• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/Geometry>
12 #include <Eigen/LU>
13 #include <Eigen/SVD>
14 
geometry(void)15 template<typename Scalar> void geometry(void)
16 {
17   /* this test covers the following files:
18      Cross.h Quaternion.h, Transform.cpp
19   */
20 
21   typedef Matrix<Scalar,2,2> Matrix2;
22   typedef Matrix<Scalar,3,3> Matrix3;
23   typedef Matrix<Scalar,4,4> Matrix4;
24   typedef Matrix<Scalar,2,1> Vector2;
25   typedef Matrix<Scalar,3,1> Vector3;
26   typedef Matrix<Scalar,4,1> Vector4;
27   typedef Quaternion<Scalar> Quaternionx;
28   typedef AngleAxis<Scalar> AngleAxisx;
29   typedef Transform<Scalar,2> Transform2;
30   typedef Transform<Scalar,3> Transform3;
31   typedef Scaling<Scalar,2> Scaling2;
32   typedef Scaling<Scalar,3> Scaling3;
33   typedef Translation<Scalar,2> Translation2;
34   typedef Translation<Scalar,3> Translation3;
35 
36   Scalar largeEps = test_precision<Scalar>();
37   if (ei_is_same_type<Scalar,float>::ret)
38     largeEps = 1e-2f;
39 
40   Vector3 v0 = Vector3::Random(),
41     v1 = Vector3::Random(),
42     v2 = Vector3::Random();
43   Vector2 u0 = Vector2::Random();
44   Matrix3 matrot1;
45 
46   Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
47 
48   // cross product
49   VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
50   Matrix3 m;
51   m << v0.normalized(),
52       (v0.cross(v1)).normalized(),
53       (v0.cross(v1).cross(v0)).normalized();
54   VERIFY(m.isUnitary());
55 
56   // Quaternion: Identity(), setIdentity();
57   Quaternionx q1, q2;
58   q2.setIdentity();
59   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
60   q1.coeffs().setRandom();
61   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
62 
63   // unitOrthogonal
64   VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
65   VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
66   VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
67   VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
68 
69 
70   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
71   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
72   VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
73   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
74   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
75   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
76 
77   q1 = AngleAxisx(a, v0.normalized());
78   q2 = AngleAxisx(a, v1.normalized());
79 
80   // angular distance
81   Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
82   if (refangle>Scalar(M_PI))
83     refangle = Scalar(2)*Scalar(M_PI) - refangle;
84 
85   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
86   {
87     VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
88   }
89 
90   // rotation matrix conversion
91   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
92   VERIFY_IS_APPROX(q1 * q2 * v2,
93     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
94 
95   VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
96     q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
97 
98   q2 = q1.toRotationMatrix();
99   VERIFY_IS_APPROX(q1*v1,q2*v1);
100 
101   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
102           * AngleAxisx(Scalar(0.2), Vector3::UnitY())
103           * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
104   VERIFY_IS_APPROX(matrot1 * v1,
105        AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
106     * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
107     * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
108 
109   // angle-axis conversion
110   AngleAxisx aa = q1;
111   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
112   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
113 
114   // from two vector creation
115   VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
116   VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
117 
118   // inverse and conjugate
119   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
120   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
121 
122   // AngleAxis
123   VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
124     Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
125 
126   AngleAxisx aa1;
127   m = q1.toRotationMatrix();
128   aa1 = m;
129   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
130     Quaternionx(m).toRotationMatrix());
131 
132   // Transform
133   // TODO complete the tests !
134   a = 0;
135   while (ei_abs(a)<Scalar(0.1))
136     a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
137   q1 = AngleAxisx(a, v0.normalized());
138   Transform3 t0, t1, t2;
139   // first test setIdentity() and Identity()
140   t0.setIdentity();
141   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
142   t0.matrix().setZero();
143   t0 = Transform3::Identity();
144   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
145 
146   t0.linear() = q1.toRotationMatrix();
147   t1.setIdentity();
148   t1.linear() = q1.toRotationMatrix();
149 
150   v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
151   t0.scale(v0);
152   t1.prescale(v0);
153 
154   VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
155   //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
156 
157   t0.setIdentity();
158   t1.setIdentity();
159   v1 << 1, 2, 3;
160   t0.linear() = q1.toRotationMatrix();
161   t0.pretranslate(v0);
162   t0.scale(v1);
163   t1.linear() = q1.conjugate().toRotationMatrix();
164   t1.prescale(v1.cwise().inverse());
165   t1.translate(-v0);
166 
167   VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
168 
169   t1.fromPositionOrientationScale(v0, q1, v1);
170   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
171   VERIFY_IS_APPROX(t1*v1, t0*v1);
172 
173   t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
174   t1.setIdentity(); t1.scale(v0).rotate(q1);
175   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
176 
177   t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
178   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
179 
180   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
181   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
182 
183   // More transform constructors, operator=, operator*=
184 
185   Matrix3 mat3 = Matrix3::Random();
186   Matrix4 mat4;
187   mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
188   Transform3 tmat3(mat3), tmat4(mat4);
189   tmat4.matrix()(3,3) = Scalar(1);
190   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
191 
192   Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
193   Vector3 v3 = Vector3::Random().normalized();
194   AngleAxisx aa3(a3, v3);
195   Transform3 t3(aa3);
196   Transform3 t4;
197   t4 = aa3;
198   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
199   t4.rotate(AngleAxisx(-a3,v3));
200   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
201   t4 *= aa3;
202   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
203 
204   v3 = Vector3::Random();
205   Translation3 tv3(v3);
206   Transform3 t5(tv3);
207   t4 = tv3;
208   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
209   t4.translate(-v3);
210   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
211   t4 *= tv3;
212   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
213 
214   Scaling3 sv3(v3);
215   Transform3 t6(sv3);
216   t4 = sv3;
217   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
218   t4.scale(v3.cwise().inverse());
219   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
220   t4 *= sv3;
221   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
222 
223   // matrix * transform
224   VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
225 
226   // chained Transform product
227   VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
228 
229   // check that Transform product doesn't have aliasing problems
230   t5 = t4;
231   t5 = t5*t5;
232   VERIFY_IS_APPROX(t5, t4*t4);
233 
234   // 2D transformation
235   Transform2 t20, t21;
236   Vector2 v20 = Vector2::Random();
237   Vector2 v21 = Vector2::Random();
238   for (int k=0; k<2; ++k)
239     if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
240   t21.setIdentity();
241   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
242   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
243     t21.pretranslate(v20).scale(v21).matrix());
244 
245   t21.setIdentity();
246   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
247   VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
248         * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
249 
250   // Transform - new API
251   // 3D
252   t0.setIdentity();
253   t0.rotate(q1).scale(v0).translate(v0);
254   // mat * scaling and mat * translation
255   t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
256   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
257   // mat * transformation and scaling * translation
258   t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
259   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
260 
261   t0.setIdentity();
262   t0.prerotate(q1).prescale(v0).pretranslate(v0);
263   // translation * scaling and transformation * mat
264   t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
265   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
266   // scaling * mat and translation * mat
267   t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
268   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
269 
270   t0.setIdentity();
271   t0.scale(v0).translate(v0).rotate(q1);
272   // translation * mat and scaling * transformation
273   t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
274   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
275   // transformation * scaling
276   t0.scale(v0);
277   t1 = t1 * Scaling3(v0);
278   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
279   // transformation * translation
280   t0.translate(v0);
281   t1 = t1 * Translation3(v0);
282   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
283   // translation * transformation
284   t0.pretranslate(v0);
285   t1 = Translation3(v0) * t1;
286   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
287 
288   // transform * quaternion
289   t0.rotate(q1);
290   t1 = t1 * q1;
291   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
292 
293   // translation * quaternion
294   t0.translate(v1).rotate(q1);
295   t1 = t1 * (Translation3(v1) * q1);
296   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
297 
298   // scaling * quaternion
299   t0.scale(v1).rotate(q1);
300   t1 = t1 * (Scaling3(v1) * q1);
301   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
302 
303   // quaternion * transform
304   t0.prerotate(q1);
305   t1 = q1 * t1;
306   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
307 
308   // quaternion * translation
309   t0.rotate(q1).translate(v1);
310   t1 = t1 * (q1 * Translation3(v1));
311   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
312 
313   // quaternion * scaling
314   t0.rotate(q1).scale(v1);
315   t1 = t1 * (q1 * Scaling3(v1));
316   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
317 
318   // translation * vector
319   t0.setIdentity();
320   t0.translate(v0);
321   VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
322 
323   // scaling * vector
324   t0.setIdentity();
325   t0.scale(v0);
326   VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
327 
328   // test transform inversion
329   t0.setIdentity();
330   t0.translate(v0);
331   t0.linear().setRandom();
332   VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
333   t0.setIdentity();
334   t0.translate(v0).rotate(q1);
335   VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
336 
337   // test extract rotation and scaling
338   t0.setIdentity();
339   t0.translate(v0).rotate(q1).scale(v1);
340   VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
341 
342   Matrix3 mat_rotation, mat_scaling;
343   t0.setIdentity();
344   t0.translate(v0).rotate(q1).scale(v1);
345   t0.computeRotationScaling(&mat_rotation, &mat_scaling);
346   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
347   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
348   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
349   t0.computeScalingRotation(&mat_scaling, &mat_rotation);
350   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
351   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
352   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
353 
354   // test casting
355   Transform<float,3> t1f = t1.template cast<float>();
356   VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
357   Transform<double,3> t1d = t1.template cast<double>();
358   VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
359 
360   Translation3 tr1(v0);
361   Translation<float,3> tr1f = tr1.template cast<float>();
362   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
363   Translation<double,3> tr1d = tr1.template cast<double>();
364   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
365 
366   Scaling3 sc1(v0);
367   Scaling<float,3> sc1f = sc1.template cast<float>();
368   VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
369   Scaling<double,3> sc1d = sc1.template cast<double>();
370   VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
371 
372   Quaternion<float> q1f = q1.template cast<float>();
373   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
374   Quaternion<double> q1d = q1.template cast<double>();
375   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
376 
377   AngleAxis<float> aa1f = aa1.template cast<float>();
378   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
379   AngleAxis<double> aa1d = aa1.template cast<double>();
380   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
381 
382   Rotation2D<Scalar> r2d1(ei_random<Scalar>());
383   Rotation2D<float> r2d1f = r2d1.template cast<float>();
384   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
385   Rotation2D<double> r2d1d = r2d1.template cast<double>();
386   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
387 
388   m = q1;
389 //   m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
390 //   m.col(0) = Vector3(-1,0,0).normalized();
391 //   m.col(2) = m.col(0).cross(m.col(1));
392   #define VERIFY_EULER(I,J,K, X,Y,Z) { \
393     Vector3 ea = m.eulerAngles(I,J,K); \
394     Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
395     VERIFY_IS_APPROX(m,  Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
396   }
397   VERIFY_EULER(0,1,2, X,Y,Z);
398   VERIFY_EULER(0,1,0, X,Y,X);
399   VERIFY_EULER(0,2,1, X,Z,Y);
400   VERIFY_EULER(0,2,0, X,Z,X);
401 
402   VERIFY_EULER(1,2,0, Y,Z,X);
403   VERIFY_EULER(1,2,1, Y,Z,Y);
404   VERIFY_EULER(1,0,2, Y,X,Z);
405   VERIFY_EULER(1,0,1, Y,X,Y);
406 
407   VERIFY_EULER(2,0,1, Z,X,Y);
408   VERIFY_EULER(2,0,2, Z,X,Z);
409   VERIFY_EULER(2,1,0, Z,Y,X);
410   VERIFY_EULER(2,1,2, Z,Y,Z);
411 
412   // colwise/rowwise cross product
413   mat3.setRandom();
414   Vector3 vec3 = Vector3::Random();
415   Matrix3 mcross;
416   int i = ei_random<int>(0,2);
417   mcross = mat3.colwise().cross(vec3);
418   VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
419   mcross = mat3.rowwise().cross(vec3);
420   VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
421 
422 
423 }
424 
test_eigen2_geometry()425 void test_eigen2_geometry()
426 {
427   for(int i = 0; i < g_repeat; i++) {
428     CALL_SUBTEST_1( geometry<float>() );
429     CALL_SUBTEST_2( geometry<double>() );
430   }
431 }
432