• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10 
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13 
14 #include "util/debug.h"
15 
16 /* ANDROID_CHANGE_BEGIN */
17 #ifndef __APPLE__
18 #include <sys/prctl.h>
19 #endif
20 /* ANDROID_CHANGE_END */
21 
22 #include <semaphore.h>
23 /* ANDROID_CHANGE_BEGIN */
24 #ifdef __BIONIC__
25 /* PTHREAD_STACK_MIN is defined as (2 * PAGE_SIZE) */
26 #include <asm/page.h>
27 #endif
28 /* ANDROID_CHANGE_END */
29 #include <pthread.h>
30 #include <math.h>
31 
32 static char			const *input_name = "perf.data";
33 
34 static char			default_sort_order[] = "avg, max, switch, runtime";
35 static const char		*sort_order = default_sort_order;
36 
37 static int			profile_cpu = -1;
38 
39 #define PR_SET_NAME		15               /* Set process name */
40 #define MAX_CPUS		4096
41 
42 static u64			run_measurement_overhead;
43 static u64			sleep_measurement_overhead;
44 
45 #define COMM_LEN		20
46 #define SYM_LEN			129
47 
48 #define MAX_PID			65536
49 
50 static unsigned long		nr_tasks;
51 
52 struct sched_atom;
53 
54 struct task_desc {
55 	unsigned long		nr;
56 	unsigned long		pid;
57 	char			comm[COMM_LEN];
58 
59 	unsigned long		nr_events;
60 	unsigned long		curr_event;
61 	struct sched_atom	**atoms;
62 
63 	pthread_t		thread;
64 	sem_t			sleep_sem;
65 
66 	sem_t			ready_for_work;
67 	sem_t			work_done_sem;
68 
69 	u64			cpu_usage;
70 };
71 
72 enum sched_event_type {
73 	SCHED_EVENT_RUN,
74 	SCHED_EVENT_SLEEP,
75 	SCHED_EVENT_WAKEUP,
76 	SCHED_EVENT_MIGRATION,
77 };
78 
79 struct sched_atom {
80 	enum sched_event_type	type;
81 	int			specific_wait;
82 	u64			timestamp;
83 	u64			duration;
84 	unsigned long		nr;
85 	sem_t			*wait_sem;
86 	struct task_desc	*wakee;
87 };
88 
89 static struct task_desc		*pid_to_task[MAX_PID];
90 
91 static struct task_desc		**tasks;
92 
93 static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64			start_time;
95 
96 static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97 
98 static unsigned long		nr_run_events;
99 static unsigned long		nr_sleep_events;
100 static unsigned long		nr_wakeup_events;
101 
102 static unsigned long		nr_sleep_corrections;
103 static unsigned long		nr_run_events_optimized;
104 
105 static unsigned long		targetless_wakeups;
106 static unsigned long		multitarget_wakeups;
107 
108 static u64			cpu_usage;
109 static u64			runavg_cpu_usage;
110 static u64			parent_cpu_usage;
111 static u64			runavg_parent_cpu_usage;
112 
113 static unsigned long		nr_runs;
114 static u64			sum_runtime;
115 static u64			sum_fluct;
116 static u64			run_avg;
117 
118 static unsigned int		replay_repeat = 10;
119 static unsigned long		nr_timestamps;
120 static unsigned long		nr_unordered_timestamps;
121 static unsigned long		nr_state_machine_bugs;
122 static unsigned long		nr_context_switch_bugs;
123 static unsigned long		nr_events;
124 static unsigned long		nr_lost_chunks;
125 static unsigned long		nr_lost_events;
126 
127 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
128 
129 enum thread_state {
130 	THREAD_SLEEPING = 0,
131 	THREAD_WAIT_CPU,
132 	THREAD_SCHED_IN,
133 	THREAD_IGNORE
134 };
135 
136 struct work_atom {
137 	struct list_head	list;
138 	enum thread_state	state;
139 	u64			sched_out_time;
140 	u64			wake_up_time;
141 	u64			sched_in_time;
142 	u64			runtime;
143 };
144 
145 struct work_atoms {
146 	struct list_head	work_list;
147 	struct thread		*thread;
148 	struct rb_node		node;
149 	u64			max_lat;
150 	u64			max_lat_at;
151 	u64			total_lat;
152 	u64			nb_atoms;
153 	u64			total_runtime;
154 };
155 
156 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
157 
158 static struct rb_root		atom_root, sorted_atom_root;
159 
160 static u64			all_runtime;
161 static u64			all_count;
162 
163 
get_nsecs(void)164 static u64 get_nsecs(void)
165 {
166 	/* ANDROID_CHANGE_BEGIN */
167 #ifndef __APPLE__
168 	struct timespec ts;
169 
170 	clock_gettime(CLOCK_MONOTONIC, &ts);
171 
172 	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
173 #else
174 	return 0;
175 #endif
176 	/* ANDROID_CHANGE_END */
177 }
178 
burn_nsecs(u64 nsecs)179 static void burn_nsecs(u64 nsecs)
180 {
181 	u64 T0 = get_nsecs(), T1;
182 
183 	do {
184 		T1 = get_nsecs();
185 	} while (T1 + run_measurement_overhead < T0 + nsecs);
186 }
187 
sleep_nsecs(u64 nsecs)188 static void sleep_nsecs(u64 nsecs)
189 {
190 	struct timespec ts;
191 
192 	ts.tv_nsec = nsecs % 999999999;
193 	ts.tv_sec = nsecs / 999999999;
194 
195 	nanosleep(&ts, NULL);
196 }
197 
calibrate_run_measurement_overhead(void)198 static void calibrate_run_measurement_overhead(void)
199 {
200 	u64 T0, T1, delta, min_delta = 1000000000ULL;
201 	int i;
202 
203 	for (i = 0; i < 10; i++) {
204 		T0 = get_nsecs();
205 		burn_nsecs(0);
206 		T1 = get_nsecs();
207 		delta = T1-T0;
208 		min_delta = min(min_delta, delta);
209 	}
210 	run_measurement_overhead = min_delta;
211 
212 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
213 }
214 
calibrate_sleep_measurement_overhead(void)215 static void calibrate_sleep_measurement_overhead(void)
216 {
217 	u64 T0, T1, delta, min_delta = 1000000000ULL;
218 	int i;
219 
220 	for (i = 0; i < 10; i++) {
221 		T0 = get_nsecs();
222 		sleep_nsecs(10000);
223 		T1 = get_nsecs();
224 		delta = T1-T0;
225 		min_delta = min(min_delta, delta);
226 	}
227 	min_delta -= 10000;
228 	sleep_measurement_overhead = min_delta;
229 
230 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
231 }
232 
233 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)234 get_new_event(struct task_desc *task, u64 timestamp)
235 {
236 	struct sched_atom *event = zalloc(sizeof(*event));
237 	unsigned long idx = task->nr_events;
238 	size_t size;
239 
240 	event->timestamp = timestamp;
241 	event->nr = idx;
242 
243 	task->nr_events++;
244 	size = sizeof(struct sched_atom *) * task->nr_events;
245 	task->atoms = realloc(task->atoms, size);
246 	BUG_ON(!task->atoms);
247 
248 	task->atoms[idx] = event;
249 
250 	return event;
251 }
252 
last_event(struct task_desc * task)253 static struct sched_atom *last_event(struct task_desc *task)
254 {
255 	if (!task->nr_events)
256 		return NULL;
257 
258 	return task->atoms[task->nr_events - 1];
259 }
260 
261 static void
add_sched_event_run(struct task_desc * task,u64 timestamp,u64 duration)262 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
263 {
264 	struct sched_atom *event, *curr_event = last_event(task);
265 
266 	/*
267 	 * optimize an existing RUN event by merging this one
268 	 * to it:
269 	 */
270 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
271 		nr_run_events_optimized++;
272 		curr_event->duration += duration;
273 		return;
274 	}
275 
276 	event = get_new_event(task, timestamp);
277 
278 	event->type = SCHED_EVENT_RUN;
279 	event->duration = duration;
280 
281 	nr_run_events++;
282 }
283 
284 static void
add_sched_event_wakeup(struct task_desc * task,u64 timestamp,struct task_desc * wakee)285 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
286 		       struct task_desc *wakee)
287 {
288 	struct sched_atom *event, *wakee_event;
289 
290 	event = get_new_event(task, timestamp);
291 	event->type = SCHED_EVENT_WAKEUP;
292 	event->wakee = wakee;
293 
294 	wakee_event = last_event(wakee);
295 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
296 		targetless_wakeups++;
297 		return;
298 	}
299 	if (wakee_event->wait_sem) {
300 		multitarget_wakeups++;
301 		return;
302 	}
303 
304 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
305 	sem_init(wakee_event->wait_sem, 0, 0);
306 	wakee_event->specific_wait = 1;
307 	event->wait_sem = wakee_event->wait_sem;
308 
309 	nr_wakeup_events++;
310 }
311 
312 static void
add_sched_event_sleep(struct task_desc * task,u64 timestamp,u64 task_state __used)313 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
314 		      u64 task_state __used)
315 {
316 	struct sched_atom *event = get_new_event(task, timestamp);
317 
318 	event->type = SCHED_EVENT_SLEEP;
319 
320 	nr_sleep_events++;
321 }
322 
register_pid(unsigned long pid,const char * comm)323 static struct task_desc *register_pid(unsigned long pid, const char *comm)
324 {
325 	struct task_desc *task;
326 
327 	BUG_ON(pid >= MAX_PID);
328 
329 	task = pid_to_task[pid];
330 
331 	if (task)
332 		return task;
333 
334 	task = zalloc(sizeof(*task));
335 	task->pid = pid;
336 	task->nr = nr_tasks;
337 	strcpy(task->comm, comm);
338 	/*
339 	 * every task starts in sleeping state - this gets ignored
340 	 * if there's no wakeup pointing to this sleep state:
341 	 */
342 	add_sched_event_sleep(task, 0, 0);
343 
344 	pid_to_task[pid] = task;
345 	nr_tasks++;
346 	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
347 	BUG_ON(!tasks);
348 	tasks[task->nr] = task;
349 
350 	if (verbose)
351 		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
352 
353 	return task;
354 }
355 
356 
print_task_traces(void)357 static void print_task_traces(void)
358 {
359 	struct task_desc *task;
360 	unsigned long i;
361 
362 	for (i = 0; i < nr_tasks; i++) {
363 		task = tasks[i];
364 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
365 			task->nr, task->comm, task->pid, task->nr_events);
366 	}
367 }
368 
add_cross_task_wakeups(void)369 static void add_cross_task_wakeups(void)
370 {
371 	struct task_desc *task1, *task2;
372 	unsigned long i, j;
373 
374 	for (i = 0; i < nr_tasks; i++) {
375 		task1 = tasks[i];
376 		j = i + 1;
377 		if (j == nr_tasks)
378 			j = 0;
379 		task2 = tasks[j];
380 		add_sched_event_wakeup(task1, 0, task2);
381 	}
382 }
383 
384 static void
process_sched_event(struct task_desc * this_task __used,struct sched_atom * atom)385 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
386 {
387 	int ret = 0;
388 
389 	switch (atom->type) {
390 		case SCHED_EVENT_RUN:
391 			burn_nsecs(atom->duration);
392 			break;
393 		case SCHED_EVENT_SLEEP:
394 			if (atom->wait_sem)
395 				ret = sem_wait(atom->wait_sem);
396 			BUG_ON(ret);
397 			break;
398 		case SCHED_EVENT_WAKEUP:
399 			if (atom->wait_sem)
400 				ret = sem_post(atom->wait_sem);
401 			BUG_ON(ret);
402 			break;
403 		case SCHED_EVENT_MIGRATION:
404 			break;
405 		default:
406 			BUG_ON(1);
407 	}
408 }
409 
get_cpu_usage_nsec_parent(void)410 static u64 get_cpu_usage_nsec_parent(void)
411 {
412 	struct rusage ru;
413 	u64 sum;
414 	int err;
415 
416 	err = getrusage(RUSAGE_SELF, &ru);
417 	BUG_ON(err);
418 
419 	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
420 	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
421 
422 	return sum;
423 }
424 
self_open_counters(void)425 static int self_open_counters(void)
426 {
427 /* ANDROID_CHANGE_BEGIN */
428 #ifndef __APPLE__
429 	struct perf_event_attr attr;
430 	int fd;
431 
432 	memset(&attr, 0, sizeof(attr));
433 
434 	attr.type = PERF_TYPE_SOFTWARE;
435 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
436 
437 	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
438 
439 	if (fd < 0)
440 		die("Error: sys_perf_event_open() syscall returned"
441 		    "with %d (%s)\n", fd, strerror(errno));
442 	return fd;
443 #else
444 	die("Error: sys_perf_event_open() syscall not supported on host\n");
445 #endif
446 /* ANDROID_CHANGE_END */
447 }
448 
get_cpu_usage_nsec_self(int fd)449 static u64 get_cpu_usage_nsec_self(int fd)
450 {
451 	u64 runtime;
452 	int ret;
453 
454 	ret = read(fd, &runtime, sizeof(runtime));
455 	BUG_ON(ret != sizeof(runtime));
456 
457 	return runtime;
458 }
459 
thread_func(void * ctx)460 static void *thread_func(void *ctx)
461 {
462 /* ANDROID_CHANGE_BEGIN */
463 #ifndef __APPLE__
464 /* ANDROID_CHANGE_END */
465 	struct task_desc *this_task = ctx;
466 	u64 cpu_usage_0, cpu_usage_1;
467 	unsigned long i, ret;
468 	char comm2[22];
469 	int fd;
470 
471 	sprintf(comm2, ":%s", this_task->comm);
472 	prctl(PR_SET_NAME, comm2);
473 	fd = self_open_counters();
474 
475 again:
476 	ret = sem_post(&this_task->ready_for_work);
477 	BUG_ON(ret);
478 	ret = pthread_mutex_lock(&start_work_mutex);
479 	BUG_ON(ret);
480 	ret = pthread_mutex_unlock(&start_work_mutex);
481 	BUG_ON(ret);
482 
483 	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
484 
485 	for (i = 0; i < this_task->nr_events; i++) {
486 		this_task->curr_event = i;
487 		process_sched_event(this_task, this_task->atoms[i]);
488 	}
489 
490 	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
491 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
492 	ret = sem_post(&this_task->work_done_sem);
493 	BUG_ON(ret);
494 
495 	ret = pthread_mutex_lock(&work_done_wait_mutex);
496 	BUG_ON(ret);
497 	ret = pthread_mutex_unlock(&work_done_wait_mutex);
498 	BUG_ON(ret);
499 
500 	goto again;
501 /* ANDROID_CHANGE_BEGIN */
502 #endif // __APPLE__
503 /* ANDROID_CHANGE_END */
504         /* ANDROID_CHANGE_BEGIN */
505 #if defined(__BIONIC__) || defined(__APPLE__)
506         return NULL;
507 #endif
508         /* ANDROID_CHANGE_END */
509 }
510 
create_tasks(void)511 static void create_tasks(void)
512 {
513 	struct task_desc *task;
514 	pthread_attr_t attr;
515 	unsigned long i;
516 	int err;
517 
518 	err = pthread_attr_init(&attr);
519 	BUG_ON(err);
520         /* ANDROID_CHANGE_BEGIN */
521 #if 0
522 	err = pthread_attr_setstacksize(&attr,
523 			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
524 #else
525 	err = pthread_attr_setstacksize(&attr,
526 			(size_t) max((unsigned) 16 * 1024, (unsigned) PTHREAD_STACK_MIN));
527 #endif
528         /* ANDROID_CHANGE_END */
529 	BUG_ON(err);
530 	err = pthread_mutex_lock(&start_work_mutex);
531 	BUG_ON(err);
532 	err = pthread_mutex_lock(&work_done_wait_mutex);
533 	BUG_ON(err);
534 	for (i = 0; i < nr_tasks; i++) {
535 		task = tasks[i];
536 		sem_init(&task->sleep_sem, 0, 0);
537 		sem_init(&task->ready_for_work, 0, 0);
538 		sem_init(&task->work_done_sem, 0, 0);
539 		task->curr_event = 0;
540 		err = pthread_create(&task->thread, &attr, thread_func, task);
541 		BUG_ON(err);
542 	}
543 }
544 
wait_for_tasks(void)545 static void wait_for_tasks(void)
546 {
547 	u64 cpu_usage_0, cpu_usage_1;
548 	struct task_desc *task;
549 	unsigned long i, ret;
550 
551 	start_time = get_nsecs();
552 	cpu_usage = 0;
553 	pthread_mutex_unlock(&work_done_wait_mutex);
554 
555 	for (i = 0; i < nr_tasks; i++) {
556 		task = tasks[i];
557 		ret = sem_wait(&task->ready_for_work);
558 		BUG_ON(ret);
559 		sem_init(&task->ready_for_work, 0, 0);
560 	}
561 	ret = pthread_mutex_lock(&work_done_wait_mutex);
562 	BUG_ON(ret);
563 
564 	cpu_usage_0 = get_cpu_usage_nsec_parent();
565 
566 	pthread_mutex_unlock(&start_work_mutex);
567 
568 	for (i = 0; i < nr_tasks; i++) {
569 		task = tasks[i];
570 		ret = sem_wait(&task->work_done_sem);
571 		BUG_ON(ret);
572 		sem_init(&task->work_done_sem, 0, 0);
573 		cpu_usage += task->cpu_usage;
574 		task->cpu_usage = 0;
575 	}
576 
577 	cpu_usage_1 = get_cpu_usage_nsec_parent();
578 	if (!runavg_cpu_usage)
579 		runavg_cpu_usage = cpu_usage;
580 	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
581 
582 	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
583 	if (!runavg_parent_cpu_usage)
584 		runavg_parent_cpu_usage = parent_cpu_usage;
585 	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
586 				   parent_cpu_usage)/10;
587 
588 	ret = pthread_mutex_lock(&start_work_mutex);
589 	BUG_ON(ret);
590 
591 	for (i = 0; i < nr_tasks; i++) {
592 		task = tasks[i];
593 		sem_init(&task->sleep_sem, 0, 0);
594 		task->curr_event = 0;
595 	}
596 }
597 
run_one_test(void)598 static void run_one_test(void)
599 {
600 	u64 T0, T1, delta, avg_delta, fluct;
601 
602 	T0 = get_nsecs();
603 	wait_for_tasks();
604 	T1 = get_nsecs();
605 
606 	delta = T1 - T0;
607 	sum_runtime += delta;
608 	nr_runs++;
609 
610 	avg_delta = sum_runtime / nr_runs;
611 	if (delta < avg_delta)
612 		fluct = avg_delta - delta;
613 	else
614 		fluct = delta - avg_delta;
615 	sum_fluct += fluct;
616 	if (!run_avg)
617 		run_avg = delta;
618 	run_avg = (run_avg*9 + delta)/10;
619 
620 	printf("#%-3ld: %0.3f, ",
621 		nr_runs, (double)delta/1000000.0);
622 
623 	printf("ravg: %0.2f, ",
624 		(double)run_avg/1e6);
625 
626 	printf("cpu: %0.2f / %0.2f",
627 		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
628 
629 #if 0
630 	/*
631 	 * rusage statistics done by the parent, these are less
632 	 * accurate than the sum_exec_runtime based statistics:
633 	 */
634 	printf(" [%0.2f / %0.2f]",
635 		(double)parent_cpu_usage/1e6,
636 		(double)runavg_parent_cpu_usage/1e6);
637 #endif
638 
639 	printf("\n");
640 
641 	if (nr_sleep_corrections)
642 		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
643 	nr_sleep_corrections = 0;
644 }
645 
test_calibrations(void)646 static void test_calibrations(void)
647 {
648 	u64 T0, T1;
649 
650 	T0 = get_nsecs();
651 	burn_nsecs(1e6);
652 	T1 = get_nsecs();
653 
654 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
655 
656 	T0 = get_nsecs();
657 	sleep_nsecs(1e6);
658 	T1 = get_nsecs();
659 
660 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
661 }
662 
663 #define FILL_FIELD(ptr, field, event, data)	\
664 	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
665 
666 #define FILL_ARRAY(ptr, array, event, data)			\
667 do {								\
668 	void *__array = raw_field_ptr(event, #array, data);	\
669 	memcpy(ptr.array, __array, sizeof(ptr.array));	\
670 } while(0)
671 
672 #define FILL_COMMON_FIELDS(ptr, event, data)			\
673 do {								\
674 	FILL_FIELD(ptr, common_type, event, data);		\
675 	FILL_FIELD(ptr, common_flags, event, data);		\
676 	FILL_FIELD(ptr, common_preempt_count, event, data);	\
677 	FILL_FIELD(ptr, common_pid, event, data);		\
678 	FILL_FIELD(ptr, common_tgid, event, data);		\
679 } while (0)
680 
681 
682 
683 struct trace_switch_event {
684 	u32 size;
685 
686 	u16 common_type;
687 	u8 common_flags;
688 	u8 common_preempt_count;
689 	u32 common_pid;
690 	u32 common_tgid;
691 
692 	char prev_comm[16];
693 	u32 prev_pid;
694 	u32 prev_prio;
695 	u64 prev_state;
696 	char next_comm[16];
697 	u32 next_pid;
698 	u32 next_prio;
699 };
700 
701 struct trace_runtime_event {
702 	u32 size;
703 
704 	u16 common_type;
705 	u8 common_flags;
706 	u8 common_preempt_count;
707 	u32 common_pid;
708 	u32 common_tgid;
709 
710 	char comm[16];
711 	u32 pid;
712 	u64 runtime;
713 	u64 vruntime;
714 };
715 
716 struct trace_wakeup_event {
717 	u32 size;
718 
719 	u16 common_type;
720 	u8 common_flags;
721 	u8 common_preempt_count;
722 	u32 common_pid;
723 	u32 common_tgid;
724 
725 	char comm[16];
726 	u32 pid;
727 
728 	u32 prio;
729 	u32 success;
730 	u32 cpu;
731 };
732 
733 struct trace_fork_event {
734 	u32 size;
735 
736 	u16 common_type;
737 	u8 common_flags;
738 	u8 common_preempt_count;
739 	u32 common_pid;
740 	u32 common_tgid;
741 
742 	char parent_comm[16];
743 	u32 parent_pid;
744 	char child_comm[16];
745 	u32 child_pid;
746 };
747 
748 struct trace_migrate_task_event {
749 	u32 size;
750 
751 	u16 common_type;
752 	u8 common_flags;
753 	u8 common_preempt_count;
754 	u32 common_pid;
755 	u32 common_tgid;
756 
757 	char comm[16];
758 	u32 pid;
759 
760 	u32 prio;
761 	u32 cpu;
762 };
763 
764 struct trace_sched_handler {
765 	void (*switch_event)(struct trace_switch_event *,
766 			     struct perf_session *,
767 			     struct event *,
768 			     int cpu,
769 			     u64 timestamp,
770 			     struct thread *thread);
771 
772 	void (*runtime_event)(struct trace_runtime_event *,
773 			      struct perf_session *,
774 			      struct event *,
775 			      int cpu,
776 			      u64 timestamp,
777 			      struct thread *thread);
778 
779 	void (*wakeup_event)(struct trace_wakeup_event *,
780 			     struct perf_session *,
781 			     struct event *,
782 			     int cpu,
783 			     u64 timestamp,
784 			     struct thread *thread);
785 
786 	void (*fork_event)(struct trace_fork_event *,
787 			   struct event *,
788 			   int cpu,
789 			   u64 timestamp,
790 			   struct thread *thread);
791 
792 	void (*migrate_task_event)(struct trace_migrate_task_event *,
793 			   struct perf_session *session,
794 			   struct event *,
795 			   int cpu,
796 			   u64 timestamp,
797 			   struct thread *thread);
798 };
799 
800 
801 static void
replay_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session __used,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)802 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
803 		    struct perf_session *session __used,
804 		    struct event *event,
805 		    int cpu __used,
806 		    u64 timestamp __used,
807 		    struct thread *thread __used)
808 {
809 	struct task_desc *waker, *wakee;
810 
811 	if (verbose) {
812 		printf("sched_wakeup event %p\n", event);
813 
814 		printf(" ... pid %d woke up %s/%d\n",
815 			wakeup_event->common_pid,
816 			wakeup_event->comm,
817 			wakeup_event->pid);
818 	}
819 
820 	waker = register_pid(wakeup_event->common_pid, "<unknown>");
821 	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
822 
823 	add_sched_event_wakeup(waker, timestamp, wakee);
824 }
825 
826 static u64 cpu_last_switched[MAX_CPUS];
827 
828 static void
replay_switch_event(struct trace_switch_event * switch_event,struct perf_session * session __used,struct event * event,int cpu,u64 timestamp,struct thread * thread __used)829 replay_switch_event(struct trace_switch_event *switch_event,
830 		    struct perf_session *session __used,
831 		    struct event *event,
832 		    int cpu,
833 		    u64 timestamp,
834 		    struct thread *thread __used)
835 {
836 	struct task_desc *prev, __used *next;
837 	u64 timestamp0;
838 	s64 delta;
839 
840 	if (verbose)
841 		printf("sched_switch event %p\n", event);
842 
843 	if (cpu >= MAX_CPUS || cpu < 0)
844 		return;
845 
846 	timestamp0 = cpu_last_switched[cpu];
847 	if (timestamp0)
848 		delta = timestamp - timestamp0;
849 	else
850 		delta = 0;
851 
852 	if (delta < 0)
853 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
854 
855 	if (verbose) {
856 		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
857 			switch_event->prev_comm, switch_event->prev_pid,
858 			switch_event->next_comm, switch_event->next_pid,
859 			delta);
860 	}
861 
862 	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
863 	next = register_pid(switch_event->next_pid, switch_event->next_comm);
864 
865 	cpu_last_switched[cpu] = timestamp;
866 
867 	add_sched_event_run(prev, timestamp, delta);
868 	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
869 }
870 
871 
872 static void
replay_fork_event(struct trace_fork_event * fork_event,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)873 replay_fork_event(struct trace_fork_event *fork_event,
874 		  struct event *event,
875 		  int cpu __used,
876 		  u64 timestamp __used,
877 		  struct thread *thread __used)
878 {
879 	if (verbose) {
880 		printf("sched_fork event %p\n", event);
881 		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
882 		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
883 	}
884 	register_pid(fork_event->parent_pid, fork_event->parent_comm);
885 	register_pid(fork_event->child_pid, fork_event->child_comm);
886 }
887 
888 static struct trace_sched_handler replay_ops  = {
889 	.wakeup_event		= replay_wakeup_event,
890 	.switch_event		= replay_switch_event,
891 	.fork_event		= replay_fork_event,
892 };
893 
894 struct sort_dimension {
895 	const char		*name;
896 	sort_fn_t		cmp;
897 	struct list_head	list;
898 };
899 
900 static LIST_HEAD(cmp_pid);
901 
902 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)903 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
904 {
905 	struct sort_dimension *sort;
906 	int ret = 0;
907 
908 	BUG_ON(list_empty(list));
909 
910 	list_for_each_entry(sort, list, list) {
911 		ret = sort->cmp(l, r);
912 		if (ret)
913 			return ret;
914 	}
915 
916 	return ret;
917 }
918 
919 static struct work_atoms *
thread_atoms_search(struct rb_root * root,struct thread * thread,struct list_head * sort_list)920 thread_atoms_search(struct rb_root *root, struct thread *thread,
921 			 struct list_head *sort_list)
922 {
923 	struct rb_node *node = root->rb_node;
924 	struct work_atoms key = { .thread = thread };
925 
926 	while (node) {
927 		struct work_atoms *atoms;
928 		int cmp;
929 
930 		atoms = container_of(node, struct work_atoms, node);
931 
932 		cmp = thread_lat_cmp(sort_list, &key, atoms);
933 		if (cmp > 0)
934 			node = node->rb_left;
935 		else if (cmp < 0)
936 			node = node->rb_right;
937 		else {
938 			BUG_ON(thread != atoms->thread);
939 			return atoms;
940 		}
941 	}
942 	return NULL;
943 }
944 
945 static void
__thread_latency_insert(struct rb_root * root,struct work_atoms * data,struct list_head * sort_list)946 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
947 			 struct list_head *sort_list)
948 {
949 	struct rb_node **new = &(root->rb_node), *parent = NULL;
950 
951 	while (*new) {
952 		struct work_atoms *this;
953 		int cmp;
954 
955 		this = container_of(*new, struct work_atoms, node);
956 		parent = *new;
957 
958 		cmp = thread_lat_cmp(sort_list, data, this);
959 
960 		if (cmp > 0)
961 			new = &((*new)->rb_left);
962 		else
963 			new = &((*new)->rb_right);
964 	}
965 
966 	rb_link_node(&data->node, parent, new);
967 	rb_insert_color(&data->node, root);
968 }
969 
thread_atoms_insert(struct thread * thread)970 static void thread_atoms_insert(struct thread *thread)
971 {
972 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
973 	if (!atoms)
974 		die("No memory");
975 
976 	atoms->thread = thread;
977 	INIT_LIST_HEAD(&atoms->work_list);
978 	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
979 }
980 
981 static void
latency_fork_event(struct trace_fork_event * fork_event __used,struct event * event __used,int cpu __used,u64 timestamp __used,struct thread * thread __used)982 latency_fork_event(struct trace_fork_event *fork_event __used,
983 		   struct event *event __used,
984 		   int cpu __used,
985 		   u64 timestamp __used,
986 		   struct thread *thread __used)
987 {
988 	/* should insert the newcomer */
989 }
990 
991 __used
sched_out_state(struct trace_switch_event * switch_event)992 static char sched_out_state(struct trace_switch_event *switch_event)
993 {
994 	const char *str = TASK_STATE_TO_CHAR_STR;
995 
996 	return str[switch_event->prev_state];
997 }
998 
999 static void
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1000 add_sched_out_event(struct work_atoms *atoms,
1001 		    char run_state,
1002 		    u64 timestamp)
1003 {
1004 	struct work_atom *atom = zalloc(sizeof(*atom));
1005 	if (!atom)
1006 		die("Non memory");
1007 
1008 	atom->sched_out_time = timestamp;
1009 
1010 	if (run_state == 'R') {
1011 		atom->state = THREAD_WAIT_CPU;
1012 		atom->wake_up_time = atom->sched_out_time;
1013 	}
1014 
1015 	list_add_tail(&atom->list, &atoms->work_list);
1016 }
1017 
1018 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __used)1019 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
1020 {
1021 	struct work_atom *atom;
1022 
1023 	BUG_ON(list_empty(&atoms->work_list));
1024 
1025 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1026 
1027 	atom->runtime += delta;
1028 	atoms->total_runtime += delta;
1029 }
1030 
1031 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1032 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1033 {
1034 	struct work_atom *atom;
1035 	u64 delta;
1036 
1037 	if (list_empty(&atoms->work_list))
1038 		return;
1039 
1040 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1041 
1042 	if (atom->state != THREAD_WAIT_CPU)
1043 		return;
1044 
1045 	if (timestamp < atom->wake_up_time) {
1046 		atom->state = THREAD_IGNORE;
1047 		return;
1048 	}
1049 
1050 	atom->state = THREAD_SCHED_IN;
1051 	atom->sched_in_time = timestamp;
1052 
1053 	delta = atom->sched_in_time - atom->wake_up_time;
1054 	atoms->total_lat += delta;
1055 	if (delta > atoms->max_lat) {
1056 		atoms->max_lat = delta;
1057 		atoms->max_lat_at = timestamp;
1058 	}
1059 	atoms->nb_atoms++;
1060 }
1061 
1062 static void
latency_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * thread __used)1063 latency_switch_event(struct trace_switch_event *switch_event,
1064 		     struct perf_session *session,
1065 		     struct event *event __used,
1066 		     int cpu,
1067 		     u64 timestamp,
1068 		     struct thread *thread __used)
1069 {
1070 	struct work_atoms *out_events, *in_events;
1071 	struct thread *sched_out, *sched_in;
1072 	u64 timestamp0;
1073 	s64 delta;
1074 
1075 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1076 
1077 	timestamp0 = cpu_last_switched[cpu];
1078 	cpu_last_switched[cpu] = timestamp;
1079 	if (timestamp0)
1080 		delta = timestamp - timestamp0;
1081 	else
1082 		delta = 0;
1083 
1084 	if (delta < 0)
1085 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1086 
1087 
1088 	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1089 	sched_in = perf_session__findnew(session, switch_event->next_pid);
1090 
1091 	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1092 	if (!out_events) {
1093 		thread_atoms_insert(sched_out);
1094 		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1095 		if (!out_events)
1096 			die("out-event: Internal tree error");
1097 	}
1098 	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1099 
1100 	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1101 	if (!in_events) {
1102 		thread_atoms_insert(sched_in);
1103 		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1104 		if (!in_events)
1105 			die("in-event: Internal tree error");
1106 		/*
1107 		 * Take came in we have not heard about yet,
1108 		 * add in an initial atom in runnable state:
1109 		 */
1110 		add_sched_out_event(in_events, 'R', timestamp);
1111 	}
1112 	add_sched_in_event(in_events, timestamp);
1113 }
1114 
1115 static void
latency_runtime_event(struct trace_runtime_event * runtime_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * this_thread __used)1116 latency_runtime_event(struct trace_runtime_event *runtime_event,
1117 		     struct perf_session *session,
1118 		     struct event *event __used,
1119 		     int cpu,
1120 		     u64 timestamp,
1121 		     struct thread *this_thread __used)
1122 {
1123 	struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1124 	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1125 
1126 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1127 	if (!atoms) {
1128 		thread_atoms_insert(thread);
1129 		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1130 		if (!atoms)
1131 			die("in-event: Internal tree error");
1132 		add_sched_out_event(atoms, 'R', timestamp);
1133 	}
1134 
1135 	add_runtime_event(atoms, runtime_event->runtime, timestamp);
1136 }
1137 
1138 static void
latency_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1139 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1140 		     struct perf_session *session,
1141 		     struct event *__event __used,
1142 		     int cpu __used,
1143 		     u64 timestamp,
1144 		     struct thread *thread __used)
1145 {
1146 	struct work_atoms *atoms;
1147 	struct work_atom *atom;
1148 	struct thread *wakee;
1149 
1150 	/* Note for later, it may be interesting to observe the failing cases */
1151 	if (!wakeup_event->success)
1152 		return;
1153 
1154 	wakee = perf_session__findnew(session, wakeup_event->pid);
1155 	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1156 	if (!atoms) {
1157 		thread_atoms_insert(wakee);
1158 		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1159 		if (!atoms)
1160 			die("wakeup-event: Internal tree error");
1161 		add_sched_out_event(atoms, 'S', timestamp);
1162 	}
1163 
1164 	BUG_ON(list_empty(&atoms->work_list));
1165 
1166 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1167 
1168 	/*
1169 	 * You WILL be missing events if you've recorded only
1170 	 * one CPU, or are only looking at only one, so don't
1171 	 * make useless noise.
1172 	 */
1173 	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174 		nr_state_machine_bugs++;
1175 
1176 	nr_timestamps++;
1177 	if (atom->sched_out_time > timestamp) {
1178 		nr_unordered_timestamps++;
1179 		return;
1180 	}
1181 
1182 	atom->state = THREAD_WAIT_CPU;
1183 	atom->wake_up_time = timestamp;
1184 }
1185 
1186 static void
latency_migrate_task_event(struct trace_migrate_task_event * migrate_task_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1187 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1188 		     struct perf_session *session,
1189 		     struct event *__event __used,
1190 		     int cpu __used,
1191 		     u64 timestamp,
1192 		     struct thread *thread __used)
1193 {
1194 	struct work_atoms *atoms;
1195 	struct work_atom *atom;
1196 	struct thread *migrant;
1197 
1198 	/*
1199 	 * Only need to worry about migration when profiling one CPU.
1200 	 */
1201 	if (profile_cpu == -1)
1202 		return;
1203 
1204 	migrant = perf_session__findnew(session, migrate_task_event->pid);
1205 	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1206 	if (!atoms) {
1207 		thread_atoms_insert(migrant);
1208 		register_pid(migrant->pid, migrant->comm);
1209 		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1210 		if (!atoms)
1211 			die("migration-event: Internal tree error");
1212 		add_sched_out_event(atoms, 'R', timestamp);
1213 	}
1214 
1215 	BUG_ON(list_empty(&atoms->work_list));
1216 
1217 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1218 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1219 
1220 	nr_timestamps++;
1221 
1222 	if (atom->sched_out_time > timestamp)
1223 		nr_unordered_timestamps++;
1224 }
1225 
1226 static struct trace_sched_handler lat_ops  = {
1227 	.wakeup_event		= latency_wakeup_event,
1228 	.switch_event		= latency_switch_event,
1229 	.runtime_event		= latency_runtime_event,
1230 	.fork_event		= latency_fork_event,
1231 	.migrate_task_event	= latency_migrate_task_event,
1232 };
1233 
output_lat_thread(struct work_atoms * work_list)1234 static void output_lat_thread(struct work_atoms *work_list)
1235 {
1236 	int i;
1237 	int ret;
1238 	u64 avg;
1239 
1240 	if (!work_list->nb_atoms)
1241 		return;
1242 	/*
1243 	 * Ignore idle threads:
1244 	 */
1245 	if (!strcmp(work_list->thread->comm, "swapper"))
1246 		return;
1247 
1248 	all_runtime += work_list->total_runtime;
1249 	all_count += work_list->nb_atoms;
1250 
1251 	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1252 
1253 	for (i = 0; i < 24 - ret; i++)
1254 		printf(" ");
1255 
1256 	avg = work_list->total_lat / work_list->nb_atoms;
1257 
1258 	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1259 	      (double)work_list->total_runtime / 1e6,
1260 		 work_list->nb_atoms, (double)avg / 1e6,
1261 		 (double)work_list->max_lat / 1e6,
1262 		 (double)work_list->max_lat_at / 1e9);
1263 }
1264 
pid_cmp(struct work_atoms * l,struct work_atoms * r)1265 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1266 {
1267 	if (l->thread->pid < r->thread->pid)
1268 		return -1;
1269 	if (l->thread->pid > r->thread->pid)
1270 		return 1;
1271 
1272 	return 0;
1273 }
1274 
1275 static struct sort_dimension pid_sort_dimension = {
1276 	.name			= "pid",
1277 	.cmp			= pid_cmp,
1278 };
1279 
avg_cmp(struct work_atoms * l,struct work_atoms * r)1280 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1281 {
1282 	u64 avgl, avgr;
1283 
1284 	if (!l->nb_atoms)
1285 		return -1;
1286 
1287 	if (!r->nb_atoms)
1288 		return 1;
1289 
1290 	avgl = l->total_lat / l->nb_atoms;
1291 	avgr = r->total_lat / r->nb_atoms;
1292 
1293 	if (avgl < avgr)
1294 		return -1;
1295 	if (avgl > avgr)
1296 		return 1;
1297 
1298 	return 0;
1299 }
1300 
1301 static struct sort_dimension avg_sort_dimension = {
1302 	.name			= "avg",
1303 	.cmp			= avg_cmp,
1304 };
1305 
max_cmp(struct work_atoms * l,struct work_atoms * r)1306 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1307 {
1308 	if (l->max_lat < r->max_lat)
1309 		return -1;
1310 	if (l->max_lat > r->max_lat)
1311 		return 1;
1312 
1313 	return 0;
1314 }
1315 
1316 static struct sort_dimension max_sort_dimension = {
1317 	.name			= "max",
1318 	.cmp			= max_cmp,
1319 };
1320 
switch_cmp(struct work_atoms * l,struct work_atoms * r)1321 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1322 {
1323 	if (l->nb_atoms < r->nb_atoms)
1324 		return -1;
1325 	if (l->nb_atoms > r->nb_atoms)
1326 		return 1;
1327 
1328 	return 0;
1329 }
1330 
1331 static struct sort_dimension switch_sort_dimension = {
1332 	.name			= "switch",
1333 	.cmp			= switch_cmp,
1334 };
1335 
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1336 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1337 {
1338 	if (l->total_runtime < r->total_runtime)
1339 		return -1;
1340 	if (l->total_runtime > r->total_runtime)
1341 		return 1;
1342 
1343 	return 0;
1344 }
1345 
1346 static struct sort_dimension runtime_sort_dimension = {
1347 	.name			= "runtime",
1348 	.cmp			= runtime_cmp,
1349 };
1350 
1351 static struct sort_dimension *available_sorts[] = {
1352 	&pid_sort_dimension,
1353 	&avg_sort_dimension,
1354 	&max_sort_dimension,
1355 	&switch_sort_dimension,
1356 	&runtime_sort_dimension,
1357 };
1358 
1359 #define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1360 
1361 static LIST_HEAD(sort_list);
1362 
sort_dimension__add(const char * tok,struct list_head * list)1363 static int sort_dimension__add(const char *tok, struct list_head *list)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1368 		if (!strcmp(available_sorts[i]->name, tok)) {
1369 			list_add_tail(&available_sorts[i]->list, list);
1370 
1371 			return 0;
1372 		}
1373 	}
1374 
1375 	return -1;
1376 }
1377 
1378 static void setup_sorting(void);
1379 
sort_lat(void)1380 static void sort_lat(void)
1381 {
1382 	struct rb_node *node;
1383 
1384 	for (;;) {
1385 		struct work_atoms *data;
1386 		node = rb_first(&atom_root);
1387 		if (!node)
1388 			break;
1389 
1390 		rb_erase(node, &atom_root);
1391 		data = rb_entry(node, struct work_atoms, node);
1392 		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
1393 	}
1394 }
1395 
1396 static struct trace_sched_handler *trace_handler;
1397 
1398 static void
process_sched_wakeup_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1399 process_sched_wakeup_event(void *data, struct perf_session *session,
1400 			   struct event *event,
1401 			   int cpu __used,
1402 			   u64 timestamp __used,
1403 			   struct thread *thread __used)
1404 {
1405 	struct trace_wakeup_event wakeup_event;
1406 
1407 	FILL_COMMON_FIELDS(wakeup_event, event, data);
1408 
1409 	FILL_ARRAY(wakeup_event, comm, event, data);
1410 	FILL_FIELD(wakeup_event, pid, event, data);
1411 	FILL_FIELD(wakeup_event, prio, event, data);
1412 	FILL_FIELD(wakeup_event, success, event, data);
1413 	FILL_FIELD(wakeup_event, cpu, event, data);
1414 
1415 	if (trace_handler->wakeup_event)
1416 		trace_handler->wakeup_event(&wakeup_event, session, event,
1417 					    cpu, timestamp, thread);
1418 }
1419 
1420 /*
1421  * Track the current task - that way we can know whether there's any
1422  * weird events, such as a task being switched away that is not current.
1423  */
1424 static int max_cpu;
1425 
1426 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1427 
1428 static struct thread *curr_thread[MAX_CPUS];
1429 
1430 static char next_shortname1 = 'A';
1431 static char next_shortname2 = '0';
1432 
1433 static void
map_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int this_cpu,u64 timestamp,struct thread * thread __used)1434 map_switch_event(struct trace_switch_event *switch_event,
1435 		 struct perf_session *session,
1436 		 struct event *event __used,
1437 		 int this_cpu,
1438 		 u64 timestamp,
1439 		 struct thread *thread __used)
1440 {
1441 	struct thread *sched_out __used, *sched_in;
1442 	int new_shortname;
1443 	u64 timestamp0;
1444 	s64 delta;
1445 	int cpu;
1446 
1447 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1448 
1449 	if (this_cpu > max_cpu)
1450 		max_cpu = this_cpu;
1451 
1452 	timestamp0 = cpu_last_switched[this_cpu];
1453 	cpu_last_switched[this_cpu] = timestamp;
1454 	if (timestamp0)
1455 		delta = timestamp - timestamp0;
1456 	else
1457 		delta = 0;
1458 
1459 	if (delta < 0)
1460 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1461 
1462 
1463 	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1464 	sched_in = perf_session__findnew(session, switch_event->next_pid);
1465 
1466 	curr_thread[this_cpu] = sched_in;
1467 
1468 	printf("  ");
1469 
1470 	new_shortname = 0;
1471 	if (!sched_in->shortname[0]) {
1472 		sched_in->shortname[0] = next_shortname1;
1473 		sched_in->shortname[1] = next_shortname2;
1474 
1475 		if (next_shortname1 < 'Z') {
1476 			next_shortname1++;
1477 		} else {
1478 			next_shortname1='A';
1479 			if (next_shortname2 < '9') {
1480 				next_shortname2++;
1481 			} else {
1482 				next_shortname2='0';
1483 			}
1484 		}
1485 		new_shortname = 1;
1486 	}
1487 
1488 	for (cpu = 0; cpu <= max_cpu; cpu++) {
1489 		if (cpu != this_cpu)
1490 			printf(" ");
1491 		else
1492 			printf("*");
1493 
1494 		if (curr_thread[cpu]) {
1495 			if (curr_thread[cpu]->pid)
1496 				printf("%2s ", curr_thread[cpu]->shortname);
1497 			else
1498 				printf(".  ");
1499 		} else
1500 			printf("   ");
1501 	}
1502 
1503 	printf("  %12.6f secs ", (double)timestamp/1e9);
1504 	if (new_shortname) {
1505 		printf("%s => %s:%d\n",
1506 			sched_in->shortname, sched_in->comm, sched_in->pid);
1507 	} else {
1508 		printf("\n");
1509 	}
1510 }
1511 
1512 
1513 static void
process_sched_switch_event(void * data,struct perf_session * session,struct event * event,int this_cpu,u64 timestamp __used,struct thread * thread __used)1514 process_sched_switch_event(void *data, struct perf_session *session,
1515 			   struct event *event,
1516 			   int this_cpu,
1517 			   u64 timestamp __used,
1518 			   struct thread *thread __used)
1519 {
1520 	struct trace_switch_event switch_event;
1521 
1522 	FILL_COMMON_FIELDS(switch_event, event, data);
1523 
1524 	FILL_ARRAY(switch_event, prev_comm, event, data);
1525 	FILL_FIELD(switch_event, prev_pid, event, data);
1526 	FILL_FIELD(switch_event, prev_prio, event, data);
1527 	FILL_FIELD(switch_event, prev_state, event, data);
1528 	FILL_ARRAY(switch_event, next_comm, event, data);
1529 	FILL_FIELD(switch_event, next_pid, event, data);
1530 	FILL_FIELD(switch_event, next_prio, event, data);
1531 
1532 	if (curr_pid[this_cpu] != (u32)-1) {
1533 		/*
1534 		 * Are we trying to switch away a PID that is
1535 		 * not current?
1536 		 */
1537 		if (curr_pid[this_cpu] != switch_event.prev_pid)
1538 			nr_context_switch_bugs++;
1539 	}
1540 	if (trace_handler->switch_event)
1541 		trace_handler->switch_event(&switch_event, session, event,
1542 					    this_cpu, timestamp, thread);
1543 
1544 	curr_pid[this_cpu] = switch_event.next_pid;
1545 }
1546 
1547 static void
process_sched_runtime_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1548 process_sched_runtime_event(void *data, struct perf_session *session,
1549 			   struct event *event,
1550 			   int cpu __used,
1551 			   u64 timestamp __used,
1552 			   struct thread *thread __used)
1553 {
1554 	struct trace_runtime_event runtime_event;
1555 
1556 	FILL_ARRAY(runtime_event, comm, event, data);
1557 	FILL_FIELD(runtime_event, pid, event, data);
1558 	FILL_FIELD(runtime_event, runtime, event, data);
1559 	FILL_FIELD(runtime_event, vruntime, event, data);
1560 
1561 	if (trace_handler->runtime_event)
1562 		trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1563 }
1564 
1565 static void
process_sched_fork_event(void * data,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1566 process_sched_fork_event(void *data,
1567 			 struct event *event,
1568 			 int cpu __used,
1569 			 u64 timestamp __used,
1570 			 struct thread *thread __used)
1571 {
1572 	struct trace_fork_event fork_event;
1573 
1574 	FILL_COMMON_FIELDS(fork_event, event, data);
1575 
1576 	FILL_ARRAY(fork_event, parent_comm, event, data);
1577 	FILL_FIELD(fork_event, parent_pid, event, data);
1578 	FILL_ARRAY(fork_event, child_comm, event, data);
1579 	FILL_FIELD(fork_event, child_pid, event, data);
1580 
1581 	if (trace_handler->fork_event)
1582 		trace_handler->fork_event(&fork_event, event,
1583 					  cpu, timestamp, thread);
1584 }
1585 
1586 static void
process_sched_exit_event(struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1587 process_sched_exit_event(struct event *event,
1588 			 int cpu __used,
1589 			 u64 timestamp __used,
1590 			 struct thread *thread __used)
1591 {
1592 	if (verbose)
1593 		printf("sched_exit event %p\n", event);
1594 }
1595 
1596 static void
process_sched_migrate_task_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1597 process_sched_migrate_task_event(void *data, struct perf_session *session,
1598 			   struct event *event,
1599 			   int cpu __used,
1600 			   u64 timestamp __used,
1601 			   struct thread *thread __used)
1602 {
1603 	struct trace_migrate_task_event migrate_task_event;
1604 
1605 	FILL_COMMON_FIELDS(migrate_task_event, event, data);
1606 
1607 	FILL_ARRAY(migrate_task_event, comm, event, data);
1608 	FILL_FIELD(migrate_task_event, pid, event, data);
1609 	FILL_FIELD(migrate_task_event, prio, event, data);
1610 	FILL_FIELD(migrate_task_event, cpu, event, data);
1611 
1612 	if (trace_handler->migrate_task_event)
1613 		trace_handler->migrate_task_event(&migrate_task_event, session,
1614 						 event, cpu, timestamp, thread);
1615 }
1616 
process_raw_event(union perf_event * raw_event __used,struct perf_session * session,void * data,int cpu,u64 timestamp,struct thread * thread)1617 static void process_raw_event(union perf_event *raw_event __used,
1618 			      struct perf_session *session, void *data, int cpu,
1619 			      u64 timestamp, struct thread *thread)
1620 {
1621 	struct event *event;
1622 	int type;
1623 
1624 
1625 	type = trace_parse_common_type(data);
1626 	event = trace_find_event(type);
1627 
1628 	if (!strcmp(event->name, "sched_switch"))
1629 		process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1630 	if (!strcmp(event->name, "sched_stat_runtime"))
1631 		process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1632 	if (!strcmp(event->name, "sched_wakeup"))
1633 		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1634 	if (!strcmp(event->name, "sched_wakeup_new"))
1635 		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1636 	if (!strcmp(event->name, "sched_process_fork"))
1637 		process_sched_fork_event(data, event, cpu, timestamp, thread);
1638 	if (!strcmp(event->name, "sched_process_exit"))
1639 		process_sched_exit_event(event, cpu, timestamp, thread);
1640 	if (!strcmp(event->name, "sched_migrate_task"))
1641 		process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1642 }
1643 
process_sample_event(union perf_event * event,struct perf_sample * sample,struct perf_evsel * evsel __used,struct perf_session * session)1644 static int process_sample_event(union perf_event *event,
1645 				struct perf_sample *sample,
1646 				struct perf_evsel *evsel __used,
1647 				struct perf_session *session)
1648 {
1649 	struct thread *thread;
1650 
1651 	if (!(session->sample_type & PERF_SAMPLE_RAW))
1652 		return 0;
1653 
1654 	thread = perf_session__findnew(session, sample->pid);
1655 	if (thread == NULL) {
1656 		pr_debug("problem processing %d event, skipping it.\n",
1657 			 event->header.type);
1658 		return -1;
1659 	}
1660 
1661 	dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1662 
1663 	if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1664 		return 0;
1665 
1666 	process_raw_event(event, session, sample->raw_data, sample->cpu,
1667 			  sample->time, thread);
1668 
1669 	return 0;
1670 }
1671 
1672 static struct perf_event_ops event_ops = {
1673 	.sample			= process_sample_event,
1674 	.comm			= perf_event__process_comm,
1675 	.lost			= perf_event__process_lost,
1676 	.fork			= perf_event__process_task,
1677 	.ordered_samples	= true,
1678 };
1679 
read_events(void)1680 static int read_events(void)
1681 {
1682 	int err = -EINVAL;
1683 	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1684 							 0, false, &event_ops);
1685 	if (session == NULL)
1686 		return -ENOMEM;
1687 
1688 	if (perf_session__has_traces(session, "record -R")) {
1689 		err = perf_session__process_events(session, &event_ops);
1690 		nr_events      = session->hists.stats.nr_events[0];
1691 		nr_lost_events = session->hists.stats.total_lost;
1692 		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1693 	}
1694 
1695 	perf_session__delete(session);
1696 	return err;
1697 }
1698 
print_bad_events(void)1699 static void print_bad_events(void)
1700 {
1701 	if (nr_unordered_timestamps && nr_timestamps) {
1702 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1703 			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1704 			nr_unordered_timestamps, nr_timestamps);
1705 	}
1706 	if (nr_lost_events && nr_events) {
1707 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1708 			(double)nr_lost_events/(double)nr_events*100.0,
1709 			nr_lost_events, nr_events, nr_lost_chunks);
1710 	}
1711 	if (nr_state_machine_bugs && nr_timestamps) {
1712 		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1713 			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1714 			nr_state_machine_bugs, nr_timestamps);
1715 		if (nr_lost_events)
1716 			printf(" (due to lost events?)");
1717 		printf("\n");
1718 	}
1719 	if (nr_context_switch_bugs && nr_timestamps) {
1720 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1721 			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1722 			nr_context_switch_bugs, nr_timestamps);
1723 		if (nr_lost_events)
1724 			printf(" (due to lost events?)");
1725 		printf("\n");
1726 	}
1727 }
1728 
__cmd_lat(void)1729 static void __cmd_lat(void)
1730 {
1731 	struct rb_node *next;
1732 
1733 	setup_pager();
1734 	read_events();
1735 	sort_lat();
1736 
1737 	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1738 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1739 	printf(" ---------------------------------------------------------------------------------------------------------------\n");
1740 
1741 	next = rb_first(&sorted_atom_root);
1742 
1743 	while (next) {
1744 		struct work_atoms *work_list;
1745 
1746 		work_list = rb_entry(next, struct work_atoms, node);
1747 		output_lat_thread(work_list);
1748 		next = rb_next(next);
1749 	}
1750 
1751 	printf(" -----------------------------------------------------------------------------------------\n");
1752 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1753 		(double)all_runtime/1e6, all_count);
1754 
1755 	printf(" ---------------------------------------------------\n");
1756 
1757 	print_bad_events();
1758 	printf("\n");
1759 
1760 }
1761 
1762 static struct trace_sched_handler map_ops  = {
1763 	.wakeup_event		= NULL,
1764 	.switch_event		= map_switch_event,
1765 	.runtime_event		= NULL,
1766 	.fork_event		= NULL,
1767 };
1768 
__cmd_map(void)1769 static void __cmd_map(void)
1770 {
1771 	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1772 
1773 	setup_pager();
1774 	read_events();
1775 	print_bad_events();
1776 }
1777 
__cmd_replay(void)1778 static void __cmd_replay(void)
1779 {
1780 	unsigned long i;
1781 
1782 	calibrate_run_measurement_overhead();
1783 	calibrate_sleep_measurement_overhead();
1784 
1785 	test_calibrations();
1786 
1787 	read_events();
1788 
1789 	printf("nr_run_events:        %ld\n", nr_run_events);
1790 	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1791 	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1792 
1793 	if (targetless_wakeups)
1794 		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1795 	if (multitarget_wakeups)
1796 		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1797 	if (nr_run_events_optimized)
1798 		printf("run atoms optimized: %ld\n",
1799 			nr_run_events_optimized);
1800 
1801 	print_task_traces();
1802 	add_cross_task_wakeups();
1803 
1804 	create_tasks();
1805 	printf("------------------------------------------------------------\n");
1806 	for (i = 0; i < replay_repeat; i++)
1807 		run_one_test();
1808 }
1809 
1810 
1811 static const char * const sched_usage[] = {
1812 	"perf sched [<options>] {record|latency|map|replay|trace}",
1813 	NULL
1814 };
1815 
1816 static const struct option sched_options[] = {
1817 	OPT_STRING('i', "input", &input_name, "file",
1818 		    "input file name"),
1819 	OPT_INCR('v', "verbose", &verbose,
1820 		    "be more verbose (show symbol address, etc)"),
1821 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822 		    "dump raw trace in ASCII"),
1823 	OPT_END()
1824 };
1825 
1826 static const char * const latency_usage[] = {
1827 	"perf sched latency [<options>]",
1828 	NULL
1829 };
1830 
1831 static const struct option latency_options[] = {
1832 	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1833 		   "sort by key(s): runtime, switch, avg, max"),
1834 	OPT_INCR('v', "verbose", &verbose,
1835 		    "be more verbose (show symbol address, etc)"),
1836 	OPT_INTEGER('C', "CPU", &profile_cpu,
1837 		    "CPU to profile on"),
1838 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1839 		    "dump raw trace in ASCII"),
1840 	OPT_END()
1841 };
1842 
1843 static const char * const replay_usage[] = {
1844 	"perf sched replay [<options>]",
1845 	NULL
1846 };
1847 
1848 static const struct option replay_options[] = {
1849 	OPT_UINTEGER('r', "repeat", &replay_repeat,
1850 		     "repeat the workload replay N times (-1: infinite)"),
1851 	OPT_INCR('v', "verbose", &verbose,
1852 		    "be more verbose (show symbol address, etc)"),
1853 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1854 		    "dump raw trace in ASCII"),
1855 	OPT_END()
1856 };
1857 
setup_sorting(void)1858 static void setup_sorting(void)
1859 {
1860 	char *tmp, *tok, *str = strdup(sort_order);
1861 
1862 	for (tok = strtok_r(str, ", ", &tmp);
1863 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1864 		if (sort_dimension__add(tok, &sort_list) < 0) {
1865 			error("Unknown --sort key: `%s'", tok);
1866 			usage_with_options(latency_usage, latency_options);
1867 		}
1868 	}
1869 
1870 	free(str);
1871 
1872 	sort_dimension__add("pid", &cmp_pid);
1873 }
1874 
1875 static const char *record_args[] = {
1876 	"record",
1877 	"-a",
1878 	"-R",
1879 	"-f",
1880 	"-m", "1024",
1881 	"-c", "1",
1882 	"-e", "sched:sched_switch",
1883 	"-e", "sched:sched_stat_wait",
1884 	"-e", "sched:sched_stat_sleep",
1885 	"-e", "sched:sched_stat_iowait",
1886 	"-e", "sched:sched_stat_runtime",
1887 	"-e", "sched:sched_process_exit",
1888 	"-e", "sched:sched_process_fork",
1889 	"-e", "sched:sched_wakeup",
1890 	"-e", "sched:sched_migrate_task",
1891 };
1892 
__cmd_record(int argc,const char ** argv)1893 static int __cmd_record(int argc, const char **argv)
1894 {
1895 	unsigned int rec_argc, i, j;
1896 	const char **rec_argv;
1897 
1898 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1899 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1900 
1901 	if (rec_argv == NULL)
1902 		return -ENOMEM;
1903 
1904 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1905 		rec_argv[i] = strdup(record_args[i]);
1906 
1907 	for (j = 1; j < (unsigned int)argc; j++, i++)
1908 		rec_argv[i] = argv[j];
1909 
1910 	BUG_ON(i != rec_argc);
1911 
1912 	return cmd_record(i, rec_argv, NULL);
1913 }
1914 
cmd_sched(int argc,const char ** argv,const char * prefix __used)1915 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1916 {
1917 	argc = parse_options(argc, argv, sched_options, sched_usage,
1918 			     PARSE_OPT_STOP_AT_NON_OPTION);
1919 	if (!argc)
1920 		usage_with_options(sched_usage, sched_options);
1921 
1922 	/*
1923 	 * Aliased to 'perf script' for now:
1924 	 */
1925 	if (!strcmp(argv[0], "script"))
1926 		return cmd_script(argc, argv, prefix);
1927 
1928 	symbol__init();
1929 	if (!strncmp(argv[0], "rec", 3)) {
1930 		return __cmd_record(argc, argv);
1931 	} else if (!strncmp(argv[0], "lat", 3)) {
1932 		trace_handler = &lat_ops;
1933 		if (argc > 1) {
1934 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1935 			if (argc)
1936 				usage_with_options(latency_usage, latency_options);
1937 		}
1938 		setup_sorting();
1939 		__cmd_lat();
1940 	} else if (!strcmp(argv[0], "map")) {
1941 		trace_handler = &map_ops;
1942 		setup_sorting();
1943 		__cmd_map();
1944 	} else if (!strncmp(argv[0], "rep", 3)) {
1945 		trace_handler = &replay_ops;
1946 		if (argc) {
1947 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1948 			if (argc)
1949 				usage_with_options(replay_usage, replay_options);
1950 		}
1951 		__cmd_replay();
1952 	} else {
1953 		usage_with_options(sched_usage, sched_options);
1954 	}
1955 
1956 	return 0;
1957 }
1958