1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 13 14 namespace Eigen { 15 16 namespace internal { 17 18 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType; 19 20 template<typename MatrixType> 21 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> > 22 { 23 typedef typename MatrixType::PlainObject ReturnType; 24 }; 25 26 } 27 28 /** \ingroup QR_Module 29 * 30 * \class FullPivHouseholderQR 31 * 32 * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting 33 * 34 * \param MatrixType the type of the matrix of which we are computing the QR decomposition 35 * 36 * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R 37 * such that 38 * \f[ 39 * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} 40 * \f] 41 * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an 42 * upper triangular matrix. 43 * 44 * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal 45 * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. 46 * 47 * \sa MatrixBase::fullPivHouseholderQr() 48 */ 49 template<typename _MatrixType> class FullPivHouseholderQR 50 { 51 public: 52 53 typedef _MatrixType MatrixType; 54 enum { 55 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 56 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 57 Options = MatrixType::Options, 58 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 59 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 60 }; 61 typedef typename MatrixType::Scalar Scalar; 62 typedef typename MatrixType::RealScalar RealScalar; 63 typedef typename MatrixType::Index Index; 64 typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType; 65 typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; 66 typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType; 67 typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; 68 typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType; 69 typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; 70 typedef typename internal::plain_col_type<MatrixType>::type ColVectorType; 71 72 /** \brief Default Constructor. 73 * 74 * The default constructor is useful in cases in which the user intends to 75 * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). 76 */ 77 FullPivHouseholderQR() 78 : m_qr(), 79 m_hCoeffs(), 80 m_rows_transpositions(), 81 m_cols_transpositions(), 82 m_cols_permutation(), 83 m_temp(), 84 m_isInitialized(false), 85 m_usePrescribedThreshold(false) {} 86 87 /** \brief Default Constructor with memory preallocation 88 * 89 * Like the default constructor but with preallocation of the internal data 90 * according to the specified problem \a size. 91 * \sa FullPivHouseholderQR() 92 */ 93 FullPivHouseholderQR(Index rows, Index cols) 94 : m_qr(rows, cols), 95 m_hCoeffs((std::min)(rows,cols)), 96 m_rows_transpositions(rows), 97 m_cols_transpositions(cols), 98 m_cols_permutation(cols), 99 m_temp((std::min)(rows,cols)), 100 m_isInitialized(false), 101 m_usePrescribedThreshold(false) {} 102 103 FullPivHouseholderQR(const MatrixType& matrix) 104 : m_qr(matrix.rows(), matrix.cols()), 105 m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), 106 m_rows_transpositions(matrix.rows()), 107 m_cols_transpositions(matrix.cols()), 108 m_cols_permutation(matrix.cols()), 109 m_temp((std::min)(matrix.rows(), matrix.cols())), 110 m_isInitialized(false), 111 m_usePrescribedThreshold(false) 112 { 113 compute(matrix); 114 } 115 116 /** This method finds a solution x to the equation Ax=b, where A is the matrix of which 117 * *this is the QR decomposition, if any exists. 118 * 119 * \param b the right-hand-side of the equation to solve. 120 * 121 * \returns a solution. 122 * 123 * \note The case where b is a matrix is not yet implemented. Also, this 124 * code is space inefficient. 125 * 126 * \note_about_checking_solutions 127 * 128 * \note_about_arbitrary_choice_of_solution 129 * 130 * Example: \include FullPivHouseholderQR_solve.cpp 131 * Output: \verbinclude FullPivHouseholderQR_solve.out 132 */ 133 template<typename Rhs> 134 inline const internal::solve_retval<FullPivHouseholderQR, Rhs> 135 solve(const MatrixBase<Rhs>& b) const 136 { 137 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 138 return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived()); 139 } 140 141 /** \returns Expression object representing the matrix Q 142 */ 143 MatrixQReturnType matrixQ(void) const; 144 145 /** \returns a reference to the matrix where the Householder QR decomposition is stored 146 */ 147 const MatrixType& matrixQR() const 148 { 149 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 150 return m_qr; 151 } 152 153 FullPivHouseholderQR& compute(const MatrixType& matrix); 154 155 const PermutationType& colsPermutation() const 156 { 157 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 158 return m_cols_permutation; 159 } 160 161 const IntColVectorType& rowsTranspositions() const 162 { 163 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 164 return m_rows_transpositions; 165 } 166 167 /** \returns the absolute value of the determinant of the matrix of which 168 * *this is the QR decomposition. It has only linear complexity 169 * (that is, O(n) where n is the dimension of the square matrix) 170 * as the QR decomposition has already been computed. 171 * 172 * \note This is only for square matrices. 173 * 174 * \warning a determinant can be very big or small, so for matrices 175 * of large enough dimension, there is a risk of overflow/underflow. 176 * One way to work around that is to use logAbsDeterminant() instead. 177 * 178 * \sa logAbsDeterminant(), MatrixBase::determinant() 179 */ 180 typename MatrixType::RealScalar absDeterminant() const; 181 182 /** \returns the natural log of the absolute value of the determinant of the matrix of which 183 * *this is the QR decomposition. It has only linear complexity 184 * (that is, O(n) where n is the dimension of the square matrix) 185 * as the QR decomposition has already been computed. 186 * 187 * \note This is only for square matrices. 188 * 189 * \note This method is useful to work around the risk of overflow/underflow that's inherent 190 * to determinant computation. 191 * 192 * \sa absDeterminant(), MatrixBase::determinant() 193 */ 194 typename MatrixType::RealScalar logAbsDeterminant() const; 195 196 /** \returns the rank of the matrix of which *this is the QR decomposition. 197 * 198 * \note This method has to determine which pivots should be considered nonzero. 199 * For that, it uses the threshold value that you can control by calling 200 * setThreshold(const RealScalar&). 201 */ 202 inline Index rank() const 203 { 204 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 205 RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold(); 206 Index result = 0; 207 for(Index i = 0; i < m_nonzero_pivots; ++i) 208 result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold); 209 return result; 210 } 211 212 /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. 213 * 214 * \note This method has to determine which pivots should be considered nonzero. 215 * For that, it uses the threshold value that you can control by calling 216 * setThreshold(const RealScalar&). 217 */ 218 inline Index dimensionOfKernel() const 219 { 220 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 221 return cols() - rank(); 222 } 223 224 /** \returns true if the matrix of which *this is the QR decomposition represents an injective 225 * linear map, i.e. has trivial kernel; false otherwise. 226 * 227 * \note This method has to determine which pivots should be considered nonzero. 228 * For that, it uses the threshold value that you can control by calling 229 * setThreshold(const RealScalar&). 230 */ 231 inline bool isInjective() const 232 { 233 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 234 return rank() == cols(); 235 } 236 237 /** \returns true if the matrix of which *this is the QR decomposition represents a surjective 238 * linear map; false otherwise. 239 * 240 * \note This method has to determine which pivots should be considered nonzero. 241 * For that, it uses the threshold value that you can control by calling 242 * setThreshold(const RealScalar&). 243 */ 244 inline bool isSurjective() const 245 { 246 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 247 return rank() == rows(); 248 } 249 250 /** \returns true if the matrix of which *this is the QR decomposition is invertible. 251 * 252 * \note This method has to determine which pivots should be considered nonzero. 253 * For that, it uses the threshold value that you can control by calling 254 * setThreshold(const RealScalar&). 255 */ 256 inline bool isInvertible() const 257 { 258 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 259 return isInjective() && isSurjective(); 260 } 261 262 /** \returns the inverse of the matrix of which *this is the QR decomposition. 263 * 264 * \note If this matrix is not invertible, the returned matrix has undefined coefficients. 265 * Use isInvertible() to first determine whether this matrix is invertible. 266 */ inline const 267 internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType> 268 inverse() const 269 { 270 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 271 return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType> 272 (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); 273 } 274 275 inline Index rows() const { return m_qr.rows(); } 276 inline Index cols() const { return m_qr.cols(); } 277 const HCoeffsType& hCoeffs() const { return m_hCoeffs; } 278 279 /** Allows to prescribe a threshold to be used by certain methods, such as rank(), 280 * who need to determine when pivots are to be considered nonzero. This is not used for the 281 * QR decomposition itself. 282 * 283 * When it needs to get the threshold value, Eigen calls threshold(). By default, this 284 * uses a formula to automatically determine a reasonable threshold. 285 * Once you have called the present method setThreshold(const RealScalar&), 286 * your value is used instead. 287 * 288 * \param threshold The new value to use as the threshold. 289 * 290 * A pivot will be considered nonzero if its absolute value is strictly greater than 291 * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ 292 * where maxpivot is the biggest pivot. 293 * 294 * If you want to come back to the default behavior, call setThreshold(Default_t) 295 */ 296 FullPivHouseholderQR& setThreshold(const RealScalar& threshold) 297 { 298 m_usePrescribedThreshold = true; 299 m_prescribedThreshold = threshold; 300 return *this; 301 } 302 303 /** Allows to come back to the default behavior, letting Eigen use its default formula for 304 * determining the threshold. 305 * 306 * You should pass the special object Eigen::Default as parameter here. 307 * \code qr.setThreshold(Eigen::Default); \endcode 308 * 309 * See the documentation of setThreshold(const RealScalar&). 310 */ 311 FullPivHouseholderQR& setThreshold(Default_t) 312 { 313 m_usePrescribedThreshold = false; 314 return *this; 315 } 316 317 /** Returns the threshold that will be used by certain methods such as rank(). 318 * 319 * See the documentation of setThreshold(const RealScalar&). 320 */ 321 RealScalar threshold() const 322 { 323 eigen_assert(m_isInitialized || m_usePrescribedThreshold); 324 return m_usePrescribedThreshold ? m_prescribedThreshold 325 // this formula comes from experimenting (see "LU precision tuning" thread on the list) 326 // and turns out to be identical to Higham's formula used already in LDLt. 327 : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize(); 328 } 329 330 /** \returns the number of nonzero pivots in the QR decomposition. 331 * Here nonzero is meant in the exact sense, not in a fuzzy sense. 332 * So that notion isn't really intrinsically interesting, but it is 333 * still useful when implementing algorithms. 334 * 335 * \sa rank() 336 */ 337 inline Index nonzeroPivots() const 338 { 339 eigen_assert(m_isInitialized && "LU is not initialized."); 340 return m_nonzero_pivots; 341 } 342 343 /** \returns the absolute value of the biggest pivot, i.e. the biggest 344 * diagonal coefficient of U. 345 */ 346 RealScalar maxPivot() const { return m_maxpivot; } 347 348 protected: 349 MatrixType m_qr; 350 HCoeffsType m_hCoeffs; 351 IntColVectorType m_rows_transpositions; 352 IntRowVectorType m_cols_transpositions; 353 PermutationType m_cols_permutation; 354 RowVectorType m_temp; 355 bool m_isInitialized, m_usePrescribedThreshold; 356 RealScalar m_prescribedThreshold, m_maxpivot; 357 Index m_nonzero_pivots; 358 RealScalar m_precision; 359 Index m_det_pq; 360 }; 361 362 template<typename MatrixType> 363 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const 364 { 365 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 366 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); 367 return internal::abs(m_qr.diagonal().prod()); 368 } 369 370 template<typename MatrixType> 371 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const 372 { 373 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 374 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); 375 return m_qr.diagonal().cwiseAbs().array().log().sum(); 376 } 377 378 template<typename MatrixType> 379 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix) 380 { 381 Index rows = matrix.rows(); 382 Index cols = matrix.cols(); 383 Index size = (std::min)(rows,cols); 384 385 m_qr = matrix; 386 m_hCoeffs.resize(size); 387 388 m_temp.resize(cols); 389 390 m_precision = NumTraits<Scalar>::epsilon() * size; 391 392 m_rows_transpositions.resize(matrix.rows()); 393 m_cols_transpositions.resize(matrix.cols()); 394 Index number_of_transpositions = 0; 395 396 RealScalar biggest(0); 397 398 m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) 399 m_maxpivot = RealScalar(0); 400 401 for (Index k = 0; k < size; ++k) 402 { 403 Index row_of_biggest_in_corner, col_of_biggest_in_corner; 404 RealScalar biggest_in_corner; 405 406 biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k) 407 .cwiseAbs() 408 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); 409 row_of_biggest_in_corner += k; 410 col_of_biggest_in_corner += k; 411 if(k==0) biggest = biggest_in_corner; 412 413 // if the corner is negligible, then we have less than full rank, and we can finish early 414 if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) 415 { 416 m_nonzero_pivots = k; 417 for(Index i = k; i < size; i++) 418 { 419 m_rows_transpositions.coeffRef(i) = i; 420 m_cols_transpositions.coeffRef(i) = i; 421 m_hCoeffs.coeffRef(i) = Scalar(0); 422 } 423 break; 424 } 425 426 m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; 427 m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; 428 if(k != row_of_biggest_in_corner) { 429 m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); 430 ++number_of_transpositions; 431 } 432 if(k != col_of_biggest_in_corner) { 433 m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); 434 ++number_of_transpositions; 435 } 436 437 RealScalar beta; 438 m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); 439 m_qr.coeffRef(k,k) = beta; 440 441 // remember the maximum absolute value of diagonal coefficients 442 if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta); 443 444 m_qr.bottomRightCorner(rows-k, cols-k-1) 445 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); 446 } 447 448 m_cols_permutation.setIdentity(cols); 449 for(Index k = 0; k < size; ++k) 450 m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); 451 452 m_det_pq = (number_of_transpositions%2) ? -1 : 1; 453 m_isInitialized = true; 454 455 return *this; 456 } 457 458 namespace internal { 459 460 template<typename _MatrixType, typename Rhs> 461 struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs> 462 : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs> 463 { 464 EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs) 465 466 template<typename Dest> void evalTo(Dest& dst) const 467 { 468 const Index rows = dec().rows(), cols = dec().cols(); 469 eigen_assert(rhs().rows() == rows); 470 471 // FIXME introduce nonzeroPivots() and use it here. and more generally, 472 // make the same improvements in this dec as in FullPivLU. 473 if(dec().rank()==0) 474 { 475 dst.setZero(); 476 return; 477 } 478 479 typename Rhs::PlainObject c(rhs()); 480 481 Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols()); 482 for (Index k = 0; k < dec().rank(); ++k) 483 { 484 Index remainingSize = rows-k; 485 c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k))); 486 c.bottomRightCorner(remainingSize, rhs().cols()) 487 .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1), 488 dec().hCoeffs().coeff(k), &temp.coeffRef(0)); 489 } 490 491 if(!dec().isSurjective()) 492 { 493 // is c is in the image of R ? 494 RealScalar biggest_in_upper_part_of_c = c.topRows( dec().rank() ).cwiseAbs().maxCoeff(); 495 RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff(); 496 // FIXME brain dead 497 const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols); 498 // this internal:: prefix is needed by at least gcc 3.4 and ICC 499 if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) 500 return; 501 } 502 dec().matrixQR() 503 .topLeftCorner(dec().rank(), dec().rank()) 504 .template triangularView<Upper>() 505 .solveInPlace(c.topRows(dec().rank())); 506 507 for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); 508 for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); 509 } 510 }; 511 512 /** \ingroup QR_Module 513 * 514 * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() 515 * 516 * \tparam MatrixType type of underlying dense matrix 517 */ 518 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType 519 : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > 520 { 521 public: 522 typedef typename MatrixType::Index Index; 523 typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType; 524 typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; 525 typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1, 526 MatrixType::MaxRowsAtCompileTime> WorkVectorType; 527 528 FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, 529 const HCoeffsType& hCoeffs, 530 const IntColVectorType& rowsTranspositions) 531 : m_qr(qr), 532 m_hCoeffs(hCoeffs), 533 m_rowsTranspositions(rowsTranspositions) 534 {} 535 536 template <typename ResultType> 537 void evalTo(ResultType& result) const 538 { 539 const Index rows = m_qr.rows(); 540 WorkVectorType workspace(rows); 541 evalTo(result, workspace); 542 } 543 544 template <typename ResultType> 545 void evalTo(ResultType& result, WorkVectorType& workspace) const 546 { 547 // compute the product H'_0 H'_1 ... H'_n-1, 548 // where H_k is the k-th Householder transformation I - h_k v_k v_k' 549 // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] 550 const Index rows = m_qr.rows(); 551 const Index cols = m_qr.cols(); 552 const Index size = (std::min)(rows, cols); 553 workspace.resize(rows); 554 result.setIdentity(rows, rows); 555 for (Index k = size-1; k >= 0; k--) 556 { 557 result.block(k, k, rows-k, rows-k) 558 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), internal::conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); 559 result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); 560 } 561 } 562 563 Index rows() const { return m_qr.rows(); } 564 Index cols() const { return m_qr.rows(); } 565 566 protected: 567 typename MatrixType::Nested m_qr; 568 typename HCoeffsType::Nested m_hCoeffs; 569 typename IntColVectorType::Nested m_rowsTranspositions; 570 }; 571 572 } // end namespace internal 573 574 template<typename MatrixType> 575 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const 576 { 577 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 578 return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); 579 } 580 581 /** \return the full-pivoting Householder QR decomposition of \c *this. 582 * 583 * \sa class FullPivHouseholderQR 584 */ 585 template<typename Derived> 586 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> 587 MatrixBase<Derived>::fullPivHouseholderQr() const 588 { 589 return FullPivHouseholderQR<PlainObject>(eval()); 590 } 591 592 } // end namespace Eigen 593 594 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 595