• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/IR/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex<int size, int offset = 0> {
26  string Namespace = "";
27
28  // Size - Size (in bits) of the sub-registers represented by this index.
29  int Size = size;
30
31  // Offset - Offset of the first bit that is part of this sub-register index.
32  // Set it to -1 if the same index is used to represent sub-registers that can
33  // be at different offsets (for example when using an index to access an
34  // element in a register tuple).
35  int Offset = offset;
36
37  // ComposedOf - A list of two SubRegIndex instances, [A, B].
38  // This indicates that this SubRegIndex is the result of composing A and B.
39  // See ComposedSubRegIndex.
40  list<SubRegIndex> ComposedOf = [];
41
42  // CoveringSubRegIndices - A list of two or more sub-register indexes that
43  // cover this sub-register.
44  //
45  // This field should normally be left blank as TableGen can infer it.
46  //
47  // TableGen automatically detects sub-registers that straddle the registers
48  // in the SubRegs field of a Register definition. For example:
49  //
50  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
51  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
52  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
53  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
54  //
55  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
56  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
57  // CoveringSubRegIndices = [dsub_1, dsub_2].
58  list<SubRegIndex> CoveringSubRegIndices = [];
59}
60
61// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
62// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
63class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
64  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
65                        !if(!eq(B.Offset, -1), -1,
66                            !add(A.Offset, B.Offset)))> {
67  // See SubRegIndex.
68  let ComposedOf = [A, B];
69}
70
71// RegAltNameIndex - The alternate name set to use for register operands of
72// this register class when printing.
73class RegAltNameIndex {
74  string Namespace = "";
75}
76def NoRegAltName : RegAltNameIndex;
77
78// Register - You should define one instance of this class for each register
79// in the target machine.  String n will become the "name" of the register.
80class Register<string n, list<string> altNames = []> {
81  string Namespace = "";
82  string AsmName = n;
83  list<string> AltNames = altNames;
84
85  // Aliases - A list of registers that this register overlaps with.  A read or
86  // modification of this register can potentially read or modify the aliased
87  // registers.
88  list<Register> Aliases = [];
89
90  // SubRegs - A list of registers that are parts of this register. Note these
91  // are "immediate" sub-registers and the registers within the list do not
92  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
93  // not [AX, AH, AL].
94  list<Register> SubRegs = [];
95
96  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
97  // to address it. Sub-sub-register indices are automatically inherited from
98  // SubRegs.
99  list<SubRegIndex> SubRegIndices = [];
100
101  // RegAltNameIndices - The alternate name indices which are valid for this
102  // register.
103  list<RegAltNameIndex> RegAltNameIndices = [];
104
105  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
106  // These values can be determined by locating the <target>.h file in the
107  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
108  // order of these names correspond to the enumeration used by gcc.  A value of
109  // -1 indicates that the gcc number is undefined and -2 that register number
110  // is invalid for this mode/flavour.
111  list<int> DwarfNumbers = [];
112
113  // CostPerUse - Additional cost of instructions using this register compared
114  // to other registers in its class. The register allocator will try to
115  // minimize the number of instructions using a register with a CostPerUse.
116  // This is used by the x86-64 and ARM Thumb targets where some registers
117  // require larger instruction encodings.
118  int CostPerUse = 0;
119
120  // CoveredBySubRegs - When this bit is set, the value of this register is
121  // completely determined by the value of its sub-registers.  For example, the
122  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
123  // covered by its sub-register AX.
124  bit CoveredBySubRegs = 0;
125
126  // HWEncoding - The target specific hardware encoding for this register.
127  bits<16> HWEncoding = 0;
128}
129
130// RegisterWithSubRegs - This can be used to define instances of Register which
131// need to specify sub-registers.
132// List "subregs" specifies which registers are sub-registers to this one. This
133// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
134// This allows the code generator to be careful not to put two values with
135// overlapping live ranges into registers which alias.
136class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
137  let SubRegs = subregs;
138}
139
140// DAGOperand - An empty base class that unifies RegisterClass's and other forms
141// of Operand's that are legal as type qualifiers in DAG patterns.  This should
142// only ever be used for defining multiclasses that are polymorphic over both
143// RegisterClass's and other Operand's.
144class DAGOperand { }
145
146// RegisterClass - Now that all of the registers are defined, and aliases
147// between registers are defined, specify which registers belong to which
148// register classes.  This also defines the default allocation order of
149// registers by register allocators.
150//
151class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
152                    dag regList, RegAltNameIndex idx = NoRegAltName>
153  : DAGOperand {
154  string Namespace = namespace;
155
156  // RegType - Specify the list ValueType of the registers in this register
157  // class.  Note that all registers in a register class must have the same
158  // ValueTypes.  This is a list because some targets permit storing different
159  // types in same register, for example vector values with 128-bit total size,
160  // but different count/size of items, like SSE on x86.
161  //
162  list<ValueType> RegTypes = regTypes;
163
164  // Size - Specify the spill size in bits of the registers.  A default value of
165  // zero lets tablgen pick an appropriate size.
166  int Size = 0;
167
168  // Alignment - Specify the alignment required of the registers when they are
169  // stored or loaded to memory.
170  //
171  int Alignment = alignment;
172
173  // CopyCost - This value is used to specify the cost of copying a value
174  // between two registers in this register class. The default value is one
175  // meaning it takes a single instruction to perform the copying. A negative
176  // value means copying is extremely expensive or impossible.
177  int CopyCost = 1;
178
179  // MemberList - Specify which registers are in this class.  If the
180  // allocation_order_* method are not specified, this also defines the order of
181  // allocation used by the register allocator.
182  //
183  dag MemberList = regList;
184
185  // AltNameIndex - The alternate register name to use when printing operands
186  // of this register class. Every register in the register class must have
187  // a valid alternate name for the given index.
188  RegAltNameIndex altNameIndex = idx;
189
190  // isAllocatable - Specify that the register class can be used for virtual
191  // registers and register allocation.  Some register classes are only used to
192  // model instruction operand constraints, and should have isAllocatable = 0.
193  bit isAllocatable = 1;
194
195  // AltOrders - List of alternative allocation orders. The default order is
196  // MemberList itself, and that is good enough for most targets since the
197  // register allocators automatically remove reserved registers and move
198  // callee-saved registers to the end.
199  list<dag> AltOrders = [];
200
201  // AltOrderSelect - The body of a function that selects the allocation order
202  // to use in a given machine function. The code will be inserted in a
203  // function like this:
204  //
205  //   static inline unsigned f(const MachineFunction &MF) { ... }
206  //
207  // The function should return 0 to select the default order defined by
208  // MemberList, 1 to select the first AltOrders entry and so on.
209  code AltOrderSelect = [{}];
210}
211
212// The memberList in a RegisterClass is a dag of set operations. TableGen
213// evaluates these set operations and expand them into register lists. These
214// are the most common operation, see test/TableGen/SetTheory.td for more
215// examples of what is possible:
216//
217// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
218// register class, or a sub-expression. This is also the way to simply list
219// registers.
220//
221// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
222//
223// (and GPR, CSR) - Set intersection. All registers from the first set that are
224// also in the second set.
225//
226// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
227// numbered registers.  Takes an optional 4th operand which is a stride to use
228// when generating the sequence.
229//
230// (shl GPR, 4) - Remove the first N elements.
231//
232// (trunc GPR, 4) - Truncate after the first N elements.
233//
234// (rotl GPR, 1) - Rotate N places to the left.
235//
236// (rotr GPR, 1) - Rotate N places to the right.
237//
238// (decimate GPR, 2) - Pick every N'th element, starting with the first.
239//
240// (interleave A, B, ...) - Interleave the elements from each argument list.
241//
242// All of these operators work on ordered sets, not lists. That means
243// duplicates are removed from sub-expressions.
244
245// Set operators. The rest is defined in TargetSelectionDAG.td.
246def sequence;
247def decimate;
248def interleave;
249
250// RegisterTuples - Automatically generate super-registers by forming tuples of
251// sub-registers. This is useful for modeling register sequence constraints
252// with pseudo-registers that are larger than the architectural registers.
253//
254// The sub-register lists are zipped together:
255//
256//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
257//
258// Generates the same registers as:
259//
260//   let SubRegIndices = [sube, subo] in {
261//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
262//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
263//   }
264//
265// The generated pseudo-registers inherit super-classes and fields from their
266// first sub-register. Most fields from the Register class are inferred, and
267// the AsmName and Dwarf numbers are cleared.
268//
269// RegisterTuples instances can be used in other set operations to form
270// register classes and so on. This is the only way of using the generated
271// registers.
272class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
273  // SubRegs - N lists of registers to be zipped up. Super-registers are
274  // synthesized from the first element of each SubRegs list, the second
275  // element and so on.
276  list<dag> SubRegs = Regs;
277
278  // SubRegIndices - N SubRegIndex instances. This provides the names of the
279  // sub-registers in the synthesized super-registers.
280  list<SubRegIndex> SubRegIndices = Indices;
281}
282
283
284//===----------------------------------------------------------------------===//
285// DwarfRegNum - This class provides a mapping of the llvm register enumeration
286// to the register numbering used by gcc and gdb.  These values are used by a
287// debug information writer to describe where values may be located during
288// execution.
289class DwarfRegNum<list<int> Numbers> {
290  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
291  // These values can be determined by locating the <target>.h file in the
292  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
293  // order of these names correspond to the enumeration used by gcc.  A value of
294  // -1 indicates that the gcc number is undefined and -2 that register number
295  // is invalid for this mode/flavour.
296  list<int> DwarfNumbers = Numbers;
297}
298
299// DwarfRegAlias - This class declares that a given register uses the same dwarf
300// numbers as another one. This is useful for making it clear that the two
301// registers do have the same number. It also lets us build a mapping
302// from dwarf register number to llvm register.
303class DwarfRegAlias<Register reg> {
304      Register DwarfAlias = reg;
305}
306
307//===----------------------------------------------------------------------===//
308// Pull in the common support for scheduling
309//
310include "llvm/Target/TargetSchedule.td"
311
312class Predicate; // Forward def
313
314//===----------------------------------------------------------------------===//
315// Instruction set description - These classes correspond to the C++ classes in
316// the Target/TargetInstrInfo.h file.
317//
318class Instruction {
319  string Namespace = "";
320
321  dag OutOperandList;       // An dag containing the MI def operand list.
322  dag InOperandList;        // An dag containing the MI use operand list.
323  string AsmString = "";    // The .s format to print the instruction with.
324
325  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
326  // otherwise, uninitialized.
327  list<dag> Pattern;
328
329  // The follow state will eventually be inferred automatically from the
330  // instruction pattern.
331
332  list<Register> Uses = []; // Default to using no non-operand registers
333  list<Register> Defs = []; // Default to modifying no non-operand registers
334
335  // Predicates - List of predicates which will be turned into isel matching
336  // code.
337  list<Predicate> Predicates = [];
338
339  // Size - Size of encoded instruction, or zero if the size cannot be determined
340  // from the opcode.
341  int Size = 0;
342
343  // DecoderNamespace - The "namespace" in which this instruction exists, on
344  // targets like ARM which multiple ISA namespaces exist.
345  string DecoderNamespace = "";
346
347  // Code size, for instruction selection.
348  // FIXME: What does this actually mean?
349  int CodeSize = 0;
350
351  // Added complexity passed onto matching pattern.
352  int AddedComplexity  = 0;
353
354  // These bits capture information about the high-level semantics of the
355  // instruction.
356  bit isReturn     = 0;     // Is this instruction a return instruction?
357  bit isBranch     = 0;     // Is this instruction a branch instruction?
358  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
359  bit isCompare    = 0;     // Is this instruction a comparison instruction?
360  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
361  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
362  bit isSelect     = 0;     // Is this instruction a select instruction?
363  bit isBarrier    = 0;     // Can control flow fall through this instruction?
364  bit isCall       = 0;     // Is this instruction a call instruction?
365  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
366  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
367  bit mayStore     = ?;     // Is it possible for this inst to write memory?
368  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
369  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
370  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
371  bit isReMaterializable = 0; // Is this instruction re-materializable?
372  bit isPredicable = 0;     // Is this instruction predicable?
373  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
374  bit usesCustomInserter = 0; // Pseudo instr needing special help.
375  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
376  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
377  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
378  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
379  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
380  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
381  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
382                            // If so, won't have encoding information for
383                            // the [MC]CodeEmitter stuff.
384
385  // Side effect flags - When set, the flags have these meanings:
386  //
387  //  hasSideEffects - The instruction has side effects that are not
388  //    captured by any operands of the instruction or other flags.
389  //
390  //  neverHasSideEffects (deprecated) - Set on an instruction with no pattern
391  //    if it has no side effects. This is now equivalent to setting
392  //    "hasSideEffects = 0".
393  bit hasSideEffects = ?;
394  bit neverHasSideEffects = 0;
395
396  // Is this instruction a "real" instruction (with a distinct machine
397  // encoding), or is it a pseudo instruction used for codegen modeling
398  // purposes.
399  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
400  // instructions can (and often do) still have encoding information
401  // associated with them. Once we've migrated all of them over to true
402  // pseudo-instructions that are lowered to real instructions prior to
403  // the printer/emitter, we can remove this attribute and just use isPseudo.
404  //
405  // The intended use is:
406  // isPseudo: Does not have encoding information and should be expanded,
407  //   at the latest, during lowering to MCInst.
408  //
409  // isCodeGenOnly: Does have encoding information and can go through to the
410  //   CodeEmitter unchanged, but duplicates a canonical instruction
411  //   definition's encoding and should be ignored when constructing the
412  //   assembler match tables.
413  bit isCodeGenOnly = 0;
414
415  // Is this instruction a pseudo instruction for use by the assembler parser.
416  bit isAsmParserOnly = 0;
417
418  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
419
420  // Scheduling information from TargetSchedule.td.
421  list<SchedReadWrite> SchedRW;
422
423  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
424
425  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
426  /// be encoded into the output machineinstr.
427  string DisableEncoding = "";
428
429  string PostEncoderMethod = "";
430  string DecoderMethod = "";
431
432  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
433  bits<64> TSFlags = 0;
434
435  ///@name Assembler Parser Support
436  ///@{
437
438  string AsmMatchConverter = "";
439
440  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
441  /// two-operand matcher inst-alias for a three operand instruction.
442  /// For example, the arm instruction "add r3, r3, r5" can be written
443  /// as "add r3, r5". The constraint is of the same form as a tied-operand
444  /// constraint. For example, "$Rn = $Rd".
445  string TwoOperandAliasConstraint = "";
446
447  ///@}
448
449  /// UseNamedOperandTable - If set, the operand indices of this instruction
450  /// can be queried via the getNamedOperandIdx() function which is generated
451  /// by TableGen.
452  bit UseNamedOperandTable = 0;
453}
454
455/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
456/// Which instruction it expands to and how the operands map from the
457/// pseudo.
458class PseudoInstExpansion<dag Result> {
459  dag ResultInst = Result;     // The instruction to generate.
460  bit isPseudo = 1;
461}
462
463/// Predicates - These are extra conditionals which are turned into instruction
464/// selector matching code. Currently each predicate is just a string.
465class Predicate<string cond> {
466  string CondString = cond;
467
468  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
469  /// matcher, this is true.  Targets should set this by inheriting their
470  /// feature from the AssemblerPredicate class in addition to Predicate.
471  bit AssemblerMatcherPredicate = 0;
472
473  /// AssemblerCondString - Name of the subtarget feature being tested used
474  /// as alternative condition string used for assembler matcher.
475  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
476  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
477  /// It can also list multiple features separated by ",".
478  /// e.g. "ModeThumb,FeatureThumb2" is translated to
479  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
480  string AssemblerCondString = "";
481
482  /// PredicateName - User-level name to use for the predicate. Mainly for use
483  /// in diagnostics such as missing feature errors in the asm matcher.
484  string PredicateName = "";
485}
486
487/// NoHonorSignDependentRounding - This predicate is true if support for
488/// sign-dependent-rounding is not enabled.
489def NoHonorSignDependentRounding
490 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
491
492class Requires<list<Predicate> preds> {
493  list<Predicate> Predicates = preds;
494}
495
496/// ops definition - This is just a simple marker used to identify the operand
497/// list for an instruction. outs and ins are identical both syntactically and
498/// semanticallyr; they are used to define def operands and use operands to
499/// improve readibility. This should be used like this:
500///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
501def ops;
502def outs;
503def ins;
504
505/// variable_ops definition - Mark this instruction as taking a variable number
506/// of operands.
507def variable_ops;
508
509
510/// PointerLikeRegClass - Values that are designed to have pointer width are
511/// derived from this.  TableGen treats the register class as having a symbolic
512/// type that it doesn't know, and resolves the actual regclass to use by using
513/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
514class PointerLikeRegClass<int Kind> {
515  int RegClassKind = Kind;
516}
517
518
519/// ptr_rc definition - Mark this operand as being a pointer value whose
520/// register class is resolved dynamically via a callback to TargetInstrInfo.
521/// FIXME: We should probably change this to a class which contain a list of
522/// flags. But currently we have but one flag.
523def ptr_rc : PointerLikeRegClass<0>;
524
525/// unknown definition - Mark this operand as being of unknown type, causing
526/// it to be resolved by inference in the context it is used.
527class unknown_class;
528def unknown : unknown_class;
529
530/// AsmOperandClass - Representation for the kinds of operands which the target
531/// specific parser can create and the assembly matcher may need to distinguish.
532///
533/// Operand classes are used to define the order in which instructions are
534/// matched, to ensure that the instruction which gets matched for any
535/// particular list of operands is deterministic.
536///
537/// The target specific parser must be able to classify a parsed operand into a
538/// unique class which does not partially overlap with any other classes. It can
539/// match a subset of some other class, in which case the super class field
540/// should be defined.
541class AsmOperandClass {
542  /// The name to use for this class, which should be usable as an enum value.
543  string Name = ?;
544
545  /// The super classes of this operand.
546  list<AsmOperandClass> SuperClasses = [];
547
548  /// The name of the method on the target specific operand to call to test
549  /// whether the operand is an instance of this class. If not set, this will
550  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
551  /// signature should be:
552  ///   bool isFoo() const;
553  string PredicateMethod = ?;
554
555  /// The name of the method on the target specific operand to call to add the
556  /// target specific operand to an MCInst. If not set, this will default to
557  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
558  /// signature should be:
559  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
560  string RenderMethod = ?;
561
562  /// The name of the method on the target specific operand to call to custom
563  /// handle the operand parsing. This is useful when the operands do not relate
564  /// to immediates or registers and are very instruction specific (as flags to
565  /// set in a processor register, coprocessor number, ...).
566  string ParserMethod = ?;
567
568  // The diagnostic type to present when referencing this operand in a
569  // match failure error message. By default, use a generic "invalid operand"
570  // diagnostic. The target AsmParser maps these codes to text.
571  string DiagnosticType = "";
572}
573
574def ImmAsmOperand : AsmOperandClass {
575  let Name = "Imm";
576}
577
578/// Operand Types - These provide the built-in operand types that may be used
579/// by a target.  Targets can optionally provide their own operand types as
580/// needed, though this should not be needed for RISC targets.
581class Operand<ValueType ty> : DAGOperand {
582  ValueType Type = ty;
583  string PrintMethod = "printOperand";
584  string EncoderMethod = "";
585  string DecoderMethod = "";
586  string AsmOperandLowerMethod = ?;
587  string OperandType = "OPERAND_UNKNOWN";
588  dag MIOperandInfo = (ops);
589
590  // ParserMatchClass - The "match class" that operands of this type fit
591  // in. Match classes are used to define the order in which instructions are
592  // match, to ensure that which instructions gets matched is deterministic.
593  //
594  // The target specific parser must be able to classify an parsed operand into
595  // a unique class, which does not partially overlap with any other classes. It
596  // can match a subset of some other class, in which case the AsmOperandClass
597  // should declare the other operand as one of its super classes.
598  AsmOperandClass ParserMatchClass = ImmAsmOperand;
599}
600
601class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
602  : DAGOperand {
603  // RegClass - The register class of the operand.
604  RegisterClass RegClass = regclass;
605  // PrintMethod - The target method to call to print register operands of
606  // this type. The method normally will just use an alt-name index to look
607  // up the name to print. Default to the generic printOperand().
608  string PrintMethod = pm;
609  // ParserMatchClass - The "match class" that operands of this type fit
610  // in. Match classes are used to define the order in which instructions are
611  // match, to ensure that which instructions gets matched is deterministic.
612  //
613  // The target specific parser must be able to classify an parsed operand into
614  // a unique class, which does not partially overlap with any other classes. It
615  // can match a subset of some other class, in which case the AsmOperandClass
616  // should declare the other operand as one of its super classes.
617  AsmOperandClass ParserMatchClass;
618}
619
620let OperandType = "OPERAND_IMMEDIATE" in {
621def i1imm  : Operand<i1>;
622def i8imm  : Operand<i8>;
623def i16imm : Operand<i16>;
624def i32imm : Operand<i32>;
625def i64imm : Operand<i64>;
626
627def f32imm : Operand<f32>;
628def f64imm : Operand<f64>;
629}
630
631/// zero_reg definition - Special node to stand for the zero register.
632///
633def zero_reg;
634
635/// OperandWithDefaultOps - This Operand class can be used as the parent class
636/// for an Operand that needs to be initialized with a default value if
637/// no value is supplied in a pattern.  This class can be used to simplify the
638/// pattern definitions for instructions that have target specific flags
639/// encoded as immediate operands.
640class OperandWithDefaultOps<ValueType ty, dag defaultops>
641  : Operand<ty> {
642  dag DefaultOps = defaultops;
643}
644
645/// PredicateOperand - This can be used to define a predicate operand for an
646/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
647/// AlwaysVal specifies the value of this predicate when set to "always
648/// execute".
649class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
650  : OperandWithDefaultOps<ty, AlwaysVal> {
651  let MIOperandInfo = OpTypes;
652}
653
654/// OptionalDefOperand - This is used to define a optional definition operand
655/// for an instruction. DefaultOps is the register the operand represents if
656/// none is supplied, e.g. zero_reg.
657class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
658  : OperandWithDefaultOps<ty, defaultops> {
659  let MIOperandInfo = OpTypes;
660}
661
662
663// InstrInfo - This class should only be instantiated once to provide parameters
664// which are global to the target machine.
665//
666class InstrInfo {
667  // Target can specify its instructions in either big or little-endian formats.
668  // For instance, while both Sparc and PowerPC are big-endian platforms, the
669  // Sparc manual specifies its instructions in the format [31..0] (big), while
670  // PowerPC specifies them using the format [0..31] (little).
671  bit isLittleEndianEncoding = 0;
672
673  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
674  // by default, and TableGen will infer their value from the instruction
675  // pattern when possible.
676  //
677  // Normally, TableGen will issue an error it it can't infer the value of a
678  // property that hasn't been set explicitly. When guessInstructionProperties
679  // is set, it will guess a safe value instead.
680  //
681  // This option is a temporary migration help. It will go away.
682  bit guessInstructionProperties = 1;
683}
684
685// Standard Pseudo Instructions.
686// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
687// Only these instructions are allowed in the TargetOpcode namespace.
688let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
689def PHI : Instruction {
690  let OutOperandList = (outs);
691  let InOperandList = (ins variable_ops);
692  let AsmString = "PHINODE";
693}
694def INLINEASM : Instruction {
695  let OutOperandList = (outs);
696  let InOperandList = (ins variable_ops);
697  let AsmString = "";
698  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
699}
700def PROLOG_LABEL : Instruction {
701  let OutOperandList = (outs);
702  let InOperandList = (ins i32imm:$id);
703  let AsmString = "";
704  let hasCtrlDep = 1;
705  let isNotDuplicable = 1;
706}
707def EH_LABEL : Instruction {
708  let OutOperandList = (outs);
709  let InOperandList = (ins i32imm:$id);
710  let AsmString = "";
711  let hasCtrlDep = 1;
712  let isNotDuplicable = 1;
713}
714def GC_LABEL : Instruction {
715  let OutOperandList = (outs);
716  let InOperandList = (ins i32imm:$id);
717  let AsmString = "";
718  let hasCtrlDep = 1;
719  let isNotDuplicable = 1;
720}
721def KILL : Instruction {
722  let OutOperandList = (outs);
723  let InOperandList = (ins variable_ops);
724  let AsmString = "";
725  let neverHasSideEffects = 1;
726}
727def EXTRACT_SUBREG : Instruction {
728  let OutOperandList = (outs unknown:$dst);
729  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
730  let AsmString = "";
731  let neverHasSideEffects = 1;
732}
733def INSERT_SUBREG : Instruction {
734  let OutOperandList = (outs unknown:$dst);
735  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
736  let AsmString = "";
737  let neverHasSideEffects = 1;
738  let Constraints = "$supersrc = $dst";
739}
740def IMPLICIT_DEF : Instruction {
741  let OutOperandList = (outs unknown:$dst);
742  let InOperandList = (ins);
743  let AsmString = "";
744  let neverHasSideEffects = 1;
745  let isReMaterializable = 1;
746  let isAsCheapAsAMove = 1;
747}
748def SUBREG_TO_REG : Instruction {
749  let OutOperandList = (outs unknown:$dst);
750  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
751  let AsmString = "";
752  let neverHasSideEffects = 1;
753}
754def COPY_TO_REGCLASS : Instruction {
755  let OutOperandList = (outs unknown:$dst);
756  let InOperandList = (ins unknown:$src, i32imm:$regclass);
757  let AsmString = "";
758  let neverHasSideEffects = 1;
759  let isAsCheapAsAMove = 1;
760}
761def DBG_VALUE : Instruction {
762  let OutOperandList = (outs);
763  let InOperandList = (ins variable_ops);
764  let AsmString = "DBG_VALUE";
765  let neverHasSideEffects = 1;
766}
767def REG_SEQUENCE : Instruction {
768  let OutOperandList = (outs unknown:$dst);
769  let InOperandList = (ins variable_ops);
770  let AsmString = "";
771  let neverHasSideEffects = 1;
772  let isAsCheapAsAMove = 1;
773}
774def COPY : Instruction {
775  let OutOperandList = (outs unknown:$dst);
776  let InOperandList = (ins unknown:$src);
777  let AsmString = "";
778  let neverHasSideEffects = 1;
779  let isAsCheapAsAMove = 1;
780}
781def BUNDLE : Instruction {
782  let OutOperandList = (outs);
783  let InOperandList = (ins variable_ops);
784  let AsmString = "BUNDLE";
785}
786def LIFETIME_START : Instruction {
787  let OutOperandList = (outs);
788  let InOperandList = (ins i32imm:$id);
789  let AsmString = "LIFETIME_START";
790  let neverHasSideEffects = 1;
791}
792def LIFETIME_END : Instruction {
793  let OutOperandList = (outs);
794  let InOperandList = (ins i32imm:$id);
795  let AsmString = "LIFETIME_END";
796  let neverHasSideEffects = 1;
797}
798}
799
800//===----------------------------------------------------------------------===//
801// AsmParser - This class can be implemented by targets that wish to implement
802// .s file parsing.
803//
804// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
805// syntax on X86 for example).
806//
807class AsmParser {
808  // AsmParserClassName - This specifies the suffix to use for the asmparser
809  // class.  Generated AsmParser classes are always prefixed with the target
810  // name.
811  string AsmParserClassName  = "AsmParser";
812
813  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
814  // function of the AsmParser class to call on every matched instruction.
815  // This can be used to perform target specific instruction post-processing.
816  string AsmParserInstCleanup  = "";
817
818  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
819  // written register name matcher
820  bit ShouldEmitMatchRegisterName = 1;
821
822  /// Does the instruction mnemonic allow '.'
823  bit MnemonicContainsDot = 0;
824}
825def DefaultAsmParser : AsmParser;
826
827//===----------------------------------------------------------------------===//
828// AsmParserVariant - Subtargets can have multiple different assembly parsers
829// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
830// implemented by targets to describe such variants.
831//
832class AsmParserVariant {
833  // Variant - AsmParsers can be of multiple different variants.  Variants are
834  // used to support targets that need to parser multiple formats for the
835  // assembly language.
836  int Variant = 0;
837
838  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
839  string Name = "";
840
841  // CommentDelimiter - If given, the delimiter string used to recognize
842  // comments which are hard coded in the .td assembler strings for individual
843  // instructions.
844  string CommentDelimiter = "";
845
846  // RegisterPrefix - If given, the token prefix which indicates a register
847  // token. This is used by the matcher to automatically recognize hard coded
848  // register tokens as constrained registers, instead of tokens, for the
849  // purposes of matching.
850  string RegisterPrefix = "";
851}
852def DefaultAsmParserVariant : AsmParserVariant;
853
854/// AssemblerPredicate - This is a Predicate that can be used when the assembler
855/// matches instructions and aliases.
856class AssemblerPredicate<string cond, string name = ""> {
857  bit AssemblerMatcherPredicate = 1;
858  string AssemblerCondString = cond;
859  string PredicateName = name;
860}
861
862/// TokenAlias - This class allows targets to define assembler token
863/// operand aliases. That is, a token literal operand which is equivalent
864/// to another, canonical, token literal. For example, ARM allows:
865///   vmov.u32 s4, #0  -> vmov.i32, #0
866/// 'u32' is a more specific designator for the 32-bit integer type specifier
867/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
868///   def : TokenAlias<".u32", ".i32">;
869///
870/// This works by marking the match class of 'From' as a subclass of the
871/// match class of 'To'.
872class TokenAlias<string From, string To> {
873  string FromToken = From;
874  string ToToken = To;
875}
876
877/// MnemonicAlias - This class allows targets to define assembler mnemonic
878/// aliases.  This should be used when all forms of one mnemonic are accepted
879/// with a different mnemonic.  For example, X86 allows:
880///   sal %al, 1    -> shl %al, 1
881///   sal %ax, %cl  -> shl %ax, %cl
882///   sal %eax, %cl -> shl %eax, %cl
883/// etc.  Though "sal" is accepted with many forms, all of them are directly
884/// translated to a shl, so it can be handled with (in the case of X86, it
885/// actually has one for each suffix as well):
886///   def : MnemonicAlias<"sal", "shl">;
887///
888/// Mnemonic aliases are mapped before any other translation in the match phase,
889/// and do allow Requires predicates, e.g.:
890///
891///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
892///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
893///
894/// Mnemonic aliases can also be constrained to specific variants, e.g.:
895///
896///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
897///
898/// If no variant (e.g., "att" or "intel") is specified then the alias is
899/// applied unconditionally.
900class MnemonicAlias<string From, string To, string VariantName = ""> {
901  string FromMnemonic = From;
902  string ToMnemonic = To;
903  string AsmVariantName = VariantName;
904
905  // Predicates - Predicates that must be true for this remapping to happen.
906  list<Predicate> Predicates = [];
907}
908
909/// InstAlias - This defines an alternate assembly syntax that is allowed to
910/// match an instruction that has a different (more canonical) assembly
911/// representation.
912class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
913  string AsmString = Asm;      // The .s format to match the instruction with.
914  dag ResultInst = Result;     // The MCInst to generate.
915  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
916
917  // Predicates - Predicates that must be true for this to match.
918  list<Predicate> Predicates = [];
919}
920
921//===----------------------------------------------------------------------===//
922// AsmWriter - This class can be implemented by targets that need to customize
923// the format of the .s file writer.
924//
925// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
926// on X86 for example).
927//
928class AsmWriter {
929  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
930  // class.  Generated AsmWriter classes are always prefixed with the target
931  // name.
932  string AsmWriterClassName  = "AsmPrinter";
933
934  // Variant - AsmWriters can be of multiple different variants.  Variants are
935  // used to support targets that need to emit assembly code in ways that are
936  // mostly the same for different targets, but have minor differences in
937  // syntax.  If the asmstring contains {|} characters in them, this integer
938  // will specify which alternative to use.  For example "{x|y|z}" with Variant
939  // == 1, will expand to "y".
940  int Variant = 0;
941
942
943  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
944  // layout, the asmwriter can actually generate output in this columns (in
945  // verbose-asm mode).  These two values indicate the width of the first column
946  // (the "opcode" area) and the width to reserve for subsequent operands.  When
947  // verbose asm mode is enabled, operands will be indented to respect this.
948  int FirstOperandColumn = -1;
949
950  // OperandSpacing - Space between operand columns.
951  int OperandSpacing = -1;
952
953  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
954  // generation of the printInstruction() method. For MC printers, it takes
955  // an MCInstr* operand, otherwise it takes a MachineInstr*.
956  bit isMCAsmWriter = 0;
957}
958def DefaultAsmWriter : AsmWriter;
959
960
961//===----------------------------------------------------------------------===//
962// Target - This class contains the "global" target information
963//
964class Target {
965  // InstructionSet - Instruction set description for this target.
966  InstrInfo InstructionSet;
967
968  // AssemblyParsers - The AsmParser instances available for this target.
969  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
970
971  /// AssemblyParserVariants - The AsmParserVariant instances available for
972  /// this target.
973  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
974
975  // AssemblyWriters - The AsmWriter instances available for this target.
976  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
977}
978
979//===----------------------------------------------------------------------===//
980// SubtargetFeature - A characteristic of the chip set.
981//
982class SubtargetFeature<string n, string a,  string v, string d,
983                       list<SubtargetFeature> i = []> {
984  // Name - Feature name.  Used by command line (-mattr=) to determine the
985  // appropriate target chip.
986  //
987  string Name = n;
988
989  // Attribute - Attribute to be set by feature.
990  //
991  string Attribute = a;
992
993  // Value - Value the attribute to be set to by feature.
994  //
995  string Value = v;
996
997  // Desc - Feature description.  Used by command line (-mattr=) to display help
998  // information.
999  //
1000  string Desc = d;
1001
1002  // Implies - Features that this feature implies are present. If one of those
1003  // features isn't set, then this one shouldn't be set either.
1004  //
1005  list<SubtargetFeature> Implies = i;
1006}
1007
1008//===----------------------------------------------------------------------===//
1009// Processor chip sets - These values represent each of the chip sets supported
1010// by the scheduler.  Each Processor definition requires corresponding
1011// instruction itineraries.
1012//
1013class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1014  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1015  // appropriate target chip.
1016  //
1017  string Name = n;
1018
1019  // SchedModel - The machine model for scheduling and instruction cost.
1020  //
1021  SchedMachineModel SchedModel = NoSchedModel;
1022
1023  // ProcItin - The scheduling information for the target processor.
1024  //
1025  ProcessorItineraries ProcItin = pi;
1026
1027  // Features - list of
1028  list<SubtargetFeature> Features = f;
1029}
1030
1031// ProcessorModel allows subtargets to specify the more general
1032// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1033// gradually move to this newer form.
1034//
1035// Although this class always passes NoItineraries to the Processor
1036// class, the SchedMachineModel may still define valid Itineraries.
1037class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1038  : Processor<n, NoItineraries, f> {
1039  let SchedModel = m;
1040}
1041
1042//===----------------------------------------------------------------------===//
1043// InstrMapping - This class is used to create mapping tables to relate
1044// instructions with each other based on the values specified in RowFields,
1045// ColFields, KeyCol and ValueCols.
1046//
1047class InstrMapping {
1048  // FilterClass - Used to limit search space only to the instructions that
1049  // define the relationship modeled by this InstrMapping record.
1050  string FilterClass;
1051
1052  // RowFields - List of fields/attributes that should be same for all the
1053  // instructions in a row of the relation table. Think of this as a set of
1054  // properties shared by all the instructions related by this relationship
1055  // model and is used to categorize instructions into subgroups. For instance,
1056  // if we want to define a relation that maps 'Add' instruction to its
1057  // predicated forms, we can define RowFields like this:
1058  //
1059  // let RowFields = BaseOp
1060  // All add instruction predicated/non-predicated will have to set their BaseOp
1061  // to the same value.
1062  //
1063  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1064  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1065  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1066  list<string> RowFields = [];
1067
1068  // List of fields/attributes that are same for all the instructions
1069  // in a column of the relation table.
1070  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1071  // based on the 'predSense' values. All the instruction in a specific
1072  // column have the same value and it is fixed for the column according
1073  // to the values set in 'ValueCols'.
1074  list<string> ColFields = [];
1075
1076  // Values for the fields/attributes listed in 'ColFields'.
1077  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1078  // that models this relation) should be non-predicated.
1079  // In the example above, 'Add' is the key instruction.
1080  list<string> KeyCol = [];
1081
1082  // List of values for the fields/attributes listed in 'ColFields', one for
1083  // each column in the relation table.
1084  //
1085  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1086  // table. First column requires all the instructions to have predSense
1087  // set to 'true' and second column requires it to be 'false'.
1088  list<list<string> > ValueCols = [];
1089}
1090
1091//===----------------------------------------------------------------------===//
1092// Pull in the common support for calling conventions.
1093//
1094include "llvm/Target/TargetCallingConv.td"
1095
1096//===----------------------------------------------------------------------===//
1097// Pull in the common support for DAG isel generation.
1098//
1099include "llvm/Target/TargetSelectionDAG.td"
1100