• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
19 
20 template<typename MatrixType>
21 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
22 {
23   typedef typename MatrixType::PlainObject ReturnType;
24 };
25 
26 }
27 
28 /** \ingroup QR_Module
29   *
30   * \class FullPivHouseholderQR
31   *
32   * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
33   *
34   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
35   *
36   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
37   * such that
38   * \f[
39   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
40   * \f]
41   * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
42   * upper triangular matrix.
43   *
44   * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
45   * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
46   *
47   * \sa MatrixBase::fullPivHouseholderQr()
48   */
49 template<typename _MatrixType> class FullPivHouseholderQR
50 {
51   public:
52 
53     typedef _MatrixType MatrixType;
54     enum {
55       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57       Options = MatrixType::Options,
58       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
59       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
60     };
61     typedef typename MatrixType::Scalar Scalar;
62     typedef typename MatrixType::RealScalar RealScalar;
63     typedef typename MatrixType::Index Index;
64     typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
65     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
66     typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
67     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
68     typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
69     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
70     typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
71 
72     /** \brief Default Constructor.
73       *
74       * The default constructor is useful in cases in which the user intends to
75       * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
76       */
77     FullPivHouseholderQR()
78       : m_qr(),
79         m_hCoeffs(),
80         m_rows_transpositions(),
81         m_cols_transpositions(),
82         m_cols_permutation(),
83         m_temp(),
84         m_isInitialized(false),
85         m_usePrescribedThreshold(false) {}
86 
87     /** \brief Default Constructor with memory preallocation
88       *
89       * Like the default constructor but with preallocation of the internal data
90       * according to the specified problem \a size.
91       * \sa FullPivHouseholderQR()
92       */
93     FullPivHouseholderQR(Index rows, Index cols)
94       : m_qr(rows, cols),
95         m_hCoeffs((std::min)(rows,cols)),
96         m_rows_transpositions(rows),
97         m_cols_transpositions(cols),
98         m_cols_permutation(cols),
99         m_temp((std::min)(rows,cols)),
100         m_isInitialized(false),
101         m_usePrescribedThreshold(false) {}
102 
103     FullPivHouseholderQR(const MatrixType& matrix)
104       : m_qr(matrix.rows(), matrix.cols()),
105         m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
106         m_rows_transpositions(matrix.rows()),
107         m_cols_transpositions(matrix.cols()),
108         m_cols_permutation(matrix.cols()),
109         m_temp((std::min)(matrix.rows(), matrix.cols())),
110         m_isInitialized(false),
111         m_usePrescribedThreshold(false)
112     {
113       compute(matrix);
114     }
115 
116     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
117       * *this is the QR decomposition, if any exists.
118       *
119       * \param b the right-hand-side of the equation to solve.
120       *
121       * \returns a solution.
122       *
123       * \note The case where b is a matrix is not yet implemented. Also, this
124       *       code is space inefficient.
125       *
126       * \note_about_checking_solutions
127       *
128       * \note_about_arbitrary_choice_of_solution
129       *
130       * Example: \include FullPivHouseholderQR_solve.cpp
131       * Output: \verbinclude FullPivHouseholderQR_solve.out
132       */
133     template<typename Rhs>
134     inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
135     solve(const MatrixBase<Rhs>& b) const
136     {
137       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
138       return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
139     }
140 
141     /** \returns Expression object representing the matrix Q
142       */
143     MatrixQReturnType matrixQ(void) const;
144 
145     /** \returns a reference to the matrix where the Householder QR decomposition is stored
146       */
147     const MatrixType& matrixQR() const
148     {
149       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
150       return m_qr;
151     }
152 
153     FullPivHouseholderQR& compute(const MatrixType& matrix);
154 
155     const PermutationType& colsPermutation() const
156     {
157       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
158       return m_cols_permutation;
159     }
160 
161     const IntColVectorType& rowsTranspositions() const
162     {
163       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
164       return m_rows_transpositions;
165     }
166 
167     /** \returns the absolute value of the determinant of the matrix of which
168       * *this is the QR decomposition. It has only linear complexity
169       * (that is, O(n) where n is the dimension of the square matrix)
170       * as the QR decomposition has already been computed.
171       *
172       * \note This is only for square matrices.
173       *
174       * \warning a determinant can be very big or small, so for matrices
175       * of large enough dimension, there is a risk of overflow/underflow.
176       * One way to work around that is to use logAbsDeterminant() instead.
177       *
178       * \sa logAbsDeterminant(), MatrixBase::determinant()
179       */
180     typename MatrixType::RealScalar absDeterminant() const;
181 
182     /** \returns the natural log of the absolute value of the determinant of the matrix of which
183       * *this is the QR decomposition. It has only linear complexity
184       * (that is, O(n) where n is the dimension of the square matrix)
185       * as the QR decomposition has already been computed.
186       *
187       * \note This is only for square matrices.
188       *
189       * \note This method is useful to work around the risk of overflow/underflow that's inherent
190       * to determinant computation.
191       *
192       * \sa absDeterminant(), MatrixBase::determinant()
193       */
194     typename MatrixType::RealScalar logAbsDeterminant() const;
195 
196     /** \returns the rank of the matrix of which *this is the QR decomposition.
197       *
198       * \note This method has to determine which pivots should be considered nonzero.
199       *       For that, it uses the threshold value that you can control by calling
200       *       setThreshold(const RealScalar&).
201       */
202     inline Index rank() const
203     {
204       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
205       RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
206       Index result = 0;
207       for(Index i = 0; i < m_nonzero_pivots; ++i)
208         result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold);
209       return result;
210     }
211 
212     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
213       *
214       * \note This method has to determine which pivots should be considered nonzero.
215       *       For that, it uses the threshold value that you can control by calling
216       *       setThreshold(const RealScalar&).
217       */
218     inline Index dimensionOfKernel() const
219     {
220       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
221       return cols() - rank();
222     }
223 
224     /** \returns true if the matrix of which *this is the QR decomposition represents an injective
225       *          linear map, i.e. has trivial kernel; false otherwise.
226       *
227       * \note This method has to determine which pivots should be considered nonzero.
228       *       For that, it uses the threshold value that you can control by calling
229       *       setThreshold(const RealScalar&).
230       */
231     inline bool isInjective() const
232     {
233       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
234       return rank() == cols();
235     }
236 
237     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
238       *          linear map; false otherwise.
239       *
240       * \note This method has to determine which pivots should be considered nonzero.
241       *       For that, it uses the threshold value that you can control by calling
242       *       setThreshold(const RealScalar&).
243       */
244     inline bool isSurjective() const
245     {
246       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
247       return rank() == rows();
248     }
249 
250     /** \returns true if the matrix of which *this is the QR decomposition is invertible.
251       *
252       * \note This method has to determine which pivots should be considered nonzero.
253       *       For that, it uses the threshold value that you can control by calling
254       *       setThreshold(const RealScalar&).
255       */
256     inline bool isInvertible() const
257     {
258       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
259       return isInjective() && isSurjective();
260     }
261 
262     /** \returns the inverse of the matrix of which *this is the QR decomposition.
263       *
264       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
265       *       Use isInvertible() to first determine whether this matrix is invertible.
266       */    inline const
267     internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
268     inverse() const
269     {
270       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
271       return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
272                (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
273     }
274 
275     inline Index rows() const { return m_qr.rows(); }
276     inline Index cols() const { return m_qr.cols(); }
277     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
278 
279     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
280       * who need to determine when pivots are to be considered nonzero. This is not used for the
281       * QR decomposition itself.
282       *
283       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
284       * uses a formula to automatically determine a reasonable threshold.
285       * Once you have called the present method setThreshold(const RealScalar&),
286       * your value is used instead.
287       *
288       * \param threshold The new value to use as the threshold.
289       *
290       * A pivot will be considered nonzero if its absolute value is strictly greater than
291       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
292       * where maxpivot is the biggest pivot.
293       *
294       * If you want to come back to the default behavior, call setThreshold(Default_t)
295       */
296     FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
297     {
298       m_usePrescribedThreshold = true;
299       m_prescribedThreshold = threshold;
300       return *this;
301     }
302 
303     /** Allows to come back to the default behavior, letting Eigen use its default formula for
304       * determining the threshold.
305       *
306       * You should pass the special object Eigen::Default as parameter here.
307       * \code qr.setThreshold(Eigen::Default); \endcode
308       *
309       * See the documentation of setThreshold(const RealScalar&).
310       */
311     FullPivHouseholderQR& setThreshold(Default_t)
312     {
313       m_usePrescribedThreshold = false;
314       return *this;
315     }
316 
317     /** Returns the threshold that will be used by certain methods such as rank().
318       *
319       * See the documentation of setThreshold(const RealScalar&).
320       */
321     RealScalar threshold() const
322     {
323       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
324       return m_usePrescribedThreshold ? m_prescribedThreshold
325       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
326       // and turns out to be identical to Higham's formula used already in LDLt.
327                                       : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
328     }
329 
330     /** \returns the number of nonzero pivots in the QR decomposition.
331       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
332       * So that notion isn't really intrinsically interesting, but it is
333       * still useful when implementing algorithms.
334       *
335       * \sa rank()
336       */
337     inline Index nonzeroPivots() const
338     {
339       eigen_assert(m_isInitialized && "LU is not initialized.");
340       return m_nonzero_pivots;
341     }
342 
343     /** \returns the absolute value of the biggest pivot, i.e. the biggest
344       *          diagonal coefficient of U.
345       */
346     RealScalar maxPivot() const { return m_maxpivot; }
347 
348   protected:
349     MatrixType m_qr;
350     HCoeffsType m_hCoeffs;
351     IntColVectorType m_rows_transpositions;
352     IntRowVectorType m_cols_transpositions;
353     PermutationType m_cols_permutation;
354     RowVectorType m_temp;
355     bool m_isInitialized, m_usePrescribedThreshold;
356     RealScalar m_prescribedThreshold, m_maxpivot;
357     Index m_nonzero_pivots;
358     RealScalar m_precision;
359     Index m_det_pq;
360 };
361 
362 template<typename MatrixType>
363 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
364 {
365   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
366   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
367   return internal::abs(m_qr.diagonal().prod());
368 }
369 
370 template<typename MatrixType>
371 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
372 {
373   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
374   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
375   return m_qr.diagonal().cwiseAbs().array().log().sum();
376 }
377 
378 template<typename MatrixType>
379 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
380 {
381   Index rows = matrix.rows();
382   Index cols = matrix.cols();
383   Index size = (std::min)(rows,cols);
384 
385   m_qr = matrix;
386   m_hCoeffs.resize(size);
387 
388   m_temp.resize(cols);
389 
390   m_precision = NumTraits<Scalar>::epsilon() * size;
391 
392   m_rows_transpositions.resize(matrix.rows());
393   m_cols_transpositions.resize(matrix.cols());
394   Index number_of_transpositions = 0;
395 
396   RealScalar biggest(0);
397 
398   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
399   m_maxpivot = RealScalar(0);
400 
401   for (Index k = 0; k < size; ++k)
402   {
403     Index row_of_biggest_in_corner, col_of_biggest_in_corner;
404     RealScalar biggest_in_corner;
405 
406     biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
407                             .cwiseAbs()
408                             .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
409     row_of_biggest_in_corner += k;
410     col_of_biggest_in_corner += k;
411     if(k==0) biggest = biggest_in_corner;
412 
413     // if the corner is negligible, then we have less than full rank, and we can finish early
414     if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
415     {
416       m_nonzero_pivots = k;
417       for(Index i = k; i < size; i++)
418       {
419         m_rows_transpositions.coeffRef(i) = i;
420         m_cols_transpositions.coeffRef(i) = i;
421         m_hCoeffs.coeffRef(i) = Scalar(0);
422       }
423       break;
424     }
425 
426     m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
427     m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
428     if(k != row_of_biggest_in_corner) {
429       m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
430       ++number_of_transpositions;
431     }
432     if(k != col_of_biggest_in_corner) {
433       m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
434       ++number_of_transpositions;
435     }
436 
437     RealScalar beta;
438     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
439     m_qr.coeffRef(k,k) = beta;
440 
441     // remember the maximum absolute value of diagonal coefficients
442     if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta);
443 
444     m_qr.bottomRightCorner(rows-k, cols-k-1)
445         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
446   }
447 
448   m_cols_permutation.setIdentity(cols);
449   for(Index k = 0; k < size; ++k)
450     m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
451 
452   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
453   m_isInitialized = true;
454 
455   return *this;
456 }
457 
458 namespace internal {
459 
460 template<typename _MatrixType, typename Rhs>
461 struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
462   : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
463 {
464   EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
465 
466   template<typename Dest> void evalTo(Dest& dst) const
467   {
468     const Index rows = dec().rows(), cols = dec().cols();
469     eigen_assert(rhs().rows() == rows);
470 
471     // FIXME introduce nonzeroPivots() and use it here. and more generally,
472     // make the same improvements in this dec as in FullPivLU.
473     if(dec().rank()==0)
474     {
475       dst.setZero();
476       return;
477     }
478 
479     typename Rhs::PlainObject c(rhs());
480 
481     Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
482     for (Index k = 0; k < dec().rank(); ++k)
483     {
484       Index remainingSize = rows-k;
485       c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
486       c.bottomRightCorner(remainingSize, rhs().cols())
487        .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
488                                   dec().hCoeffs().coeff(k), &temp.coeffRef(0));
489     }
490 
491     if(!dec().isSurjective())
492     {
493       // is c is in the image of R ?
494       RealScalar biggest_in_upper_part_of_c = c.topRows(   dec().rank()     ).cwiseAbs().maxCoeff();
495       RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
496       // FIXME brain dead
497       const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols);
498       // this internal:: prefix is needed by at least gcc 3.4 and ICC
499       if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
500         return;
501     }
502     dec().matrixQR()
503        .topLeftCorner(dec().rank(), dec().rank())
504        .template triangularView<Upper>()
505        .solveInPlace(c.topRows(dec().rank()));
506 
507     for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
508     for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
509   }
510 };
511 
512 /** \ingroup QR_Module
513   *
514   * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
515   *
516   * \tparam MatrixType type of underlying dense matrix
517   */
518 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
519   : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
520 {
521 public:
522   typedef typename MatrixType::Index Index;
523   typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
524   typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
525   typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
526                  MatrixType::MaxRowsAtCompileTime> WorkVectorType;
527 
528   FullPivHouseholderQRMatrixQReturnType(const MatrixType&       qr,
529                                         const HCoeffsType&      hCoeffs,
530                                         const IntColVectorType& rowsTranspositions)
531     : m_qr(qr),
532       m_hCoeffs(hCoeffs),
533       m_rowsTranspositions(rowsTranspositions)
534       {}
535 
536   template <typename ResultType>
537   void evalTo(ResultType& result) const
538   {
539     const Index rows = m_qr.rows();
540     WorkVectorType workspace(rows);
541     evalTo(result, workspace);
542   }
543 
544   template <typename ResultType>
545   void evalTo(ResultType& result, WorkVectorType& workspace) const
546   {
547     // compute the product H'_0 H'_1 ... H'_n-1,
548     // where H_k is the k-th Householder transformation I - h_k v_k v_k'
549     // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
550     const Index rows = m_qr.rows();
551     const Index cols = m_qr.cols();
552     const Index size = (std::min)(rows, cols);
553     workspace.resize(rows);
554     result.setIdentity(rows, rows);
555     for (Index k = size-1; k >= 0; k--)
556     {
557       result.block(k, k, rows-k, rows-k)
558             .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), internal::conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
559       result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
560     }
561   }
562 
563     Index rows() const { return m_qr.rows(); }
564     Index cols() const { return m_qr.rows(); }
565 
566 protected:
567   typename MatrixType::Nested m_qr;
568   typename HCoeffsType::Nested m_hCoeffs;
569   typename IntColVectorType::Nested m_rowsTranspositions;
570 };
571 
572 } // end namespace internal
573 
574 template<typename MatrixType>
575 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
576 {
577   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
578   return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
579 }
580 
581 /** \return the full-pivoting Householder QR decomposition of \c *this.
582   *
583   * \sa class FullPivHouseholderQR
584   */
585 template<typename Derived>
586 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
587 MatrixBase<Derived>::fullPivHouseholderQr() const
588 {
589   return FullPivHouseholderQR<PlainObject>(eval());
590 }
591 
592 } // end namespace Eigen
593 
594 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
595