
197   *
198   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
199   * orientations and rotations of objects in three dimensions. Compared to other representations
200   * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
201   * \li \b compact storage (4 scalars)
202   * \li \b efficient to compose (28 flops),
203   * \li \b stable spherical interpolation
204   *
205   * The following two typedefs are provided for convenience:
206   * \li \c Quaternionf for \c float
207   * \li \c Quaterniond for \c double
208   *
209   * \sa  class AngleAxis, class Transform
210   */
211 
212 namespace internal {
213 template<typename _Scalar,int _Options>
214 struct traits<Quaternion<_Scalar,_Options> >
215 {
216   typedef Quaternion<_Scalar,_Options> PlainObject;
217   typedef _Scalar Scalar;
218   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
219   enum{
220     IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
221     Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
222   };
223 };
224 }
225 
226 template<typename _Scalar, int _Options>
227 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
228 {
229   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
230   enum { IsAligned = internal::traits<Quaternion>::IsAligned };
231 
232 public:
233   typedef _Scalar Scalar;
234 
235   EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
236   using Base::operator*=;
237 
238   typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
239   typedef typename Base::AngleAxisType AngleAxisType;
240 
241   /** Default constructor leaving the quaternion uninitialized. */
242   inline Quaternion() {}
243 
244   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
245     * its four coefficients \a w, \a x, \a y and \a z.
246     *
247     * \warning Note the order of the arguments: the real \a w coefficient first,
248     * while internally the coefficients are stored in the following order:
249     * [\c x, \c y, \c z, \c w]
250     */
251   inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
252 
253   /** Constructs and initialize a quaternion from the array data */
254   inline Quaternion(const Scalar* data) : m_coeffs(data) {}
255 
256   /** Copy constructor */
257   template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
258 
259   /** Constructs and initializes a quaternion from the angle-axis \a aa */
260   explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
261 
262   /** Constructs and initializes a quaternion from either:
263     *  - a rotation matrix expression,
264     *  - a 4D vector expression representing quaternion coefficients.
265     */
266   template<typename Derived>
267   explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
268 
269   /** Explicit copy constructor with scalar conversion */
270   template<typename OtherScalar, int OtherOptions>
271   explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
272   { m_coeffs = other.coeffs().template cast<Scalar>(); }
273 
274   template<typename Derived1, typename Derived2>
275   static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
276 
277   inline Coefficients& coeffs() { return m_coeffs;}
278   inline const Coefficients& coeffs() const { return m_coeffs;}
279 
280   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
281 
282 protected:
283   Coefficients m_coeffs;
284 
285 #ifndef EIGEN_PARSED_BY_DOXYGEN
286     static EIGEN_STRONG_INLINE void _check_template_params()
287     {
288       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
289         INVALID_MATRIX_TEMPLATE_PARAMETERS)
290     }
291 #endif
292 };
293 
294 /** \ingroup Geometry_Module
295   * single precision quaternion type */
296 typedef Quaternion<float> Quaternionf;
297 /** \ingroup Geometry_Module
298   * double precision quaternion type */
299 typedef Quaternion<double> Quaterniond;
300 
301 /***************************************************************************
302 * Specialization of Map<Quaternion<Scalar>>
303 ***************************************************************************/
304 
305 namespace internal {
306   template<typename _Scalar, int _Options>
307   struct traits<Map<Quaternion<_Scalar>, _Options> >:
308   traits<Quaternion<_Scalar, _Options> >
309   {
310     typedef _Scalar Scalar;
311     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
312 
313     typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
314     enum {
315       IsAligned = TraitsBase::IsAligned,
316 
317       Flags = TraitsBase::Flags
318     };
319   };
320 }
321 
322 namespace internal {
323   template<typename _Scalar, int _Options>
324   struct traits<Map<const Quaternion<_Scalar>, _Options> >:
325   traits<Quaternion<_Scalar> >
326   {
327     typedef _Scalar Scalar;
328     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
329 
330     typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
331     enum {
332       IsAligned = TraitsBase::IsAligned,
333       Flags = TraitsBase::Flags & ~LvalueBit
334     };
335   };
336 }
337 
338 /** \brief Quaternion expression mapping a constant memory buffer
339   *
340   * \param _Scalar the type of the Quaternion coefficients
341   * \param _Options see class Map
342   *
343   * This is a specialization of class Map for Quaternion. This class allows to view
344   * a 4 scalar memory buffer as an Eigen's Quaternion object.
345   *
346   * \sa class Map, class Quaternion, class QuaternionBase
347   */
348 template<typename _Scalar, int _Options>
349 class Map<const Quaternion<_Scalar>, _Options >
350   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
351 {
352     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
353 
354   public:
355     typedef _Scalar Scalar;
356     typedef typename internal::traits<Map>::Coefficients Coefficients;
357     EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
358     using Base::operator*=;
359 
360     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
361       *
362       * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
363       * \code *coeffs == {x, y, z, w} \endcode
364       *
365       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
366     EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
367 
368     inline const Coefficients& coeffs() const { return m_coeffs;}
369 
370   protected:
371     const Coefficients m_coeffs;
372 };
373 
374 /** \brief Expression of a quaternion from a memory buffer
375   *
376   * \param _Scalar the type of the Quaternion coefficients
377   * \param _Options see class Map
378   *
379   * This is a specialization of class Map for Quaternion. This class allows to view
380   * a 4 scalar memory buffer as an Eigen's  Quaternion object.
381   *
382   * \sa class Map, class Quaternion, class QuaternionBase
383   */
384 template<typename _Scalar, int _Options>
385 class Map<Quaternion<_Scalar>, _Options >
386   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
387 {
388     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
389 
390   public:
391     typedef _Scalar Scalar;
392     typedef typename internal::traits<Map>::Coefficients Coefficients;
393     EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
394     using Base::operator*=;
395 
396     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
397       *
398       * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
399       * \code *coeffs == {x, y, z, w} \endcode
400       *
401       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
402     EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
403 
404     inline Coefficients& coeffs() { return m_coeffs; }
405     inline const Coefficients& coeffs() const { return m_coeffs; }
406 
407   protected:
408     Coefficients m_coeffs;
409 };
410 
411 /** \ingroup Geometry_Module
412   * Map an unaligned array of single precision scalar as a quaternion */
413 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
414 /** \ingroup Geometry_Module
415   * Map an unaligned array of double precision scalar as a quaternion */
416 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
417 /** \ingroup Geometry_Module
418   * Map a 16-bits aligned array of double precision scalars as a quaternion */
419 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
420 /** \ingroup Geometry_Module
421   * Map a 16-bits aligned array of double precision scalars as a quaternion */
422 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
423 
424 /***************************************************************************
425 * Implementation of QuaternionBase methods
426 ***************************************************************************/
427 
428 // Generic Quaternion * Quaternion product
429 // This product can be specialized for a given architecture via the Arch template argument.
430 namespace internal {
431 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
432 {
433   static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
434     return Quaternion<Scalar>
435     (
436       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
437       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
438       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
439       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
440     );
441   }
442 };
443 }
444 
445 /** \returns the concatenation of two rotations as a quaternion-quaternion product */
446 template <class Derived>
447 template <class OtherDerived>
448 EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
449 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
450 {
451   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
452    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
453   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
454                          typename internal::traits<Derived>::Scalar,
455                          internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
456 }
457 
458 /** \sa operator*(Quaternion) */
459 template <class Derived>
460 template <class OtherDerived>
461 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
462 {
463   derived() = derived() * other.derived();
464   return derived();
465 }
466 
467 /** Rotation of a vector by a quaternion.
468   * \remarks If the quaternion is used to rotate several points (>1)
469   * then it is much more efficient to first convert it to a 3x3 Matrix.
470   * Comparison of the operation cost for n transformations:
471   *   - Quaternion2:    30n
472   *   - Via a Matrix3: 24 + 15n
473   */
474 template <class Derived>
475 EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
476 QuaternionBase<Derived>::_transformVector(Vector3 v) const
477 {
478     // Note that this algorithm comes from the optimization by hand
479     // of the conversion to a Matrix followed by a Matrix/Vector product.
480     // It appears to be much faster than the common algorithm found
481     // in the litterature (30 versus 39 flops). It also requires two
482     // Vector3 as temporaries.
483     Vector3 uv = this->vec().cross(v);
484     uv += uv;
485     return v + this->w() * uv + this->vec().cross(uv);
486 }
487 
488 template<class Derived>
489 EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
490 {
491   coeffs() = other.coeffs();
492   return derived();
493 }
494 
495 template<class Derived>
496 template<class OtherDerived>
497 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
498 {
499   coeffs() = other.coeffs();
500   return derived();
501 }
502 
503 /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
504   */
505 template<class Derived>
506 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
507 {
508   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
509   this->w() = internal::cos(ha);
510   this->vec() = internal::sin(ha) * aa.axis();
511   return derived();
512 }
513 
514 /** Set \c *this from the expression \a xpr:
515   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
516   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
517   *     and \a xpr is converted to a quaternion
518   */
519 
520 template<class Derived>
521 template<class MatrixDerived>
522 inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
523 {
524   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
525    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
526   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
527   return derived();
528 }
529 
530 /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
531   * be normalized, otherwise the result is undefined.
532   */
533 template<class Derived>
534 inline typename QuaternionBase<Derived>::Matrix3
535 QuaternionBase<Derived>::toRotationMatrix(void) const
536 {
537   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
538   // if not inlined then the cost of the return by value is huge ~ +35%,
539   // however, not inlining this function is an order of magnitude slower, so
540   // it has to be inlined, and so the return by value is not an issue
541   Matrix3 res;
542 
543   const Scalar tx  = Scalar(2)*this->x();
544   const Scalar ty  = Scalar(2)*this->y();
545   const Scalar tz  = Scalar(2)*this->z();
546   const Scalar twx = tx*this->w();
547   const Scalar twy = ty*this->w();
548   const Scalar twz = tz*this->w();
549   const Scalar txx = tx*this->x();
550   const Scalar txy = ty*this->x();
551   const Scalar txz = tz*this->x();
552   const Scalar tyy = ty*this->y();
553   const Scalar tyz = tz*this->y();
554   const Scalar tzz = tz*this->z();
555 
556   res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
557   res.coeffRef(0,1) = txy-twz;
558   res.coeffRef(0,2) = txz+twy;
559   res.coeffRef(1,0) = txy+twz;
560   res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
561   res.coeffRef(1,2) = tyz-twx;
562   res.coeffRef(2,0) = txz-twy;
563   res.coeffRef(2,1) = tyz+twx;
564   res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
565 
566   return res;
567 }
568 
569 /** Sets \c *this to be a quaternion representing a rotation between
570   * the two arbitrary vectors \a a and \a b. In other words, the built
571   * rotation represent a rotation sending the line of direction \a a
572   * to the line of direction \a b, both lines passing through the origin.
573   *
574   * \returns a reference to \c *this.
575   *
576   * Note that the two input vectors do \b not have to be normalized, and
577   * do not need to have the same norm.
578   */
579 template<class Derived>
580 template<typename Derived1, typename Derived2>
581 inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
582 {
583   using std::max;
584   Vector3 v0 = a.normalized();
585   Vector3 v1 = b.normalized();
586   Scalar c = v1.dot(v0);
587 
588   // if dot == -1, vectors are nearly opposites
589   // => accuraletly compute the rotation axis by computing the
590   //    intersection of the two planes. This is done by solving:
591   //       x^T v0 = 0
592   //       x^T v1 = 0
593   //    under the constraint:
594   //       ||x|| = 1
595   //    which yields a singular value problem
596   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
597   {
598     c = max<Scalar>(c,-1);
599     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
600     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
601     Vector3 axis = svd.matrixV().col(2);
602 
603     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
604     this->w() = internal::sqrt(w2);
605     this->vec() = axis * internal::sqrt(Scalar(1) - w2);
606     return derived();
607   }
608   Vector3 axis = v0.cross(v1);
609   Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
610   Scalar invs = Scalar(1)/s;
611   this->vec() = axis * invs;
612   this->w() = s * Scalar(0.5);
613 
614   return derived();
615 }
616 
617 
618 /** Returns a quaternion representing a rotation between
619   * the two arbitrary vectors \a a and \a b. In other words, the built
620   * rotation represent a rotation sending the line of direction \a a
621   * to the line of direction \a b, both lines passing through the origin.
622   *
623   * \returns resulting quaternion
624   *
625   * Note that the two input vectors do \b not have to be normalized, and
626   * do not need to have the same norm.
627   */
628 template<typename Scalar, int Options>
629 template<typename Derived1, typename Derived2>
630 Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
631 {
632     Quaternion quat;
633     quat.setFromTwoVectors(a, b);
634     return quat;
635 }
636 
637 
638 /** \returns the multiplicative inverse of \c *this
639   * Note that in most cases, i.e., if you simply want the opposite rotation,
640   * and/or the quaternion is normalized, then it is enough to use the conjugate.
641   *
642   * \sa QuaternionBase::conjugate()
643   */
644 template <class Derived>
645 inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
646 {
647   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
648   Scalar n2 = this->squaredNorm();
649   if (n2 > 0)
650     return Quaternion<Scalar>(conjugate().coeffs() / n2);
651   else
652   {
653     // return an invalid result to flag the error
654     return Quaternion<Scalar>(Coefficients::Zero());
655   }
656 }
657 
658 /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
659   * if the quaternion is normalized.
660   * The conjugate of a quaternion represents the opposite rotation.
661   *
662   * \sa Quaternion2::inverse()
663   */
664 template <class Derived>
665 inline Quaternion<typename internal::traits<Derived>::Scalar>
666 QuaternionBase<Derived>::conjugate() const
667 {
668   return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
669 }
670 
671 /** \returns the angle (in radian) between two rotations
672   * \sa dot()
673   */
674 template <class Derived>
675 template <class OtherDerived>
676 inline typename internal::traits<Derived>::Scalar
677 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
678 {
679   using std::acos;
680   double d = internal::abs(this->dot(other));
681   if (d>=1.0)
682     return Scalar(0);
683   return static_cast<Scalar>(2 * acos(d));
684 }
685 
686 /** \returns the spherical linear interpolation between the two quaternions
687   * \c *this and \a other at the parameter \a t
688   */
689 template <class Derived>
690 template <class OtherDerived>
691 Quaternion<typename internal::traits<Derived>::Scalar>
692 QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
693 {
694   using std::acos;
695   static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
696   Scalar d = this->dot(other);
697   Scalar absD = internal::abs(d);
698 
699   Scalar scale0;
700   Scalar scale1;
701 
702   if(absD>=one)
703   {
704     scale0 = Scalar(1) - t;
705     scale1 = t;
706   }
707   else
708   {
709     // theta is the angle between the 2 quaternions
710     Scalar theta = acos(absD);
711     Scalar sinTheta = internal::sin(theta);
712 
713     scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
714     scale1 = internal::sin( ( t * theta) ) / sinTheta;
715   }
716   if(d<0) scale1 = -scale1;
717 
718   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
719 }
720 
721 namespace internal {
722 
723 // set from a rotation matrix
724 template<typename Other>
725 struct quaternionbase_assign_impl<Other,3,3>
726 {
727   typedef typename Other::Scalar Scalar;
728   typedef DenseIndex Index;
729   template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
730   {
731     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
732     // Ken Shoemake, 1987 SIGGRAPH course notes
733     Scalar t = mat.trace();
734     if (t > Scalar(0))
735     {
736       t = sqrt(t + Scalar(1.0));
737       q.w() = Scalar(0.5)*t;
738       t = Scalar(0.5)/t;
739       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
740       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
741       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
742     }
743     else
744     {
745       DenseIndex i = 0;
746       if (mat.coeff(1,1) > mat.coeff(0,0))
747         i = 1;
748       if (mat.coeff(2,2) > mat.coeff(i,i))
749         i = 2;
750       DenseIndex j = (i+1)%3;
751       DenseIndex k = (j+1)%3;
752 
753       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
754       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
755       t = Scalar(0.5)/t;
756       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
757       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
758       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
759     }
760   }
761 };
762 
763 // set from a vector of coefficients assumed to be a quaternion
764 template<typename Other>
765 struct quaternionbase_assign_impl<Other,4,1>
766 {
767   typedef typename Other::Scalar Scalar;
768   template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
769   {
770     q.coeffs() = vec;
771   }
772 };
773 
774 } // end namespace internal
775 
776 } // end namespace Eigen
777 
778 #endif // EIGEN_QUATERNION_H
779