• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/SVD>
13 
14 template<typename MatrixType, typename JacobiScalar>
jacobi(const MatrixType & m=MatrixType ())15 void jacobi(const MatrixType& m = MatrixType())
16 {
17   typedef typename MatrixType::Scalar Scalar;
18   typedef typename MatrixType::Index Index;
19   Index rows = m.rows();
20   Index cols = m.cols();
21 
22   enum {
23     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
24     ColsAtCompileTime = MatrixType::ColsAtCompileTime
25   };
26 
27   typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
28 
29   const MatrixType a(MatrixType::Random(rows, cols));
30 
31   JacobiVector v = JacobiVector::Random().normalized();
32   JacobiScalar c = v.x(), s = v.y();
33   JacobiRotation<JacobiScalar> rot(c, s);
34 
35   {
36     Index p = internal::random<Index>(0, rows-1);
37     Index q;
38     do {
39       q = internal::random<Index>(0, rows-1);
40     } while (q == p);
41 
42     MatrixType b = a;
43     b.applyOnTheLeft(p, q, rot);
44     VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q));
45     VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q));
46   }
47 
48   {
49     Index p = internal::random<Index>(0, cols-1);
50     Index q;
51     do {
52       q = internal::random<Index>(0, cols-1);
53     } while (q == p);
54 
55     MatrixType b = a;
56     b.applyOnTheRight(p, q, rot);
57     VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
58     VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q));
59   }
60 }
61 
test_jacobi()62 void test_jacobi()
63 {
64   for(int i = 0; i < g_repeat; i++) {
65     CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
66     CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
67     CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
68     CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
69 
70     int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
71         c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
72     CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
73     CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
74     CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
75     // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
76     CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
77     CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
78     (void) r;
79     (void) c;
80   }
81 }
82