1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "tti"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Operator.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/Support/CallSite.h"
18 #include "llvm/Support/ErrorHandling.h"
19
20 using namespace llvm;
21
22 // Setup the analysis group to manage the TargetTransformInfo passes.
23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
24 char TargetTransformInfo::ID = 0;
25
~TargetTransformInfo()26 TargetTransformInfo::~TargetTransformInfo() {
27 }
28
pushTTIStack(Pass * P)29 void TargetTransformInfo::pushTTIStack(Pass *P) {
30 TopTTI = this;
31 PrevTTI = &P->getAnalysis<TargetTransformInfo>();
32
33 // Walk up the chain and update the top TTI pointer.
34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
35 PTTI->TopTTI = this;
36 }
37
popTTIStack()38 void TargetTransformInfo::popTTIStack() {
39 TopTTI = 0;
40
41 // Walk up the chain and update the top TTI pointer.
42 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
43 PTTI->TopTTI = PrevTTI;
44
45 PrevTTI = 0;
46 }
47
getAnalysisUsage(AnalysisUsage & AU) const48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
49 AU.addRequired<TargetTransformInfo>();
50 }
51
getOperationCost(unsigned Opcode,Type * Ty,Type * OpTy) const52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
53 Type *OpTy) const {
54 return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
55 }
56
getGEPCost(const Value * Ptr,ArrayRef<const Value * > Operands) const57 unsigned TargetTransformInfo::getGEPCost(
58 const Value *Ptr, ArrayRef<const Value *> Operands) const {
59 return PrevTTI->getGEPCost(Ptr, Operands);
60 }
61
getCallCost(FunctionType * FTy,int NumArgs) const62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
63 int NumArgs) const {
64 return PrevTTI->getCallCost(FTy, NumArgs);
65 }
66
getCallCost(const Function * F,int NumArgs) const67 unsigned TargetTransformInfo::getCallCost(const Function *F,
68 int NumArgs) const {
69 return PrevTTI->getCallCost(F, NumArgs);
70 }
71
getCallCost(const Function * F,ArrayRef<const Value * > Arguments) const72 unsigned TargetTransformInfo::getCallCost(
73 const Function *F, ArrayRef<const Value *> Arguments) const {
74 return PrevTTI->getCallCost(F, Arguments);
75 }
76
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<Type * > ParamTys) const77 unsigned TargetTransformInfo::getIntrinsicCost(
78 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
79 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
80 }
81
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<const Value * > Arguments) const82 unsigned TargetTransformInfo::getIntrinsicCost(
83 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
84 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
85 }
86
getUserCost(const User * U) const87 unsigned TargetTransformInfo::getUserCost(const User *U) const {
88 return PrevTTI->getUserCost(U);
89 }
90
hasBranchDivergence() const91 bool TargetTransformInfo::hasBranchDivergence() const {
92 return PrevTTI->hasBranchDivergence();
93 }
94
isLoweredToCall(const Function * F) const95 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
96 return PrevTTI->isLoweredToCall(F);
97 }
98
isLegalAddImmediate(int64_t Imm) const99 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
100 return PrevTTI->isLegalAddImmediate(Imm);
101 }
102
isLegalICmpImmediate(int64_t Imm) const103 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
104 return PrevTTI->isLegalICmpImmediate(Imm);
105 }
106
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale) const107 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
108 int64_t BaseOffset,
109 bool HasBaseReg,
110 int64_t Scale) const {
111 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
112 Scale);
113 }
114
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale) const115 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
116 int64_t BaseOffset,
117 bool HasBaseReg,
118 int64_t Scale) const {
119 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
120 Scale);
121 }
122
isTruncateFree(Type * Ty1,Type * Ty2) const123 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
124 return PrevTTI->isTruncateFree(Ty1, Ty2);
125 }
126
isTypeLegal(Type * Ty) const127 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
128 return PrevTTI->isTypeLegal(Ty);
129 }
130
getJumpBufAlignment() const131 unsigned TargetTransformInfo::getJumpBufAlignment() const {
132 return PrevTTI->getJumpBufAlignment();
133 }
134
getJumpBufSize() const135 unsigned TargetTransformInfo::getJumpBufSize() const {
136 return PrevTTI->getJumpBufSize();
137 }
138
shouldBuildLookupTables() const139 bool TargetTransformInfo::shouldBuildLookupTables() const {
140 return PrevTTI->shouldBuildLookupTables();
141 }
142
143 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit) const144 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
145 return PrevTTI->getPopcntSupport(IntTyWidthInBit);
146 }
147
getIntImmCost(const APInt & Imm,Type * Ty) const148 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
149 return PrevTTI->getIntImmCost(Imm, Ty);
150 }
151
getNumberOfRegisters(bool Vector) const152 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
153 return PrevTTI->getNumberOfRegisters(Vector);
154 }
155
getRegisterBitWidth(bool Vector) const156 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
157 return PrevTTI->getRegisterBitWidth(Vector);
158 }
159
getMaximumUnrollFactor() const160 unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
161 return PrevTTI->getMaximumUnrollFactor();
162 }
163
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind Op1Info,OperandValueKind Op2Info) const164 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
165 Type *Ty,
166 OperandValueKind Op1Info,
167 OperandValueKind Op2Info) const {
168 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
169 }
170
getShuffleCost(ShuffleKind Kind,Type * Tp,int Index,Type * SubTp) const171 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
172 int Index, Type *SubTp) const {
173 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
174 }
175
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src) const176 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
177 Type *Src) const {
178 return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
179 }
180
getCFInstrCost(unsigned Opcode) const181 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
182 return PrevTTI->getCFInstrCost(Opcode);
183 }
184
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy) const185 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
186 Type *CondTy) const {
187 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
188 }
189
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index) const190 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
191 unsigned Index) const {
192 return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
193 }
194
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace) const195 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
196 unsigned Alignment,
197 unsigned AddressSpace) const {
198 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
199 ;
200 }
201
202 unsigned
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys) const203 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
204 Type *RetTy,
205 ArrayRef<Type *> Tys) const {
206 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
207 }
208
getNumberOfParts(Type * Tp) const209 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
210 return PrevTTI->getNumberOfParts(Tp);
211 }
212
getAddressComputationCost(Type * Tp,bool IsComplex) const213 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp,
214 bool IsComplex) const {
215 return PrevTTI->getAddressComputationCost(Tp, IsComplex);
216 }
217
218 namespace {
219
220 struct NoTTI : ImmutablePass, TargetTransformInfo {
221 const DataLayout *DL;
222
NoTTI__anonf7923b3e0111::NoTTI223 NoTTI() : ImmutablePass(ID), DL(0) {
224 initializeNoTTIPass(*PassRegistry::getPassRegistry());
225 }
226
initializePass__anonf7923b3e0111::NoTTI227 virtual void initializePass() {
228 // Note that this subclass is special, and must *not* call initializeTTI as
229 // it does not chain.
230 TopTTI = this;
231 PrevTTI = 0;
232 DL = getAnalysisIfAvailable<DataLayout>();
233 }
234
getAnalysisUsage__anonf7923b3e0111::NoTTI235 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
236 // Note that this subclass is special, and must *not* call
237 // TTI::getAnalysisUsage as it breaks the recursion.
238 }
239
240 /// Pass identification.
241 static char ID;
242
243 /// Provide necessary pointer adjustments for the two base classes.
getAdjustedAnalysisPointer__anonf7923b3e0111::NoTTI244 virtual void *getAdjustedAnalysisPointer(const void *ID) {
245 if (ID == &TargetTransformInfo::ID)
246 return (TargetTransformInfo*)this;
247 return this;
248 }
249
getOperationCost__anonf7923b3e0111::NoTTI250 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
251 switch (Opcode) {
252 default:
253 // By default, just classify everything as 'basic'.
254 return TCC_Basic;
255
256 case Instruction::GetElementPtr:
257 llvm_unreachable("Use getGEPCost for GEP operations!");
258
259 case Instruction::BitCast:
260 assert(OpTy && "Cast instructions must provide the operand type");
261 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
262 // Identity and pointer-to-pointer casts are free.
263 return TCC_Free;
264
265 // Otherwise, the default basic cost is used.
266 return TCC_Basic;
267
268 case Instruction::IntToPtr:
269 // An inttoptr cast is free so long as the input is a legal integer type
270 // which doesn't contain values outside the range of a pointer.
271 if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
272 OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
273 return TCC_Free;
274
275 // Otherwise it's not a no-op.
276 return TCC_Basic;
277
278 case Instruction::PtrToInt:
279 // A ptrtoint cast is free so long as the result is large enough to store
280 // the pointer, and a legal integer type.
281 if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) &&
282 Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits())
283 return TCC_Free;
284
285 // Otherwise it's not a no-op.
286 return TCC_Basic;
287
288 case Instruction::Trunc:
289 // trunc to a native type is free (assuming the target has compare and
290 // shift-right of the same width).
291 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
292 return TCC_Free;
293
294 return TCC_Basic;
295 }
296 }
297
getGEPCost__anonf7923b3e0111::NoTTI298 unsigned getGEPCost(const Value *Ptr,
299 ArrayRef<const Value *> Operands) const {
300 // In the basic model, we just assume that all-constant GEPs will be folded
301 // into their uses via addressing modes.
302 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
303 if (!isa<Constant>(Operands[Idx]))
304 return TCC_Basic;
305
306 return TCC_Free;
307 }
308
getCallCost__anonf7923b3e0111::NoTTI309 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
310 assert(FTy && "FunctionType must be provided to this routine.");
311
312 // The target-independent implementation just measures the size of the
313 // function by approximating that each argument will take on average one
314 // instruction to prepare.
315
316 if (NumArgs < 0)
317 // Set the argument number to the number of explicit arguments in the
318 // function.
319 NumArgs = FTy->getNumParams();
320
321 return TCC_Basic * (NumArgs + 1);
322 }
323
getCallCost__anonf7923b3e0111::NoTTI324 unsigned getCallCost(const Function *F, int NumArgs = -1) const {
325 assert(F && "A concrete function must be provided to this routine.");
326
327 if (NumArgs < 0)
328 // Set the argument number to the number of explicit arguments in the
329 // function.
330 NumArgs = F->arg_size();
331
332 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
333 FunctionType *FTy = F->getFunctionType();
334 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
335 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
336 }
337
338 if (!TopTTI->isLoweredToCall(F))
339 return TCC_Basic; // Give a basic cost if it will be lowered directly.
340
341 return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
342 }
343
getCallCost__anonf7923b3e0111::NoTTI344 unsigned getCallCost(const Function *F,
345 ArrayRef<const Value *> Arguments) const {
346 // Simply delegate to generic handling of the call.
347 // FIXME: We should use instsimplify or something else to catch calls which
348 // will constant fold with these arguments.
349 return TopTTI->getCallCost(F, Arguments.size());
350 }
351
getIntrinsicCost__anonf7923b3e0111::NoTTI352 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
353 ArrayRef<Type *> ParamTys) const {
354 switch (IID) {
355 default:
356 // Intrinsics rarely (if ever) have normal argument setup constraints.
357 // Model them as having a basic instruction cost.
358 // FIXME: This is wrong for libc intrinsics.
359 return TCC_Basic;
360
361 case Intrinsic::dbg_declare:
362 case Intrinsic::dbg_value:
363 case Intrinsic::invariant_start:
364 case Intrinsic::invariant_end:
365 case Intrinsic::lifetime_start:
366 case Intrinsic::lifetime_end:
367 case Intrinsic::objectsize:
368 case Intrinsic::ptr_annotation:
369 case Intrinsic::var_annotation:
370 // These intrinsics don't actually represent code after lowering.
371 return TCC_Free;
372 }
373 }
374
getIntrinsicCost__anonf7923b3e0111::NoTTI375 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
376 ArrayRef<const Value *> Arguments) const {
377 // Delegate to the generic intrinsic handling code. This mostly provides an
378 // opportunity for targets to (for example) special case the cost of
379 // certain intrinsics based on constants used as arguments.
380 SmallVector<Type *, 8> ParamTys;
381 ParamTys.reserve(Arguments.size());
382 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
383 ParamTys.push_back(Arguments[Idx]->getType());
384 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
385 }
386
getUserCost__anonf7923b3e0111::NoTTI387 unsigned getUserCost(const User *U) const {
388 if (isa<PHINode>(U))
389 return TCC_Free; // Model all PHI nodes as free.
390
391 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
392 // In the basic model we just assume that all-constant GEPs will be
393 // folded into their uses via addressing modes.
394 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
395
396 if (ImmutableCallSite CS = U) {
397 const Function *F = CS.getCalledFunction();
398 if (!F) {
399 // Just use the called value type.
400 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
401 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
402 }
403
404 SmallVector<const Value *, 8> Arguments;
405 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
406 AE = CS.arg_end();
407 AI != AE; ++AI)
408 Arguments.push_back(*AI);
409
410 return TopTTI->getCallCost(F, Arguments);
411 }
412
413 if (const CastInst *CI = dyn_cast<CastInst>(U)) {
414 // Result of a cmp instruction is often extended (to be used by other
415 // cmp instructions, logical or return instructions). These are usually
416 // nop on most sane targets.
417 if (isa<CmpInst>(CI->getOperand(0)))
418 return TCC_Free;
419 }
420
421 // Otherwise delegate to the fully generic implementations.
422 return getOperationCost(Operator::getOpcode(U), U->getType(),
423 U->getNumOperands() == 1 ?
424 U->getOperand(0)->getType() : 0);
425 }
426
hasBranchDivergence__anonf7923b3e0111::NoTTI427 bool hasBranchDivergence() const { return false; }
428
isLoweredToCall__anonf7923b3e0111::NoTTI429 bool isLoweredToCall(const Function *F) const {
430 // FIXME: These should almost certainly not be handled here, and instead
431 // handled with the help of TLI or the target itself. This was largely
432 // ported from existing analysis heuristics here so that such refactorings
433 // can take place in the future.
434
435 if (F->isIntrinsic())
436 return false;
437
438 if (F->hasLocalLinkage() || !F->hasName())
439 return true;
440
441 StringRef Name = F->getName();
442
443 // These will all likely lower to a single selection DAG node.
444 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
445 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
446 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
447 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
448 return false;
449
450 // These are all likely to be optimized into something smaller.
451 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
452 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
453 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
454 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
455 return false;
456
457 return true;
458 }
459
isLegalAddImmediate__anonf7923b3e0111::NoTTI460 bool isLegalAddImmediate(int64_t Imm) const {
461 return false;
462 }
463
isLegalICmpImmediate__anonf7923b3e0111::NoTTI464 bool isLegalICmpImmediate(int64_t Imm) const {
465 return false;
466 }
467
isLegalAddressingMode__anonf7923b3e0111::NoTTI468 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
469 bool HasBaseReg, int64_t Scale) const {
470 // Guess that reg+reg addressing is allowed. This heuristic is taken from
471 // the implementation of LSR.
472 return !BaseGV && BaseOffset == 0 && Scale <= 1;
473 }
474
getScalingFactorCost__anonf7923b3e0111::NoTTI475 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
476 bool HasBaseReg, int64_t Scale) const {
477 // Guess that all legal addressing mode are free.
478 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
479 return 0;
480 return -1;
481 }
482
483
isTruncateFree__anonf7923b3e0111::NoTTI484 bool isTruncateFree(Type *Ty1, Type *Ty2) const {
485 return false;
486 }
487
isTypeLegal__anonf7923b3e0111::NoTTI488 bool isTypeLegal(Type *Ty) const {
489 return false;
490 }
491
getJumpBufAlignment__anonf7923b3e0111::NoTTI492 unsigned getJumpBufAlignment() const {
493 return 0;
494 }
495
getJumpBufSize__anonf7923b3e0111::NoTTI496 unsigned getJumpBufSize() const {
497 return 0;
498 }
499
shouldBuildLookupTables__anonf7923b3e0111::NoTTI500 bool shouldBuildLookupTables() const {
501 return true;
502 }
503
getPopcntSupport__anonf7923b3e0111::NoTTI504 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
505 return PSK_Software;
506 }
507
getIntImmCost__anonf7923b3e0111::NoTTI508 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
509 return 1;
510 }
511
getNumberOfRegisters__anonf7923b3e0111::NoTTI512 unsigned getNumberOfRegisters(bool Vector) const {
513 return 8;
514 }
515
getRegisterBitWidth__anonf7923b3e0111::NoTTI516 unsigned getRegisterBitWidth(bool Vector) const {
517 return 32;
518 }
519
getMaximumUnrollFactor__anonf7923b3e0111::NoTTI520 unsigned getMaximumUnrollFactor() const {
521 return 1;
522 }
523
getArithmeticInstrCost__anonf7923b3e0111::NoTTI524 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
525 OperandValueKind) const {
526 return 1;
527 }
528
getShuffleCost__anonf7923b3e0111::NoTTI529 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
530 int Index = 0, Type *SubTp = 0) const {
531 return 1;
532 }
533
getCastInstrCost__anonf7923b3e0111::NoTTI534 unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
535 Type *Src) const {
536 return 1;
537 }
538
getCFInstrCost__anonf7923b3e0111::NoTTI539 unsigned getCFInstrCost(unsigned Opcode) const {
540 return 1;
541 }
542
getCmpSelInstrCost__anonf7923b3e0111::NoTTI543 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
544 Type *CondTy = 0) const {
545 return 1;
546 }
547
getVectorInstrCost__anonf7923b3e0111::NoTTI548 unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
549 unsigned Index = -1) const {
550 return 1;
551 }
552
getMemoryOpCost__anonf7923b3e0111::NoTTI553 unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
554 unsigned Alignment,
555 unsigned AddressSpace) const {
556 return 1;
557 }
558
getIntrinsicInstrCost__anonf7923b3e0111::NoTTI559 unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
560 Type *RetTy,
561 ArrayRef<Type*> Tys) const {
562 return 1;
563 }
564
getNumberOfParts__anonf7923b3e0111::NoTTI565 unsigned getNumberOfParts(Type *Tp) const {
566 return 0;
567 }
568
getAddressComputationCost__anonf7923b3e0111::NoTTI569 unsigned getAddressComputationCost(Type *Tp, bool) const {
570 return 0;
571 }
572 };
573
574 } // end anonymous namespace
575
576 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
577 "No target information", true, true, true)
578 char NoTTI::ID = 0;
579
createNoTargetTransformInfoPass()580 ImmutablePass *llvm::createNoTargetTransformInfoPass() {
581 return new NoTTI();
582 }
583