1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15
16 /* ANDROID_CHANGE_BEGIN */
17 #ifndef __APPLE__
18 #include <sys/prctl.h>
19 #endif
20 /* ANDROID_CHANGE_END */
21
22 #include <semaphore.h>
23 /* ANDROID_CHANGE_BEGIN */
24 #ifdef __BIONIC__
25 /* PTHREAD_STACK_MIN is defined as (2 * PAGE_SIZE) */
26 #include <asm/page.h>
27 #endif
28 /* ANDROID_CHANGE_END */
29 #include <pthread.h>
30 #include <math.h>
31
32 static char const *input_name = "perf.data";
33
34 static char default_sort_order[] = "avg, max, switch, runtime";
35 static const char *sort_order = default_sort_order;
36
37 static int profile_cpu = -1;
38
39 #define PR_SET_NAME 15 /* Set process name */
40 #define MAX_CPUS 4096
41
42 static u64 run_measurement_overhead;
43 static u64 sleep_measurement_overhead;
44
45 #define COMM_LEN 20
46 #define SYM_LEN 129
47
48 #define MAX_PID 65536
49
50 static unsigned long nr_tasks;
51
52 struct sched_atom;
53
54 struct task_desc {
55 unsigned long nr;
56 unsigned long pid;
57 char comm[COMM_LEN];
58
59 unsigned long nr_events;
60 unsigned long curr_event;
61 struct sched_atom **atoms;
62
63 pthread_t thread;
64 sem_t sleep_sem;
65
66 sem_t ready_for_work;
67 sem_t work_done_sem;
68
69 u64 cpu_usage;
70 };
71
72 enum sched_event_type {
73 SCHED_EVENT_RUN,
74 SCHED_EVENT_SLEEP,
75 SCHED_EVENT_WAKEUP,
76 SCHED_EVENT_MIGRATION,
77 };
78
79 struct sched_atom {
80 enum sched_event_type type;
81 int specific_wait;
82 u64 timestamp;
83 u64 duration;
84 unsigned long nr;
85 sem_t *wait_sem;
86 struct task_desc *wakee;
87 };
88
89 static struct task_desc *pid_to_task[MAX_PID];
90
91 static struct task_desc **tasks;
92
93 static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64 start_time;
95
96 static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97
98 static unsigned long nr_run_events;
99 static unsigned long nr_sleep_events;
100 static unsigned long nr_wakeup_events;
101
102 static unsigned long nr_sleep_corrections;
103 static unsigned long nr_run_events_optimized;
104
105 static unsigned long targetless_wakeups;
106 static unsigned long multitarget_wakeups;
107
108 static u64 cpu_usage;
109 static u64 runavg_cpu_usage;
110 static u64 parent_cpu_usage;
111 static u64 runavg_parent_cpu_usage;
112
113 static unsigned long nr_runs;
114 static u64 sum_runtime;
115 static u64 sum_fluct;
116 static u64 run_avg;
117
118 static unsigned int replay_repeat = 10;
119 static unsigned long nr_timestamps;
120 static unsigned long nr_unordered_timestamps;
121 static unsigned long nr_state_machine_bugs;
122 static unsigned long nr_context_switch_bugs;
123 static unsigned long nr_events;
124 static unsigned long nr_lost_chunks;
125 static unsigned long nr_lost_events;
126
127 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
128
129 enum thread_state {
130 THREAD_SLEEPING = 0,
131 THREAD_WAIT_CPU,
132 THREAD_SCHED_IN,
133 THREAD_IGNORE
134 };
135
136 struct work_atom {
137 struct list_head list;
138 enum thread_state state;
139 u64 sched_out_time;
140 u64 wake_up_time;
141 u64 sched_in_time;
142 u64 runtime;
143 };
144
145 struct work_atoms {
146 struct list_head work_list;
147 struct thread *thread;
148 struct rb_node node;
149 u64 max_lat;
150 u64 max_lat_at;
151 u64 total_lat;
152 u64 nb_atoms;
153 u64 total_runtime;
154 };
155
156 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
157
158 static struct rb_root atom_root, sorted_atom_root;
159
160 static u64 all_runtime;
161 static u64 all_count;
162
163
get_nsecs(void)164 static u64 get_nsecs(void)
165 {
166 /* ANDROID_CHANGE_BEGIN */
167 #ifndef __APPLE__
168 struct timespec ts;
169
170 clock_gettime(CLOCK_MONOTONIC, &ts);
171
172 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
173 #else
174 return 0;
175 #endif
176 /* ANDROID_CHANGE_END */
177 }
178
burn_nsecs(u64 nsecs)179 static void burn_nsecs(u64 nsecs)
180 {
181 u64 T0 = get_nsecs(), T1;
182
183 do {
184 T1 = get_nsecs();
185 } while (T1 + run_measurement_overhead < T0 + nsecs);
186 }
187
sleep_nsecs(u64 nsecs)188 static void sleep_nsecs(u64 nsecs)
189 {
190 struct timespec ts;
191
192 ts.tv_nsec = nsecs % 999999999;
193 ts.tv_sec = nsecs / 999999999;
194
195 nanosleep(&ts, NULL);
196 }
197
calibrate_run_measurement_overhead(void)198 static void calibrate_run_measurement_overhead(void)
199 {
200 u64 T0, T1, delta, min_delta = 1000000000ULL;
201 int i;
202
203 for (i = 0; i < 10; i++) {
204 T0 = get_nsecs();
205 burn_nsecs(0);
206 T1 = get_nsecs();
207 delta = T1-T0;
208 min_delta = min(min_delta, delta);
209 }
210 run_measurement_overhead = min_delta;
211
212 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
213 }
214
calibrate_sleep_measurement_overhead(void)215 static void calibrate_sleep_measurement_overhead(void)
216 {
217 u64 T0, T1, delta, min_delta = 1000000000ULL;
218 int i;
219
220 for (i = 0; i < 10; i++) {
221 T0 = get_nsecs();
222 sleep_nsecs(10000);
223 T1 = get_nsecs();
224 delta = T1-T0;
225 min_delta = min(min_delta, delta);
226 }
227 min_delta -= 10000;
228 sleep_measurement_overhead = min_delta;
229
230 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
231 }
232
233 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)234 get_new_event(struct task_desc *task, u64 timestamp)
235 {
236 struct sched_atom *event = zalloc(sizeof(*event));
237 unsigned long idx = task->nr_events;
238 size_t size;
239
240 event->timestamp = timestamp;
241 event->nr = idx;
242
243 task->nr_events++;
244 size = sizeof(struct sched_atom *) * task->nr_events;
245 task->atoms = realloc(task->atoms, size);
246 BUG_ON(!task->atoms);
247
248 task->atoms[idx] = event;
249
250 return event;
251 }
252
last_event(struct task_desc * task)253 static struct sched_atom *last_event(struct task_desc *task)
254 {
255 if (!task->nr_events)
256 return NULL;
257
258 return task->atoms[task->nr_events - 1];
259 }
260
261 static void
add_sched_event_run(struct task_desc * task,u64 timestamp,u64 duration)262 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
263 {
264 struct sched_atom *event, *curr_event = last_event(task);
265
266 /*
267 * optimize an existing RUN event by merging this one
268 * to it:
269 */
270 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
271 nr_run_events_optimized++;
272 curr_event->duration += duration;
273 return;
274 }
275
276 event = get_new_event(task, timestamp);
277
278 event->type = SCHED_EVENT_RUN;
279 event->duration = duration;
280
281 nr_run_events++;
282 }
283
284 static void
add_sched_event_wakeup(struct task_desc * task,u64 timestamp,struct task_desc * wakee)285 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
286 struct task_desc *wakee)
287 {
288 struct sched_atom *event, *wakee_event;
289
290 event = get_new_event(task, timestamp);
291 event->type = SCHED_EVENT_WAKEUP;
292 event->wakee = wakee;
293
294 wakee_event = last_event(wakee);
295 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
296 targetless_wakeups++;
297 return;
298 }
299 if (wakee_event->wait_sem) {
300 multitarget_wakeups++;
301 return;
302 }
303
304 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
305 sem_init(wakee_event->wait_sem, 0, 0);
306 wakee_event->specific_wait = 1;
307 event->wait_sem = wakee_event->wait_sem;
308
309 nr_wakeup_events++;
310 }
311
312 static void
add_sched_event_sleep(struct task_desc * task,u64 timestamp,u64 task_state __used)313 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
314 u64 task_state __used)
315 {
316 struct sched_atom *event = get_new_event(task, timestamp);
317
318 event->type = SCHED_EVENT_SLEEP;
319
320 nr_sleep_events++;
321 }
322
register_pid(unsigned long pid,const char * comm)323 static struct task_desc *register_pid(unsigned long pid, const char *comm)
324 {
325 struct task_desc *task;
326
327 BUG_ON(pid >= MAX_PID);
328
329 task = pid_to_task[pid];
330
331 if (task)
332 return task;
333
334 task = zalloc(sizeof(*task));
335 task->pid = pid;
336 task->nr = nr_tasks;
337 strcpy(task->comm, comm);
338 /*
339 * every task starts in sleeping state - this gets ignored
340 * if there's no wakeup pointing to this sleep state:
341 */
342 add_sched_event_sleep(task, 0, 0);
343
344 pid_to_task[pid] = task;
345 nr_tasks++;
346 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
347 BUG_ON(!tasks);
348 tasks[task->nr] = task;
349
350 if (verbose)
351 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
352
353 return task;
354 }
355
356
print_task_traces(void)357 static void print_task_traces(void)
358 {
359 struct task_desc *task;
360 unsigned long i;
361
362 for (i = 0; i < nr_tasks; i++) {
363 task = tasks[i];
364 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
365 task->nr, task->comm, task->pid, task->nr_events);
366 }
367 }
368
add_cross_task_wakeups(void)369 static void add_cross_task_wakeups(void)
370 {
371 struct task_desc *task1, *task2;
372 unsigned long i, j;
373
374 for (i = 0; i < nr_tasks; i++) {
375 task1 = tasks[i];
376 j = i + 1;
377 if (j == nr_tasks)
378 j = 0;
379 task2 = tasks[j];
380 add_sched_event_wakeup(task1, 0, task2);
381 }
382 }
383
384 static void
process_sched_event(struct task_desc * this_task __used,struct sched_atom * atom)385 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
386 {
387 int ret = 0;
388
389 switch (atom->type) {
390 case SCHED_EVENT_RUN:
391 burn_nsecs(atom->duration);
392 break;
393 case SCHED_EVENT_SLEEP:
394 if (atom->wait_sem)
395 ret = sem_wait(atom->wait_sem);
396 BUG_ON(ret);
397 break;
398 case SCHED_EVENT_WAKEUP:
399 if (atom->wait_sem)
400 ret = sem_post(atom->wait_sem);
401 BUG_ON(ret);
402 break;
403 case SCHED_EVENT_MIGRATION:
404 break;
405 default:
406 BUG_ON(1);
407 }
408 }
409
get_cpu_usage_nsec_parent(void)410 static u64 get_cpu_usage_nsec_parent(void)
411 {
412 struct rusage ru;
413 u64 sum;
414 int err;
415
416 err = getrusage(RUSAGE_SELF, &ru);
417 BUG_ON(err);
418
419 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
420 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
421
422 return sum;
423 }
424
self_open_counters(void)425 static int self_open_counters(void)
426 {
427 /* ANDROID_CHANGE_BEGIN */
428 #ifndef __APPLE__
429 struct perf_event_attr attr;
430 int fd;
431
432 memset(&attr, 0, sizeof(attr));
433
434 attr.type = PERF_TYPE_SOFTWARE;
435 attr.config = PERF_COUNT_SW_TASK_CLOCK;
436
437 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
438
439 if (fd < 0)
440 die("Error: sys_perf_event_open() syscall returned"
441 "with %d (%s)\n", fd, strerror(errno));
442 return fd;
443 #else
444 die("Error: sys_perf_event_open() syscall not supported on host\n");
445 #endif
446 /* ANDROID_CHANGE_END */
447 }
448
get_cpu_usage_nsec_self(int fd)449 static u64 get_cpu_usage_nsec_self(int fd)
450 {
451 u64 runtime;
452 int ret;
453
454 ret = read(fd, &runtime, sizeof(runtime));
455 BUG_ON(ret != sizeof(runtime));
456
457 return runtime;
458 }
459
thread_func(void * ctx)460 static void *thread_func(void *ctx)
461 {
462 /* ANDROID_CHANGE_BEGIN */
463 #ifndef __APPLE__
464 /* ANDROID_CHANGE_END */
465 struct task_desc *this_task = ctx;
466 u64 cpu_usage_0, cpu_usage_1;
467 unsigned long i, ret;
468 char comm2[22];
469 int fd;
470
471 sprintf(comm2, ":%s", this_task->comm);
472 prctl(PR_SET_NAME, comm2);
473 fd = self_open_counters();
474
475 again:
476 ret = sem_post(&this_task->ready_for_work);
477 BUG_ON(ret);
478 ret = pthread_mutex_lock(&start_work_mutex);
479 BUG_ON(ret);
480 ret = pthread_mutex_unlock(&start_work_mutex);
481 BUG_ON(ret);
482
483 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
484
485 for (i = 0; i < this_task->nr_events; i++) {
486 this_task->curr_event = i;
487 process_sched_event(this_task, this_task->atoms[i]);
488 }
489
490 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
491 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
492 ret = sem_post(&this_task->work_done_sem);
493 BUG_ON(ret);
494
495 ret = pthread_mutex_lock(&work_done_wait_mutex);
496 BUG_ON(ret);
497 ret = pthread_mutex_unlock(&work_done_wait_mutex);
498 BUG_ON(ret);
499
500 goto again;
501 /* ANDROID_CHANGE_BEGIN */
502 #endif // __APPLE__
503 /* ANDROID_CHANGE_END */
504 /* ANDROID_CHANGE_BEGIN */
505 #if defined(__BIONIC__) || defined(__APPLE__)
506 return NULL;
507 #endif
508 /* ANDROID_CHANGE_END */
509 }
510
create_tasks(void)511 static void create_tasks(void)
512 {
513 struct task_desc *task;
514 pthread_attr_t attr;
515 unsigned long i;
516 int err;
517
518 err = pthread_attr_init(&attr);
519 BUG_ON(err);
520 /* ANDROID_CHANGE_BEGIN */
521 #if 0
522 err = pthread_attr_setstacksize(&attr,
523 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
524 #else
525 err = pthread_attr_setstacksize(&attr,
526 (size_t) max((unsigned) 16 * 1024, (unsigned) PTHREAD_STACK_MIN));
527 #endif
528 /* ANDROID_CHANGE_END */
529 BUG_ON(err);
530 err = pthread_mutex_lock(&start_work_mutex);
531 BUG_ON(err);
532 err = pthread_mutex_lock(&work_done_wait_mutex);
533 BUG_ON(err);
534 for (i = 0; i < nr_tasks; i++) {
535 task = tasks[i];
536 sem_init(&task->sleep_sem, 0, 0);
537 sem_init(&task->ready_for_work, 0, 0);
538 sem_init(&task->work_done_sem, 0, 0);
539 task->curr_event = 0;
540 err = pthread_create(&task->thread, &attr, thread_func, task);
541 BUG_ON(err);
542 }
543 }
544
wait_for_tasks(void)545 static void wait_for_tasks(void)
546 {
547 u64 cpu_usage_0, cpu_usage_1;
548 struct task_desc *task;
549 unsigned long i, ret;
550
551 start_time = get_nsecs();
552 cpu_usage = 0;
553 pthread_mutex_unlock(&work_done_wait_mutex);
554
555 for (i = 0; i < nr_tasks; i++) {
556 task = tasks[i];
557 ret = sem_wait(&task->ready_for_work);
558 BUG_ON(ret);
559 sem_init(&task->ready_for_work, 0, 0);
560 }
561 ret = pthread_mutex_lock(&work_done_wait_mutex);
562 BUG_ON(ret);
563
564 cpu_usage_0 = get_cpu_usage_nsec_parent();
565
566 pthread_mutex_unlock(&start_work_mutex);
567
568 for (i = 0; i < nr_tasks; i++) {
569 task = tasks[i];
570 ret = sem_wait(&task->work_done_sem);
571 BUG_ON(ret);
572 sem_init(&task->work_done_sem, 0, 0);
573 cpu_usage += task->cpu_usage;
574 task->cpu_usage = 0;
575 }
576
577 cpu_usage_1 = get_cpu_usage_nsec_parent();
578 if (!runavg_cpu_usage)
579 runavg_cpu_usage = cpu_usage;
580 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
581
582 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
583 if (!runavg_parent_cpu_usage)
584 runavg_parent_cpu_usage = parent_cpu_usage;
585 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
586 parent_cpu_usage)/10;
587
588 ret = pthread_mutex_lock(&start_work_mutex);
589 BUG_ON(ret);
590
591 for (i = 0; i < nr_tasks; i++) {
592 task = tasks[i];
593 sem_init(&task->sleep_sem, 0, 0);
594 task->curr_event = 0;
595 }
596 }
597
run_one_test(void)598 static void run_one_test(void)
599 {
600 u64 T0, T1, delta, avg_delta, fluct;
601
602 T0 = get_nsecs();
603 wait_for_tasks();
604 T1 = get_nsecs();
605
606 delta = T1 - T0;
607 sum_runtime += delta;
608 nr_runs++;
609
610 avg_delta = sum_runtime / nr_runs;
611 if (delta < avg_delta)
612 fluct = avg_delta - delta;
613 else
614 fluct = delta - avg_delta;
615 sum_fluct += fluct;
616 if (!run_avg)
617 run_avg = delta;
618 run_avg = (run_avg*9 + delta)/10;
619
620 printf("#%-3ld: %0.3f, ",
621 nr_runs, (double)delta/1000000.0);
622
623 printf("ravg: %0.2f, ",
624 (double)run_avg/1e6);
625
626 printf("cpu: %0.2f / %0.2f",
627 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
628
629 #if 0
630 /*
631 * rusage statistics done by the parent, these are less
632 * accurate than the sum_exec_runtime based statistics:
633 */
634 printf(" [%0.2f / %0.2f]",
635 (double)parent_cpu_usage/1e6,
636 (double)runavg_parent_cpu_usage/1e6);
637 #endif
638
639 printf("\n");
640
641 if (nr_sleep_corrections)
642 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
643 nr_sleep_corrections = 0;
644 }
645
test_calibrations(void)646 static void test_calibrations(void)
647 {
648 u64 T0, T1;
649
650 T0 = get_nsecs();
651 burn_nsecs(1e6);
652 T1 = get_nsecs();
653
654 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
655
656 T0 = get_nsecs();
657 sleep_nsecs(1e6);
658 T1 = get_nsecs();
659
660 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
661 }
662
663 #define FILL_FIELD(ptr, field, event, data) \
664 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
665
666 #define FILL_ARRAY(ptr, array, event, data) \
667 do { \
668 void *__array = raw_field_ptr(event, #array, data); \
669 memcpy(ptr.array, __array, sizeof(ptr.array)); \
670 } while(0)
671
672 #define FILL_COMMON_FIELDS(ptr, event, data) \
673 do { \
674 FILL_FIELD(ptr, common_type, event, data); \
675 FILL_FIELD(ptr, common_flags, event, data); \
676 FILL_FIELD(ptr, common_preempt_count, event, data); \
677 FILL_FIELD(ptr, common_pid, event, data); \
678 FILL_FIELD(ptr, common_tgid, event, data); \
679 } while (0)
680
681
682
683 struct trace_switch_event {
684 u32 size;
685
686 u16 common_type;
687 u8 common_flags;
688 u8 common_preempt_count;
689 u32 common_pid;
690 u32 common_tgid;
691
692 char prev_comm[16];
693 u32 prev_pid;
694 u32 prev_prio;
695 u64 prev_state;
696 char next_comm[16];
697 u32 next_pid;
698 u32 next_prio;
699 };
700
701 struct trace_runtime_event {
702 u32 size;
703
704 u16 common_type;
705 u8 common_flags;
706 u8 common_preempt_count;
707 u32 common_pid;
708 u32 common_tgid;
709
710 char comm[16];
711 u32 pid;
712 u64 runtime;
713 u64 vruntime;
714 };
715
716 struct trace_wakeup_event {
717 u32 size;
718
719 u16 common_type;
720 u8 common_flags;
721 u8 common_preempt_count;
722 u32 common_pid;
723 u32 common_tgid;
724
725 char comm[16];
726 u32 pid;
727
728 u32 prio;
729 u32 success;
730 u32 cpu;
731 };
732
733 struct trace_fork_event {
734 u32 size;
735
736 u16 common_type;
737 u8 common_flags;
738 u8 common_preempt_count;
739 u32 common_pid;
740 u32 common_tgid;
741
742 char parent_comm[16];
743 u32 parent_pid;
744 char child_comm[16];
745 u32 child_pid;
746 };
747
748 struct trace_migrate_task_event {
749 u32 size;
750
751 u16 common_type;
752 u8 common_flags;
753 u8 common_preempt_count;
754 u32 common_pid;
755 u32 common_tgid;
756
757 char comm[16];
758 u32 pid;
759
760 u32 prio;
761 u32 cpu;
762 };
763
764 struct trace_sched_handler {
765 void (*switch_event)(struct trace_switch_event *,
766 struct perf_session *,
767 struct event *,
768 int cpu,
769 u64 timestamp,
770 struct thread *thread);
771
772 void (*runtime_event)(struct trace_runtime_event *,
773 struct perf_session *,
774 struct event *,
775 int cpu,
776 u64 timestamp,
777 struct thread *thread);
778
779 void (*wakeup_event)(struct trace_wakeup_event *,
780 struct perf_session *,
781 struct event *,
782 int cpu,
783 u64 timestamp,
784 struct thread *thread);
785
786 void (*fork_event)(struct trace_fork_event *,
787 struct event *,
788 int cpu,
789 u64 timestamp,
790 struct thread *thread);
791
792 void (*migrate_task_event)(struct trace_migrate_task_event *,
793 struct perf_session *session,
794 struct event *,
795 int cpu,
796 u64 timestamp,
797 struct thread *thread);
798 };
799
800
801 static void
replay_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session __used,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)802 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
803 struct perf_session *session __used,
804 struct event *event,
805 int cpu __used,
806 u64 timestamp __used,
807 struct thread *thread __used)
808 {
809 struct task_desc *waker, *wakee;
810
811 if (verbose) {
812 printf("sched_wakeup event %p\n", event);
813
814 printf(" ... pid %d woke up %s/%d\n",
815 wakeup_event->common_pid,
816 wakeup_event->comm,
817 wakeup_event->pid);
818 }
819
820 waker = register_pid(wakeup_event->common_pid, "<unknown>");
821 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
822
823 add_sched_event_wakeup(waker, timestamp, wakee);
824 }
825
826 static u64 cpu_last_switched[MAX_CPUS];
827
828 static void
replay_switch_event(struct trace_switch_event * switch_event,struct perf_session * session __used,struct event * event,int cpu,u64 timestamp,struct thread * thread __used)829 replay_switch_event(struct trace_switch_event *switch_event,
830 struct perf_session *session __used,
831 struct event *event,
832 int cpu,
833 u64 timestamp,
834 struct thread *thread __used)
835 {
836 struct task_desc *prev, __used *next;
837 u64 timestamp0;
838 s64 delta;
839
840 if (verbose)
841 printf("sched_switch event %p\n", event);
842
843 if (cpu >= MAX_CPUS || cpu < 0)
844 return;
845
846 timestamp0 = cpu_last_switched[cpu];
847 if (timestamp0)
848 delta = timestamp - timestamp0;
849 else
850 delta = 0;
851
852 if (delta < 0)
853 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
854
855 if (verbose) {
856 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
857 switch_event->prev_comm, switch_event->prev_pid,
858 switch_event->next_comm, switch_event->next_pid,
859 delta);
860 }
861
862 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
863 next = register_pid(switch_event->next_pid, switch_event->next_comm);
864
865 cpu_last_switched[cpu] = timestamp;
866
867 add_sched_event_run(prev, timestamp, delta);
868 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
869 }
870
871
872 static void
replay_fork_event(struct trace_fork_event * fork_event,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)873 replay_fork_event(struct trace_fork_event *fork_event,
874 struct event *event,
875 int cpu __used,
876 u64 timestamp __used,
877 struct thread *thread __used)
878 {
879 if (verbose) {
880 printf("sched_fork event %p\n", event);
881 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
882 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
883 }
884 register_pid(fork_event->parent_pid, fork_event->parent_comm);
885 register_pid(fork_event->child_pid, fork_event->child_comm);
886 }
887
888 static struct trace_sched_handler replay_ops = {
889 .wakeup_event = replay_wakeup_event,
890 .switch_event = replay_switch_event,
891 .fork_event = replay_fork_event,
892 };
893
894 struct sort_dimension {
895 const char *name;
896 sort_fn_t cmp;
897 struct list_head list;
898 };
899
900 static LIST_HEAD(cmp_pid);
901
902 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)903 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
904 {
905 struct sort_dimension *sort;
906 int ret = 0;
907
908 BUG_ON(list_empty(list));
909
910 list_for_each_entry(sort, list, list) {
911 ret = sort->cmp(l, r);
912 if (ret)
913 return ret;
914 }
915
916 return ret;
917 }
918
919 static struct work_atoms *
thread_atoms_search(struct rb_root * root,struct thread * thread,struct list_head * sort_list)920 thread_atoms_search(struct rb_root *root, struct thread *thread,
921 struct list_head *sort_list)
922 {
923 struct rb_node *node = root->rb_node;
924 struct work_atoms key = { .thread = thread };
925
926 while (node) {
927 struct work_atoms *atoms;
928 int cmp;
929
930 atoms = container_of(node, struct work_atoms, node);
931
932 cmp = thread_lat_cmp(sort_list, &key, atoms);
933 if (cmp > 0)
934 node = node->rb_left;
935 else if (cmp < 0)
936 node = node->rb_right;
937 else {
938 BUG_ON(thread != atoms->thread);
939 return atoms;
940 }
941 }
942 return NULL;
943 }
944
945 static void
__thread_latency_insert(struct rb_root * root,struct work_atoms * data,struct list_head * sort_list)946 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
947 struct list_head *sort_list)
948 {
949 struct rb_node **new = &(root->rb_node), *parent = NULL;
950
951 while (*new) {
952 struct work_atoms *this;
953 int cmp;
954
955 this = container_of(*new, struct work_atoms, node);
956 parent = *new;
957
958 cmp = thread_lat_cmp(sort_list, data, this);
959
960 if (cmp > 0)
961 new = &((*new)->rb_left);
962 else
963 new = &((*new)->rb_right);
964 }
965
966 rb_link_node(&data->node, parent, new);
967 rb_insert_color(&data->node, root);
968 }
969
thread_atoms_insert(struct thread * thread)970 static void thread_atoms_insert(struct thread *thread)
971 {
972 struct work_atoms *atoms = zalloc(sizeof(*atoms));
973 if (!atoms)
974 die("No memory");
975
976 atoms->thread = thread;
977 INIT_LIST_HEAD(&atoms->work_list);
978 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
979 }
980
981 static void
latency_fork_event(struct trace_fork_event * fork_event __used,struct event * event __used,int cpu __used,u64 timestamp __used,struct thread * thread __used)982 latency_fork_event(struct trace_fork_event *fork_event __used,
983 struct event *event __used,
984 int cpu __used,
985 u64 timestamp __used,
986 struct thread *thread __used)
987 {
988 /* should insert the newcomer */
989 }
990
991 __used
sched_out_state(struct trace_switch_event * switch_event)992 static char sched_out_state(struct trace_switch_event *switch_event)
993 {
994 const char *str = TASK_STATE_TO_CHAR_STR;
995
996 return str[switch_event->prev_state];
997 }
998
999 static void
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1000 add_sched_out_event(struct work_atoms *atoms,
1001 char run_state,
1002 u64 timestamp)
1003 {
1004 struct work_atom *atom = zalloc(sizeof(*atom));
1005 if (!atom)
1006 die("Non memory");
1007
1008 atom->sched_out_time = timestamp;
1009
1010 if (run_state == 'R') {
1011 atom->state = THREAD_WAIT_CPU;
1012 atom->wake_up_time = atom->sched_out_time;
1013 }
1014
1015 list_add_tail(&atom->list, &atoms->work_list);
1016 }
1017
1018 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __used)1019 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
1020 {
1021 struct work_atom *atom;
1022
1023 BUG_ON(list_empty(&atoms->work_list));
1024
1025 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1026
1027 atom->runtime += delta;
1028 atoms->total_runtime += delta;
1029 }
1030
1031 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1032 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1033 {
1034 struct work_atom *atom;
1035 u64 delta;
1036
1037 if (list_empty(&atoms->work_list))
1038 return;
1039
1040 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1041
1042 if (atom->state != THREAD_WAIT_CPU)
1043 return;
1044
1045 if (timestamp < atom->wake_up_time) {
1046 atom->state = THREAD_IGNORE;
1047 return;
1048 }
1049
1050 atom->state = THREAD_SCHED_IN;
1051 atom->sched_in_time = timestamp;
1052
1053 delta = atom->sched_in_time - atom->wake_up_time;
1054 atoms->total_lat += delta;
1055 if (delta > atoms->max_lat) {
1056 atoms->max_lat = delta;
1057 atoms->max_lat_at = timestamp;
1058 }
1059 atoms->nb_atoms++;
1060 }
1061
1062 static void
latency_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * thread __used)1063 latency_switch_event(struct trace_switch_event *switch_event,
1064 struct perf_session *session,
1065 struct event *event __used,
1066 int cpu,
1067 u64 timestamp,
1068 struct thread *thread __used)
1069 {
1070 struct work_atoms *out_events, *in_events;
1071 struct thread *sched_out, *sched_in;
1072 u64 timestamp0;
1073 s64 delta;
1074
1075 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1076
1077 timestamp0 = cpu_last_switched[cpu];
1078 cpu_last_switched[cpu] = timestamp;
1079 if (timestamp0)
1080 delta = timestamp - timestamp0;
1081 else
1082 delta = 0;
1083
1084 if (delta < 0)
1085 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1086
1087
1088 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1089 sched_in = perf_session__findnew(session, switch_event->next_pid);
1090
1091 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1092 if (!out_events) {
1093 thread_atoms_insert(sched_out);
1094 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1095 if (!out_events)
1096 die("out-event: Internal tree error");
1097 }
1098 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1099
1100 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1101 if (!in_events) {
1102 thread_atoms_insert(sched_in);
1103 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1104 if (!in_events)
1105 die("in-event: Internal tree error");
1106 /*
1107 * Take came in we have not heard about yet,
1108 * add in an initial atom in runnable state:
1109 */
1110 add_sched_out_event(in_events, 'R', timestamp);
1111 }
1112 add_sched_in_event(in_events, timestamp);
1113 }
1114
1115 static void
latency_runtime_event(struct trace_runtime_event * runtime_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * this_thread __used)1116 latency_runtime_event(struct trace_runtime_event *runtime_event,
1117 struct perf_session *session,
1118 struct event *event __used,
1119 int cpu,
1120 u64 timestamp,
1121 struct thread *this_thread __used)
1122 {
1123 struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1124 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1125
1126 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1127 if (!atoms) {
1128 thread_atoms_insert(thread);
1129 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1130 if (!atoms)
1131 die("in-event: Internal tree error");
1132 add_sched_out_event(atoms, 'R', timestamp);
1133 }
1134
1135 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1136 }
1137
1138 static void
latency_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1139 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1140 struct perf_session *session,
1141 struct event *__event __used,
1142 int cpu __used,
1143 u64 timestamp,
1144 struct thread *thread __used)
1145 {
1146 struct work_atoms *atoms;
1147 struct work_atom *atom;
1148 struct thread *wakee;
1149
1150 /* Note for later, it may be interesting to observe the failing cases */
1151 if (!wakeup_event->success)
1152 return;
1153
1154 wakee = perf_session__findnew(session, wakeup_event->pid);
1155 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1156 if (!atoms) {
1157 thread_atoms_insert(wakee);
1158 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1159 if (!atoms)
1160 die("wakeup-event: Internal tree error");
1161 add_sched_out_event(atoms, 'S', timestamp);
1162 }
1163
1164 BUG_ON(list_empty(&atoms->work_list));
1165
1166 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1167
1168 /*
1169 * You WILL be missing events if you've recorded only
1170 * one CPU, or are only looking at only one, so don't
1171 * make useless noise.
1172 */
1173 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174 nr_state_machine_bugs++;
1175
1176 nr_timestamps++;
1177 if (atom->sched_out_time > timestamp) {
1178 nr_unordered_timestamps++;
1179 return;
1180 }
1181
1182 atom->state = THREAD_WAIT_CPU;
1183 atom->wake_up_time = timestamp;
1184 }
1185
1186 static void
latency_migrate_task_event(struct trace_migrate_task_event * migrate_task_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1187 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1188 struct perf_session *session,
1189 struct event *__event __used,
1190 int cpu __used,
1191 u64 timestamp,
1192 struct thread *thread __used)
1193 {
1194 struct work_atoms *atoms;
1195 struct work_atom *atom;
1196 struct thread *migrant;
1197
1198 /*
1199 * Only need to worry about migration when profiling one CPU.
1200 */
1201 if (profile_cpu == -1)
1202 return;
1203
1204 migrant = perf_session__findnew(session, migrate_task_event->pid);
1205 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1206 if (!atoms) {
1207 thread_atoms_insert(migrant);
1208 register_pid(migrant->pid, migrant->comm);
1209 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1210 if (!atoms)
1211 die("migration-event: Internal tree error");
1212 add_sched_out_event(atoms, 'R', timestamp);
1213 }
1214
1215 BUG_ON(list_empty(&atoms->work_list));
1216
1217 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1218 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1219
1220 nr_timestamps++;
1221
1222 if (atom->sched_out_time > timestamp)
1223 nr_unordered_timestamps++;
1224 }
1225
1226 static struct trace_sched_handler lat_ops = {
1227 .wakeup_event = latency_wakeup_event,
1228 .switch_event = latency_switch_event,
1229 .runtime_event = latency_runtime_event,
1230 .fork_event = latency_fork_event,
1231 .migrate_task_event = latency_migrate_task_event,
1232 };
1233
output_lat_thread(struct work_atoms * work_list)1234 static void output_lat_thread(struct work_atoms *work_list)
1235 {
1236 int i;
1237 int ret;
1238 u64 avg;
1239
1240 if (!work_list->nb_atoms)
1241 return;
1242 /*
1243 * Ignore idle threads:
1244 */
1245 if (!strcmp(work_list->thread->comm, "swapper"))
1246 return;
1247
1248 all_runtime += work_list->total_runtime;
1249 all_count += work_list->nb_atoms;
1250
1251 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1252
1253 for (i = 0; i < 24 - ret; i++)
1254 printf(" ");
1255
1256 avg = work_list->total_lat / work_list->nb_atoms;
1257
1258 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1259 (double)work_list->total_runtime / 1e6,
1260 work_list->nb_atoms, (double)avg / 1e6,
1261 (double)work_list->max_lat / 1e6,
1262 (double)work_list->max_lat_at / 1e9);
1263 }
1264
pid_cmp(struct work_atoms * l,struct work_atoms * r)1265 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1266 {
1267 if (l->thread->pid < r->thread->pid)
1268 return -1;
1269 if (l->thread->pid > r->thread->pid)
1270 return 1;
1271
1272 return 0;
1273 }
1274
1275 static struct sort_dimension pid_sort_dimension = {
1276 .name = "pid",
1277 .cmp = pid_cmp,
1278 };
1279
avg_cmp(struct work_atoms * l,struct work_atoms * r)1280 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1281 {
1282 u64 avgl, avgr;
1283
1284 if (!l->nb_atoms)
1285 return -1;
1286
1287 if (!r->nb_atoms)
1288 return 1;
1289
1290 avgl = l->total_lat / l->nb_atoms;
1291 avgr = r->total_lat / r->nb_atoms;
1292
1293 if (avgl < avgr)
1294 return -1;
1295 if (avgl > avgr)
1296 return 1;
1297
1298 return 0;
1299 }
1300
1301 static struct sort_dimension avg_sort_dimension = {
1302 .name = "avg",
1303 .cmp = avg_cmp,
1304 };
1305
max_cmp(struct work_atoms * l,struct work_atoms * r)1306 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1307 {
1308 if (l->max_lat < r->max_lat)
1309 return -1;
1310 if (l->max_lat > r->max_lat)
1311 return 1;
1312
1313 return 0;
1314 }
1315
1316 static struct sort_dimension max_sort_dimension = {
1317 .name = "max",
1318 .cmp = max_cmp,
1319 };
1320
switch_cmp(struct work_atoms * l,struct work_atoms * r)1321 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1322 {
1323 if (l->nb_atoms < r->nb_atoms)
1324 return -1;
1325 if (l->nb_atoms > r->nb_atoms)
1326 return 1;
1327
1328 return 0;
1329 }
1330
1331 static struct sort_dimension switch_sort_dimension = {
1332 .name = "switch",
1333 .cmp = switch_cmp,
1334 };
1335
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1336 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1337 {
1338 if (l->total_runtime < r->total_runtime)
1339 return -1;
1340 if (l->total_runtime > r->total_runtime)
1341 return 1;
1342
1343 return 0;
1344 }
1345
1346 static struct sort_dimension runtime_sort_dimension = {
1347 .name = "runtime",
1348 .cmp = runtime_cmp,
1349 };
1350
1351 static struct sort_dimension *available_sorts[] = {
1352 &pid_sort_dimension,
1353 &avg_sort_dimension,
1354 &max_sort_dimension,
1355 &switch_sort_dimension,
1356 &runtime_sort_dimension,
1357 };
1358
1359 #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1360
1361 static LIST_HEAD(sort_list);
1362
sort_dimension__add(const char * tok,struct list_head * list)1363 static int sort_dimension__add(const char *tok, struct list_head *list)
1364 {
1365 int i;
1366
1367 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1368 if (!strcmp(available_sorts[i]->name, tok)) {
1369 list_add_tail(&available_sorts[i]->list, list);
1370
1371 return 0;
1372 }
1373 }
1374
1375 return -1;
1376 }
1377
1378 static void setup_sorting(void);
1379
sort_lat(void)1380 static void sort_lat(void)
1381 {
1382 struct rb_node *node;
1383
1384 for (;;) {
1385 struct work_atoms *data;
1386 node = rb_first(&atom_root);
1387 if (!node)
1388 break;
1389
1390 rb_erase(node, &atom_root);
1391 data = rb_entry(node, struct work_atoms, node);
1392 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1393 }
1394 }
1395
1396 static struct trace_sched_handler *trace_handler;
1397
1398 static void
process_sched_wakeup_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1399 process_sched_wakeup_event(void *data, struct perf_session *session,
1400 struct event *event,
1401 int cpu __used,
1402 u64 timestamp __used,
1403 struct thread *thread __used)
1404 {
1405 struct trace_wakeup_event wakeup_event;
1406
1407 FILL_COMMON_FIELDS(wakeup_event, event, data);
1408
1409 FILL_ARRAY(wakeup_event, comm, event, data);
1410 FILL_FIELD(wakeup_event, pid, event, data);
1411 FILL_FIELD(wakeup_event, prio, event, data);
1412 FILL_FIELD(wakeup_event, success, event, data);
1413 FILL_FIELD(wakeup_event, cpu, event, data);
1414
1415 if (trace_handler->wakeup_event)
1416 trace_handler->wakeup_event(&wakeup_event, session, event,
1417 cpu, timestamp, thread);
1418 }
1419
1420 /*
1421 * Track the current task - that way we can know whether there's any
1422 * weird events, such as a task being switched away that is not current.
1423 */
1424 static int max_cpu;
1425
1426 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1427
1428 static struct thread *curr_thread[MAX_CPUS];
1429
1430 static char next_shortname1 = 'A';
1431 static char next_shortname2 = '0';
1432
1433 static void
map_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int this_cpu,u64 timestamp,struct thread * thread __used)1434 map_switch_event(struct trace_switch_event *switch_event,
1435 struct perf_session *session,
1436 struct event *event __used,
1437 int this_cpu,
1438 u64 timestamp,
1439 struct thread *thread __used)
1440 {
1441 struct thread *sched_out __used, *sched_in;
1442 int new_shortname;
1443 u64 timestamp0;
1444 s64 delta;
1445 int cpu;
1446
1447 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1448
1449 if (this_cpu > max_cpu)
1450 max_cpu = this_cpu;
1451
1452 timestamp0 = cpu_last_switched[this_cpu];
1453 cpu_last_switched[this_cpu] = timestamp;
1454 if (timestamp0)
1455 delta = timestamp - timestamp0;
1456 else
1457 delta = 0;
1458
1459 if (delta < 0)
1460 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1461
1462
1463 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1464 sched_in = perf_session__findnew(session, switch_event->next_pid);
1465
1466 curr_thread[this_cpu] = sched_in;
1467
1468 printf(" ");
1469
1470 new_shortname = 0;
1471 if (!sched_in->shortname[0]) {
1472 sched_in->shortname[0] = next_shortname1;
1473 sched_in->shortname[1] = next_shortname2;
1474
1475 if (next_shortname1 < 'Z') {
1476 next_shortname1++;
1477 } else {
1478 next_shortname1='A';
1479 if (next_shortname2 < '9') {
1480 next_shortname2++;
1481 } else {
1482 next_shortname2='0';
1483 }
1484 }
1485 new_shortname = 1;
1486 }
1487
1488 for (cpu = 0; cpu <= max_cpu; cpu++) {
1489 if (cpu != this_cpu)
1490 printf(" ");
1491 else
1492 printf("*");
1493
1494 if (curr_thread[cpu]) {
1495 if (curr_thread[cpu]->pid)
1496 printf("%2s ", curr_thread[cpu]->shortname);
1497 else
1498 printf(". ");
1499 } else
1500 printf(" ");
1501 }
1502
1503 printf(" %12.6f secs ", (double)timestamp/1e9);
1504 if (new_shortname) {
1505 printf("%s => %s:%d\n",
1506 sched_in->shortname, sched_in->comm, sched_in->pid);
1507 } else {
1508 printf("\n");
1509 }
1510 }
1511
1512
1513 static void
process_sched_switch_event(void * data,struct perf_session * session,struct event * event,int this_cpu,u64 timestamp __used,struct thread * thread __used)1514 process_sched_switch_event(void *data, struct perf_session *session,
1515 struct event *event,
1516 int this_cpu,
1517 u64 timestamp __used,
1518 struct thread *thread __used)
1519 {
1520 struct trace_switch_event switch_event;
1521
1522 FILL_COMMON_FIELDS(switch_event, event, data);
1523
1524 FILL_ARRAY(switch_event, prev_comm, event, data);
1525 FILL_FIELD(switch_event, prev_pid, event, data);
1526 FILL_FIELD(switch_event, prev_prio, event, data);
1527 FILL_FIELD(switch_event, prev_state, event, data);
1528 FILL_ARRAY(switch_event, next_comm, event, data);
1529 FILL_FIELD(switch_event, next_pid, event, data);
1530 FILL_FIELD(switch_event, next_prio, event, data);
1531
1532 if (curr_pid[this_cpu] != (u32)-1) {
1533 /*
1534 * Are we trying to switch away a PID that is
1535 * not current?
1536 */
1537 if (curr_pid[this_cpu] != switch_event.prev_pid)
1538 nr_context_switch_bugs++;
1539 }
1540 if (trace_handler->switch_event)
1541 trace_handler->switch_event(&switch_event, session, event,
1542 this_cpu, timestamp, thread);
1543
1544 curr_pid[this_cpu] = switch_event.next_pid;
1545 }
1546
1547 static void
process_sched_runtime_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1548 process_sched_runtime_event(void *data, struct perf_session *session,
1549 struct event *event,
1550 int cpu __used,
1551 u64 timestamp __used,
1552 struct thread *thread __used)
1553 {
1554 struct trace_runtime_event runtime_event;
1555
1556 FILL_ARRAY(runtime_event, comm, event, data);
1557 FILL_FIELD(runtime_event, pid, event, data);
1558 FILL_FIELD(runtime_event, runtime, event, data);
1559 FILL_FIELD(runtime_event, vruntime, event, data);
1560
1561 if (trace_handler->runtime_event)
1562 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1563 }
1564
1565 static void
process_sched_fork_event(void * data,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1566 process_sched_fork_event(void *data,
1567 struct event *event,
1568 int cpu __used,
1569 u64 timestamp __used,
1570 struct thread *thread __used)
1571 {
1572 struct trace_fork_event fork_event;
1573
1574 FILL_COMMON_FIELDS(fork_event, event, data);
1575
1576 FILL_ARRAY(fork_event, parent_comm, event, data);
1577 FILL_FIELD(fork_event, parent_pid, event, data);
1578 FILL_ARRAY(fork_event, child_comm, event, data);
1579 FILL_FIELD(fork_event, child_pid, event, data);
1580
1581 if (trace_handler->fork_event)
1582 trace_handler->fork_event(&fork_event, event,
1583 cpu, timestamp, thread);
1584 }
1585
1586 static void
process_sched_exit_event(struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1587 process_sched_exit_event(struct event *event,
1588 int cpu __used,
1589 u64 timestamp __used,
1590 struct thread *thread __used)
1591 {
1592 if (verbose)
1593 printf("sched_exit event %p\n", event);
1594 }
1595
1596 static void
process_sched_migrate_task_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1597 process_sched_migrate_task_event(void *data, struct perf_session *session,
1598 struct event *event,
1599 int cpu __used,
1600 u64 timestamp __used,
1601 struct thread *thread __used)
1602 {
1603 struct trace_migrate_task_event migrate_task_event;
1604
1605 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1606
1607 FILL_ARRAY(migrate_task_event, comm, event, data);
1608 FILL_FIELD(migrate_task_event, pid, event, data);
1609 FILL_FIELD(migrate_task_event, prio, event, data);
1610 FILL_FIELD(migrate_task_event, cpu, event, data);
1611
1612 if (trace_handler->migrate_task_event)
1613 trace_handler->migrate_task_event(&migrate_task_event, session,
1614 event, cpu, timestamp, thread);
1615 }
1616
process_raw_event(union perf_event * raw_event __used,struct perf_session * session,void * data,int cpu,u64 timestamp,struct thread * thread)1617 static void process_raw_event(union perf_event *raw_event __used,
1618 struct perf_session *session, void *data, int cpu,
1619 u64 timestamp, struct thread *thread)
1620 {
1621 struct event *event;
1622 int type;
1623
1624
1625 type = trace_parse_common_type(data);
1626 event = trace_find_event(type);
1627
1628 if (!strcmp(event->name, "sched_switch"))
1629 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1630 if (!strcmp(event->name, "sched_stat_runtime"))
1631 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1632 if (!strcmp(event->name, "sched_wakeup"))
1633 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1634 if (!strcmp(event->name, "sched_wakeup_new"))
1635 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1636 if (!strcmp(event->name, "sched_process_fork"))
1637 process_sched_fork_event(data, event, cpu, timestamp, thread);
1638 if (!strcmp(event->name, "sched_process_exit"))
1639 process_sched_exit_event(event, cpu, timestamp, thread);
1640 if (!strcmp(event->name, "sched_migrate_task"))
1641 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1642 }
1643
process_sample_event(union perf_event * event,struct perf_sample * sample,struct perf_evsel * evsel __used,struct perf_session * session)1644 static int process_sample_event(union perf_event *event,
1645 struct perf_sample *sample,
1646 struct perf_evsel *evsel __used,
1647 struct perf_session *session)
1648 {
1649 struct thread *thread;
1650
1651 if (!(session->sample_type & PERF_SAMPLE_RAW))
1652 return 0;
1653
1654 thread = perf_session__findnew(session, sample->pid);
1655 if (thread == NULL) {
1656 pr_debug("problem processing %d event, skipping it.\n",
1657 event->header.type);
1658 return -1;
1659 }
1660
1661 dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1662
1663 if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1664 return 0;
1665
1666 process_raw_event(event, session, sample->raw_data, sample->cpu,
1667 sample->time, thread);
1668
1669 return 0;
1670 }
1671
1672 static struct perf_event_ops event_ops = {
1673 .sample = process_sample_event,
1674 .comm = perf_event__process_comm,
1675 .lost = perf_event__process_lost,
1676 .fork = perf_event__process_task,
1677 .ordered_samples = true,
1678 };
1679
read_events(void)1680 static int read_events(void)
1681 {
1682 int err = -EINVAL;
1683 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1684 0, false, &event_ops);
1685 if (session == NULL)
1686 return -ENOMEM;
1687
1688 if (perf_session__has_traces(session, "record -R")) {
1689 err = perf_session__process_events(session, &event_ops);
1690 nr_events = session->hists.stats.nr_events[0];
1691 nr_lost_events = session->hists.stats.total_lost;
1692 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1693 }
1694
1695 perf_session__delete(session);
1696 return err;
1697 }
1698
print_bad_events(void)1699 static void print_bad_events(void)
1700 {
1701 if (nr_unordered_timestamps && nr_timestamps) {
1702 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1703 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1704 nr_unordered_timestamps, nr_timestamps);
1705 }
1706 if (nr_lost_events && nr_events) {
1707 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1708 (double)nr_lost_events/(double)nr_events*100.0,
1709 nr_lost_events, nr_events, nr_lost_chunks);
1710 }
1711 if (nr_state_machine_bugs && nr_timestamps) {
1712 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1713 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1714 nr_state_machine_bugs, nr_timestamps);
1715 if (nr_lost_events)
1716 printf(" (due to lost events?)");
1717 printf("\n");
1718 }
1719 if (nr_context_switch_bugs && nr_timestamps) {
1720 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1721 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1722 nr_context_switch_bugs, nr_timestamps);
1723 if (nr_lost_events)
1724 printf(" (due to lost events?)");
1725 printf("\n");
1726 }
1727 }
1728
__cmd_lat(void)1729 static void __cmd_lat(void)
1730 {
1731 struct rb_node *next;
1732
1733 setup_pager();
1734 read_events();
1735 sort_lat();
1736
1737 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1738 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1739 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1740
1741 next = rb_first(&sorted_atom_root);
1742
1743 while (next) {
1744 struct work_atoms *work_list;
1745
1746 work_list = rb_entry(next, struct work_atoms, node);
1747 output_lat_thread(work_list);
1748 next = rb_next(next);
1749 }
1750
1751 printf(" -----------------------------------------------------------------------------------------\n");
1752 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1753 (double)all_runtime/1e6, all_count);
1754
1755 printf(" ---------------------------------------------------\n");
1756
1757 print_bad_events();
1758 printf("\n");
1759
1760 }
1761
1762 static struct trace_sched_handler map_ops = {
1763 .wakeup_event = NULL,
1764 .switch_event = map_switch_event,
1765 .runtime_event = NULL,
1766 .fork_event = NULL,
1767 };
1768
__cmd_map(void)1769 static void __cmd_map(void)
1770 {
1771 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1772
1773 setup_pager();
1774 read_events();
1775 print_bad_events();
1776 }
1777
__cmd_replay(void)1778 static void __cmd_replay(void)
1779 {
1780 unsigned long i;
1781
1782 calibrate_run_measurement_overhead();
1783 calibrate_sleep_measurement_overhead();
1784
1785 test_calibrations();
1786
1787 read_events();
1788
1789 printf("nr_run_events: %ld\n", nr_run_events);
1790 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1791 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1792
1793 if (targetless_wakeups)
1794 printf("target-less wakeups: %ld\n", targetless_wakeups);
1795 if (multitarget_wakeups)
1796 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1797 if (nr_run_events_optimized)
1798 printf("run atoms optimized: %ld\n",
1799 nr_run_events_optimized);
1800
1801 print_task_traces();
1802 add_cross_task_wakeups();
1803
1804 create_tasks();
1805 printf("------------------------------------------------------------\n");
1806 for (i = 0; i < replay_repeat; i++)
1807 run_one_test();
1808 }
1809
1810
1811 static const char * const sched_usage[] = {
1812 "perf sched [<options>] {record|latency|map|replay|trace}",
1813 NULL
1814 };
1815
1816 static const struct option sched_options[] = {
1817 OPT_STRING('i', "input", &input_name, "file",
1818 "input file name"),
1819 OPT_INCR('v', "verbose", &verbose,
1820 "be more verbose (show symbol address, etc)"),
1821 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822 "dump raw trace in ASCII"),
1823 OPT_END()
1824 };
1825
1826 static const char * const latency_usage[] = {
1827 "perf sched latency [<options>]",
1828 NULL
1829 };
1830
1831 static const struct option latency_options[] = {
1832 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1833 "sort by key(s): runtime, switch, avg, max"),
1834 OPT_INCR('v', "verbose", &verbose,
1835 "be more verbose (show symbol address, etc)"),
1836 OPT_INTEGER('C', "CPU", &profile_cpu,
1837 "CPU to profile on"),
1838 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1839 "dump raw trace in ASCII"),
1840 OPT_END()
1841 };
1842
1843 static const char * const replay_usage[] = {
1844 "perf sched replay [<options>]",
1845 NULL
1846 };
1847
1848 static const struct option replay_options[] = {
1849 OPT_UINTEGER('r', "repeat", &replay_repeat,
1850 "repeat the workload replay N times (-1: infinite)"),
1851 OPT_INCR('v', "verbose", &verbose,
1852 "be more verbose (show symbol address, etc)"),
1853 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1854 "dump raw trace in ASCII"),
1855 OPT_END()
1856 };
1857
setup_sorting(void)1858 static void setup_sorting(void)
1859 {
1860 char *tmp, *tok, *str = strdup(sort_order);
1861
1862 for (tok = strtok_r(str, ", ", &tmp);
1863 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1864 if (sort_dimension__add(tok, &sort_list) < 0) {
1865 error("Unknown --sort key: `%s'", tok);
1866 usage_with_options(latency_usage, latency_options);
1867 }
1868 }
1869
1870 free(str);
1871
1872 sort_dimension__add("pid", &cmp_pid);
1873 }
1874
1875 static const char *record_args[] = {
1876 "record",
1877 "-a",
1878 "-R",
1879 "-f",
1880 "-m", "1024",
1881 "-c", "1",
1882 "-e", "sched:sched_switch",
1883 "-e", "sched:sched_stat_wait",
1884 "-e", "sched:sched_stat_sleep",
1885 "-e", "sched:sched_stat_iowait",
1886 "-e", "sched:sched_stat_runtime",
1887 "-e", "sched:sched_process_exit",
1888 "-e", "sched:sched_process_fork",
1889 "-e", "sched:sched_wakeup",
1890 "-e", "sched:sched_migrate_task",
1891 };
1892
__cmd_record(int argc,const char ** argv)1893 static int __cmd_record(int argc, const char **argv)
1894 {
1895 unsigned int rec_argc, i, j;
1896 const char **rec_argv;
1897
1898 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1899 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1900
1901 if (rec_argv == NULL)
1902 return -ENOMEM;
1903
1904 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1905 rec_argv[i] = strdup(record_args[i]);
1906
1907 for (j = 1; j < (unsigned int)argc; j++, i++)
1908 rec_argv[i] = argv[j];
1909
1910 BUG_ON(i != rec_argc);
1911
1912 return cmd_record(i, rec_argv, NULL);
1913 }
1914
cmd_sched(int argc,const char ** argv,const char * prefix __used)1915 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1916 {
1917 argc = parse_options(argc, argv, sched_options, sched_usage,
1918 PARSE_OPT_STOP_AT_NON_OPTION);
1919 if (!argc)
1920 usage_with_options(sched_usage, sched_options);
1921
1922 /*
1923 * Aliased to 'perf script' for now:
1924 */
1925 if (!strcmp(argv[0], "script"))
1926 return cmd_script(argc, argv, prefix);
1927
1928 symbol__init();
1929 if (!strncmp(argv[0], "rec", 3)) {
1930 return __cmd_record(argc, argv);
1931 } else if (!strncmp(argv[0], "lat", 3)) {
1932 trace_handler = &lat_ops;
1933 if (argc > 1) {
1934 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1935 if (argc)
1936 usage_with_options(latency_usage, latency_options);
1937 }
1938 setup_sorting();
1939 __cmd_lat();
1940 } else if (!strcmp(argv[0], "map")) {
1941 trace_handler = &map_ops;
1942 setup_sorting();
1943 __cmd_map();
1944 } else if (!strncmp(argv[0], "rep", 3)) {
1945 trace_handler = &replay_ops;
1946 if (argc) {
1947 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1948 if (argc)
1949 usage_with_options(replay_usage, replay_options);
1950 }
1951 __cmd_replay();
1952 } else {
1953 usage_with_options(sched_usage, sched_options);
1954 }
1955
1956 return 0;
1957 }
1958