• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Mark Borgerding mark a borgerding net
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/FFT>
12 
13 template <typename T>
RandomCpx()14 std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
15 
16 using namespace std;
17 using namespace Eigen;
18 
norm(float x)19 float norm(float x) {return x*x;}
norm(double x)20 double norm(double x) {return x*x;}
norm(long double x)21 long double norm(long double x) {return x*x;}
22 
23 template < typename T>
promote(complex<T> x)24 complex<long double>  promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
25 
promote(float x)26 complex<long double>  promote(float x) { return complex<long double>( x); }
promote(double x)27 complex<long double>  promote(double x) { return complex<long double>( x); }
promote(long double x)28 complex<long double>  promote(long double x) { return complex<long double>( x); }
29 
30 
31     template <typename VT1,typename VT2>
fft_rmse(const VT1 & fftbuf,const VT2 & timebuf)32     long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
33     {
34         long double totalpower=0;
35         long double difpower=0;
36         long double pi = acos((long double)-1 );
37         for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
38             complex<long double> acc = 0;
39             long double phinc = -2.*k0* pi / timebuf.size();
40             for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
41                 acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
42             }
43             totalpower += norm(acc);
44             complex<long double> x = promote(fftbuf[k0]);
45             complex<long double> dif = acc - x;
46             difpower += norm(dif);
47             //cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(norm(dif)) << endl;
48         }
49         cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
50         return sqrt(difpower/totalpower);
51     }
52 
53     template <typename VT1,typename VT2>
dif_rmse(const VT1 buf1,const VT2 buf2)54     long double dif_rmse( const VT1 buf1,const VT2 buf2)
55     {
56         long double totalpower=0;
57         long double difpower=0;
58         size_t n = (min)( buf1.size(),buf2.size() );
59         for (size_t k=0;k<n;++k) {
60             totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
61             difpower += norm(buf1[k] - buf2[k]);
62         }
63         return sqrt(difpower/totalpower);
64     }
65 
66 enum { StdVectorContainer, EigenVectorContainer };
67 
68 template<int Container, typename Scalar> struct VectorType;
69 
70 template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
71 {
72   typedef vector<Scalar> type;
73 };
74 
75 template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
76 {
77   typedef Matrix<Scalar,Dynamic,1> type;
78 };
79 
80 template <int Container, typename T>
test_scalar_generic(int nfft)81 void test_scalar_generic(int nfft)
82 {
83     typedef typename FFT<T>::Complex Complex;
84     typedef typename FFT<T>::Scalar Scalar;
85     typedef typename VectorType<Container,Scalar>::type ScalarVector;
86     typedef typename VectorType<Container,Complex>::type ComplexVector;
87 
88     FFT<T> fft;
89     ScalarVector tbuf(nfft);
90     ComplexVector freqBuf;
91     for (int k=0;k<nfft;++k)
92         tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
93 
94     // make sure it DOESN'T give the right full spectrum answer
95     // if we've asked for half-spectrum
96     fft.SetFlag(fft.HalfSpectrum );
97     fft.fwd( freqBuf,tbuf);
98     VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
99     VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check
100 
101     fft.ClearFlag(fft.HalfSpectrum );
102     fft.fwd( freqBuf,tbuf);
103     VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
104     VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check
105 
106     if (nfft&1)
107         return; // odd FFTs get the wrong size inverse FFT
108 
109     ScalarVector tbuf2;
110     fft.inv( tbuf2 , freqBuf);
111     VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check
112 
113 
114     // verify that the Unscaled flag takes effect
115     ScalarVector tbuf3;
116     fft.SetFlag(fft.Unscaled);
117 
118     fft.inv( tbuf3 , freqBuf);
119 
120     for (int k=0;k<nfft;++k)
121         tbuf3[k] *= T(1./nfft);
122 
123 
124     //for (size_t i=0;i<(size_t) tbuf.size();++i)
125     //    cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) <<  endl;
126 
127     VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>()  );// gross check
128 
129     // verify that ClearFlag works
130     fft.ClearFlag(fft.Unscaled);
131     fft.inv( tbuf2 , freqBuf);
132     VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check
133 }
134 
135 template <typename T>
test_scalar(int nfft)136 void test_scalar(int nfft)
137 {
138   test_scalar_generic<StdVectorContainer,T>(nfft);
139   //test_scalar_generic<EigenVectorContainer,T>(nfft);
140 }
141 
142 
143 template <int Container, typename T>
test_complex_generic(int nfft)144 void test_complex_generic(int nfft)
145 {
146     typedef typename FFT<T>::Complex Complex;
147     typedef typename VectorType<Container,Complex>::type ComplexVector;
148 
149     FFT<T> fft;
150 
151     ComplexVector inbuf(nfft);
152     ComplexVector outbuf;
153     ComplexVector buf3;
154     for (int k=0;k<nfft;++k)
155         inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
156     fft.fwd( outbuf , inbuf);
157 
158     VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check
159     fft.inv( buf3 , outbuf);
160 
161     VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
162 
163     // verify that the Unscaled flag takes effect
164     ComplexVector buf4;
165     fft.SetFlag(fft.Unscaled);
166     fft.inv( buf4 , outbuf);
167     for (int k=0;k<nfft;++k)
168         buf4[k] *= T(1./nfft);
169     VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>()  );// gross check
170 
171     // verify that ClearFlag works
172     fft.ClearFlag(fft.Unscaled);
173     fft.inv( buf3 , outbuf);
174     VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
175 }
176 
177 template <typename T>
test_complex(int nfft)178 void test_complex(int nfft)
179 {
180   test_complex_generic<StdVectorContainer,T>(nfft);
181   test_complex_generic<EigenVectorContainer,T>(nfft);
182 }
183 /*
184 template <typename T,int nrows,int ncols>
185 void test_complex2d()
186 {
187     typedef typename Eigen::FFT<T>::Complex Complex;
188     FFT<T> fft;
189     Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
190 
191     src = Eigen::Matrix<Complex,nrows,ncols>::Random();
192     //src =  Eigen::Matrix<Complex,nrows,ncols>::Identity();
193 
194     for (int k=0;k<ncols;k++) {
195         Eigen::Matrix<Complex,nrows,1> tmpOut;
196         fft.fwd( tmpOut,src.col(k) );
197         dst2.col(k) = tmpOut;
198     }
199 
200     for (int k=0;k<nrows;k++) {
201         Eigen::Matrix<Complex,1,ncols> tmpOut;
202         fft.fwd( tmpOut,  dst2.row(k) );
203         dst2.row(k) = tmpOut;
204     }
205 
206     fft.fwd2(dst.data(),src.data(),ncols,nrows);
207     fft.inv2(src2.data(),dst.data(),ncols,nrows);
208     VERIFY( (src-src2).norm() < test_precision<T>() );
209     VERIFY( (dst-dst2).norm() < test_precision<T>() );
210 }
211 */
212 
213 
test_return_by_value(int len)214 void test_return_by_value(int len)
215 {
216     VectorXf in;
217     VectorXf in1;
218     in.setRandom( len );
219     VectorXcf out1,out2;
220     FFT<float> fft;
221 
222     fft.SetFlag(fft.HalfSpectrum );
223 
224     fft.fwd(out1,in);
225     out2 = fft.fwd(in);
226     VERIFY( (out1-out2).norm() < test_precision<float>() );
227     in1 = fft.inv(out1);
228     VERIFY( (in1-in).norm() < test_precision<float>() );
229 }
230 
test_FFTW()231 void test_FFTW()
232 {
233   CALL_SUBTEST( test_return_by_value(32) );
234   //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
235   //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
236   CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
237   CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
238   CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
239   CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
240   CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
241   CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
242   CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
243 
244   CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
245   CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
246   CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
247   CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
248   CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
249 
250   #ifdef EIGEN_HAS_FFTWL
251   CALL_SUBTEST( test_complex<long double>(32) );
252   CALL_SUBTEST( test_complex<long double>(256) );
253   CALL_SUBTEST( test_complex<long double>(3*8) );
254   CALL_SUBTEST( test_complex<long double>(5*32) );
255   CALL_SUBTEST( test_complex<long double>(2*3*4) );
256   CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
257   CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
258 
259   CALL_SUBTEST( test_scalar<long double>(32) );
260   CALL_SUBTEST( test_scalar<long double>(45) );
261   CALL_SUBTEST( test_scalar<long double>(50) );
262   CALL_SUBTEST( test_scalar<long double>(256) );
263   CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
264   #endif
265 }
266