• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_INCOMPLETE_LUT_H
11 #define EIGEN_INCOMPLETE_LUT_H
12 
13 namespace Eigen {
14 
15 /**
16  * \brief Incomplete LU factorization with dual-threshold strategy
17  * During the numerical factorization, two dropping rules are used :
18  *  1) any element whose magnitude is less than some tolerance is dropped.
19  *    This tolerance is obtained by multiplying the input tolerance @p droptol
20  *    by the average magnitude of all the original elements in the current row.
21  *  2) After the elimination of the row, only the @p fill largest elements in
22  *    the L part and the @p fill largest elements in the U part are kept
23  *    (in addition to the diagonal element ). Note that @p fill is computed from
24  *    the input parameter @p fillfactor which is used the ratio to control the fill_in
25  *    relatively to the initial number of nonzero elements.
26  *
27  * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
28  * and when @p fill=n/2 with @p droptol being different to zero.
29  *
30  * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
31  *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
32  *
33  * NOTE : The following implementation is derived from the ILUT implementation
34  * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
35  *  released under the terms of the GNU LGPL:
36  *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
37  * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
38  * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
39  *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
40  * alternatively, on GMANE:
41  *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
42  */
43 template <typename _Scalar>
44 class IncompleteLUT : internal::noncopyable
45 {
46     typedef _Scalar Scalar;
47     typedef typename NumTraits<Scalar>::Real RealScalar;
48     typedef Matrix<Scalar,Dynamic,1> Vector;
49     typedef SparseMatrix<Scalar,RowMajor> FactorType;
50     typedef SparseMatrix<Scalar,ColMajor> PermutType;
51     typedef typename FactorType::Index Index;
52 
53   public:
54     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
55 
IncompleteLUT()56     IncompleteLUT()
57       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
58         m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
59     {}
60 
61     template<typename MatrixType>
62     IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
m_droptol(droptol)63       : m_droptol(droptol),m_fillfactor(fillfactor),
64         m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
65     {
66       eigen_assert(fillfactor != 0);
67       compute(mat);
68     }
69 
rows()70     Index rows() const { return m_lu.rows(); }
71 
cols()72     Index cols() const { return m_lu.cols(); }
73 
74     /** \brief Reports whether previous computation was successful.
75       *
76       * \returns \c Success if computation was succesful,
77       *          \c NumericalIssue if the matrix.appears to be negative.
78       */
info()79     ComputationInfo info() const
80     {
81       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
82       return m_info;
83     }
84 
85     template<typename MatrixType>
86     void analyzePattern(const MatrixType& amat);
87 
88     template<typename MatrixType>
89     void factorize(const MatrixType& amat);
90 
91     /**
92       * Compute an incomplete LU factorization with dual threshold on the matrix mat
93       * No pivoting is done in this version
94       *
95       **/
96     template<typename MatrixType>
compute(const MatrixType & amat)97     IncompleteLUT<Scalar>& compute(const MatrixType& amat)
98     {
99       analyzePattern(amat);
100       factorize(amat);
101       eigen_assert(m_factorizationIsOk == true);
102       m_isInitialized = true;
103       return *this;
104     }
105 
106     void setDroptol(RealScalar droptol);
107     void setFillfactor(int fillfactor);
108 
109     template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)110     void _solve(const Rhs& b, Dest& x) const
111     {
112       x = m_Pinv * b;
113       x = m_lu.template triangularView<UnitLower>().solve(x);
114       x = m_lu.template triangularView<Upper>().solve(x);
115       x = m_P * x;
116     }
117 
118     template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
solve(const MatrixBase<Rhs> & b)119      solve(const MatrixBase<Rhs>& b) const
120     {
121       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
122       eigen_assert(cols()==b.rows()
123                 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
124       return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
125     }
126 
127 protected:
128 
129     template <typename VectorV, typename VectorI>
130     int QuickSplit(VectorV &row, VectorI &ind, int ncut);
131 
132 
133     /** keeps off-diagonal entries; drops diagonal entries */
134     struct keep_diag {
operatorkeep_diag135       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
136       {
137         return row!=col;
138       }
139     };
140 
141 protected:
142 
143     FactorType m_lu;
144     RealScalar m_droptol;
145     int m_fillfactor;
146     bool m_analysisIsOk;
147     bool m_factorizationIsOk;
148     bool m_isInitialized;
149     ComputationInfo m_info;
150     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
151     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
152 };
153 
154 /**
155  * Set control parameter droptol
156  *  \param droptol   Drop any element whose magnitude is less than this tolerance
157  **/
158 template<typename Scalar>
setDroptol(RealScalar droptol)159 void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
160 {
161   this->m_droptol = droptol;
162 }
163 
164 /**
165  * Set control parameter fillfactor
166  * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row.
167  **/
168 template<typename Scalar>
setFillfactor(int fillfactor)169 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
170 {
171   this->m_fillfactor = fillfactor;
172 }
173 
174 
175 /**
176  * Compute a quick-sort split of a vector
177  * On output, the vector row is permuted such that its elements satisfy
178  * abs(row(i)) >= abs(row(ncut)) if i<ncut
179  * abs(row(i)) <= abs(row(ncut)) if i>ncut
180  * \param row The vector of values
181  * \param ind The array of index for the elements in @p row
182  * \param ncut  The number of largest elements to keep
183  **/
184 template <typename Scalar>
185 template <typename VectorV, typename VectorI>
QuickSplit(VectorV & row,VectorI & ind,int ncut)186 int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
187 {
188   using std::swap;
189   int mid;
190   int n = row.size(); /* length of the vector */
191   int first, last ;
192 
193   ncut--; /* to fit the zero-based indices */
194   first = 0;
195   last = n-1;
196   if (ncut < first || ncut > last ) return 0;
197 
198   do {
199     mid = first;
200     RealScalar abskey = std::abs(row(mid));
201     for (int j = first + 1; j <= last; j++) {
202       if ( std::abs(row(j)) > abskey) {
203         ++mid;
204         swap(row(mid), row(j));
205         swap(ind(mid), ind(j));
206       }
207     }
208     /* Interchange for the pivot element */
209     swap(row(mid), row(first));
210     swap(ind(mid), ind(first));
211 
212     if (mid > ncut) last = mid - 1;
213     else if (mid < ncut ) first = mid + 1;
214   } while (mid != ncut );
215 
216   return 0; /* mid is equal to ncut */
217 }
218 
219 template <typename Scalar>
220 template<typename _MatrixType>
analyzePattern(const _MatrixType & amat)221 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
222 {
223   // Compute the Fill-reducing permutation
224   SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
225   SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
226   // Symmetrize the pattern
227   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
228   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
229   SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
230   AtA.prune(keep_diag());
231   internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
232 
233   m_Pinv  = m_P.inverse(); // ... and the inverse permutation
234 
235   m_analysisIsOk = true;
236 }
237 
238 template <typename Scalar>
239 template<typename _MatrixType>
factorize(const _MatrixType & amat)240 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
241 {
242   using std::sqrt;
243   using std::swap;
244   using std::abs;
245 
246   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
247   int n = amat.cols();  // Size of the matrix
248   m_lu.resize(n,n);
249   // Declare Working vectors and variables
250   Vector u(n) ;     // real values of the row -- maximum size is n --
251   VectorXi ju(n);   // column position of the values in u -- maximum size  is n
252   VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
253 
254   // Apply the fill-reducing permutation
255   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
256   SparseMatrix<Scalar,RowMajor, Index> mat;
257   mat = amat.twistedBy(m_Pinv);
258 
259   // Initialization
260   jr.fill(-1);
261   ju.fill(0);
262   u.fill(0);
263 
264   // number of largest elements to keep in each row:
265   int fill_in =   static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
266   if (fill_in > n) fill_in = n;
267 
268   // number of largest nonzero elements to keep in the L and the U part of the current row:
269   int nnzL = fill_in/2;
270   int nnzU = nnzL;
271   m_lu.reserve(n * (nnzL + nnzU + 1));
272 
273   // global loop over the rows of the sparse matrix
274   for (int ii = 0; ii < n; ii++)
275   {
276     // 1 - copy the lower and the upper part of the row i of mat in the working vector u
277 
278     int sizeu = 1; // number of nonzero elements in the upper part of the current row
279     int sizel = 0; // number of nonzero elements in the lower part of the current row
280     ju(ii)    = ii;
281     u(ii)     = 0;
282     jr(ii)    = ii;
283     RealScalar rownorm = 0;
284 
285     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
286     for (; j_it; ++j_it)
287     {
288       int k = j_it.index();
289       if (k < ii)
290       {
291         // copy the lower part
292         ju(sizel) = k;
293         u(sizel) = j_it.value();
294         jr(k) = sizel;
295         ++sizel;
296       }
297       else if (k == ii)
298       {
299         u(ii) = j_it.value();
300       }
301       else
302       {
303         // copy the upper part
304         int jpos = ii + sizeu;
305         ju(jpos) = k;
306         u(jpos) = j_it.value();
307         jr(k) = jpos;
308         ++sizeu;
309       }
310       rownorm += internal::abs2(j_it.value());
311     }
312 
313     // 2 - detect possible zero row
314     if(rownorm==0)
315     {
316       m_info = NumericalIssue;
317       return;
318     }
319     // Take the 2-norm of the current row as a relative tolerance
320     rownorm = sqrt(rownorm);
321 
322     // 3 - eliminate the previous nonzero rows
323     int jj = 0;
324     int len = 0;
325     while (jj < sizel)
326     {
327       // In order to eliminate in the correct order,
328       // we must select first the smallest column index among  ju(jj:sizel)
329       int k;
330       int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
331       k += jj;
332       if (minrow != ju(jj))
333       {
334         // swap the two locations
335         int j = ju(jj);
336         swap(ju(jj), ju(k));
337         jr(minrow) = jj;   jr(j) = k;
338         swap(u(jj), u(k));
339       }
340       // Reset this location
341       jr(minrow) = -1;
342 
343       // Start elimination
344       typename FactorType::InnerIterator ki_it(m_lu, minrow);
345       while (ki_it && ki_it.index() < minrow) ++ki_it;
346       eigen_internal_assert(ki_it && ki_it.col()==minrow);
347       Scalar fact = u(jj) / ki_it.value();
348 
349       // drop too small elements
350       if(abs(fact) <= m_droptol)
351       {
352         jj++;
353         continue;
354       }
355 
356       // linear combination of the current row ii and the row minrow
357       ++ki_it;
358       for (; ki_it; ++ki_it)
359       {
360         Scalar prod = fact * ki_it.value();
361         int j       = ki_it.index();
362         int jpos    = jr(j);
363         if (jpos == -1) // fill-in element
364         {
365           int newpos;
366           if (j >= ii) // dealing with the upper part
367           {
368             newpos = ii + sizeu;
369             sizeu++;
370             eigen_internal_assert(sizeu<=n);
371           }
372           else // dealing with the lower part
373           {
374             newpos = sizel;
375             sizel++;
376             eigen_internal_assert(sizel<=ii);
377           }
378           ju(newpos) = j;
379           u(newpos) = -prod;
380           jr(j) = newpos;
381         }
382         else
383           u(jpos) -= prod;
384       }
385       // store the pivot element
386       u(len) = fact;
387       ju(len) = minrow;
388       ++len;
389 
390       jj++;
391     } // end of the elimination on the row ii
392 
393     // reset the upper part of the pointer jr to zero
394     for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
395 
396     // 4 - partially sort and insert the elements in the m_lu matrix
397 
398     // sort the L-part of the row
399     sizel = len;
400     len = (std::min)(sizel, nnzL);
401     typename Vector::SegmentReturnType ul(u.segment(0, sizel));
402     typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
403     QuickSplit(ul, jul, len);
404 
405     // store the largest m_fill elements of the L part
406     m_lu.startVec(ii);
407     for(int k = 0; k < len; k++)
408       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
409 
410     // store the diagonal element
411     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
412     if (u(ii) == Scalar(0))
413       u(ii) = sqrt(m_droptol) * rownorm;
414     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
415 
416     // sort the U-part of the row
417     // apply the dropping rule first
418     len = 0;
419     for(int k = 1; k < sizeu; k++)
420     {
421       if(abs(u(ii+k)) > m_droptol * rownorm )
422       {
423         ++len;
424         u(ii + len)  = u(ii + k);
425         ju(ii + len) = ju(ii + k);
426       }
427     }
428     sizeu = len + 1; // +1 to take into account the diagonal element
429     len = (std::min)(sizeu, nnzU);
430     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
431     typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
432     QuickSplit(uu, juu, len);
433 
434     // store the largest elements of the U part
435     for(int k = ii + 1; k < ii + len; k++)
436       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
437   }
438 
439   m_lu.finalize();
440   m_lu.makeCompressed();
441 
442   m_factorizationIsOk = true;
443   m_info = Success;
444 }
445 
446 namespace internal {
447 
448 template<typename _MatrixType, typename Rhs>
449 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
450   : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
451 {
452   typedef IncompleteLUT<_MatrixType> Dec;
453   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
454 
455   template<typename Dest> void evalTo(Dest& dst) const
456   {
457     dec()._solve(rhs(),dst);
458   }
459 };
460 
461 } // end namespace internal
462 
463 } // end namespace Eigen
464 
465 #endif // EIGEN_INCOMPLETE_LUT_H
466 
467