• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/LU>
13 
inverse(const MatrixType & m)14 template<typename MatrixType> void inverse(const MatrixType& m)
15 {
16   typedef typename MatrixType::Index Index;
17   /* this test covers the following files:
18      Inverse.h
19   */
20   Index rows = m.rows();
21   Index cols = m.cols();
22 
23   typedef typename MatrixType::Scalar Scalar;
24   typedef typename NumTraits<Scalar>::Real RealScalar;
25   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
26 
27   MatrixType m1(rows, cols),
28              m2(rows, cols),
29              identity = MatrixType::Identity(rows, rows);
30   createRandomPIMatrixOfRank(rows,rows,rows,m1);
31   m2 = m1.inverse();
32   VERIFY_IS_APPROX(m1, m2.inverse() );
33 
34   VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
35 
36   VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
37   VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
38 
39   VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
40 
41   // since for the general case we implement separately row-major and col-major, test that
42   VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
43 
44 #if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6)
45   //computeInverseAndDetWithCheck tests
46   //First: an invertible matrix
47   bool invertible;
48   RealScalar det;
49 
50   m2.setZero();
51   m1.computeInverseAndDetWithCheck(m2, det, invertible);
52   VERIFY(invertible);
53   VERIFY_IS_APPROX(identity, m1*m2);
54   VERIFY_IS_APPROX(det, m1.determinant());
55 
56   m2.setZero();
57   m1.computeInverseWithCheck(m2, invertible);
58   VERIFY(invertible);
59   VERIFY_IS_APPROX(identity, m1*m2);
60 
61   //Second: a rank one matrix (not invertible, except for 1x1 matrices)
62   VectorType v3 = VectorType::Random(rows);
63   MatrixType m3 = v3*v3.transpose(), m4(rows,cols);
64   m3.computeInverseAndDetWithCheck(m4, det, invertible);
65   VERIFY( rows==1 ? invertible : !invertible );
66   VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(det-m3.determinant()), RealScalar(1));
67   m3.computeInverseWithCheck(m4, invertible);
68   VERIFY( rows==1 ? invertible : !invertible );
69 #endif
70 
71   // check in-place inversion
72   if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4)
73   {
74     // in-place is forbidden
75     VERIFY_RAISES_ASSERT(m1 = m1.inverse());
76   }
77   else
78   {
79     m2 = m1.inverse();
80     m1 = m1.inverse();
81     VERIFY_IS_APPROX(m1,m2);
82   }
83 }
84 
test_inverse()85 void test_inverse()
86 {
87   int s;
88   for(int i = 0; i < g_repeat; i++) {
89     CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
90     CALL_SUBTEST_2( inverse(Matrix2d()) );
91     CALL_SUBTEST_3( inverse(Matrix3f()) );
92     CALL_SUBTEST_4( inverse(Matrix4f()) );
93     CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) );
94     s = internal::random<int>(50,320);
95     CALL_SUBTEST_5( inverse(MatrixXf(s,s)) );
96     s = internal::random<int>(25,100);
97     CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) );
98     CALL_SUBTEST_7( inverse(Matrix4d()) );
99     CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) );
100   }
101   EIGEN_UNUSED_VARIABLE(s)
102 }
103