1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/InstIterator.h"
33 #include <set>
34 using namespace llvm;
35
36 STATISTIC(NumNonAddrTakenGlobalVars,
37 "Number of global vars without address taken");
38 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42
43 namespace {
44 /// FunctionRecord - One instance of this structure is stored for every
45 /// function in the program. Later, the entries for these functions are
46 /// removed if the function is found to call an external function (in which
47 /// case we know nothing about it.
48 struct FunctionRecord {
49 /// GlobalInfo - Maintain mod/ref info for all of the globals without
50 /// addresses taken that are read or written (transitively) by this
51 /// function.
52 std::map<const GlobalValue*, unsigned> GlobalInfo;
53
54 /// MayReadAnyGlobal - May read global variables, but it is not known which.
55 bool MayReadAnyGlobal;
56
getInfoForGlobal__anonedf8c3990111::FunctionRecord57 unsigned getInfoForGlobal(const GlobalValue *GV) const {
58 unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
59 std::map<const GlobalValue*, unsigned>::const_iterator I =
60 GlobalInfo.find(GV);
61 if (I != GlobalInfo.end())
62 Effect |= I->second;
63 return Effect;
64 }
65
66 /// FunctionEffect - Capture whether or not this function reads or writes to
67 /// ANY memory. If not, we can do a lot of aggressive analysis on it.
68 unsigned FunctionEffect;
69
FunctionRecord__anonedf8c3990111::FunctionRecord70 FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
71 };
72
73 /// GlobalsModRef - The actual analysis pass.
74 class GlobalsModRef : public ModulePass, public AliasAnalysis {
75 /// NonAddressTakenGlobals - The globals that do not have their addresses
76 /// taken.
77 std::set<const GlobalValue*> NonAddressTakenGlobals;
78
79 /// IndirectGlobals - The memory pointed to by this global is known to be
80 /// 'owned' by the global.
81 std::set<const GlobalValue*> IndirectGlobals;
82
83 /// AllocsForIndirectGlobals - If an instruction allocates memory for an
84 /// indirect global, this map indicates which one.
85 std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
86
87 /// FunctionInfo - For each function, keep track of what globals are
88 /// modified or read.
89 std::map<const Function*, FunctionRecord> FunctionInfo;
90
91 public:
92 static char ID;
GlobalsModRef()93 GlobalsModRef() : ModulePass(ID) {
94 initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
95 }
96
runOnModule(Module & M)97 bool runOnModule(Module &M) {
98 InitializeAliasAnalysis(this); // set up super class
99 AnalyzeGlobals(M); // find non-addr taken globals
100 AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
101 return false;
102 }
103
getAnalysisUsage(AnalysisUsage & AU) const104 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105 AliasAnalysis::getAnalysisUsage(AU);
106 AU.addRequired<CallGraph>();
107 AU.setPreservesAll(); // Does not transform code
108 }
109
110 //------------------------------------------------
111 // Implement the AliasAnalysis API
112 //
113 AliasResult alias(const Location &LocA, const Location &LocB);
114 ModRefResult getModRefInfo(ImmutableCallSite CS,
115 const Location &Loc);
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)116 ModRefResult getModRefInfo(ImmutableCallSite CS1,
117 ImmutableCallSite CS2) {
118 return AliasAnalysis::getModRefInfo(CS1, CS2);
119 }
120
121 /// getModRefBehavior - Return the behavior of the specified function if
122 /// called from the specified call site. The call site may be null in which
123 /// case the most generic behavior of this function should be returned.
getModRefBehavior(const Function * F)124 ModRefBehavior getModRefBehavior(const Function *F) {
125 ModRefBehavior Min = UnknownModRefBehavior;
126
127 if (FunctionRecord *FR = getFunctionInfo(F)) {
128 if (FR->FunctionEffect == 0)
129 Min = DoesNotAccessMemory;
130 else if ((FR->FunctionEffect & Mod) == 0)
131 Min = OnlyReadsMemory;
132 }
133
134 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
135 }
136
137 /// getModRefBehavior - Return the behavior of the specified function if
138 /// called from the specified call site. The call site may be null in which
139 /// case the most generic behavior of this function should be returned.
getModRefBehavior(ImmutableCallSite CS)140 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
141 ModRefBehavior Min = UnknownModRefBehavior;
142
143 if (const Function* F = CS.getCalledFunction())
144 if (FunctionRecord *FR = getFunctionInfo(F)) {
145 if (FR->FunctionEffect == 0)
146 Min = DoesNotAccessMemory;
147 else if ((FR->FunctionEffect & Mod) == 0)
148 Min = OnlyReadsMemory;
149 }
150
151 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
152 }
153
154 virtual void deleteValue(Value *V);
155 virtual void copyValue(Value *From, Value *To);
156 virtual void addEscapingUse(Use &U);
157
158 /// getAdjustedAnalysisPointer - This method is used when a pass implements
159 /// an analysis interface through multiple inheritance. If needed, it
160 /// should override this to adjust the this pointer as needed for the
161 /// specified pass info.
getAdjustedAnalysisPointer(AnalysisID PI)162 virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
163 if (PI == &AliasAnalysis::ID)
164 return (AliasAnalysis*)this;
165 return this;
166 }
167
168 private:
169 /// getFunctionInfo - Return the function info for the function, or null if
170 /// we don't have anything useful to say about it.
getFunctionInfo(const Function * F)171 FunctionRecord *getFunctionInfo(const Function *F) {
172 std::map<const Function*, FunctionRecord>::iterator I =
173 FunctionInfo.find(F);
174 if (I != FunctionInfo.end())
175 return &I->second;
176 return 0;
177 }
178
179 void AnalyzeGlobals(Module &M);
180 void AnalyzeCallGraph(CallGraph &CG, Module &M);
181 bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
182 std::vector<Function*> &Writers,
183 GlobalValue *OkayStoreDest = 0);
184 bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
185 };
186 }
187
188 char GlobalsModRef::ID = 0;
189 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
190 "globalsmodref-aa", "Simple mod/ref analysis for globals",
191 false, true, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)192 INITIALIZE_AG_DEPENDENCY(CallGraph)
193 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
194 "globalsmodref-aa", "Simple mod/ref analysis for globals",
195 false, true, false)
196
197 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
198
199 /// AnalyzeGlobals - Scan through the users of all of the internal
200 /// GlobalValue's in the program. If none of them have their "address taken"
201 /// (really, their address passed to something nontrivial), record this fact,
202 /// and record the functions that they are used directly in.
AnalyzeGlobals(Module & M)203 void GlobalsModRef::AnalyzeGlobals(Module &M) {
204 std::vector<Function*> Readers, Writers;
205 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
206 if (I->hasLocalLinkage()) {
207 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
208 // Remember that we are tracking this global.
209 NonAddressTakenGlobals.insert(I);
210 ++NumNonAddrTakenFunctions;
211 }
212 Readers.clear(); Writers.clear();
213 }
214
215 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
216 I != E; ++I)
217 if (I->hasLocalLinkage()) {
218 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
219 // Remember that we are tracking this global, and the mod/ref fns
220 NonAddressTakenGlobals.insert(I);
221
222 for (unsigned i = 0, e = Readers.size(); i != e; ++i)
223 FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
224
225 if (!I->isConstant()) // No need to keep track of writers to constants
226 for (unsigned i = 0, e = Writers.size(); i != e; ++i)
227 FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
228 ++NumNonAddrTakenGlobalVars;
229
230 // If this global holds a pointer type, see if it is an indirect global.
231 if (I->getType()->getElementType()->isPointerTy() &&
232 AnalyzeIndirectGlobalMemory(I))
233 ++NumIndirectGlobalVars;
234 }
235 Readers.clear(); Writers.clear();
236 }
237 }
238
239 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
240 /// If this is used by anything complex (i.e., the address escapes), return
241 /// true. Also, while we are at it, keep track of those functions that read and
242 /// write to the value.
243 ///
244 /// If OkayStoreDest is non-null, stores into this global are allowed.
AnalyzeUsesOfPointer(Value * V,std::vector<Function * > & Readers,std::vector<Function * > & Writers,GlobalValue * OkayStoreDest)245 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
246 std::vector<Function*> &Readers,
247 std::vector<Function*> &Writers,
248 GlobalValue *OkayStoreDest) {
249 if (!V->getType()->isPointerTy()) return true;
250
251 for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
252 User *U = *UI;
253 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
254 Readers.push_back(LI->getParent()->getParent());
255 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
256 if (V == SI->getOperand(1)) {
257 Writers.push_back(SI->getParent()->getParent());
258 } else if (SI->getOperand(1) != OkayStoreDest) {
259 return true; // Storing the pointer
260 }
261 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
262 if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
263 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
264 if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
265 return true;
266 } else if (isFreeCall(U, TLI)) {
267 Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
268 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
269 // Make sure that this is just the function being called, not that it is
270 // passing into the function.
271 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
272 if (CI->getArgOperand(i) == V) return true;
273 } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
274 // Make sure that this is just the function being called, not that it is
275 // passing into the function.
276 for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
277 if (II->getArgOperand(i) == V) return true;
278 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
279 if (CE->getOpcode() == Instruction::GetElementPtr ||
280 CE->getOpcode() == Instruction::BitCast) {
281 if (AnalyzeUsesOfPointer(CE, Readers, Writers))
282 return true;
283 } else {
284 return true;
285 }
286 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
287 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
288 return true; // Allow comparison against null.
289 } else {
290 return true;
291 }
292 }
293
294 return false;
295 }
296
297 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
298 /// which holds a pointer type. See if the global always points to non-aliased
299 /// heap memory: that is, all initializers of the globals are allocations, and
300 /// those allocations have no use other than initialization of the global.
301 /// Further, all loads out of GV must directly use the memory, not store the
302 /// pointer somewhere. If this is true, we consider the memory pointed to by
303 /// GV to be owned by GV and can disambiguate other pointers from it.
AnalyzeIndirectGlobalMemory(GlobalValue * GV)304 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
305 // Keep track of values related to the allocation of the memory, f.e. the
306 // value produced by the malloc call and any casts.
307 std::vector<Value*> AllocRelatedValues;
308
309 // Walk the user list of the global. If we find anything other than a direct
310 // load or store, bail out.
311 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
312 User *U = *I;
313 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314 // The pointer loaded from the global can only be used in simple ways:
315 // we allow addressing of it and loading storing to it. We do *not* allow
316 // storing the loaded pointer somewhere else or passing to a function.
317 std::vector<Function*> ReadersWriters;
318 if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
319 return false; // Loaded pointer escapes.
320 // TODO: Could try some IP mod/ref of the loaded pointer.
321 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
322 // Storing the global itself.
323 if (SI->getOperand(0) == GV) return false;
324
325 // If storing the null pointer, ignore it.
326 if (isa<ConstantPointerNull>(SI->getOperand(0)))
327 continue;
328
329 // Check the value being stored.
330 Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
331
332 if (!isAllocLikeFn(Ptr, TLI))
333 return false; // Too hard to analyze.
334
335 // Analyze all uses of the allocation. If any of them are used in a
336 // non-simple way (e.g. stored to another global) bail out.
337 std::vector<Function*> ReadersWriters;
338 if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
339 return false; // Loaded pointer escapes.
340
341 // Remember that this allocation is related to the indirect global.
342 AllocRelatedValues.push_back(Ptr);
343 } else {
344 // Something complex, bail out.
345 return false;
346 }
347 }
348
349 // Okay, this is an indirect global. Remember all of the allocations for
350 // this global in AllocsForIndirectGlobals.
351 while (!AllocRelatedValues.empty()) {
352 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
353 AllocRelatedValues.pop_back();
354 }
355 IndirectGlobals.insert(GV);
356 return true;
357 }
358
359 /// AnalyzeCallGraph - At this point, we know the functions where globals are
360 /// immediately stored to and read from. Propagate this information up the call
361 /// graph to all callers and compute the mod/ref info for all memory for each
362 /// function.
AnalyzeCallGraph(CallGraph & CG,Module & M)363 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
364 // We do a bottom-up SCC traversal of the call graph. In other words, we
365 // visit all callees before callers (leaf-first).
366 for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
367 ++I) {
368 std::vector<CallGraphNode *> &SCC = *I;
369 assert(!SCC.empty() && "SCC with no functions?");
370
371 if (!SCC[0]->getFunction()) {
372 // Calls externally - can't say anything useful. Remove any existing
373 // function records (may have been created when scanning globals).
374 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
375 FunctionInfo.erase(SCC[i]->getFunction());
376 continue;
377 }
378
379 FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
380
381 bool KnowNothing = false;
382 unsigned FunctionEffect = 0;
383
384 // Collect the mod/ref properties due to called functions. We only compute
385 // one mod-ref set.
386 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
387 Function *F = SCC[i]->getFunction();
388 if (!F) {
389 KnowNothing = true;
390 break;
391 }
392
393 if (F->isDeclaration()) {
394 // Try to get mod/ref behaviour from function attributes.
395 if (F->doesNotAccessMemory()) {
396 // Can't do better than that!
397 } else if (F->onlyReadsMemory()) {
398 FunctionEffect |= Ref;
399 if (!F->isIntrinsic())
400 // This function might call back into the module and read a global -
401 // consider every global as possibly being read by this function.
402 FR.MayReadAnyGlobal = true;
403 } else {
404 FunctionEffect |= ModRef;
405 // Can't say anything useful unless it's an intrinsic - they don't
406 // read or write global variables of the kind considered here.
407 KnowNothing = !F->isIntrinsic();
408 }
409 continue;
410 }
411
412 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
413 CI != E && !KnowNothing; ++CI)
414 if (Function *Callee = CI->second->getFunction()) {
415 if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
416 // Propagate function effect up.
417 FunctionEffect |= CalleeFR->FunctionEffect;
418
419 // Incorporate callee's effects on globals into our info.
420 for (std::map<const GlobalValue*, unsigned>::iterator GI =
421 CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
422 GI != E; ++GI)
423 FR.GlobalInfo[GI->first] |= GI->second;
424 FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
425 } else {
426 // Can't say anything about it. However, if it is inside our SCC,
427 // then nothing needs to be done.
428 CallGraphNode *CalleeNode = CG[Callee];
429 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
430 KnowNothing = true;
431 }
432 } else {
433 KnowNothing = true;
434 }
435 }
436
437 // If we can't say anything useful about this SCC, remove all SCC functions
438 // from the FunctionInfo map.
439 if (KnowNothing) {
440 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
441 FunctionInfo.erase(SCC[i]->getFunction());
442 continue;
443 }
444
445 // Scan the function bodies for explicit loads or stores.
446 for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
447 for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
448 E = inst_end(SCC[i]->getFunction());
449 II != E && FunctionEffect != ModRef; ++II)
450 if (LoadInst *LI = dyn_cast<LoadInst>(&*II)) {
451 FunctionEffect |= Ref;
452 if (LI->isVolatile())
453 // Volatile loads may have side-effects, so mark them as writing
454 // memory (for example, a flag inside the processor).
455 FunctionEffect |= Mod;
456 } else if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) {
457 FunctionEffect |= Mod;
458 if (SI->isVolatile())
459 // Treat volatile stores as reading memory somewhere.
460 FunctionEffect |= Ref;
461 } else if (isAllocationFn(&*II, TLI) || isFreeCall(&*II, TLI)) {
462 FunctionEffect |= ModRef;
463 } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
464 // The callgraph doesn't include intrinsic calls.
465 Function *Callee = Intrinsic->getCalledFunction();
466 ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
467 FunctionEffect |= (Behaviour & ModRef);
468 }
469
470 if ((FunctionEffect & Mod) == 0)
471 ++NumReadMemFunctions;
472 if (FunctionEffect == 0)
473 ++NumNoMemFunctions;
474 FR.FunctionEffect = FunctionEffect;
475
476 // Finally, now that we know the full effect on this SCC, clone the
477 // information to each function in the SCC.
478 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
479 FunctionInfo[SCC[i]->getFunction()] = FR;
480 }
481 }
482
483
484
485 /// alias - If one of the pointers is to a global that we are tracking, and the
486 /// other is some random pointer, we know there cannot be an alias, because the
487 /// address of the global isn't taken.
488 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)489 GlobalsModRef::alias(const Location &LocA,
490 const Location &LocB) {
491 // Get the base object these pointers point to.
492 const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
493 const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
494
495 // If either of the underlying values is a global, they may be non-addr-taken
496 // globals, which we can answer queries about.
497 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
498 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
499 if (GV1 || GV2) {
500 // If the global's address is taken, pretend we don't know it's a pointer to
501 // the global.
502 if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
503 if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
504
505 // If the two pointers are derived from two different non-addr-taken
506 // globals, or if one is and the other isn't, we know these can't alias.
507 if ((GV1 || GV2) && GV1 != GV2)
508 return NoAlias;
509
510 // Otherwise if they are both derived from the same addr-taken global, we
511 // can't know the two accesses don't overlap.
512 }
513
514 // These pointers may be based on the memory owned by an indirect global. If
515 // so, we may be able to handle this. First check to see if the base pointer
516 // is a direct load from an indirect global.
517 GV1 = GV2 = 0;
518 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
519 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
520 if (IndirectGlobals.count(GV))
521 GV1 = GV;
522 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
523 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
524 if (IndirectGlobals.count(GV))
525 GV2 = GV;
526
527 // These pointers may also be from an allocation for the indirect global. If
528 // so, also handle them.
529 if (AllocsForIndirectGlobals.count(UV1))
530 GV1 = AllocsForIndirectGlobals[UV1];
531 if (AllocsForIndirectGlobals.count(UV2))
532 GV2 = AllocsForIndirectGlobals[UV2];
533
534 // Now that we know whether the two pointers are related to indirect globals,
535 // use this to disambiguate the pointers. If either pointer is based on an
536 // indirect global and if they are not both based on the same indirect global,
537 // they cannot alias.
538 if ((GV1 || GV2) && GV1 != GV2)
539 return NoAlias;
540
541 return AliasAnalysis::alias(LocA, LocB);
542 }
543
544 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)545 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
546 const Location &Loc) {
547 unsigned Known = ModRef;
548
549 // If we are asking for mod/ref info of a direct call with a pointer to a
550 // global we are tracking, return information if we have it.
551 if (const GlobalValue *GV =
552 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
553 if (GV->hasLocalLinkage())
554 if (const Function *F = CS.getCalledFunction())
555 if (NonAddressTakenGlobals.count(GV))
556 if (const FunctionRecord *FR = getFunctionInfo(F))
557 Known = FR->getInfoForGlobal(GV);
558
559 if (Known == NoModRef)
560 return NoModRef; // No need to query other mod/ref analyses
561 return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
562 }
563
564
565 //===----------------------------------------------------------------------===//
566 // Methods to update the analysis as a result of the client transformation.
567 //
deleteValue(Value * V)568 void GlobalsModRef::deleteValue(Value *V) {
569 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
570 if (NonAddressTakenGlobals.erase(GV)) {
571 // This global might be an indirect global. If so, remove it and remove
572 // any AllocRelatedValues for it.
573 if (IndirectGlobals.erase(GV)) {
574 // Remove any entries in AllocsForIndirectGlobals for this global.
575 for (std::map<const Value*, const GlobalValue*>::iterator
576 I = AllocsForIndirectGlobals.begin(),
577 E = AllocsForIndirectGlobals.end(); I != E; ) {
578 if (I->second == GV) {
579 AllocsForIndirectGlobals.erase(I++);
580 } else {
581 ++I;
582 }
583 }
584 }
585 }
586 }
587
588 // Otherwise, if this is an allocation related to an indirect global, remove
589 // it.
590 AllocsForIndirectGlobals.erase(V);
591
592 AliasAnalysis::deleteValue(V);
593 }
594
copyValue(Value * From,Value * To)595 void GlobalsModRef::copyValue(Value *From, Value *To) {
596 AliasAnalysis::copyValue(From, To);
597 }
598
addEscapingUse(Use & U)599 void GlobalsModRef::addEscapingUse(Use &U) {
600 // For the purposes of this analysis, it is conservatively correct to treat
601 // a newly escaping value equivalently to a deleted one. We could perhaps
602 // be more precise by processing the new use and attempting to update our
603 // saved analysis results to accommodate it.
604 deleteValue(U);
605
606 AliasAnalysis::addEscapingUse(U);
607 }
608