• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jddctmgr.c
3  *
4  * Copyright (C) 1994-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the inverse-DCT management logic.
9  * This code selects a particular IDCT implementation to be used,
10  * and it performs related housekeeping chores.  No code in this file
11  * is executed per IDCT step, only during output pass setup.
12  *
13  * Note that the IDCT routines are responsible for performing coefficient
14  * dequantization as well as the IDCT proper.  This module sets up the
15  * dequantization multiplier table needed by the IDCT routine.
16  */
17 
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21 #include "jdct.h"		/* Private declarations for DCT subsystem */
22 
23 #ifdef ANDROID_ARMV6_IDCT
24   #undef ANDROID_ARMV6_IDCT
25   #ifdef __arm__
26     #include <machine/cpu-features.h>
27     #if __ARM_ARCH__ >= 6
28       #define ANDROID_ARMV6_IDCT
29     #else
30       #warning "ANDROID_ARMV6_IDCT is disabled"
31     #endif
32   #endif
33 #endif
34 
35 #ifdef NV_ARM_NEON
36 #include "jsimd_neon.h"
37 #endif
38 
39 #ifdef ANDROID_ARMV6_IDCT
40 
41 /* Intentionally declare the prototype with arguments of primitive types instead
42  * of type-defined ones. This will at least generate some warnings if jmorecfg.h
43  * is changed and becomes incompatible with the assembly code.
44  */
45 extern void armv6_idct(short *coefs, int *quans, unsigned char **rows, int col);
46 
jpeg_idct_armv6(j_decompress_ptr cinfo,jpeg_component_info * compptr,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)47 void jpeg_idct_armv6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
48 		 JCOEFPTR coef_block,
49 		 JSAMPARRAY output_buf, JDIMENSION output_col)
50 {
51   IFAST_MULT_TYPE *dct_table = (IFAST_MULT_TYPE *)compptr->dct_table;
52   armv6_idct(coef_block, dct_table, output_buf, output_col);
53 }
54 
55 #endif
56 
57 #ifdef ANDROID_INTELSSE2_IDCT
58 extern short __attribute__((aligned(16))) quantptrSSE[DCTSIZE2];
59 extern void jpeg_idct_intelsse (j_decompress_ptr cinfo, jpeg_component_info * compptr,
60 		JCOEFPTR coef_block,
61 		JSAMPARRAY output_buf, JDIMENSION output_col);
62 #endif
63 
64 #ifdef ANDROID_MIPS_IDCT
65 extern void jpeg_idct_mips(j_decompress_ptr, jpeg_component_info *, JCOEFPTR, JSAMPARRAY, JDIMENSION);
66 #endif
67 
68 /*
69  * The decompressor input side (jdinput.c) saves away the appropriate
70  * quantization table for each component at the start of the first scan
71  * involving that component.  (This is necessary in order to correctly
72  * decode files that reuse Q-table slots.)
73  * When we are ready to make an output pass, the saved Q-table is converted
74  * to a multiplier table that will actually be used by the IDCT routine.
75  * The multiplier table contents are IDCT-method-dependent.  To support
76  * application changes in IDCT method between scans, we can remake the
77  * multiplier tables if necessary.
78  * In buffered-image mode, the first output pass may occur before any data
79  * has been seen for some components, and thus before their Q-tables have
80  * been saved away.  To handle this case, multiplier tables are preset
81  * to zeroes; the result of the IDCT will be a neutral gray level.
82  */
83 
84 
85 /* Private subobject for this module */
86 
87 typedef struct {
88   struct jpeg_inverse_dct pub;	/* public fields */
89 
90   /* This array contains the IDCT method code that each multiplier table
91    * is currently set up for, or -1 if it's not yet set up.
92    * The actual multiplier tables are pointed to by dct_table in the
93    * per-component comp_info structures.
94    */
95   int cur_method[MAX_COMPONENTS];
96 } my_idct_controller;
97 
98 typedef my_idct_controller * my_idct_ptr;
99 
100 
101 /* Allocated multiplier tables: big enough for any supported variant */
102 
103 typedef union {
104   ISLOW_MULT_TYPE islow_array[DCTSIZE2];
105 #ifdef DCT_IFAST_SUPPORTED
106   IFAST_MULT_TYPE ifast_array[DCTSIZE2];
107 #endif
108 #ifdef DCT_FLOAT_SUPPORTED
109   FLOAT_MULT_TYPE float_array[DCTSIZE2];
110 #endif
111 } multiplier_table;
112 
113 
114 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
115  * so be sure to compile that code if either ISLOW or SCALING is requested.
116  */
117 #ifdef DCT_ISLOW_SUPPORTED
118 #define PROVIDE_ISLOW_TABLES
119 #else
120 #ifdef IDCT_SCALING_SUPPORTED
121 #define PROVIDE_ISLOW_TABLES
122 #endif
123 #endif
124 
125 
126 /*
127  * Prepare for an output pass.
128  * Here we select the proper IDCT routine for each component and build
129  * a matching multiplier table.
130  */
131 
132 METHODDEF(void)
start_pass(j_decompress_ptr cinfo)133 start_pass (j_decompress_ptr cinfo)
134 {
135   my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
136   int ci, i;
137   jpeg_component_info *compptr;
138   int method = 0;
139   inverse_DCT_method_ptr method_ptr = NULL;
140   JQUANT_TBL * qtbl;
141 
142   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
143        ci++, compptr++) {
144     /* Select the proper IDCT routine for this component's scaling */
145     switch (compptr->DCT_scaled_size) {
146 #ifdef IDCT_SCALING_SUPPORTED
147     case 1:
148       method_ptr = jpeg_idct_1x1;
149       method = JDCT_ISLOW;	/* jidctred uses islow-style table */
150       break;
151     case 2:
152 #if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
153       if (cap_neon_idct_2x2()) {
154         method_ptr = jsimd_idct_2x2;
155       } else {
156         method_ptr = jpeg_idct_2x2;
157       }
158 #else
159       method_ptr = jpeg_idct_2x2;
160 #endif
161       method = JDCT_ISLOW;	/* jidctred uses islow-style table */
162       break;
163     case 4:
164 #if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
165 	  if (cap_neon_idct_4x4()) {
166         method_ptr = jsimd_idct_4x4;
167       } else {
168         method_ptr = jpeg_idct_4x4;
169       }
170 #else
171       method_ptr = jpeg_idct_4x4;
172 #endif
173       method = JDCT_ISLOW;	/* jidctred uses islow-style table */
174       break;
175 #endif
176     case DCTSIZE:
177       switch (cinfo->dct_method) {
178 #ifdef ANDROID_ARMV6_IDCT
179       case JDCT_ISLOW:
180       case JDCT_IFAST:
181 	method_ptr = jpeg_idct_armv6;
182 	method = JDCT_IFAST;
183 	break;
184 #else /* ANDROID_ARMV6_IDCT */
185 #ifdef ANDROID_INTELSSE2_IDCT
186       case JDCT_ISLOW:
187       case JDCT_IFAST:
188 	method_ptr = jpeg_idct_intelsse;
189 	method = JDCT_ISLOW; /* Use quant table of ISLOW.*/
190 	break;
191 #else /* ANDROID_INTELSSE2_IDCT */
192 #ifdef ANDROID_MIPS_IDCT
193       case JDCT_ISLOW:
194       case JDCT_IFAST:
195 	method_ptr = jpeg_idct_mips;
196 	method = JDCT_IFAST;
197 	break;
198 #else /* ANDROID_MIPS_IDCT */
199 #ifdef DCT_ISLOW_SUPPORTED
200       case JDCT_ISLOW:
201 	method_ptr = jpeg_idct_islow;
202 	method = JDCT_ISLOW;
203 	break;
204 #endif
205 #ifdef DCT_IFAST_SUPPORTED
206       case JDCT_IFAST:
207 #if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
208         if (cap_neon_idct_ifast()) {
209           method_ptr = jsimd_idct_ifast;
210         } else {
211           method_ptr = jpeg_idct_ifast;
212         }
213 #else
214         method_ptr = jpeg_idct_ifast;
215 #endif
216 	method = JDCT_IFAST;
217 	break;
218 #endif
219 #endif /* ANDROID_MIPS_IDCT */
220 #endif /* ANDROID_INTELSSE2_IDCT*/
221 #endif /* ANDROID_ARMV6_IDCT */
222 #ifdef DCT_FLOAT_SUPPORTED
223       case JDCT_FLOAT:
224 	method_ptr = jpeg_idct_float;
225 	method = JDCT_FLOAT;
226 	break;
227 #endif
228       default:
229 	ERREXIT(cinfo, JERR_NOT_COMPILED);
230 	break;
231       }
232       break;
233     default:
234       ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
235       break;
236     }
237     idct->pub.inverse_DCT[ci] = method_ptr;
238     /* Create multiplier table from quant table.
239      * However, we can skip this if the component is uninteresting
240      * or if we already built the table.  Also, if no quant table
241      * has yet been saved for the component, we leave the
242      * multiplier table all-zero; we'll be reading zeroes from the
243      * coefficient controller's buffer anyway.
244      */
245     if (! compptr->component_needed || idct->cur_method[ci] == method)
246       continue;
247     qtbl = compptr->quant_table;
248     if (qtbl == NULL)		/* happens if no data yet for component */
249       continue;
250     idct->cur_method[ci] = method;
251     switch (method) {
252 #ifdef PROVIDE_ISLOW_TABLES
253     case JDCT_ISLOW:
254       {
255 	/* For LL&M IDCT method, multipliers are equal to raw quantization
256 	 * coefficients, but are stored as ints to ensure access efficiency.
257 	 */
258 	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
259 	for (i = 0; i < DCTSIZE2; i++) {
260 	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
261 	}
262       }
263       break;
264 #endif
265 #ifdef DCT_IFAST_SUPPORTED
266     case JDCT_IFAST:
267       {
268 	/* For AA&N IDCT method, multipliers are equal to quantization
269 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
270 	 *   scalefactor[0] = 1
271 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
272 	 * For integer operation, the multiplier table is to be scaled by
273 	 * IFAST_SCALE_BITS.
274 	 */
275 	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
276 #ifdef ANDROID_ARMV6_IDCT
277 	/* Precomputed values scaled up by 15 bits. */
278 	static const unsigned short scales[DCTSIZE2] = {
279 	  32768, 45451, 42813, 38531, 32768, 25746, 17734,  9041,
280 	  45451, 63042, 59384, 53444, 45451, 35710, 24598, 12540,
281 	  42813, 59384, 55938, 50343, 42813, 33638, 23170, 11812,
282 	  38531, 53444, 50343, 45308, 38531, 30274, 20853, 10631,
283 	  32768, 45451, 42813, 38531, 32768, 25746, 17734,  9041,
284 	  25746, 35710, 33638, 30274, 25746, 20228, 13933,  7103,
285 	  17734, 24598, 23170, 20853, 17734, 13933,  9598,  4893,
286 	   9041, 12540, 11812, 10631,  9041,  7103,  4893,  2494,
287 	};
288 	/* Inverse map of [7, 5, 1, 3, 0, 2, 4, 6]. */
289 	static const char orders[DCTSIZE] = {4, 2, 5, 3, 6, 1, 7, 0};
290 	/* Reorder the columns after transposing. */
291 	for (i = 0; i < DCTSIZE2; ++i) {
292 	  int j = ((i & 7) << 3) + orders[i >> 3];
293 	  ifmtbl[j] = (qtbl->quantval[i] * scales[i] + 2) >> 2;
294 	}
295 #else /* ANDROID_ARMV6_IDCT */
296 
297 #define CONST_BITS 14
298 	static const INT16 aanscales[DCTSIZE2] = {
299 	  /* precomputed values scaled up by 14 bits */
300 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
301 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
302 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
303 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
304 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
305 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
306 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
307 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
308 	};
309 	SHIFT_TEMPS
310 
311 	for (i = 0; i < DCTSIZE2; i++) {
312 	  ifmtbl[i] = (IFAST_MULT_TYPE)
313 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
314 				  (INT32) aanscales[i]),
315 		    CONST_BITS-IFAST_SCALE_BITS);
316 	}
317 #endif /* ANDROID_ARMV6_IDCT */
318       }
319       break;
320 #endif
321 #ifdef DCT_FLOAT_SUPPORTED
322     case JDCT_FLOAT:
323       {
324 	/* For float AA&N IDCT method, multipliers are equal to quantization
325 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
326 	 *   scalefactor[0] = 1
327 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
328 	 */
329 	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
330 	int row, col;
331 	static const double aanscalefactor[DCTSIZE] = {
332 	  1.0, 1.387039845, 1.306562965, 1.175875602,
333 	  1.0, 0.785694958, 0.541196100, 0.275899379
334 	};
335 
336 	i = 0;
337 	for (row = 0; row < DCTSIZE; row++) {
338 	  for (col = 0; col < DCTSIZE; col++) {
339 	    fmtbl[i] = (FLOAT_MULT_TYPE)
340 	      ((double) qtbl->quantval[i] *
341 	       aanscalefactor[row] * aanscalefactor[col]);
342 	    i++;
343 	  }
344 	}
345       }
346       break;
347 #endif
348     default:
349       ERREXIT(cinfo, JERR_NOT_COMPILED);
350       break;
351     }
352   }
353 }
354 
355 
356 /*
357  * Initialize IDCT manager.
358  */
359 
360 GLOBAL(void)
jinit_inverse_dct(j_decompress_ptr cinfo)361 jinit_inverse_dct (j_decompress_ptr cinfo)
362 {
363   my_idct_ptr idct;
364   int ci;
365   jpeg_component_info *compptr;
366 
367   idct = (my_idct_ptr)
368     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
369 				SIZEOF(my_idct_controller));
370   cinfo->idct = (struct jpeg_inverse_dct *) idct;
371   idct->pub.start_pass = start_pass;
372 
373   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
374        ci++, compptr++) {
375     /* Allocate and pre-zero a multiplier table for each component */
376     compptr->dct_table =
377       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
378 				  SIZEOF(multiplier_table));
379     MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
380     /* Mark multiplier table not yet set up for any method */
381     idct->cur_method[ci] = -1;
382   }
383 }
384