1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_INCOMPLETE_LUT_H
11 #define EIGEN_INCOMPLETE_LUT_H
12
13 namespace Eigen {
14
15 /**
16 * \brief Incomplete LU factorization with dual-threshold strategy
17 * During the numerical factorization, two dropping rules are used :
18 * 1) any element whose magnitude is less than some tolerance is dropped.
19 * This tolerance is obtained by multiplying the input tolerance @p droptol
20 * by the average magnitude of all the original elements in the current row.
21 * 2) After the elimination of the row, only the @p fill largest elements in
22 * the L part and the @p fill largest elements in the U part are kept
23 * (in addition to the diagonal element ). Note that @p fill is computed from
24 * the input parameter @p fillfactor which is used the ratio to control the fill_in
25 * relatively to the initial number of nonzero elements.
26 *
27 * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
28 * and when @p fill=n/2 with @p droptol being different to zero.
29 *
30 * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
31 * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
32 *
33 * NOTE : The following implementation is derived from the ILUT implementation
34 * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
35 * released under the terms of the GNU LGPL:
36 * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
37 * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
38 * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
39 * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
40 * alternatively, on GMANE:
41 * http://comments.gmane.org/gmane.comp.lib.eigen/3302
42 */
43 template <typename _Scalar>
44 class IncompleteLUT : internal::noncopyable
45 {
46 typedef _Scalar Scalar;
47 typedef typename NumTraits<Scalar>::Real RealScalar;
48 typedef Matrix<Scalar,Dynamic,1> Vector;
49 typedef SparseMatrix<Scalar,RowMajor> FactorType;
50 typedef SparseMatrix<Scalar,ColMajor> PermutType;
51 typedef typename FactorType::Index Index;
52
53 public:
54 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
55
IncompleteLUT()56 IncompleteLUT()
57 : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
58 m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
59 {}
60
61 template<typename MatrixType>
62 IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
m_droptol(droptol)63 : m_droptol(droptol),m_fillfactor(fillfactor),
64 m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
65 {
66 eigen_assert(fillfactor != 0);
67 compute(mat);
68 }
69
rows()70 Index rows() const { return m_lu.rows(); }
71
cols()72 Index cols() const { return m_lu.cols(); }
73
74 /** \brief Reports whether previous computation was successful.
75 *
76 * \returns \c Success if computation was succesful,
77 * \c NumericalIssue if the matrix.appears to be negative.
78 */
info()79 ComputationInfo info() const
80 {
81 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
82 return m_info;
83 }
84
85 template<typename MatrixType>
86 void analyzePattern(const MatrixType& amat);
87
88 template<typename MatrixType>
89 void factorize(const MatrixType& amat);
90
91 /**
92 * Compute an incomplete LU factorization with dual threshold on the matrix mat
93 * No pivoting is done in this version
94 *
95 **/
96 template<typename MatrixType>
compute(const MatrixType & amat)97 IncompleteLUT<Scalar>& compute(const MatrixType& amat)
98 {
99 analyzePattern(amat);
100 factorize(amat);
101 eigen_assert(m_factorizationIsOk == true);
102 m_isInitialized = true;
103 return *this;
104 }
105
106 void setDroptol(RealScalar droptol);
107 void setFillfactor(int fillfactor);
108
109 template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)110 void _solve(const Rhs& b, Dest& x) const
111 {
112 x = m_Pinv * b;
113 x = m_lu.template triangularView<UnitLower>().solve(x);
114 x = m_lu.template triangularView<Upper>().solve(x);
115 x = m_P * x;
116 }
117
118 template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
solve(const MatrixBase<Rhs> & b)119 solve(const MatrixBase<Rhs>& b) const
120 {
121 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
122 eigen_assert(cols()==b.rows()
123 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
124 return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
125 }
126
127 protected:
128
129 template <typename VectorV, typename VectorI>
130 int QuickSplit(VectorV &row, VectorI &ind, int ncut);
131
132
133 /** keeps off-diagonal entries; drops diagonal entries */
134 struct keep_diag {
operatorkeep_diag135 inline bool operator() (const Index& row, const Index& col, const Scalar&) const
136 {
137 return row!=col;
138 }
139 };
140
141 protected:
142
143 FactorType m_lu;
144 RealScalar m_droptol;
145 int m_fillfactor;
146 bool m_analysisIsOk;
147 bool m_factorizationIsOk;
148 bool m_isInitialized;
149 ComputationInfo m_info;
150 PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
151 PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
152 };
153
154 /**
155 * Set control parameter droptol
156 * \param droptol Drop any element whose magnitude is less than this tolerance
157 **/
158 template<typename Scalar>
setDroptol(RealScalar droptol)159 void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
160 {
161 this->m_droptol = droptol;
162 }
163
164 /**
165 * Set control parameter fillfactor
166 * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
167 **/
168 template<typename Scalar>
setFillfactor(int fillfactor)169 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
170 {
171 this->m_fillfactor = fillfactor;
172 }
173
174
175 /**
176 * Compute a quick-sort split of a vector
177 * On output, the vector row is permuted such that its elements satisfy
178 * abs(row(i)) >= abs(row(ncut)) if i<ncut
179 * abs(row(i)) <= abs(row(ncut)) if i>ncut
180 * \param row The vector of values
181 * \param ind The array of index for the elements in @p row
182 * \param ncut The number of largest elements to keep
183 **/
184 template <typename Scalar>
185 template <typename VectorV, typename VectorI>
QuickSplit(VectorV & row,VectorI & ind,int ncut)186 int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
187 {
188 using std::swap;
189 int mid;
190 int n = row.size(); /* length of the vector */
191 int first, last ;
192
193 ncut--; /* to fit the zero-based indices */
194 first = 0;
195 last = n-1;
196 if (ncut < first || ncut > last ) return 0;
197
198 do {
199 mid = first;
200 RealScalar abskey = std::abs(row(mid));
201 for (int j = first + 1; j <= last; j++) {
202 if ( std::abs(row(j)) > abskey) {
203 ++mid;
204 swap(row(mid), row(j));
205 swap(ind(mid), ind(j));
206 }
207 }
208 /* Interchange for the pivot element */
209 swap(row(mid), row(first));
210 swap(ind(mid), ind(first));
211
212 if (mid > ncut) last = mid - 1;
213 else if (mid < ncut ) first = mid + 1;
214 } while (mid != ncut );
215
216 return 0; /* mid is equal to ncut */
217 }
218
219 template <typename Scalar>
220 template<typename _MatrixType>
analyzePattern(const _MatrixType & amat)221 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
222 {
223 // Compute the Fill-reducing permutation
224 SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
225 SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
226 // Symmetrize the pattern
227 // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
228 // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
229 SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
230 AtA.prune(keep_diag());
231 internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
232
233 m_Pinv = m_P.inverse(); // ... and the inverse permutation
234
235 m_analysisIsOk = true;
236 }
237
238 template <typename Scalar>
239 template<typename _MatrixType>
factorize(const _MatrixType & amat)240 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
241 {
242 using std::sqrt;
243 using std::swap;
244 using std::abs;
245
246 eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
247 int n = amat.cols(); // Size of the matrix
248 m_lu.resize(n,n);
249 // Declare Working vectors and variables
250 Vector u(n) ; // real values of the row -- maximum size is n --
251 VectorXi ju(n); // column position of the values in u -- maximum size is n
252 VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
253
254 // Apply the fill-reducing permutation
255 eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
256 SparseMatrix<Scalar,RowMajor, Index> mat;
257 mat = amat.twistedBy(m_Pinv);
258
259 // Initialization
260 jr.fill(-1);
261 ju.fill(0);
262 u.fill(0);
263
264 // number of largest elements to keep in each row:
265 int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
266 if (fill_in > n) fill_in = n;
267
268 // number of largest nonzero elements to keep in the L and the U part of the current row:
269 int nnzL = fill_in/2;
270 int nnzU = nnzL;
271 m_lu.reserve(n * (nnzL + nnzU + 1));
272
273 // global loop over the rows of the sparse matrix
274 for (int ii = 0; ii < n; ii++)
275 {
276 // 1 - copy the lower and the upper part of the row i of mat in the working vector u
277
278 int sizeu = 1; // number of nonzero elements in the upper part of the current row
279 int sizel = 0; // number of nonzero elements in the lower part of the current row
280 ju(ii) = ii;
281 u(ii) = 0;
282 jr(ii) = ii;
283 RealScalar rownorm = 0;
284
285 typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
286 for (; j_it; ++j_it)
287 {
288 int k = j_it.index();
289 if (k < ii)
290 {
291 // copy the lower part
292 ju(sizel) = k;
293 u(sizel) = j_it.value();
294 jr(k) = sizel;
295 ++sizel;
296 }
297 else if (k == ii)
298 {
299 u(ii) = j_it.value();
300 }
301 else
302 {
303 // copy the upper part
304 int jpos = ii + sizeu;
305 ju(jpos) = k;
306 u(jpos) = j_it.value();
307 jr(k) = jpos;
308 ++sizeu;
309 }
310 rownorm += internal::abs2(j_it.value());
311 }
312
313 // 2 - detect possible zero row
314 if(rownorm==0)
315 {
316 m_info = NumericalIssue;
317 return;
318 }
319 // Take the 2-norm of the current row as a relative tolerance
320 rownorm = sqrt(rownorm);
321
322 // 3 - eliminate the previous nonzero rows
323 int jj = 0;
324 int len = 0;
325 while (jj < sizel)
326 {
327 // In order to eliminate in the correct order,
328 // we must select first the smallest column index among ju(jj:sizel)
329 int k;
330 int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
331 k += jj;
332 if (minrow != ju(jj))
333 {
334 // swap the two locations
335 int j = ju(jj);
336 swap(ju(jj), ju(k));
337 jr(minrow) = jj; jr(j) = k;
338 swap(u(jj), u(k));
339 }
340 // Reset this location
341 jr(minrow) = -1;
342
343 // Start elimination
344 typename FactorType::InnerIterator ki_it(m_lu, minrow);
345 while (ki_it && ki_it.index() < minrow) ++ki_it;
346 eigen_internal_assert(ki_it && ki_it.col()==minrow);
347 Scalar fact = u(jj) / ki_it.value();
348
349 // drop too small elements
350 if(abs(fact) <= m_droptol)
351 {
352 jj++;
353 continue;
354 }
355
356 // linear combination of the current row ii and the row minrow
357 ++ki_it;
358 for (; ki_it; ++ki_it)
359 {
360 Scalar prod = fact * ki_it.value();
361 int j = ki_it.index();
362 int jpos = jr(j);
363 if (jpos == -1) // fill-in element
364 {
365 int newpos;
366 if (j >= ii) // dealing with the upper part
367 {
368 newpos = ii + sizeu;
369 sizeu++;
370 eigen_internal_assert(sizeu<=n);
371 }
372 else // dealing with the lower part
373 {
374 newpos = sizel;
375 sizel++;
376 eigen_internal_assert(sizel<=ii);
377 }
378 ju(newpos) = j;
379 u(newpos) = -prod;
380 jr(j) = newpos;
381 }
382 else
383 u(jpos) -= prod;
384 }
385 // store the pivot element
386 u(len) = fact;
387 ju(len) = minrow;
388 ++len;
389
390 jj++;
391 } // end of the elimination on the row ii
392
393 // reset the upper part of the pointer jr to zero
394 for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
395
396 // 4 - partially sort and insert the elements in the m_lu matrix
397
398 // sort the L-part of the row
399 sizel = len;
400 len = (std::min)(sizel, nnzL);
401 typename Vector::SegmentReturnType ul(u.segment(0, sizel));
402 typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
403 QuickSplit(ul, jul, len);
404
405 // store the largest m_fill elements of the L part
406 m_lu.startVec(ii);
407 for(int k = 0; k < len; k++)
408 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
409
410 // store the diagonal element
411 // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
412 if (u(ii) == Scalar(0))
413 u(ii) = sqrt(m_droptol) * rownorm;
414 m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
415
416 // sort the U-part of the row
417 // apply the dropping rule first
418 len = 0;
419 for(int k = 1; k < sizeu; k++)
420 {
421 if(abs(u(ii+k)) > m_droptol * rownorm )
422 {
423 ++len;
424 u(ii + len) = u(ii + k);
425 ju(ii + len) = ju(ii + k);
426 }
427 }
428 sizeu = len + 1; // +1 to take into account the diagonal element
429 len = (std::min)(sizeu, nnzU);
430 typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
431 typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
432 QuickSplit(uu, juu, len);
433
434 // store the largest elements of the U part
435 for(int k = ii + 1; k < ii + len; k++)
436 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
437 }
438
439 m_lu.finalize();
440 m_lu.makeCompressed();
441
442 m_factorizationIsOk = true;
443 m_info = Success;
444 }
445
446 namespace internal {
447
448 template<typename _MatrixType, typename Rhs>
449 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
450 : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
451 {
452 typedef IncompleteLUT<_MatrixType> Dec;
453 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
454
455 template<typename Dest> void evalTo(Dest& dst) const
456 {
457 dec()._solve(rhs(),dst);
458 }
459 };
460
461 } // end namespace internal
462
463 } // end namespace Eigen
464
465 #endif // EIGEN_INCOMPLETE_LUT_H
466
467