• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 
56 	PERF_COUNT_HW_MAX,			/* non-ABI */
57 };
58 
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67 	PERF_COUNT_HW_CACHE_L1D			= 0,
68 	PERF_COUNT_HW_CACHE_L1I			= 1,
69 	PERF_COUNT_HW_CACHE_LL			= 2,
70 	PERF_COUNT_HW_CACHE_DTLB		= 3,
71 	PERF_COUNT_HW_CACHE_ITLB		= 4,
72 	PERF_COUNT_HW_CACHE_BPU			= 5,
73 
74 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
75 };
76 
77 enum perf_hw_cache_op_id {
78 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
79 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
80 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
81 
82 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
83 };
84 
85 enum perf_hw_cache_op_result_id {
86 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
87 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
88 
89 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
90 };
91 
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99 	PERF_COUNT_SW_CPU_CLOCK			= 0,
100 	PERF_COUNT_SW_TASK_CLOCK		= 1,
101 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
102 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
103 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
104 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
105 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
106 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
107 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
108 
109 	PERF_COUNT_SW_MAX,			/* non-ABI */
110 };
111 
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117 	PERF_SAMPLE_IP				= 1U << 0,
118 	PERF_SAMPLE_TID				= 1U << 1,
119 	PERF_SAMPLE_TIME			= 1U << 2,
120 	PERF_SAMPLE_ADDR			= 1U << 3,
121 	PERF_SAMPLE_READ			= 1U << 4,
122 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
123 	PERF_SAMPLE_ID				= 1U << 6,
124 	PERF_SAMPLE_CPU				= 1U << 7,
125 	PERF_SAMPLE_PERIOD			= 1U << 8,
126 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
127 	PERF_SAMPLE_RAW				= 1U << 10,
128 
129 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
130 };
131 
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *	{ u64		value;
138  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
139  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
140  *	  { u64		id;           } && PERF_FORMAT_ID
141  *	} && !PERF_FORMAT_GROUP
142  *
143  *	{ u64		nr;
144  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
145  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
146  *	  { u64		value;
147  *	    { u64	id;           } && PERF_FORMAT_ID
148  *	  }		cntr[nr];
149  *	} && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
154 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
155 	PERF_FORMAT_ID				= 1U << 2,
156 	PERF_FORMAT_GROUP			= 1U << 3,
157 
158 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
159 };
160 
161 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
162 
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167 
168 	/*
169 	 * Major type: hardware/software/tracepoint/etc.
170 	 */
171 	__u32			type;
172 
173 	/*
174 	 * Size of the attr structure, for fwd/bwd compat.
175 	 */
176 	__u32			size;
177 
178 	/*
179 	 * Type specific configuration information.
180 	 */
181 	__u64			config;
182 
183 	union {
184 		__u64		sample_period;
185 		__u64		sample_freq;
186 	};
187 
188 	__u64			sample_type;
189 	__u64			read_format;
190 
191 	__u64			disabled       :  1, /* off by default        */
192 				inherit	       :  1, /* children inherit it   */
193 				pinned	       :  1, /* must always be on PMU */
194 				exclusive      :  1, /* only group on PMU     */
195 				exclude_user   :  1, /* don't count user      */
196 				exclude_kernel :  1, /* ditto kernel          */
197 				exclude_hv     :  1, /* ditto hypervisor      */
198 				exclude_idle   :  1, /* don't count when idle */
199 				mmap           :  1, /* include mmap data     */
200 				comm	       :  1, /* include comm data     */
201 				freq           :  1, /* use freq, not period  */
202 				inherit_stat   :  1, /* per task counts       */
203 				enable_on_exec :  1, /* next exec enables     */
204 				task           :  1, /* trace fork/exit       */
205 				watermark      :  1, /* wakeup_watermark      */
206 				/*
207 				 * precise_ip:
208 				 *
209 				 *  0 - SAMPLE_IP can have arbitrary skid
210 				 *  1 - SAMPLE_IP must have constant skid
211 				 *  2 - SAMPLE_IP requested to have 0 skid
212 				 *  3 - SAMPLE_IP must have 0 skid
213 				 *
214 				 *  See also PERF_RECORD_MISC_EXACT_IP
215 				 */
216 				precise_ip     :  2, /* skid constraint       */
217 
218 				__reserved_1   : 47;
219 
220 	union {
221 		__u32		wakeup_events;	  /* wakeup every n events */
222 		__u32		wakeup_watermark; /* bytes before wakeup   */
223 	};
224 
225 	__u32			bp_type;
226 	__u64			bp_addr;
227 	__u64			bp_len;
228 };
229 
230 /*
231  * Ioctls that can be done on a perf event fd:
232  */
233 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
234 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
235 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
236 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
237 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
238 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
239 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
240 
241 enum perf_event_ioc_flags {
242 	PERF_IOC_FLAG_GROUP		= 1U << 0,
243 };
244 
245 /*
246  * Structure of the page that can be mapped via mmap
247  */
248 struct perf_event_mmap_page {
249 	__u32	version;		/* version number of this structure */
250 	__u32	compat_version;		/* lowest version this is compat with */
251 
252 	/*
253 	 * Bits needed to read the hw events in user-space.
254 	 *
255 	 *   u32 seq;
256 	 *   s64 count;
257 	 *
258 	 *   do {
259 	 *     seq = pc->lock;
260 	 *
261 	 *     barrier()
262 	 *     if (pc->index) {
263 	 *       count = pmc_read(pc->index - 1);
264 	 *       count += pc->offset;
265 	 *     } else
266 	 *       goto regular_read;
267 	 *
268 	 *     barrier();
269 	 *   } while (pc->lock != seq);
270 	 *
271 	 * NOTE: for obvious reason this only works on self-monitoring
272 	 *       processes.
273 	 */
274 	__u32	lock;			/* seqlock for synchronization */
275 	__u32	index;			/* hardware event identifier */
276 	__s64	offset;			/* add to hardware event value */
277 	__u64	time_enabled;		/* time event active */
278 	__u64	time_running;		/* time event on cpu */
279 
280 		/*
281 		 * Hole for extension of the self monitor capabilities
282 		 */
283 
284 	__u64	__reserved[123];	/* align to 1k */
285 
286 	/*
287 	 * Control data for the mmap() data buffer.
288 	 *
289 	 * User-space reading the @data_head value should issue an rmb(), on
290 	 * SMP capable platforms, after reading this value -- see
291 	 * perf_event_wakeup().
292 	 *
293 	 * When the mapping is PROT_WRITE the @data_tail value should be
294 	 * written by userspace to reflect the last read data. In this case
295 	 * the kernel will not over-write unread data.
296 	 */
297 	__u64   data_head;		/* head in the data section */
298 	__u64	data_tail;		/* user-space written tail */
299 };
300 
301 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
302 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
303 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
304 #define PERF_RECORD_MISC_USER			(2 << 0)
305 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
306 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
307 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
308 
309 /*
310  * Indicates that the content of PERF_SAMPLE_IP points to
311  * the actual instruction that triggered the event. See also
312  * perf_event_attr::precise_ip.
313  */
314 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
315 /*
316  * Reserve the last bit to indicate some extended misc field
317  */
318 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
319 
320 struct perf_event_header {
321 	__u32	type;
322 	__u16	misc;
323 	__u16	size;
324 };
325 
326 enum perf_event_type {
327 
328 	/*
329 	 * The MMAP events record the PROT_EXEC mappings so that we can
330 	 * correlate userspace IPs to code. They have the following structure:
331 	 *
332 	 * struct {
333 	 *	struct perf_event_header	header;
334 	 *
335 	 *	u32				pid, tid;
336 	 *	u64				addr;
337 	 *	u64				len;
338 	 *	u64				pgoff;
339 	 *	char				filename[];
340 	 * };
341 	 */
342 	PERF_RECORD_MMAP			= 1,
343 
344 	/*
345 	 * struct {
346 	 *	struct perf_event_header	header;
347 	 *	u64				id;
348 	 *	u64				lost;
349 	 * };
350 	 */
351 	PERF_RECORD_LOST			= 2,
352 
353 	/*
354 	 * struct {
355 	 *	struct perf_event_header	header;
356 	 *
357 	 *	u32				pid, tid;
358 	 *	char				comm[];
359 	 * };
360 	 */
361 	PERF_RECORD_COMM			= 3,
362 
363 	/*
364 	 * struct {
365 	 *	struct perf_event_header	header;
366 	 *	u32				pid, ppid;
367 	 *	u32				tid, ptid;
368 	 *	u64				time;
369 	 * };
370 	 */
371 	PERF_RECORD_EXIT			= 4,
372 
373 	/*
374 	 * struct {
375 	 *	struct perf_event_header	header;
376 	 *	u64				time;
377 	 *	u64				id;
378 	 *	u64				stream_id;
379 	 * };
380 	 */
381 	PERF_RECORD_THROTTLE			= 5,
382 	PERF_RECORD_UNTHROTTLE			= 6,
383 
384 	/*
385 	 * struct {
386 	 *	struct perf_event_header	header;
387 	 *	u32				pid, ppid;
388 	 *	u32				tid, ptid;
389 	 *	u64				time;
390 	 * };
391 	 */
392 	PERF_RECORD_FORK			= 7,
393 
394 	/*
395 	 * struct {
396 	 *	struct perf_event_header	header;
397 	 *	u32				pid, tid;
398 	 *
399 	 *	struct read_format		values;
400 	 * };
401 	 */
402 	PERF_RECORD_READ			= 8,
403 
404 	/*
405 	 * struct {
406 	 *	struct perf_event_header	header;
407 	 *
408 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
409 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
410 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
411 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
412 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
413 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
414 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
415 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
416 	 *
417 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
418 	 *
419 	 *	{ u64			nr,
420 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
421 	 *
422 	 *	#
423 	 *	# The RAW record below is opaque data wrt the ABI
424 	 *	#
425 	 *	# That is, the ABI doesn't make any promises wrt to
426 	 *	# the stability of its content, it may vary depending
427 	 *	# on event, hardware, kernel version and phase of
428 	 *	# the moon.
429 	 *	#
430 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
431 	 *	#
432 	 *
433 	 *	{ u32			size;
434 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
435 	 * };
436 	 */
437 	PERF_RECORD_SAMPLE			= 9,
438 
439 	PERF_RECORD_MAX,			/* non-ABI */
440 };
441 
442 enum perf_callchain_context {
443 	PERF_CONTEXT_HV			= (__u64)-32,
444 	PERF_CONTEXT_KERNEL		= (__u64)-128,
445 	PERF_CONTEXT_USER		= (__u64)-512,
446 
447 	PERF_CONTEXT_GUEST		= (__u64)-2048,
448 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
449 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
450 
451 	PERF_CONTEXT_MAX		= (__u64)-4095,
452 };
453 
454 #define PERF_FLAG_FD_NO_GROUP	(1U << 0)
455 #define PERF_FLAG_FD_OUTPUT	(1U << 1)
456 
457 #ifdef __KERNEL__
458 /*
459  * Kernel-internal data types and definitions:
460  */
461 
462 #ifdef CONFIG_PERF_EVENTS
463 # include <asm/perf_event.h>
464 #endif
465 
466 struct perf_guest_info_callbacks {
467 	int (*is_in_guest) (void);
468 	int (*is_user_mode) (void);
469 	unsigned long (*get_guest_ip) (void);
470 };
471 
472 #ifdef CONFIG_HAVE_HW_BREAKPOINT
473 #include <asm/hw_breakpoint.h>
474 #endif
475 
476 #include <linux/list.h>
477 #include <linux/mutex.h>
478 #include <linux/rculist.h>
479 #include <linux/rcupdate.h>
480 #include <linux/spinlock.h>
481 #include <linux/hrtimer.h>
482 #include <linux/fs.h>
483 #include <linux/pid_namespace.h>
484 #include <linux/workqueue.h>
485 #include <linux/ftrace.h>
486 #include <linux/cpu.h>
487 #include <asm/atomic.h>
488 #include <asm/local.h>
489 
490 #define PERF_MAX_STACK_DEPTH		255
491 
492 struct perf_callchain_entry {
493 	__u64				nr;
494 	__u64				ip[PERF_MAX_STACK_DEPTH];
495 };
496 
497 struct perf_raw_record {
498 	u32				size;
499 	void				*data;
500 };
501 
502 struct perf_branch_entry {
503 	__u64				from;
504 	__u64				to;
505 	__u64				flags;
506 };
507 
508 struct perf_branch_stack {
509 	__u64				nr;
510 	struct perf_branch_entry	entries[0];
511 };
512 
513 struct task_struct;
514 
515 /**
516  * struct hw_perf_event - performance event hardware details:
517  */
518 struct hw_perf_event {
519 #ifdef CONFIG_PERF_EVENTS
520 	union {
521 		struct { /* hardware */
522 			u64		config;
523 			u64		last_tag;
524 			unsigned long	config_base;
525 			unsigned long	event_base;
526 			int		idx;
527 			int		last_cpu;
528 		};
529 		struct { /* software */
530 			s64		remaining;
531 			struct hrtimer	hrtimer;
532 		};
533 #ifdef CONFIG_HAVE_HW_BREAKPOINT
534 		/* breakpoint */
535 		struct arch_hw_breakpoint	info;
536 #endif
537 	};
538 	atomic64_t			prev_count;
539 	u64				sample_period;
540 	u64				last_period;
541 	atomic64_t			period_left;
542 	u64				interrupts;
543 
544 	u64				freq_time_stamp;
545 	u64				freq_count_stamp;
546 #endif
547 };
548 
549 struct perf_event;
550 
551 #define PERF_EVENT_TXN_STARTED 1
552 
553 /**
554  * struct pmu - generic performance monitoring unit
555  */
556 struct pmu {
557 	int (*enable)			(struct perf_event *event);
558 	void (*disable)			(struct perf_event *event);
559 	int (*start)			(struct perf_event *event);
560 	void (*stop)			(struct perf_event *event);
561 	void (*read)			(struct perf_event *event);
562 	void (*unthrottle)		(struct perf_event *event);
563 
564 	/*
565 	 * group events scheduling is treated as a transaction,
566 	 * add group events as a whole and perform one schedulability test.
567 	 * If test fails, roll back the whole group
568 	 */
569 
570 	void (*start_txn)	(const struct pmu *pmu);
571 	void (*cancel_txn)	(const struct pmu *pmu);
572 	int  (*commit_txn)	(const struct pmu *pmu);
573 };
574 
575 /**
576  * enum perf_event_active_state - the states of a event
577  */
578 enum perf_event_active_state {
579 	PERF_EVENT_STATE_ERROR		= -2,
580 	PERF_EVENT_STATE_OFF		= -1,
581 	PERF_EVENT_STATE_INACTIVE	=  0,
582 	PERF_EVENT_STATE_ACTIVE		=  1,
583 };
584 
585 struct file;
586 
587 struct perf_mmap_data {
588 	atomic_t			refcount;
589 	struct rcu_head			rcu_head;
590 #ifdef CONFIG_PERF_USE_VMALLOC
591 	struct work_struct		work;
592 	int				page_order;	/* allocation order  */
593 #endif
594 	int				nr_pages;	/* nr of data pages  */
595 	int				writable;	/* are we writable   */
596 
597 	atomic_t			poll;		/* POLL_ for wakeups */
598 
599 	local_t				head;		/* write position    */
600 	local_t				nest;		/* nested writers    */
601 	local_t				events;		/* event limit       */
602 	local_t				wakeup;		/* wakeup stamp      */
603 	local_t				lost;		/* nr records lost   */
604 
605 	long				watermark;	/* wakeup watermark  */
606 
607 	struct perf_event_mmap_page	*user_page;
608 	void				*data_pages[0];
609 };
610 
611 struct perf_pending_entry {
612 	struct perf_pending_entry *next;
613 	void (*func)(struct perf_pending_entry *);
614 };
615 
616 struct perf_sample_data;
617 
618 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
619 					struct perf_sample_data *,
620 					struct pt_regs *regs);
621 
622 enum perf_group_flag {
623 	PERF_GROUP_SOFTWARE = 0x1,
624 };
625 
626 #define SWEVENT_HLIST_BITS	8
627 #define SWEVENT_HLIST_SIZE	(1 << SWEVENT_HLIST_BITS)
628 
629 struct swevent_hlist {
630 	struct hlist_head	heads[SWEVENT_HLIST_SIZE];
631 	struct rcu_head		rcu_head;
632 };
633 
634 #define PERF_ATTACH_CONTEXT	0x01
635 #define PERF_ATTACH_GROUP	0x02
636 
637 /**
638  * struct perf_event - performance event kernel representation:
639  */
640 struct perf_event {
641 #ifdef CONFIG_PERF_EVENTS
642 	struct list_head		group_entry;
643 	struct list_head		event_entry;
644 	struct list_head		sibling_list;
645 	struct hlist_node		hlist_entry;
646 	int				nr_siblings;
647 	int				group_flags;
648 	struct perf_event		*group_leader;
649 	const struct pmu		*pmu;
650 
651 	enum perf_event_active_state	state;
652 	unsigned int			attach_state;
653 	atomic64_t			count;
654 
655 	/*
656 	 * These are the total time in nanoseconds that the event
657 	 * has been enabled (i.e. eligible to run, and the task has
658 	 * been scheduled in, if this is a per-task event)
659 	 * and running (scheduled onto the CPU), respectively.
660 	 *
661 	 * They are computed from tstamp_enabled, tstamp_running and
662 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
663 	 */
664 	u64				total_time_enabled;
665 	u64				total_time_running;
666 
667 	/*
668 	 * These are timestamps used for computing total_time_enabled
669 	 * and total_time_running when the event is in INACTIVE or
670 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
671 	 * in time.
672 	 * tstamp_enabled: the notional time when the event was enabled
673 	 * tstamp_running: the notional time when the event was scheduled on
674 	 * tstamp_stopped: in INACTIVE state, the notional time when the
675 	 *	event was scheduled off.
676 	 */
677 	u64				tstamp_enabled;
678 	u64				tstamp_running;
679 	u64				tstamp_stopped;
680 
681 	struct perf_event_attr		attr;
682 	struct hw_perf_event		hw;
683 
684 	struct perf_event_context	*ctx;
685 	struct file			*filp;
686 
687 	/*
688 	 * These accumulate total time (in nanoseconds) that children
689 	 * events have been enabled and running, respectively.
690 	 */
691 	atomic64_t			child_total_time_enabled;
692 	atomic64_t			child_total_time_running;
693 
694 	/*
695 	 * Protect attach/detach and child_list:
696 	 */
697 	struct mutex			child_mutex;
698 	struct list_head		child_list;
699 	struct perf_event		*parent;
700 
701 	int				oncpu;
702 	int				cpu;
703 
704 	struct list_head		owner_entry;
705 	struct task_struct		*owner;
706 
707 	/* mmap bits */
708 	struct mutex			mmap_mutex;
709 	atomic_t			mmap_count;
710 	int				mmap_locked;
711 	struct user_struct		*mmap_user;
712 	struct perf_mmap_data		*data;
713 
714 	/* poll related */
715 	wait_queue_head_t		waitq;
716 	struct fasync_struct		*fasync;
717 
718 	/* delayed work for NMIs and such */
719 	int				pending_wakeup;
720 	int				pending_kill;
721 	int				pending_disable;
722 	struct perf_pending_entry	pending;
723 
724 	atomic_t			event_limit;
725 
726 	void (*destroy)(struct perf_event *);
727 	struct rcu_head			rcu_head;
728 
729 	struct pid_namespace		*ns;
730 	u64				id;
731 
732 	perf_overflow_handler_t		overflow_handler;
733 
734 #ifdef CONFIG_EVENT_TRACING
735 	struct ftrace_event_call	*tp_event;
736 	struct event_filter		*filter;
737 #endif
738 
739 #endif /* CONFIG_PERF_EVENTS */
740 };
741 
742 /**
743  * struct perf_event_context - event context structure
744  *
745  * Used as a container for task events and CPU events as well:
746  */
747 struct perf_event_context {
748 	/*
749 	 * Protect the states of the events in the list,
750 	 * nr_active, and the list:
751 	 */
752 	raw_spinlock_t			lock;
753 	/*
754 	 * Protect the list of events.  Locking either mutex or lock
755 	 * is sufficient to ensure the list doesn't change; to change
756 	 * the list you need to lock both the mutex and the spinlock.
757 	 */
758 	struct mutex			mutex;
759 
760 	struct list_head		pinned_groups;
761 	struct list_head		flexible_groups;
762 	struct list_head		event_list;
763 	int				nr_events;
764 	int				nr_active;
765 	int				is_active;
766 	int				nr_stat;
767 	atomic_t			refcount;
768 	struct task_struct		*task;
769 
770 	/*
771 	 * Context clock, runs when context enabled.
772 	 */
773 	u64				time;
774 	u64				timestamp;
775 
776 	/*
777 	 * These fields let us detect when two contexts have both
778 	 * been cloned (inherited) from a common ancestor.
779 	 */
780 	struct perf_event_context	*parent_ctx;
781 	u64				parent_gen;
782 	u64				generation;
783 	int				pin_count;
784 	struct rcu_head			rcu_head;
785 };
786 
787 /**
788  * struct perf_event_cpu_context - per cpu event context structure
789  */
790 struct perf_cpu_context {
791 	struct perf_event_context	ctx;
792 	struct perf_event_context	*task_ctx;
793 	int				active_oncpu;
794 	int				max_pertask;
795 	int				exclusive;
796 	struct swevent_hlist		*swevent_hlist;
797 	struct mutex			hlist_mutex;
798 	int				hlist_refcount;
799 
800 	/*
801 	 * Recursion avoidance:
802 	 *
803 	 * task, softirq, irq, nmi context
804 	 */
805 	int				recursion[4];
806 };
807 
808 struct perf_output_handle {
809 	struct perf_event		*event;
810 	struct perf_mmap_data		*data;
811 	unsigned long			wakeup;
812 	unsigned long			size;
813 	void				*addr;
814 	int				page;
815 	int				nmi;
816 	int				sample;
817 };
818 
819 #ifdef CONFIG_PERF_EVENTS
820 
821 /*
822  * Set by architecture code:
823  */
824 extern int perf_max_events;
825 
826 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
827 
828 extern void perf_event_task_sched_in(struct task_struct *task);
829 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
830 extern void perf_event_task_tick(struct task_struct *task);
831 extern int perf_event_init_task(struct task_struct *child);
832 extern void perf_event_exit_task(struct task_struct *child);
833 extern void perf_event_free_task(struct task_struct *task);
834 extern void set_perf_event_pending(void);
835 extern void perf_event_do_pending(void);
836 extern void perf_event_print_debug(void);
837 extern void __perf_disable(void);
838 extern bool __perf_enable(void);
839 extern void perf_disable(void);
840 extern void perf_enable(void);
841 extern int perf_event_task_disable(void);
842 extern int perf_event_task_enable(void);
843 extern void perf_event_update_userpage(struct perf_event *event);
844 extern int perf_event_release_kernel(struct perf_event *event);
845 extern struct perf_event *
846 perf_event_create_kernel_counter(struct perf_event_attr *attr,
847 				int cpu,
848 				pid_t pid,
849 				perf_overflow_handler_t callback);
850 extern u64 perf_event_read_value(struct perf_event *event,
851 				 u64 *enabled, u64 *running);
852 
853 struct perf_sample_data {
854 	u64				type;
855 
856 	u64				ip;
857 	struct {
858 		u32	pid;
859 		u32	tid;
860 	}				tid_entry;
861 	u64				time;
862 	u64				addr;
863 	u64				id;
864 	u64				stream_id;
865 	struct {
866 		u32	cpu;
867 		u32	reserved;
868 	}				cpu_entry;
869 	u64				period;
870 	struct perf_callchain_entry	*callchain;
871 	struct perf_raw_record		*raw;
872 };
873 
874 static inline
perf_sample_data_init(struct perf_sample_data * data,u64 addr)875 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
876 {
877 	data->addr = addr;
878 	data->raw  = NULL;
879 }
880 
881 extern void perf_output_sample(struct perf_output_handle *handle,
882 			       struct perf_event_header *header,
883 			       struct perf_sample_data *data,
884 			       struct perf_event *event);
885 extern void perf_prepare_sample(struct perf_event_header *header,
886 				struct perf_sample_data *data,
887 				struct perf_event *event,
888 				struct pt_regs *regs);
889 
890 extern int perf_event_overflow(struct perf_event *event, int nmi,
891 				 struct perf_sample_data *data,
892 				 struct pt_regs *regs);
893 
894 /*
895  * Return 1 for a software event, 0 for a hardware event
896  */
is_software_event(struct perf_event * event)897 static inline int is_software_event(struct perf_event *event)
898 {
899 	switch (event->attr.type) {
900 	case PERF_TYPE_SOFTWARE:
901 	case PERF_TYPE_TRACEPOINT:
902 	/* for now the breakpoint stuff also works as software event */
903 	case PERF_TYPE_BREAKPOINT:
904 		return 1;
905 	}
906 	return 0;
907 }
908 
909 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
910 
911 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
912 
913 extern void
914 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip);
915 
916 /*
917  * Take a snapshot of the regs. Skip ip and frame pointer to
918  * the nth caller. We only need a few of the regs:
919  * - ip for PERF_SAMPLE_IP
920  * - cs for user_mode() tests
921  * - bp for callchains
922  * - eflags, for future purposes, just in case
923  */
perf_fetch_caller_regs(struct pt_regs * regs,int skip)924 static inline void perf_fetch_caller_regs(struct pt_regs *regs, int skip)
925 {
926 	unsigned long ip;
927 
928 	memset(regs, 0, sizeof(*regs));
929 
930 	switch (skip) {
931 	case 1 :
932 		ip = CALLER_ADDR0;
933 		break;
934 	case 2 :
935 		ip = CALLER_ADDR1;
936 		break;
937 	case 3 :
938 		ip = CALLER_ADDR2;
939 		break;
940 	case 4:
941 		ip = CALLER_ADDR3;
942 		break;
943 	/* No need to support further for now */
944 	default:
945 		ip = 0;
946 	}
947 
948 	return perf_arch_fetch_caller_regs(regs, ip, skip);
949 }
950 
951 static inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)952 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
953 {
954 	if (atomic_read(&perf_swevent_enabled[event_id])) {
955 		struct pt_regs hot_regs;
956 
957 		if (!regs) {
958 			perf_fetch_caller_regs(&hot_regs, 1);
959 			regs = &hot_regs;
960 		}
961 		__perf_sw_event(event_id, nr, nmi, regs, addr);
962 	}
963 }
964 
965 extern void __perf_event_mmap(struct vm_area_struct *vma);
966 
perf_event_mmap(struct vm_area_struct * vma)967 static inline void perf_event_mmap(struct vm_area_struct *vma)
968 {
969 	if (vma->vm_flags & VM_EXEC)
970 		__perf_event_mmap(vma);
971 }
972 
973 extern struct perf_guest_info_callbacks *perf_guest_cbs;
974 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
975 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
976 
977 extern void perf_event_comm(struct task_struct *tsk);
978 extern void perf_event_fork(struct task_struct *tsk);
979 
980 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
981 
982 extern int sysctl_perf_event_paranoid;
983 extern int sysctl_perf_event_mlock;
984 extern int sysctl_perf_event_sample_rate;
985 
perf_paranoid_tracepoint_raw(void)986 static inline bool perf_paranoid_tracepoint_raw(void)
987 {
988 	return sysctl_perf_event_paranoid > -1;
989 }
990 
perf_paranoid_cpu(void)991 static inline bool perf_paranoid_cpu(void)
992 {
993 	return sysctl_perf_event_paranoid > 0;
994 }
995 
perf_paranoid_kernel(void)996 static inline bool perf_paranoid_kernel(void)
997 {
998 	return sysctl_perf_event_paranoid > 1;
999 }
1000 
1001 extern void perf_event_init(void);
1002 extern void perf_tp_event(u64 addr, u64 count, void *record,
1003 			  int entry_size, struct pt_regs *regs,
1004 			  struct hlist_head *head);
1005 extern void perf_bp_event(struct perf_event *event, void *data);
1006 
1007 #ifndef perf_misc_flags
1008 #define perf_misc_flags(regs)	(user_mode(regs) ? PERF_RECORD_MISC_USER : \
1009 				 PERF_RECORD_MISC_KERNEL)
1010 #define perf_instruction_pointer(regs)	instruction_pointer(regs)
1011 #endif
1012 
1013 extern int perf_output_begin(struct perf_output_handle *handle,
1014 			     struct perf_event *event, unsigned int size,
1015 			     int nmi, int sample);
1016 extern void perf_output_end(struct perf_output_handle *handle);
1017 extern void perf_output_copy(struct perf_output_handle *handle,
1018 			     const void *buf, unsigned int len);
1019 extern int perf_swevent_get_recursion_context(void);
1020 extern void perf_swevent_put_recursion_context(int rctx);
1021 extern void perf_event_enable(struct perf_event *event);
1022 extern void perf_event_disable(struct perf_event *event);
1023 #else
1024 static inline void
perf_event_task_sched_in(struct task_struct * task)1025 perf_event_task_sched_in(struct task_struct *task)			{ }
1026 static inline void
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1027 perf_event_task_sched_out(struct task_struct *task,
1028 			    struct task_struct *next)			{ }
1029 static inline void
perf_event_task_tick(struct task_struct * task)1030 perf_event_task_tick(struct task_struct *task)				{ }
perf_event_init_task(struct task_struct * child)1031 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1032 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1033 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_do_pending(void)1034 static inline void perf_event_do_pending(void)				{ }
perf_event_print_debug(void)1035 static inline void perf_event_print_debug(void)				{ }
perf_disable(void)1036 static inline void perf_disable(void)					{ }
perf_enable(void)1037 static inline void perf_enable(void)					{ }
perf_event_task_disable(void)1038 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1039 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1040 
1041 static inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1042 perf_sw_event(u32 event_id, u64 nr, int nmi,
1043 		     struct pt_regs *regs, u64 addr)			{ }
1044 static inline void
perf_bp_event(struct perf_event * event,void * data)1045 perf_bp_event(struct perf_event *event, void *data)			{ }
1046 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1047 static inline int perf_register_guest_info_callbacks
1048 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1049 static inline int perf_unregister_guest_info_callbacks
1050 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1051 
perf_event_mmap(struct vm_area_struct * vma)1052 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_comm(struct task_struct * tsk)1053 static inline void perf_event_comm(struct task_struct *tsk)		{ }
perf_event_fork(struct task_struct * tsk)1054 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1055 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1056 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1057 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_event_enable(struct perf_event * event)1058 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1059 static inline void perf_event_disable(struct perf_event *event)		{ }
1060 #endif
1061 
1062 #define perf_output_put(handle, x) \
1063 	perf_output_copy((handle), &(x), sizeof(x))
1064 
1065 /*
1066  * This has to have a higher priority than migration_notifier in sched.c.
1067  */
1068 #define perf_cpu_notifier(fn)					\
1069 do {								\
1070 	static struct notifier_block fn##_nb __cpuinitdata =	\
1071 		{ .notifier_call = fn, .priority = 20 };	\
1072 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,		\
1073 		(void *)(unsigned long)smp_processor_id());	\
1074 	fn(&fn##_nb, (unsigned long)CPU_STARTING,		\
1075 		(void *)(unsigned long)smp_processor_id());	\
1076 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,			\
1077 		(void *)(unsigned long)smp_processor_id());	\
1078 	register_cpu_notifier(&fn##_nb);			\
1079 } while (0)
1080 
1081 #endif /* __KERNEL__ */
1082 #endif /* _LINUX_PERF_EVENT_H */
1083