• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_INVERSE_H
11 #define EIGEN_INVERSE_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 /**********************************
18 *** General case implementation ***
19 **********************************/
20 
21 template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
22 struct compute_inverse
23 {
runcompute_inverse24   static inline void run(const MatrixType& matrix, ResultType& result)
25   {
26     result = matrix.partialPivLu().inverse();
27   }
28 };
29 
30 template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
31 struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
32 
33 /****************************
34 *** Size 1 implementation ***
35 ****************************/
36 
37 template<typename MatrixType, typename ResultType>
38 struct compute_inverse<MatrixType, ResultType, 1>
39 {
40   static inline void run(const MatrixType& matrix, ResultType& result)
41   {
42     typedef typename MatrixType::Scalar Scalar;
43     result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
44   }
45 };
46 
47 template<typename MatrixType, typename ResultType>
48 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
49 {
50   static inline void run(
51     const MatrixType& matrix,
52     const typename MatrixType::RealScalar& absDeterminantThreshold,
53     ResultType& result,
54     typename ResultType::Scalar& determinant,
55     bool& invertible
56   )
57   {
58     determinant = matrix.coeff(0,0);
59     invertible = abs(determinant) > absDeterminantThreshold;
60     if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
61   }
62 };
63 
64 /****************************
65 *** Size 2 implementation ***
66 ****************************/
67 
68 template<typename MatrixType, typename ResultType>
69 inline void compute_inverse_size2_helper(
70     const MatrixType& matrix, const typename ResultType::Scalar& invdet,
71     ResultType& result)
72 {
73   result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
74   result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
75   result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
76   result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
77 }
78 
79 template<typename MatrixType, typename ResultType>
80 struct compute_inverse<MatrixType, ResultType, 2>
81 {
82   static inline void run(const MatrixType& matrix, ResultType& result)
83   {
84     typedef typename ResultType::Scalar Scalar;
85     const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
86     compute_inverse_size2_helper(matrix, invdet, result);
87   }
88 };
89 
90 template<typename MatrixType, typename ResultType>
91 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
92 {
93   static inline void run(
94     const MatrixType& matrix,
95     const typename MatrixType::RealScalar& absDeterminantThreshold,
96     ResultType& inverse,
97     typename ResultType::Scalar& determinant,
98     bool& invertible
99   )
100   {
101     typedef typename ResultType::Scalar Scalar;
102     determinant = matrix.determinant();
103     invertible = abs(determinant) > absDeterminantThreshold;
104     if(!invertible) return;
105     const Scalar invdet = Scalar(1) / determinant;
106     compute_inverse_size2_helper(matrix, invdet, inverse);
107   }
108 };
109 
110 /****************************
111 *** Size 3 implementation ***
112 ****************************/
113 
114 template<typename MatrixType, int i, int j>
115 inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
116 {
117   enum {
118     i1 = (i+1) % 3,
119     i2 = (i+2) % 3,
120     j1 = (j+1) % 3,
121     j2 = (j+2) % 3
122   };
123   return m.coeff(i1, j1) * m.coeff(i2, j2)
124        - m.coeff(i1, j2) * m.coeff(i2, j1);
125 }
126 
127 template<typename MatrixType, typename ResultType>
128 inline void compute_inverse_size3_helper(
129     const MatrixType& matrix,
130     const typename ResultType::Scalar& invdet,
131     const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
132     ResultType& result)
133 {
134   result.row(0) = cofactors_col0 * invdet;
135   result.coeffRef(1,0) =  cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
136   result.coeffRef(1,1) =  cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
137   result.coeffRef(1,2) =  cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
138   result.coeffRef(2,0) =  cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
139   result.coeffRef(2,1) =  cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
140   result.coeffRef(2,2) =  cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
141 }
142 
143 template<typename MatrixType, typename ResultType>
144 struct compute_inverse<MatrixType, ResultType, 3>
145 {
146   static inline void run(const MatrixType& matrix, ResultType& result)
147   {
148     typedef typename ResultType::Scalar Scalar;
149     Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
150     cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
151     cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
152     cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
153     const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
154     const Scalar invdet = Scalar(1) / det;
155     compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
156   }
157 };
158 
159 template<typename MatrixType, typename ResultType>
160 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
161 {
162   static inline void run(
163     const MatrixType& matrix,
164     const typename MatrixType::RealScalar& absDeterminantThreshold,
165     ResultType& inverse,
166     typename ResultType::Scalar& determinant,
167     bool& invertible
168   )
169   {
170     typedef typename ResultType::Scalar Scalar;
171     Matrix<Scalar,3,1> cofactors_col0;
172     cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
173     cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
174     cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
175     determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
176     invertible = abs(determinant) > absDeterminantThreshold;
177     if(!invertible) return;
178     const Scalar invdet = Scalar(1) / determinant;
179     compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
180   }
181 };
182 
183 /****************************
184 *** Size 4 implementation ***
185 ****************************/
186 
187 template<typename Derived>
188 inline const typename Derived::Scalar general_det3_helper
189 (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
190 {
191   return matrix.coeff(i1,j1)
192          * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
193 }
194 
195 template<typename MatrixType, int i, int j>
196 inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
197 {
198   enum {
199     i1 = (i+1) % 4,
200     i2 = (i+2) % 4,
201     i3 = (i+3) % 4,
202     j1 = (j+1) % 4,
203     j2 = (j+2) % 4,
204     j3 = (j+3) % 4
205   };
206   return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
207        + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
208        + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
209 }
210 
211 template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
212 struct compute_inverse_size4
213 {
214   static void run(const MatrixType& matrix, ResultType& result)
215   {
216     result.coeffRef(0,0) =  cofactor_4x4<MatrixType,0,0>(matrix);
217     result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
218     result.coeffRef(2,0) =  cofactor_4x4<MatrixType,0,2>(matrix);
219     result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
220     result.coeffRef(0,2) =  cofactor_4x4<MatrixType,2,0>(matrix);
221     result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
222     result.coeffRef(2,2) =  cofactor_4x4<MatrixType,2,2>(matrix);
223     result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
224     result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
225     result.coeffRef(1,1) =  cofactor_4x4<MatrixType,1,1>(matrix);
226     result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
227     result.coeffRef(3,1) =  cofactor_4x4<MatrixType,1,3>(matrix);
228     result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
229     result.coeffRef(1,3) =  cofactor_4x4<MatrixType,3,1>(matrix);
230     result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
231     result.coeffRef(3,3) =  cofactor_4x4<MatrixType,3,3>(matrix);
232     result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
233   }
234 };
235 
236 template<typename MatrixType, typename ResultType>
237 struct compute_inverse<MatrixType, ResultType, 4>
238  : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
239                             MatrixType, ResultType>
240 {
241 };
242 
243 template<typename MatrixType, typename ResultType>
244 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
245 {
246   static inline void run(
247     const MatrixType& matrix,
248     const typename MatrixType::RealScalar& absDeterminantThreshold,
249     ResultType& inverse,
250     typename ResultType::Scalar& determinant,
251     bool& invertible
252   )
253   {
254     determinant = matrix.determinant();
255     invertible = abs(determinant) > absDeterminantThreshold;
256     if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
257   }
258 };
259 
260 /*************************
261 *** MatrixBase methods ***
262 *************************/
263 
264 template<typename MatrixType>
265 struct traits<inverse_impl<MatrixType> >
266 {
267   typedef typename MatrixType::PlainObject ReturnType;
268 };
269 
270 template<typename MatrixType>
271 struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
272 {
273   typedef typename MatrixType::Index Index;
274   typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
275   typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
276   MatrixTypeNested m_matrix;
277 
278   inverse_impl(const MatrixType& matrix)
279     : m_matrix(matrix)
280   {}
281 
282   inline Index rows() const { return m_matrix.rows(); }
283   inline Index cols() const { return m_matrix.cols(); }
284 
285   template<typename Dest> inline void evalTo(Dest& dst) const
286   {
287     const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
288     EIGEN_ONLY_USED_FOR_DEBUG(Size);
289     eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
290               && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
291 
292     compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
293   }
294 };
295 
296 } // end namespace internal
297 
298 /** \lu_module
299   *
300   * \returns the matrix inverse of this matrix.
301   *
302   * For small fixed sizes up to 4x4, this method uses cofactors.
303   * In the general case, this method uses class PartialPivLU.
304   *
305   * \note This matrix must be invertible, otherwise the result is undefined. If you need an
306   * invertibility check, do the following:
307   * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
308   * \li for the general case, use class FullPivLU.
309   *
310   * Example: \include MatrixBase_inverse.cpp
311   * Output: \verbinclude MatrixBase_inverse.out
312   *
313   * \sa computeInverseAndDetWithCheck()
314   */
315 template<typename Derived>
316 inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
317 {
318   EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
319   eigen_assert(rows() == cols());
320   return internal::inverse_impl<Derived>(derived());
321 }
322 
323 /** \lu_module
324   *
325   * Computation of matrix inverse and determinant, with invertibility check.
326   *
327   * This is only for fixed-size square matrices of size up to 4x4.
328   *
329   * \param inverse Reference to the matrix in which to store the inverse.
330   * \param determinant Reference to the variable in which to store the inverse.
331   * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
332   * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
333   *                                The matrix will be declared invertible if the absolute value of its
334   *                                determinant is greater than this threshold.
335   *
336   * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
337   * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
338   *
339   * \sa inverse(), computeInverseWithCheck()
340   */
341 template<typename Derived>
342 template<typename ResultType>
343 inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
344     ResultType& inverse,
345     typename ResultType::Scalar& determinant,
346     bool& invertible,
347     const RealScalar& absDeterminantThreshold
348   ) const
349 {
350   // i'd love to put some static assertions there, but SFINAE means that they have no effect...
351   eigen_assert(rows() == cols());
352   // for 2x2, it's worth giving a chance to avoid evaluating.
353   // for larger sizes, evaluating has negligible cost and limits code size.
354   typedef typename internal::conditional<
355     RowsAtCompileTime == 2,
356     typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
357     PlainObject
358   >::type MatrixType;
359   internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
360     (derived(), absDeterminantThreshold, inverse, determinant, invertible);
361 }
362 
363 /** \lu_module
364   *
365   * Computation of matrix inverse, with invertibility check.
366   *
367   * This is only for fixed-size square matrices of size up to 4x4.
368   *
369   * \param inverse Reference to the matrix in which to store the inverse.
370   * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
371   * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
372   *                                The matrix will be declared invertible if the absolute value of its
373   *                                determinant is greater than this threshold.
374   *
375   * Example: \include MatrixBase_computeInverseWithCheck.cpp
376   * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
377   *
378   * \sa inverse(), computeInverseAndDetWithCheck()
379   */
380 template<typename Derived>
381 template<typename ResultType>
382 inline void MatrixBase<Derived>::computeInverseWithCheck(
383     ResultType& inverse,
384     bool& invertible,
385     const RealScalar& absDeterminantThreshold
386   ) const
387 {
388   RealScalar determinant;
389   // i'd love to put some static assertions there, but SFINAE means that they have no effect...
390   eigen_assert(rows() == cols());
391   computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
392 }
393 
394 } // end namespace Eigen
395 
396 #endif // EIGEN_INVERSE_H
397