• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1namespace Eigen {
2
3/** \page TopicLinearAlgebraDecompositions Linear algebra and decompositions
4
5
6\section TopicLinAlgBigTable Catalogue of decompositions offered by Eigen
7
8<table class="manual-vl">
9
10    <tr>
11        <th class="meta"></th>
12        <th class="meta" colspan="5">Generic information, not Eigen-specific</th>
13        <th class="meta" colspan="3">Eigen-specific</th>
14    </tr>
15
16    <tr>
17        <th>Decomposition</th>
18        <th>Requirements on the matrix</th>
19        <th>Speed</th>
20        <th>Algorithm reliability and accuracy</th>
21        <th>Rank-revealing</th>
22        <th>Allows to compute (besides linear solving)</th>
23        <th>Linear solver provided by Eigen</th>
24        <th>Maturity of Eigen's implementation</th>
25        <th>Optimizations</th>
26    </tr>
27
28    <tr>
29        <td>PartialPivLU</td>
30        <td>Invertible</td>
31        <td>Fast</td>
32        <td>Depends on condition number</td>
33        <td>-</td>
34        <td>-</td>
35        <td>Yes</td>
36        <td>Excellent</td>
37        <td>Blocking, Implicit MT</td>
38    </tr>
39
40    <tr class="alt">
41        <td>FullPivLU</td>
42        <td>-</td>
43        <td>Slow</td>
44        <td>Proven</td>
45        <td>Yes</td>
46        <td>-</td>
47        <td>Yes</td>
48        <td>Excellent</td>
49        <td>-</td>
50    </tr>
51
52    <tr>
53        <td>HouseholderQR</td>
54        <td>-</td>
55        <td>Fast</td>
56        <td>Depends on condition number</td>
57        <td>-</td>
58        <td>Orthogonalization</td>
59        <td>Yes</td>
60        <td>Excellent</td>
61        <td>Blocking</td>
62    </tr>
63
64    <tr class="alt">
65        <td>ColPivHouseholderQR</td>
66        <td>-</td>
67        <td>Fast</td>
68        <td>Good</td>
69        <td>Yes</td>
70        <td>Orthogonalization</td>
71        <td>Yes</td>
72        <td>Excellent</td>
73        <td><em>Soon: blocking</em></td>
74    </tr>
75
76    <tr>
77        <td>FullPivHouseholderQR</td>
78        <td>-</td>
79        <td>Slow</td>
80        <td>Proven</td>
81        <td>Yes</td>
82        <td>Orthogonalization</td>
83        <td>Yes</td>
84        <td>Average</td>
85        <td>-</td>
86    </tr>
87
88    <tr class="alt">
89        <td>LLT</td>
90        <td>Positive definite</td>
91        <td>Very fast</td>
92        <td>Depends on condition number</td>
93        <td>-</td>
94        <td>-</td>
95        <td>Yes</td>
96        <td>Excellent</td>
97        <td>Blocking</td>
98    </tr>
99
100    <tr>
101        <td>LDLT</td>
102        <td>Positive or negative semidefinite<sup><a href="#note1">1</a></sup></td>
103        <td>Very fast</td>
104        <td>Good</td>
105        <td>-</td>
106        <td>-</td>
107        <td>Yes</td>
108        <td>Excellent</td>
109        <td><em>Soon: blocking</em></td>
110    </tr>
111
112    <tr><th class="inter" colspan="9">\n Singular values and eigenvalues decompositions</th></tr>
113
114    <tr>
115        <td>JacobiSVD (two-sided)</td>
116        <td>-</td>
117        <td>Slow (but fast for small matrices)</td>
118        <td>Excellent-Proven<sup><a href="#note3">3</a></sup></td>
119        <td>Yes</td>
120        <td>Singular values/vectors, least squares</td>
121        <td>Yes (and does least squares)</td>
122        <td>Excellent</td>
123        <td>R-SVD</td>
124    </tr>
125
126    <tr class="alt">
127        <td>SelfAdjointEigenSolver</td>
128        <td>Self-adjoint</td>
129        <td>Fast-average<sup><a href="#note2">2</a></sup></td>
130        <td>Good</td>
131        <td>Yes</td>
132        <td>Eigenvalues/vectors</td>
133        <td>-</td>
134        <td>Good</td>
135        <td><em>Closed forms for 2x2 and 3x3</em></td>
136    </tr>
137
138    <tr>
139        <td>ComplexEigenSolver</td>
140        <td>Square</td>
141        <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
142        <td>Depends on condition number</td>
143        <td>Yes</td>
144        <td>Eigenvalues/vectors</td>
145        <td>-</td>
146        <td>Average</td>
147        <td>-</td>
148    </tr>
149
150    <tr class="alt">
151        <td>EigenSolver</td>
152        <td>Square and real</td>
153        <td>Average-slow<sup><a href="#note2">2</a></sup></td>
154        <td>Depends on condition number</td>
155        <td>Yes</td>
156        <td>Eigenvalues/vectors</td>
157        <td>-</td>
158        <td>Average</td>
159        <td>-</td>
160    </tr>
161
162    <tr>
163        <td>GeneralizedSelfAdjointEigenSolver</td>
164        <td>Square</td>
165        <td>Fast-average<sup><a href="#note2">2</a></sup></td>
166        <td>Depends on condition number</td>
167        <td>-</td>
168        <td>Generalized eigenvalues/vectors</td>
169        <td>-</td>
170        <td>Good</td>
171        <td>-</td>
172    </tr>
173
174    <tr><th class="inter" colspan="9">\n Helper decompositions</th></tr>
175
176    <tr>
177        <td>RealSchur</td>
178        <td>Square and real</td>
179        <td>Average-slow<sup><a href="#note2">2</a></sup></td>
180        <td>Depends on condition number</td>
181        <td>Yes</td>
182        <td>-</td>
183        <td>-</td>
184        <td>Average</td>
185        <td>-</td>
186    </tr>
187
188    <tr class="alt">
189        <td>ComplexSchur</td>
190        <td>Square</td>
191        <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
192        <td>Depends on condition number</td>
193        <td>Yes</td>
194        <td>-</td>
195        <td>-</td>
196        <td>Average</td>
197        <td>-</td>
198    </tr>
199
200    <tr class="alt">
201        <td>Tridiagonalization</td>
202        <td>Self-adjoint</td>
203        <td>Fast</td>
204        <td>Good</td>
205        <td>-</td>
206        <td>-</td>
207        <td>-</td>
208        <td>Good</td>
209        <td><em>Soon: blocking</em></td>
210    </tr>
211
212    <tr>
213        <td>HessenbergDecomposition</td>
214        <td>Square</td>
215        <td>Average</td>
216        <td>Good</td>
217        <td>-</td>
218        <td>-</td>
219        <td>-</td>
220        <td>Good</td>
221        <td><em>Soon: blocking</em></td>
222    </tr>
223
224</table>
225
226\b Notes:
227<ul>
228<li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
229<li><a name="note2">\b 2: </a>Eigenvalues, SVD and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.</li>
230<li><a name="note3">\b 3: </a>Our JacobiSVD is two-sided, making for proven and optimal precision for square matrices. For non-square matrices, we have to use a QR preconditioner first. The default choice, ColPivHouseholderQR, is already very reliable, but if you want it to be proven, use FullPivHouseholderQR instead.
231</ul>
232
233\section TopicLinAlgTerminology Terminology
234
235<dl>
236  <dt><b>Selfadjoint</b></dt>
237    <dd>For a real matrix, selfadjoint is a synonym for symmetric. For a complex matrix, selfadjoint is a synonym for \em hermitian.
238        More generally, a matrix \f$ A \f$ is selfadjoint if and only if it is equal to its adjoint \f$ A^* \f$. The adjoint is also called the \em conjugate \em transpose. </dd>
239  <dt><b>Positive/negative definite</b></dt>
240    <dd>A selfadjoint matrix \f$ A \f$ is positive definite if \f$ v^* A v > 0 \f$ for any non zero vector \f$ v \f$.
241        In the same vein, it is negative definite if \f$ v^* A v < 0 \f$ for any non zero vector \f$ v \f$ </dd>
242  <dt><b>Positive/negative semidefinite</b></dt>
243    <dd>A selfadjoint matrix \f$ A \f$ is positive semi-definite if \f$ v^* A v \ge 0 \f$ for any non zero vector \f$ v \f$.
244        In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$ </dd>
245
246  <dt><b>Blocking</b></dt>
247    <dd>Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.</dd>
248  <dt><b>Implicit Multi Threading (MT)</b></dt>
249    <dd>Means the algorithm can take advantage of multicore processors via OpenMP. "Implicit" means the algortihm itself is not parallelized, but that it relies on parallelized matrix-matrix product rountines.</dd>
250  <dt><b>Explicit Multi Threading (MT)</b></dt>
251    <dd>Means the algorithm is explicitely parallelized to take advantage of multicore processors via OpenMP.</dd>
252  <dt><b>Meta-unroller</b></dt>
253    <dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
254  <dt><b></b></dt>
255    <dd></dd>
256</dl>
257
258*/
259
260}
261