1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "BitcodeReader.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/OperandTraits.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/Support/DataStream.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
29 enum {
30 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
31 };
32
materializeForwardReferencedFunctions()33 void BitcodeReader::materializeForwardReferencedFunctions() {
34 while (!BlockAddrFwdRefs.empty()) {
35 Function *F = BlockAddrFwdRefs.begin()->first;
36 F->Materialize();
37 }
38 }
39
FreeState()40 void BitcodeReader::FreeState() {
41 if (BufferOwned)
42 delete Buffer;
43 Buffer = 0;
44 std::vector<Type*>().swap(TypeList);
45 ValueList.clear();
46 MDValueList.clear();
47
48 std::vector<AttributeSet>().swap(MAttributes);
49 std::vector<BasicBlock*>().swap(FunctionBBs);
50 std::vector<Function*>().swap(FunctionsWithBodies);
51 DeferredFunctionInfo.clear();
52 MDKindMap.clear();
53
54 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
55 }
56
57 //===----------------------------------------------------------------------===//
58 // Helper functions to implement forward reference resolution, etc.
59 //===----------------------------------------------------------------------===//
60
61 /// ConvertToString - Convert a string from a record into an std::string, return
62 /// true on failure.
63 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)64 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
65 StrTy &Result) {
66 if (Idx > Record.size())
67 return true;
68
69 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
70 Result += (char)Record[i];
71 return false;
72 }
73
GetDecodedLinkage(unsigned Val)74 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
75 switch (Val) {
76 default: // Map unknown/new linkages to external
77 case 0: return GlobalValue::ExternalLinkage;
78 case 1: return GlobalValue::WeakAnyLinkage;
79 case 2: return GlobalValue::AppendingLinkage;
80 case 3: return GlobalValue::InternalLinkage;
81 case 4: return GlobalValue::LinkOnceAnyLinkage;
82 case 5: return GlobalValue::DLLImportLinkage;
83 case 6: return GlobalValue::DLLExportLinkage;
84 case 7: return GlobalValue::ExternalWeakLinkage;
85 case 8: return GlobalValue::CommonLinkage;
86 case 9: return GlobalValue::PrivateLinkage;
87 case 10: return GlobalValue::WeakODRLinkage;
88 case 11: return GlobalValue::LinkOnceODRLinkage;
89 case 12: return GlobalValue::AvailableExternallyLinkage;
90 case 13: return GlobalValue::LinkerPrivateLinkage;
91 case 14: return GlobalValue::LinkerPrivateWeakLinkage;
92 case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
93 }
94 }
95
GetDecodedVisibility(unsigned Val)96 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97 switch (Val) {
98 default: // Map unknown visibilities to default.
99 case 0: return GlobalValue::DefaultVisibility;
100 case 1: return GlobalValue::HiddenVisibility;
101 case 2: return GlobalValue::ProtectedVisibility;
102 }
103 }
104
GetDecodedThreadLocalMode(unsigned Val)105 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
106 switch (Val) {
107 case 0: return GlobalVariable::NotThreadLocal;
108 default: // Map unknown non-zero value to general dynamic.
109 case 1: return GlobalVariable::GeneralDynamicTLSModel;
110 case 2: return GlobalVariable::LocalDynamicTLSModel;
111 case 3: return GlobalVariable::InitialExecTLSModel;
112 case 4: return GlobalVariable::LocalExecTLSModel;
113 }
114 }
115
GetDecodedCastOpcode(unsigned Val)116 static int GetDecodedCastOpcode(unsigned Val) {
117 switch (Val) {
118 default: return -1;
119 case bitc::CAST_TRUNC : return Instruction::Trunc;
120 case bitc::CAST_ZEXT : return Instruction::ZExt;
121 case bitc::CAST_SEXT : return Instruction::SExt;
122 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
123 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
124 case bitc::CAST_UITOFP : return Instruction::UIToFP;
125 case bitc::CAST_SITOFP : return Instruction::SIToFP;
126 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
127 case bitc::CAST_FPEXT : return Instruction::FPExt;
128 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
129 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
130 case bitc::CAST_BITCAST : return Instruction::BitCast;
131 }
132 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)133 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
134 switch (Val) {
135 default: return -1;
136 case bitc::BINOP_ADD:
137 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
138 case bitc::BINOP_SUB:
139 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
140 case bitc::BINOP_MUL:
141 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
142 case bitc::BINOP_UDIV: return Instruction::UDiv;
143 case bitc::BINOP_SDIV:
144 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
145 case bitc::BINOP_UREM: return Instruction::URem;
146 case bitc::BINOP_SREM:
147 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
148 case bitc::BINOP_SHL: return Instruction::Shl;
149 case bitc::BINOP_LSHR: return Instruction::LShr;
150 case bitc::BINOP_ASHR: return Instruction::AShr;
151 case bitc::BINOP_AND: return Instruction::And;
152 case bitc::BINOP_OR: return Instruction::Or;
153 case bitc::BINOP_XOR: return Instruction::Xor;
154 }
155 }
156
GetDecodedRMWOperation(unsigned Val)157 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
158 switch (Val) {
159 default: return AtomicRMWInst::BAD_BINOP;
160 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
161 case bitc::RMW_ADD: return AtomicRMWInst::Add;
162 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
163 case bitc::RMW_AND: return AtomicRMWInst::And;
164 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
165 case bitc::RMW_OR: return AtomicRMWInst::Or;
166 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
167 case bitc::RMW_MAX: return AtomicRMWInst::Max;
168 case bitc::RMW_MIN: return AtomicRMWInst::Min;
169 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
170 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
171 }
172 }
173
GetDecodedOrdering(unsigned Val)174 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
175 switch (Val) {
176 case bitc::ORDERING_NOTATOMIC: return NotAtomic;
177 case bitc::ORDERING_UNORDERED: return Unordered;
178 case bitc::ORDERING_MONOTONIC: return Monotonic;
179 case bitc::ORDERING_ACQUIRE: return Acquire;
180 case bitc::ORDERING_RELEASE: return Release;
181 case bitc::ORDERING_ACQREL: return AcquireRelease;
182 default: // Map unknown orderings to sequentially-consistent.
183 case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
184 }
185 }
186
GetDecodedSynchScope(unsigned Val)187 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
188 switch (Val) {
189 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
190 default: // Map unknown scopes to cross-thread.
191 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
192 }
193 }
194
195 namespace llvm {
196 namespace {
197 /// @brief A class for maintaining the slot number definition
198 /// as a placeholder for the actual definition for forward constants defs.
199 class ConstantPlaceHolder : public ConstantExpr {
200 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
201 public:
202 // allocate space for exactly one operand
operator new(size_t s)203 void *operator new(size_t s) {
204 return User::operator new(s, 1);
205 }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)206 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
207 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
208 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
209 }
210
211 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)212 static bool classof(const Value *V) {
213 return isa<ConstantExpr>(V) &&
214 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
215 }
216
217
218 /// Provide fast operand accessors
219 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
220 };
221 }
222
223 // FIXME: can we inherit this from ConstantExpr?
224 template <>
225 struct OperandTraits<ConstantPlaceHolder> :
226 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
227 };
228 }
229
230
AssignValue(Value * V,unsigned Idx)231 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
232 if (Idx == size()) {
233 push_back(V);
234 return;
235 }
236
237 if (Idx >= size())
238 resize(Idx+1);
239
240 WeakVH &OldV = ValuePtrs[Idx];
241 if (OldV == 0) {
242 OldV = V;
243 return;
244 }
245
246 // Handle constants and non-constants (e.g. instrs) differently for
247 // efficiency.
248 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
249 ResolveConstants.push_back(std::make_pair(PHC, Idx));
250 OldV = V;
251 } else {
252 // If there was a forward reference to this value, replace it.
253 Value *PrevVal = OldV;
254 OldV->replaceAllUsesWith(V);
255 delete PrevVal;
256 }
257 }
258
259
getConstantFwdRef(unsigned Idx,Type * Ty)260 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
261 Type *Ty) {
262 if (Idx >= size())
263 resize(Idx + 1);
264
265 if (Value *V = ValuePtrs[Idx]) {
266 assert(Ty == V->getType() && "Type mismatch in constant table!");
267 return cast<Constant>(V);
268 }
269
270 // Create and return a placeholder, which will later be RAUW'd.
271 Constant *C = new ConstantPlaceHolder(Ty, Context);
272 ValuePtrs[Idx] = C;
273 return C;
274 }
275
getValueFwdRef(unsigned Idx,Type * Ty)276 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
277 if (Idx >= size())
278 resize(Idx + 1);
279
280 if (Value *V = ValuePtrs[Idx]) {
281 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
282 return V;
283 }
284
285 // No type specified, must be invalid reference.
286 if (Ty == 0) return 0;
287
288 // Create and return a placeholder, which will later be RAUW'd.
289 Value *V = new Argument(Ty);
290 ValuePtrs[Idx] = V;
291 return V;
292 }
293
294 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
295 /// resolves any forward references. The idea behind this is that we sometimes
296 /// get constants (such as large arrays) which reference *many* forward ref
297 /// constants. Replacing each of these causes a lot of thrashing when
298 /// building/reuniquing the constant. Instead of doing this, we look at all the
299 /// uses and rewrite all the place holders at once for any constant that uses
300 /// a placeholder.
ResolveConstantForwardRefs()301 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
302 // Sort the values by-pointer so that they are efficient to look up with a
303 // binary search.
304 std::sort(ResolveConstants.begin(), ResolveConstants.end());
305
306 SmallVector<Constant*, 64> NewOps;
307
308 while (!ResolveConstants.empty()) {
309 Value *RealVal = operator[](ResolveConstants.back().second);
310 Constant *Placeholder = ResolveConstants.back().first;
311 ResolveConstants.pop_back();
312
313 // Loop over all users of the placeholder, updating them to reference the
314 // new value. If they reference more than one placeholder, update them all
315 // at once.
316 while (!Placeholder->use_empty()) {
317 Value::use_iterator UI = Placeholder->use_begin();
318 User *U = *UI;
319
320 // If the using object isn't uniqued, just update the operands. This
321 // handles instructions and initializers for global variables.
322 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
323 UI.getUse().set(RealVal);
324 continue;
325 }
326
327 // Otherwise, we have a constant that uses the placeholder. Replace that
328 // constant with a new constant that has *all* placeholder uses updated.
329 Constant *UserC = cast<Constant>(U);
330 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
331 I != E; ++I) {
332 Value *NewOp;
333 if (!isa<ConstantPlaceHolder>(*I)) {
334 // Not a placeholder reference.
335 NewOp = *I;
336 } else if (*I == Placeholder) {
337 // Common case is that it just references this one placeholder.
338 NewOp = RealVal;
339 } else {
340 // Otherwise, look up the placeholder in ResolveConstants.
341 ResolveConstantsTy::iterator It =
342 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
343 std::pair<Constant*, unsigned>(cast<Constant>(*I),
344 0));
345 assert(It != ResolveConstants.end() && It->first == *I);
346 NewOp = operator[](It->second);
347 }
348
349 NewOps.push_back(cast<Constant>(NewOp));
350 }
351
352 // Make the new constant.
353 Constant *NewC;
354 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
355 NewC = ConstantArray::get(UserCA->getType(), NewOps);
356 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
357 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
358 } else if (isa<ConstantVector>(UserC)) {
359 NewC = ConstantVector::get(NewOps);
360 } else {
361 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
362 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
363 }
364
365 UserC->replaceAllUsesWith(NewC);
366 UserC->destroyConstant();
367 NewOps.clear();
368 }
369
370 // Update all ValueHandles, they should be the only users at this point.
371 Placeholder->replaceAllUsesWith(RealVal);
372 delete Placeholder;
373 }
374 }
375
AssignValue(Value * V,unsigned Idx)376 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
377 if (Idx == size()) {
378 push_back(V);
379 return;
380 }
381
382 if (Idx >= size())
383 resize(Idx+1);
384
385 WeakVH &OldV = MDValuePtrs[Idx];
386 if (OldV == 0) {
387 OldV = V;
388 return;
389 }
390
391 // If there was a forward reference to this value, replace it.
392 MDNode *PrevVal = cast<MDNode>(OldV);
393 OldV->replaceAllUsesWith(V);
394 MDNode::deleteTemporary(PrevVal);
395 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
396 // value for Idx.
397 MDValuePtrs[Idx] = V;
398 }
399
getValueFwdRef(unsigned Idx)400 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
401 if (Idx >= size())
402 resize(Idx + 1);
403
404 if (Value *V = MDValuePtrs[Idx]) {
405 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
406 return V;
407 }
408
409 // Create and return a placeholder, which will later be RAUW'd.
410 Value *V = MDNode::getTemporary(Context, None);
411 MDValuePtrs[Idx] = V;
412 return V;
413 }
414
getTypeByID(unsigned ID)415 Type *BitcodeReader::getTypeByID(unsigned ID) {
416 // The type table size is always specified correctly.
417 if (ID >= TypeList.size())
418 return 0;
419
420 if (Type *Ty = TypeList[ID])
421 return Ty;
422
423 // If we have a forward reference, the only possible case is when it is to a
424 // named struct. Just create a placeholder for now.
425 return TypeList[ID] = StructType::create(Context);
426 }
427
428
429 //===----------------------------------------------------------------------===//
430 // Functions for parsing blocks from the bitcode file
431 //===----------------------------------------------------------------------===//
432
433
434 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
435 /// been decoded from the given integer. This function must stay in sync with
436 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)437 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
438 uint64_t EncodedAttrs) {
439 // FIXME: Remove in 4.0.
440
441 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
442 // the bits above 31 down by 11 bits.
443 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
444 assert((!Alignment || isPowerOf2_32(Alignment)) &&
445 "Alignment must be a power of two.");
446
447 if (Alignment)
448 B.addAlignmentAttr(Alignment);
449 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
450 (EncodedAttrs & 0xffff));
451 }
452
ParseAttributeBlock()453 bool BitcodeReader::ParseAttributeBlock() {
454 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
455 return Error("Malformed block record");
456
457 if (!MAttributes.empty())
458 return Error("Multiple PARAMATTR blocks found!");
459
460 SmallVector<uint64_t, 64> Record;
461
462 SmallVector<AttributeSet, 8> Attrs;
463
464 // Read all the records.
465 while (1) {
466 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
467
468 switch (Entry.Kind) {
469 case BitstreamEntry::SubBlock: // Handled for us already.
470 case BitstreamEntry::Error:
471 return Error("Error at end of PARAMATTR block");
472 case BitstreamEntry::EndBlock:
473 return false;
474 case BitstreamEntry::Record:
475 // The interesting case.
476 break;
477 }
478
479 // Read a record.
480 Record.clear();
481 switch (Stream.readRecord(Entry.ID, Record)) {
482 default: // Default behavior: ignore.
483 break;
484 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
485 // FIXME: Remove in 4.0.
486 if (Record.size() & 1)
487 return Error("Invalid ENTRY record");
488
489 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
490 AttrBuilder B;
491 decodeLLVMAttributesForBitcode(B, Record[i+1]);
492 Attrs.push_back(AttributeSet::get(Context, Record[i], B));
493 }
494
495 MAttributes.push_back(AttributeSet::get(Context, Attrs));
496 Attrs.clear();
497 break;
498 }
499 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
500 for (unsigned i = 0, e = Record.size(); i != e; ++i)
501 Attrs.push_back(MAttributeGroups[Record[i]]);
502
503 MAttributes.push_back(AttributeSet::get(Context, Attrs));
504 Attrs.clear();
505 break;
506 }
507 }
508 }
509 }
510
ParseAttrKind(uint64_t Code,Attribute::AttrKind * Kind)511 bool BitcodeReader::ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
512 switch (Code) {
513 case bitc::ATTR_KIND_ALIGNMENT:
514 *Kind = Attribute::Alignment;
515 return false;
516 case bitc::ATTR_KIND_ALWAYS_INLINE:
517 *Kind = Attribute::AlwaysInline;
518 return false;
519 case bitc::ATTR_KIND_BUILTIN:
520 *Kind = Attribute::Builtin;
521 return false;
522 case bitc::ATTR_KIND_BY_VAL:
523 *Kind = Attribute::ByVal;
524 return false;
525 case bitc::ATTR_KIND_COLD:
526 *Kind = Attribute::Cold;
527 return false;
528 case bitc::ATTR_KIND_INLINE_HINT:
529 *Kind = Attribute::InlineHint;
530 return false;
531 case bitc::ATTR_KIND_IN_REG:
532 *Kind = Attribute::InReg;
533 return false;
534 case bitc::ATTR_KIND_MIN_SIZE:
535 *Kind = Attribute::MinSize;
536 return false;
537 case bitc::ATTR_KIND_NAKED:
538 *Kind = Attribute::Naked;
539 return false;
540 case bitc::ATTR_KIND_NEST:
541 *Kind = Attribute::Nest;
542 return false;
543 case bitc::ATTR_KIND_NO_ALIAS:
544 *Kind = Attribute::NoAlias;
545 return false;
546 case bitc::ATTR_KIND_NO_BUILTIN:
547 *Kind = Attribute::NoBuiltin;
548 return false;
549 case bitc::ATTR_KIND_NO_CAPTURE:
550 *Kind = Attribute::NoCapture;
551 return false;
552 case bitc::ATTR_KIND_NO_DUPLICATE:
553 *Kind = Attribute::NoDuplicate;
554 return false;
555 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
556 *Kind = Attribute::NoImplicitFloat;
557 return false;
558 case bitc::ATTR_KIND_NO_INLINE:
559 *Kind = Attribute::NoInline;
560 return false;
561 case bitc::ATTR_KIND_NON_LAZY_BIND:
562 *Kind = Attribute::NonLazyBind;
563 return false;
564 case bitc::ATTR_KIND_NO_RED_ZONE:
565 *Kind = Attribute::NoRedZone;
566 return false;
567 case bitc::ATTR_KIND_NO_RETURN:
568 *Kind = Attribute::NoReturn;
569 return false;
570 case bitc::ATTR_KIND_NO_UNWIND:
571 *Kind = Attribute::NoUnwind;
572 return false;
573 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
574 *Kind = Attribute::OptimizeForSize;
575 return false;
576 case bitc::ATTR_KIND_READ_NONE:
577 *Kind = Attribute::ReadNone;
578 return false;
579 case bitc::ATTR_KIND_READ_ONLY:
580 *Kind = Attribute::ReadOnly;
581 return false;
582 case bitc::ATTR_KIND_RETURNED:
583 *Kind = Attribute::Returned;
584 return false;
585 case bitc::ATTR_KIND_RETURNS_TWICE:
586 *Kind = Attribute::ReturnsTwice;
587 return false;
588 case bitc::ATTR_KIND_S_EXT:
589 *Kind = Attribute::SExt;
590 return false;
591 case bitc::ATTR_KIND_STACK_ALIGNMENT:
592 *Kind = Attribute::StackAlignment;
593 return false;
594 case bitc::ATTR_KIND_STACK_PROTECT:
595 *Kind = Attribute::StackProtect;
596 return false;
597 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
598 *Kind = Attribute::StackProtectReq;
599 return false;
600 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
601 *Kind = Attribute::StackProtectStrong;
602 return false;
603 case bitc::ATTR_KIND_STRUCT_RET:
604 *Kind = Attribute::StructRet;
605 return false;
606 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
607 *Kind = Attribute::SanitizeAddress;
608 return false;
609 case bitc::ATTR_KIND_SANITIZE_THREAD:
610 *Kind = Attribute::SanitizeThread;
611 return false;
612 case bitc::ATTR_KIND_SANITIZE_MEMORY:
613 *Kind = Attribute::SanitizeMemory;
614 return false;
615 case bitc::ATTR_KIND_UW_TABLE:
616 *Kind = Attribute::UWTable;
617 return false;
618 case bitc::ATTR_KIND_Z_EXT:
619 *Kind = Attribute::ZExt;
620 return false;
621 default:
622 std::string Buf;
623 raw_string_ostream fmt(Buf);
624 fmt << "Unknown attribute kind (" << Code << ")";
625 fmt.flush();
626 return Error(Buf.c_str());
627 }
628 }
629
ParseAttributeGroupBlock()630 bool BitcodeReader::ParseAttributeGroupBlock() {
631 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
632 return Error("Malformed block record");
633
634 if (!MAttributeGroups.empty())
635 return Error("Multiple PARAMATTR_GROUP blocks found!");
636
637 SmallVector<uint64_t, 64> Record;
638
639 // Read all the records.
640 while (1) {
641 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
642
643 switch (Entry.Kind) {
644 case BitstreamEntry::SubBlock: // Handled for us already.
645 case BitstreamEntry::Error:
646 return Error("Error at end of PARAMATTR_GROUP block");
647 case BitstreamEntry::EndBlock:
648 return false;
649 case BitstreamEntry::Record:
650 // The interesting case.
651 break;
652 }
653
654 // Read a record.
655 Record.clear();
656 switch (Stream.readRecord(Entry.ID, Record)) {
657 default: // Default behavior: ignore.
658 break;
659 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
660 if (Record.size() < 3)
661 return Error("Invalid ENTRY record");
662
663 uint64_t GrpID = Record[0];
664 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
665
666 AttrBuilder B;
667 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
668 if (Record[i] == 0) { // Enum attribute
669 Attribute::AttrKind Kind;
670 if (ParseAttrKind(Record[++i], &Kind))
671 return true;
672
673 B.addAttribute(Kind);
674 } else if (Record[i] == 1) { // Align attribute
675 Attribute::AttrKind Kind;
676 if (ParseAttrKind(Record[++i], &Kind))
677 return true;
678 if (Kind == Attribute::Alignment)
679 B.addAlignmentAttr(Record[++i]);
680 else
681 B.addStackAlignmentAttr(Record[++i]);
682 } else { // String attribute
683 assert((Record[i] == 3 || Record[i] == 4) &&
684 "Invalid attribute group entry");
685 bool HasValue = (Record[i++] == 4);
686 SmallString<64> KindStr;
687 SmallString<64> ValStr;
688
689 while (Record[i] != 0 && i != e)
690 KindStr += Record[i++];
691 assert(Record[i] == 0 && "Kind string not null terminated");
692
693 if (HasValue) {
694 // Has a value associated with it.
695 ++i; // Skip the '0' that terminates the "kind" string.
696 while (Record[i] != 0 && i != e)
697 ValStr += Record[i++];
698 assert(Record[i] == 0 && "Value string not null terminated");
699 }
700
701 B.addAttribute(KindStr.str(), ValStr.str());
702 }
703 }
704
705 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
706 break;
707 }
708 }
709 }
710 }
711
ParseTypeTable()712 bool BitcodeReader::ParseTypeTable() {
713 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
714 return Error("Malformed block record");
715
716 return ParseTypeTableBody();
717 }
718
ParseTypeTableBody()719 bool BitcodeReader::ParseTypeTableBody() {
720 if (!TypeList.empty())
721 return Error("Multiple TYPE_BLOCKs found!");
722
723 SmallVector<uint64_t, 64> Record;
724 unsigned NumRecords = 0;
725
726 SmallString<64> TypeName;
727
728 // Read all the records for this type table.
729 while (1) {
730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
731
732 switch (Entry.Kind) {
733 case BitstreamEntry::SubBlock: // Handled for us already.
734 case BitstreamEntry::Error:
735 Error("Error in the type table block");
736 return true;
737 case BitstreamEntry::EndBlock:
738 if (NumRecords != TypeList.size())
739 return Error("Invalid type forward reference in TYPE_BLOCK");
740 return false;
741 case BitstreamEntry::Record:
742 // The interesting case.
743 break;
744 }
745
746 // Read a record.
747 Record.clear();
748 Type *ResultTy = 0;
749 switch (Stream.readRecord(Entry.ID, Record)) {
750 default: return Error("unknown type in type table");
751 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
752 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
753 // type list. This allows us to reserve space.
754 if (Record.size() < 1)
755 return Error("Invalid TYPE_CODE_NUMENTRY record");
756 TypeList.resize(Record[0]);
757 continue;
758 case bitc::TYPE_CODE_VOID: // VOID
759 ResultTy = Type::getVoidTy(Context);
760 break;
761 case bitc::TYPE_CODE_HALF: // HALF
762 ResultTy = Type::getHalfTy(Context);
763 break;
764 case bitc::TYPE_CODE_FLOAT: // FLOAT
765 ResultTy = Type::getFloatTy(Context);
766 break;
767 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
768 ResultTy = Type::getDoubleTy(Context);
769 break;
770 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
771 ResultTy = Type::getX86_FP80Ty(Context);
772 break;
773 case bitc::TYPE_CODE_FP128: // FP128
774 ResultTy = Type::getFP128Ty(Context);
775 break;
776 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
777 ResultTy = Type::getPPC_FP128Ty(Context);
778 break;
779 case bitc::TYPE_CODE_LABEL: // LABEL
780 ResultTy = Type::getLabelTy(Context);
781 break;
782 case bitc::TYPE_CODE_METADATA: // METADATA
783 ResultTy = Type::getMetadataTy(Context);
784 break;
785 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
786 ResultTy = Type::getX86_MMXTy(Context);
787 break;
788 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
789 if (Record.size() < 1)
790 return Error("Invalid Integer type record");
791
792 ResultTy = IntegerType::get(Context, Record[0]);
793 break;
794 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
795 // [pointee type, address space]
796 if (Record.size() < 1)
797 return Error("Invalid POINTER type record");
798 unsigned AddressSpace = 0;
799 if (Record.size() == 2)
800 AddressSpace = Record[1];
801 ResultTy = getTypeByID(Record[0]);
802 if (ResultTy == 0) return Error("invalid element type in pointer type");
803 ResultTy = PointerType::get(ResultTy, AddressSpace);
804 break;
805 }
806 case bitc::TYPE_CODE_FUNCTION_OLD: {
807 // FIXME: attrid is dead, remove it in LLVM 4.0
808 // FUNCTION: [vararg, attrid, retty, paramty x N]
809 if (Record.size() < 3)
810 return Error("Invalid FUNCTION type record");
811 SmallVector<Type*, 8> ArgTys;
812 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
813 if (Type *T = getTypeByID(Record[i]))
814 ArgTys.push_back(T);
815 else
816 break;
817 }
818
819 ResultTy = getTypeByID(Record[2]);
820 if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
821 return Error("invalid type in function type");
822
823 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
824 break;
825 }
826 case bitc::TYPE_CODE_FUNCTION: {
827 // FUNCTION: [vararg, retty, paramty x N]
828 if (Record.size() < 2)
829 return Error("Invalid FUNCTION type record");
830 SmallVector<Type*, 8> ArgTys;
831 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
832 if (Type *T = getTypeByID(Record[i]))
833 ArgTys.push_back(T);
834 else
835 break;
836 }
837
838 ResultTy = getTypeByID(Record[1]);
839 if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
840 return Error("invalid type in function type");
841
842 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
843 break;
844 }
845 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
846 if (Record.size() < 1)
847 return Error("Invalid STRUCT type record");
848 SmallVector<Type*, 8> EltTys;
849 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
850 if (Type *T = getTypeByID(Record[i]))
851 EltTys.push_back(T);
852 else
853 break;
854 }
855 if (EltTys.size() != Record.size()-1)
856 return Error("invalid type in struct type");
857 ResultTy = StructType::get(Context, EltTys, Record[0]);
858 break;
859 }
860 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
861 if (ConvertToString(Record, 0, TypeName))
862 return Error("Invalid STRUCT_NAME record");
863 continue;
864
865 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
866 if (Record.size() < 1)
867 return Error("Invalid STRUCT type record");
868
869 if (NumRecords >= TypeList.size())
870 return Error("invalid TYPE table");
871
872 // Check to see if this was forward referenced, if so fill in the temp.
873 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
874 if (Res) {
875 Res->setName(TypeName);
876 TypeList[NumRecords] = 0;
877 } else // Otherwise, create a new struct.
878 Res = StructType::create(Context, TypeName);
879 TypeName.clear();
880
881 SmallVector<Type*, 8> EltTys;
882 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
883 if (Type *T = getTypeByID(Record[i]))
884 EltTys.push_back(T);
885 else
886 break;
887 }
888 if (EltTys.size() != Record.size()-1)
889 return Error("invalid STRUCT type record");
890 Res->setBody(EltTys, Record[0]);
891 ResultTy = Res;
892 break;
893 }
894 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
895 if (Record.size() != 1)
896 return Error("Invalid OPAQUE type record");
897
898 if (NumRecords >= TypeList.size())
899 return Error("invalid TYPE table");
900
901 // Check to see if this was forward referenced, if so fill in the temp.
902 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
903 if (Res) {
904 Res->setName(TypeName);
905 TypeList[NumRecords] = 0;
906 } else // Otherwise, create a new struct with no body.
907 Res = StructType::create(Context, TypeName);
908 TypeName.clear();
909 ResultTy = Res;
910 break;
911 }
912 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
913 if (Record.size() < 2)
914 return Error("Invalid ARRAY type record");
915 if ((ResultTy = getTypeByID(Record[1])))
916 ResultTy = ArrayType::get(ResultTy, Record[0]);
917 else
918 return Error("Invalid ARRAY type element");
919 break;
920 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
921 if (Record.size() < 2)
922 return Error("Invalid VECTOR type record");
923 if ((ResultTy = getTypeByID(Record[1])))
924 ResultTy = VectorType::get(ResultTy, Record[0]);
925 else
926 return Error("Invalid ARRAY type element");
927 break;
928 }
929
930 if (NumRecords >= TypeList.size())
931 return Error("invalid TYPE table");
932 assert(ResultTy && "Didn't read a type?");
933 assert(TypeList[NumRecords] == 0 && "Already read type?");
934 TypeList[NumRecords++] = ResultTy;
935 }
936 }
937
ParseValueSymbolTable()938 bool BitcodeReader::ParseValueSymbolTable() {
939 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
940 return Error("Malformed block record");
941
942 SmallVector<uint64_t, 64> Record;
943
944 // Read all the records for this value table.
945 SmallString<128> ValueName;
946 while (1) {
947 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
948
949 switch (Entry.Kind) {
950 case BitstreamEntry::SubBlock: // Handled for us already.
951 case BitstreamEntry::Error:
952 return Error("malformed value symbol table block");
953 case BitstreamEntry::EndBlock:
954 return false;
955 case BitstreamEntry::Record:
956 // The interesting case.
957 break;
958 }
959
960 // Read a record.
961 Record.clear();
962 switch (Stream.readRecord(Entry.ID, Record)) {
963 default: // Default behavior: unknown type.
964 break;
965 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
966 if (ConvertToString(Record, 1, ValueName))
967 return Error("Invalid VST_ENTRY record");
968 unsigned ValueID = Record[0];
969 if (ValueID >= ValueList.size())
970 return Error("Invalid Value ID in VST_ENTRY record");
971 Value *V = ValueList[ValueID];
972
973 V->setName(StringRef(ValueName.data(), ValueName.size()));
974 ValueName.clear();
975 break;
976 }
977 case bitc::VST_CODE_BBENTRY: {
978 if (ConvertToString(Record, 1, ValueName))
979 return Error("Invalid VST_BBENTRY record");
980 BasicBlock *BB = getBasicBlock(Record[0]);
981 if (BB == 0)
982 return Error("Invalid BB ID in VST_BBENTRY record");
983
984 BB->setName(StringRef(ValueName.data(), ValueName.size()));
985 ValueName.clear();
986 break;
987 }
988 }
989 }
990 }
991
ParseMetadata()992 bool BitcodeReader::ParseMetadata() {
993 unsigned NextMDValueNo = MDValueList.size();
994
995 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
996 return Error("Malformed block record");
997
998 SmallVector<uint64_t, 64> Record;
999
1000 // Read all the records.
1001 while (1) {
1002 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1003
1004 switch (Entry.Kind) {
1005 case BitstreamEntry::SubBlock: // Handled for us already.
1006 case BitstreamEntry::Error:
1007 Error("malformed metadata block");
1008 return true;
1009 case BitstreamEntry::EndBlock:
1010 return false;
1011 case BitstreamEntry::Record:
1012 // The interesting case.
1013 break;
1014 }
1015
1016 bool IsFunctionLocal = false;
1017 // Read a record.
1018 Record.clear();
1019 unsigned Code = Stream.readRecord(Entry.ID, Record);
1020 switch (Code) {
1021 default: // Default behavior: ignore.
1022 break;
1023 case bitc::METADATA_NAME: {
1024 // Read name of the named metadata.
1025 SmallString<8> Name(Record.begin(), Record.end());
1026 Record.clear();
1027 Code = Stream.ReadCode();
1028
1029 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1030 unsigned NextBitCode = Stream.readRecord(Code, Record);
1031 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1032
1033 // Read named metadata elements.
1034 unsigned Size = Record.size();
1035 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1036 for (unsigned i = 0; i != Size; ++i) {
1037 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1038 if (MD == 0)
1039 return Error("Malformed metadata record");
1040 NMD->addOperand(MD);
1041 }
1042 break;
1043 }
1044 case bitc::METADATA_FN_NODE:
1045 IsFunctionLocal = true;
1046 // fall-through
1047 case bitc::METADATA_NODE: {
1048 if (Record.size() % 2 == 1)
1049 return Error("Invalid METADATA_NODE record");
1050
1051 unsigned Size = Record.size();
1052 SmallVector<Value*, 8> Elts;
1053 for (unsigned i = 0; i != Size; i += 2) {
1054 Type *Ty = getTypeByID(Record[i]);
1055 if (!Ty) return Error("Invalid METADATA_NODE record");
1056 if (Ty->isMetadataTy())
1057 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1058 else if (!Ty->isVoidTy())
1059 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1060 else
1061 Elts.push_back(NULL);
1062 }
1063 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1064 IsFunctionLocal = false;
1065 MDValueList.AssignValue(V, NextMDValueNo++);
1066 break;
1067 }
1068 case bitc::METADATA_STRING: {
1069 SmallString<8> String(Record.begin(), Record.end());
1070 Value *V = MDString::get(Context, String);
1071 MDValueList.AssignValue(V, NextMDValueNo++);
1072 break;
1073 }
1074 case bitc::METADATA_KIND: {
1075 if (Record.size() < 2)
1076 return Error("Invalid METADATA_KIND record");
1077
1078 unsigned Kind = Record[0];
1079 SmallString<8> Name(Record.begin()+1, Record.end());
1080
1081 unsigned NewKind = TheModule->getMDKindID(Name.str());
1082 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1083 return Error("Conflicting METADATA_KIND records");
1084 break;
1085 }
1086 }
1087 }
1088 }
1089
1090 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1091 /// the LSB for dense VBR encoding.
decodeSignRotatedValue(uint64_t V)1092 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1093 if ((V & 1) == 0)
1094 return V >> 1;
1095 if (V != 1)
1096 return -(V >> 1);
1097 // There is no such thing as -0 with integers. "-0" really means MININT.
1098 return 1ULL << 63;
1099 }
1100
1101 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1102 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1103 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1104 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1105 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1106
1107 GlobalInitWorklist.swap(GlobalInits);
1108 AliasInitWorklist.swap(AliasInits);
1109
1110 while (!GlobalInitWorklist.empty()) {
1111 unsigned ValID = GlobalInitWorklist.back().second;
1112 if (ValID >= ValueList.size()) {
1113 // Not ready to resolve this yet, it requires something later in the file.
1114 GlobalInits.push_back(GlobalInitWorklist.back());
1115 } else {
1116 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1117 GlobalInitWorklist.back().first->setInitializer(C);
1118 else
1119 return Error("Global variable initializer is not a constant!");
1120 }
1121 GlobalInitWorklist.pop_back();
1122 }
1123
1124 while (!AliasInitWorklist.empty()) {
1125 unsigned ValID = AliasInitWorklist.back().second;
1126 if (ValID >= ValueList.size()) {
1127 AliasInits.push_back(AliasInitWorklist.back());
1128 } else {
1129 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1130 AliasInitWorklist.back().first->setAliasee(C);
1131 else
1132 return Error("Alias initializer is not a constant!");
1133 }
1134 AliasInitWorklist.pop_back();
1135 }
1136 return false;
1137 }
1138
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)1139 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1140 SmallVector<uint64_t, 8> Words(Vals.size());
1141 std::transform(Vals.begin(), Vals.end(), Words.begin(),
1142 BitcodeReader::decodeSignRotatedValue);
1143
1144 return APInt(TypeBits, Words);
1145 }
1146
ParseConstants()1147 bool BitcodeReader::ParseConstants() {
1148 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1149 return Error("Malformed block record");
1150
1151 SmallVector<uint64_t, 64> Record;
1152
1153 // Read all the records for this value table.
1154 Type *CurTy = Type::getInt32Ty(Context);
1155 unsigned NextCstNo = ValueList.size();
1156 while (1) {
1157 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1158
1159 switch (Entry.Kind) {
1160 case BitstreamEntry::SubBlock: // Handled for us already.
1161 case BitstreamEntry::Error:
1162 return Error("malformed block record in AST file");
1163 case BitstreamEntry::EndBlock:
1164 if (NextCstNo != ValueList.size())
1165 return Error("Invalid constant reference!");
1166
1167 // Once all the constants have been read, go through and resolve forward
1168 // references.
1169 ValueList.ResolveConstantForwardRefs();
1170 return false;
1171 case BitstreamEntry::Record:
1172 // The interesting case.
1173 break;
1174 }
1175
1176 // Read a record.
1177 Record.clear();
1178 Value *V = 0;
1179 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1180 switch (BitCode) {
1181 default: // Default behavior: unknown constant
1182 case bitc::CST_CODE_UNDEF: // UNDEF
1183 V = UndefValue::get(CurTy);
1184 break;
1185 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
1186 if (Record.empty())
1187 return Error("Malformed CST_SETTYPE record");
1188 if (Record[0] >= TypeList.size())
1189 return Error("Invalid Type ID in CST_SETTYPE record");
1190 CurTy = TypeList[Record[0]];
1191 continue; // Skip the ValueList manipulation.
1192 case bitc::CST_CODE_NULL: // NULL
1193 V = Constant::getNullValue(CurTy);
1194 break;
1195 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
1196 if (!CurTy->isIntegerTy() || Record.empty())
1197 return Error("Invalid CST_INTEGER record");
1198 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1199 break;
1200 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1201 if (!CurTy->isIntegerTy() || Record.empty())
1202 return Error("Invalid WIDE_INTEGER record");
1203
1204 APInt VInt = ReadWideAPInt(Record,
1205 cast<IntegerType>(CurTy)->getBitWidth());
1206 V = ConstantInt::get(Context, VInt);
1207
1208 break;
1209 }
1210 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
1211 if (Record.empty())
1212 return Error("Invalid FLOAT record");
1213 if (CurTy->isHalfTy())
1214 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1215 APInt(16, (uint16_t)Record[0])));
1216 else if (CurTy->isFloatTy())
1217 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1218 APInt(32, (uint32_t)Record[0])));
1219 else if (CurTy->isDoubleTy())
1220 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1221 APInt(64, Record[0])));
1222 else if (CurTy->isX86_FP80Ty()) {
1223 // Bits are not stored the same way as a normal i80 APInt, compensate.
1224 uint64_t Rearrange[2];
1225 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1226 Rearrange[1] = Record[0] >> 48;
1227 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1228 APInt(80, Rearrange)));
1229 } else if (CurTy->isFP128Ty())
1230 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1231 APInt(128, Record)));
1232 else if (CurTy->isPPC_FP128Ty())
1233 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1234 APInt(128, Record)));
1235 else
1236 V = UndefValue::get(CurTy);
1237 break;
1238 }
1239
1240 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1241 if (Record.empty())
1242 return Error("Invalid CST_AGGREGATE record");
1243
1244 unsigned Size = Record.size();
1245 SmallVector<Constant*, 16> Elts;
1246
1247 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1248 for (unsigned i = 0; i != Size; ++i)
1249 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1250 STy->getElementType(i)));
1251 V = ConstantStruct::get(STy, Elts);
1252 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1253 Type *EltTy = ATy->getElementType();
1254 for (unsigned i = 0; i != Size; ++i)
1255 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1256 V = ConstantArray::get(ATy, Elts);
1257 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1258 Type *EltTy = VTy->getElementType();
1259 for (unsigned i = 0; i != Size; ++i)
1260 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1261 V = ConstantVector::get(Elts);
1262 } else {
1263 V = UndefValue::get(CurTy);
1264 }
1265 break;
1266 }
1267 case bitc::CST_CODE_STRING: // STRING: [values]
1268 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1269 if (Record.empty())
1270 return Error("Invalid CST_STRING record");
1271
1272 SmallString<16> Elts(Record.begin(), Record.end());
1273 V = ConstantDataArray::getString(Context, Elts,
1274 BitCode == bitc::CST_CODE_CSTRING);
1275 break;
1276 }
1277 case bitc::CST_CODE_DATA: {// DATA: [n x value]
1278 if (Record.empty())
1279 return Error("Invalid CST_DATA record");
1280
1281 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1282 unsigned Size = Record.size();
1283
1284 if (EltTy->isIntegerTy(8)) {
1285 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1286 if (isa<VectorType>(CurTy))
1287 V = ConstantDataVector::get(Context, Elts);
1288 else
1289 V = ConstantDataArray::get(Context, Elts);
1290 } else if (EltTy->isIntegerTy(16)) {
1291 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1292 if (isa<VectorType>(CurTy))
1293 V = ConstantDataVector::get(Context, Elts);
1294 else
1295 V = ConstantDataArray::get(Context, Elts);
1296 } else if (EltTy->isIntegerTy(32)) {
1297 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1298 if (isa<VectorType>(CurTy))
1299 V = ConstantDataVector::get(Context, Elts);
1300 else
1301 V = ConstantDataArray::get(Context, Elts);
1302 } else if (EltTy->isIntegerTy(64)) {
1303 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1304 if (isa<VectorType>(CurTy))
1305 V = ConstantDataVector::get(Context, Elts);
1306 else
1307 V = ConstantDataArray::get(Context, Elts);
1308 } else if (EltTy->isFloatTy()) {
1309 SmallVector<float, 16> Elts(Size);
1310 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1311 if (isa<VectorType>(CurTy))
1312 V = ConstantDataVector::get(Context, Elts);
1313 else
1314 V = ConstantDataArray::get(Context, Elts);
1315 } else if (EltTy->isDoubleTy()) {
1316 SmallVector<double, 16> Elts(Size);
1317 std::transform(Record.begin(), Record.end(), Elts.begin(),
1318 BitsToDouble);
1319 if (isa<VectorType>(CurTy))
1320 V = ConstantDataVector::get(Context, Elts);
1321 else
1322 V = ConstantDataArray::get(Context, Elts);
1323 } else {
1324 return Error("Unknown element type in CE_DATA");
1325 }
1326 break;
1327 }
1328
1329 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
1330 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1331 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1332 if (Opc < 0) {
1333 V = UndefValue::get(CurTy); // Unknown binop.
1334 } else {
1335 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1336 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1337 unsigned Flags = 0;
1338 if (Record.size() >= 4) {
1339 if (Opc == Instruction::Add ||
1340 Opc == Instruction::Sub ||
1341 Opc == Instruction::Mul ||
1342 Opc == Instruction::Shl) {
1343 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1344 Flags |= OverflowingBinaryOperator::NoSignedWrap;
1345 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1346 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1347 } else if (Opc == Instruction::SDiv ||
1348 Opc == Instruction::UDiv ||
1349 Opc == Instruction::LShr ||
1350 Opc == Instruction::AShr) {
1351 if (Record[3] & (1 << bitc::PEO_EXACT))
1352 Flags |= SDivOperator::IsExact;
1353 }
1354 }
1355 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1356 }
1357 break;
1358 }
1359 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
1360 if (Record.size() < 3) return Error("Invalid CE_CAST record");
1361 int Opc = GetDecodedCastOpcode(Record[0]);
1362 if (Opc < 0) {
1363 V = UndefValue::get(CurTy); // Unknown cast.
1364 } else {
1365 Type *OpTy = getTypeByID(Record[1]);
1366 if (!OpTy) return Error("Invalid CE_CAST record");
1367 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1368 V = ConstantExpr::getCast(Opc, Op, CurTy);
1369 }
1370 break;
1371 }
1372 case bitc::CST_CODE_CE_INBOUNDS_GEP:
1373 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
1374 if (Record.size() & 1) return Error("Invalid CE_GEP record");
1375 SmallVector<Constant*, 16> Elts;
1376 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1377 Type *ElTy = getTypeByID(Record[i]);
1378 if (!ElTy) return Error("Invalid CE_GEP record");
1379 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1380 }
1381 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1382 V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1383 BitCode ==
1384 bitc::CST_CODE_CE_INBOUNDS_GEP);
1385 break;
1386 }
1387 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
1388 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1389 V = ConstantExpr::getSelect(
1390 ValueList.getConstantFwdRef(Record[0],
1391 Type::getInt1Ty(Context)),
1392 ValueList.getConstantFwdRef(Record[1],CurTy),
1393 ValueList.getConstantFwdRef(Record[2],CurTy));
1394 break;
1395 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1396 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1397 VectorType *OpTy =
1398 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1399 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1400 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1401 Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1402 Type::getInt32Ty(Context));
1403 V = ConstantExpr::getExtractElement(Op0, Op1);
1404 break;
1405 }
1406 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1407 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1408 if (Record.size() < 3 || OpTy == 0)
1409 return Error("Invalid CE_INSERTELT record");
1410 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1411 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1412 OpTy->getElementType());
1413 Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1414 Type::getInt32Ty(Context));
1415 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1416 break;
1417 }
1418 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1419 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1420 if (Record.size() < 3 || OpTy == 0)
1421 return Error("Invalid CE_SHUFFLEVEC record");
1422 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1423 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1424 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1425 OpTy->getNumElements());
1426 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1427 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1428 break;
1429 }
1430 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1431 VectorType *RTy = dyn_cast<VectorType>(CurTy);
1432 VectorType *OpTy =
1433 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1434 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1435 return Error("Invalid CE_SHUFVEC_EX record");
1436 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1437 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1438 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1439 RTy->getNumElements());
1440 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1441 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1442 break;
1443 }
1444 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
1445 if (Record.size() < 4) return Error("Invalid CE_CMP record");
1446 Type *OpTy = getTypeByID(Record[0]);
1447 if (OpTy == 0) return Error("Invalid CE_CMP record");
1448 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1449 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1450
1451 if (OpTy->isFPOrFPVectorTy())
1452 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1453 else
1454 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1455 break;
1456 }
1457 // This maintains backward compatibility, pre-asm dialect keywords.
1458 // FIXME: Remove with the 4.0 release.
1459 case bitc::CST_CODE_INLINEASM_OLD: {
1460 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1461 std::string AsmStr, ConstrStr;
1462 bool HasSideEffects = Record[0] & 1;
1463 bool IsAlignStack = Record[0] >> 1;
1464 unsigned AsmStrSize = Record[1];
1465 if (2+AsmStrSize >= Record.size())
1466 return Error("Invalid INLINEASM record");
1467 unsigned ConstStrSize = Record[2+AsmStrSize];
1468 if (3+AsmStrSize+ConstStrSize > Record.size())
1469 return Error("Invalid INLINEASM record");
1470
1471 for (unsigned i = 0; i != AsmStrSize; ++i)
1472 AsmStr += (char)Record[2+i];
1473 for (unsigned i = 0; i != ConstStrSize; ++i)
1474 ConstrStr += (char)Record[3+AsmStrSize+i];
1475 PointerType *PTy = cast<PointerType>(CurTy);
1476 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1477 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1478 break;
1479 }
1480 // This version adds support for the asm dialect keywords (e.g.,
1481 // inteldialect).
1482 case bitc::CST_CODE_INLINEASM: {
1483 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1484 std::string AsmStr, ConstrStr;
1485 bool HasSideEffects = Record[0] & 1;
1486 bool IsAlignStack = (Record[0] >> 1) & 1;
1487 unsigned AsmDialect = Record[0] >> 2;
1488 unsigned AsmStrSize = Record[1];
1489 if (2+AsmStrSize >= Record.size())
1490 return Error("Invalid INLINEASM record");
1491 unsigned ConstStrSize = Record[2+AsmStrSize];
1492 if (3+AsmStrSize+ConstStrSize > Record.size())
1493 return Error("Invalid INLINEASM record");
1494
1495 for (unsigned i = 0; i != AsmStrSize; ++i)
1496 AsmStr += (char)Record[2+i];
1497 for (unsigned i = 0; i != ConstStrSize; ++i)
1498 ConstrStr += (char)Record[3+AsmStrSize+i];
1499 PointerType *PTy = cast<PointerType>(CurTy);
1500 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1501 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1502 InlineAsm::AsmDialect(AsmDialect));
1503 break;
1504 }
1505 case bitc::CST_CODE_BLOCKADDRESS:{
1506 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1507 Type *FnTy = getTypeByID(Record[0]);
1508 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1509 Function *Fn =
1510 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1511 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1512
1513 // If the function is already parsed we can insert the block address right
1514 // away.
1515 if (!Fn->empty()) {
1516 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1517 for (size_t I = 0, E = Record[2]; I != E; ++I) {
1518 if (BBI == BBE)
1519 return Error("Invalid blockaddress block #");
1520 ++BBI;
1521 }
1522 V = BlockAddress::get(Fn, BBI);
1523 } else {
1524 // Otherwise insert a placeholder and remember it so it can be inserted
1525 // when the function is parsed.
1526 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1527 Type::getInt8Ty(Context),
1528 false, GlobalValue::InternalLinkage,
1529 0, "");
1530 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1531 V = FwdRef;
1532 }
1533 break;
1534 }
1535 }
1536
1537 ValueList.AssignValue(V, NextCstNo);
1538 ++NextCstNo;
1539 }
1540 }
1541
ParseUseLists()1542 bool BitcodeReader::ParseUseLists() {
1543 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1544 return Error("Malformed block record");
1545
1546 SmallVector<uint64_t, 64> Record;
1547
1548 // Read all the records.
1549 while (1) {
1550 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1551
1552 switch (Entry.Kind) {
1553 case BitstreamEntry::SubBlock: // Handled for us already.
1554 case BitstreamEntry::Error:
1555 return Error("malformed use list block");
1556 case BitstreamEntry::EndBlock:
1557 return false;
1558 case BitstreamEntry::Record:
1559 // The interesting case.
1560 break;
1561 }
1562
1563 // Read a use list record.
1564 Record.clear();
1565 switch (Stream.readRecord(Entry.ID, Record)) {
1566 default: // Default behavior: unknown type.
1567 break;
1568 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1569 unsigned RecordLength = Record.size();
1570 if (RecordLength < 1)
1571 return Error ("Invalid UseList reader!");
1572 UseListRecords.push_back(Record);
1573 break;
1574 }
1575 }
1576 }
1577 }
1578
1579 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1580 /// remember where it is and then skip it. This lets us lazily deserialize the
1581 /// functions.
RememberAndSkipFunctionBody()1582 bool BitcodeReader::RememberAndSkipFunctionBody() {
1583 // Get the function we are talking about.
1584 if (FunctionsWithBodies.empty())
1585 return Error("Insufficient function protos");
1586
1587 Function *Fn = FunctionsWithBodies.back();
1588 FunctionsWithBodies.pop_back();
1589
1590 // Save the current stream state.
1591 uint64_t CurBit = Stream.GetCurrentBitNo();
1592 DeferredFunctionInfo[Fn] = CurBit;
1593
1594 // Skip over the function block for now.
1595 if (Stream.SkipBlock())
1596 return Error("Malformed block record");
1597 return false;
1598 }
1599
GlobalCleanup()1600 bool BitcodeReader::GlobalCleanup() {
1601 // Patch the initializers for globals and aliases up.
1602 ResolveGlobalAndAliasInits();
1603 if (!GlobalInits.empty() || !AliasInits.empty())
1604 return Error("Malformed global initializer set");
1605
1606 // Look for intrinsic functions which need to be upgraded at some point
1607 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1608 FI != FE; ++FI) {
1609 Function *NewFn;
1610 if (UpgradeIntrinsicFunction(FI, NewFn))
1611 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1612 }
1613
1614 // Look for global variables which need to be renamed.
1615 for (Module::global_iterator
1616 GI = TheModule->global_begin(), GE = TheModule->global_end();
1617 GI != GE; ++GI)
1618 UpgradeGlobalVariable(GI);
1619 // Force deallocation of memory for these vectors to favor the client that
1620 // want lazy deserialization.
1621 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1622 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1623 return false;
1624 }
1625
ParseModule(bool Resume)1626 bool BitcodeReader::ParseModule(bool Resume) {
1627 if (Resume)
1628 Stream.JumpToBit(NextUnreadBit);
1629 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1630 return Error("Malformed block record");
1631
1632 SmallVector<uint64_t, 64> Record;
1633 std::vector<std::string> SectionTable;
1634 std::vector<std::string> GCTable;
1635
1636 // Read all the records for this module.
1637 while (1) {
1638 BitstreamEntry Entry = Stream.advance();
1639
1640 switch (Entry.Kind) {
1641 case BitstreamEntry::Error:
1642 Error("malformed module block");
1643 return true;
1644 case BitstreamEntry::EndBlock:
1645 return GlobalCleanup();
1646
1647 case BitstreamEntry::SubBlock:
1648 switch (Entry.ID) {
1649 default: // Skip unknown content.
1650 if (Stream.SkipBlock())
1651 return Error("Malformed block record");
1652 break;
1653 case bitc::BLOCKINFO_BLOCK_ID:
1654 if (Stream.ReadBlockInfoBlock())
1655 return Error("Malformed BlockInfoBlock");
1656 break;
1657 case bitc::PARAMATTR_BLOCK_ID:
1658 if (ParseAttributeBlock())
1659 return true;
1660 break;
1661 case bitc::PARAMATTR_GROUP_BLOCK_ID:
1662 if (ParseAttributeGroupBlock())
1663 return true;
1664 break;
1665 case bitc::TYPE_BLOCK_ID_NEW:
1666 if (ParseTypeTable())
1667 return true;
1668 break;
1669 case bitc::VALUE_SYMTAB_BLOCK_ID:
1670 if (ParseValueSymbolTable())
1671 return true;
1672 SeenValueSymbolTable = true;
1673 break;
1674 case bitc::CONSTANTS_BLOCK_ID:
1675 if (ParseConstants() || ResolveGlobalAndAliasInits())
1676 return true;
1677 break;
1678 case bitc::METADATA_BLOCK_ID:
1679 if (ParseMetadata())
1680 return true;
1681 break;
1682 case bitc::FUNCTION_BLOCK_ID:
1683 // If this is the first function body we've seen, reverse the
1684 // FunctionsWithBodies list.
1685 if (!SeenFirstFunctionBody) {
1686 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1687 if (GlobalCleanup())
1688 return true;
1689 SeenFirstFunctionBody = true;
1690 }
1691
1692 if (RememberAndSkipFunctionBody())
1693 return true;
1694 // For streaming bitcode, suspend parsing when we reach the function
1695 // bodies. Subsequent materialization calls will resume it when
1696 // necessary. For streaming, the function bodies must be at the end of
1697 // the bitcode. If the bitcode file is old, the symbol table will be
1698 // at the end instead and will not have been seen yet. In this case,
1699 // just finish the parse now.
1700 if (LazyStreamer && SeenValueSymbolTable) {
1701 NextUnreadBit = Stream.GetCurrentBitNo();
1702 return false;
1703 }
1704 break;
1705 case bitc::USELIST_BLOCK_ID:
1706 if (ParseUseLists())
1707 return true;
1708 break;
1709 }
1710 continue;
1711
1712 case BitstreamEntry::Record:
1713 // The interesting case.
1714 break;
1715 }
1716
1717
1718 // Read a record.
1719 switch (Stream.readRecord(Entry.ID, Record)) {
1720 default: break; // Default behavior, ignore unknown content.
1721 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
1722 if (Record.size() < 1)
1723 return Error("Malformed MODULE_CODE_VERSION");
1724 // Only version #0 and #1 are supported so far.
1725 unsigned module_version = Record[0];
1726 switch (module_version) {
1727 default: return Error("Unknown bitstream version!");
1728 case 0:
1729 UseRelativeIDs = false;
1730 break;
1731 case 1:
1732 UseRelativeIDs = true;
1733 break;
1734 }
1735 break;
1736 }
1737 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1738 std::string S;
1739 if (ConvertToString(Record, 0, S))
1740 return Error("Invalid MODULE_CODE_TRIPLE record");
1741 TheModule->setTargetTriple(S);
1742 break;
1743 }
1744 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1745 std::string S;
1746 if (ConvertToString(Record, 0, S))
1747 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1748 TheModule->setDataLayout(S);
1749 break;
1750 }
1751 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1752 std::string S;
1753 if (ConvertToString(Record, 0, S))
1754 return Error("Invalid MODULE_CODE_ASM record");
1755 TheModule->setModuleInlineAsm(S);
1756 break;
1757 }
1758 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1759 // FIXME: Remove in 4.0.
1760 std::string S;
1761 if (ConvertToString(Record, 0, S))
1762 return Error("Invalid MODULE_CODE_DEPLIB record");
1763 // Ignore value.
1764 break;
1765 }
1766 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1767 std::string S;
1768 if (ConvertToString(Record, 0, S))
1769 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1770 SectionTable.push_back(S);
1771 break;
1772 }
1773 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1774 std::string S;
1775 if (ConvertToString(Record, 0, S))
1776 return Error("Invalid MODULE_CODE_GCNAME record");
1777 GCTable.push_back(S);
1778 break;
1779 }
1780 // GLOBALVAR: [pointer type, isconst, initid,
1781 // linkage, alignment, section, visibility, threadlocal,
1782 // unnamed_addr]
1783 case bitc::MODULE_CODE_GLOBALVAR: {
1784 if (Record.size() < 6)
1785 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1786 Type *Ty = getTypeByID(Record[0]);
1787 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1788 if (!Ty->isPointerTy())
1789 return Error("Global not a pointer type!");
1790 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1791 Ty = cast<PointerType>(Ty)->getElementType();
1792
1793 bool isConstant = Record[1];
1794 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1795 unsigned Alignment = (1 << Record[4]) >> 1;
1796 std::string Section;
1797 if (Record[5]) {
1798 if (Record[5]-1 >= SectionTable.size())
1799 return Error("Invalid section ID");
1800 Section = SectionTable[Record[5]-1];
1801 }
1802 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1803 if (Record.size() > 6)
1804 Visibility = GetDecodedVisibility(Record[6]);
1805
1806 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1807 if (Record.size() > 7)
1808 TLM = GetDecodedThreadLocalMode(Record[7]);
1809
1810 bool UnnamedAddr = false;
1811 if (Record.size() > 8)
1812 UnnamedAddr = Record[8];
1813
1814 bool ExternallyInitialized = false;
1815 if (Record.size() > 9)
1816 ExternallyInitialized = Record[9];
1817
1818 GlobalVariable *NewGV =
1819 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1820 TLM, AddressSpace, ExternallyInitialized);
1821 NewGV->setAlignment(Alignment);
1822 if (!Section.empty())
1823 NewGV->setSection(Section);
1824 NewGV->setVisibility(Visibility);
1825 NewGV->setUnnamedAddr(UnnamedAddr);
1826
1827 ValueList.push_back(NewGV);
1828
1829 // Remember which value to use for the global initializer.
1830 if (unsigned InitID = Record[2])
1831 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1832 break;
1833 }
1834 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1835 // alignment, section, visibility, gc, unnamed_addr]
1836 case bitc::MODULE_CODE_FUNCTION: {
1837 if (Record.size() < 8)
1838 return Error("Invalid MODULE_CODE_FUNCTION record");
1839 Type *Ty = getTypeByID(Record[0]);
1840 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1841 if (!Ty->isPointerTy())
1842 return Error("Function not a pointer type!");
1843 FunctionType *FTy =
1844 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1845 if (!FTy)
1846 return Error("Function not a pointer to function type!");
1847
1848 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1849 "", TheModule);
1850
1851 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1852 bool isProto = Record[2];
1853 Func->setLinkage(GetDecodedLinkage(Record[3]));
1854 Func->setAttributes(getAttributes(Record[4]));
1855
1856 Func->setAlignment((1 << Record[5]) >> 1);
1857 if (Record[6]) {
1858 if (Record[6]-1 >= SectionTable.size())
1859 return Error("Invalid section ID");
1860 Func->setSection(SectionTable[Record[6]-1]);
1861 }
1862 Func->setVisibility(GetDecodedVisibility(Record[7]));
1863 if (Record.size() > 8 && Record[8]) {
1864 if (Record[8]-1 > GCTable.size())
1865 return Error("Invalid GC ID");
1866 Func->setGC(GCTable[Record[8]-1].c_str());
1867 }
1868 bool UnnamedAddr = false;
1869 if (Record.size() > 9)
1870 UnnamedAddr = Record[9];
1871 Func->setUnnamedAddr(UnnamedAddr);
1872 ValueList.push_back(Func);
1873
1874 // If this is a function with a body, remember the prototype we are
1875 // creating now, so that we can match up the body with them later.
1876 if (!isProto) {
1877 FunctionsWithBodies.push_back(Func);
1878 if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1879 }
1880 break;
1881 }
1882 // ALIAS: [alias type, aliasee val#, linkage]
1883 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1884 case bitc::MODULE_CODE_ALIAS: {
1885 if (Record.size() < 3)
1886 return Error("Invalid MODULE_ALIAS record");
1887 Type *Ty = getTypeByID(Record[0]);
1888 if (!Ty) return Error("Invalid MODULE_ALIAS record");
1889 if (!Ty->isPointerTy())
1890 return Error("Function not a pointer type!");
1891
1892 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1893 "", 0, TheModule);
1894 // Old bitcode files didn't have visibility field.
1895 if (Record.size() > 3)
1896 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1897 ValueList.push_back(NewGA);
1898 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1899 break;
1900 }
1901 /// MODULE_CODE_PURGEVALS: [numvals]
1902 case bitc::MODULE_CODE_PURGEVALS:
1903 // Trim down the value list to the specified size.
1904 if (Record.size() < 1 || Record[0] > ValueList.size())
1905 return Error("Invalid MODULE_PURGEVALS record");
1906 ValueList.shrinkTo(Record[0]);
1907 break;
1908 }
1909 Record.clear();
1910 }
1911 }
1912
ParseBitcodeInto(Module * M)1913 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1914 TheModule = 0;
1915
1916 if (InitStream()) return true;
1917
1918 // Sniff for the signature.
1919 if (Stream.Read(8) != 'B' ||
1920 Stream.Read(8) != 'C' ||
1921 Stream.Read(4) != 0x0 ||
1922 Stream.Read(4) != 0xC ||
1923 Stream.Read(4) != 0xE ||
1924 Stream.Read(4) != 0xD)
1925 return Error("Invalid bitcode signature");
1926
1927 // We expect a number of well-defined blocks, though we don't necessarily
1928 // need to understand them all.
1929 while (1) {
1930 if (Stream.AtEndOfStream())
1931 return false;
1932
1933 BitstreamEntry Entry =
1934 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1935
1936 switch (Entry.Kind) {
1937 case BitstreamEntry::Error:
1938 Error("malformed module file");
1939 return true;
1940 case BitstreamEntry::EndBlock:
1941 return false;
1942
1943 case BitstreamEntry::SubBlock:
1944 switch (Entry.ID) {
1945 case bitc::BLOCKINFO_BLOCK_ID:
1946 if (Stream.ReadBlockInfoBlock())
1947 return Error("Malformed BlockInfoBlock");
1948 break;
1949 case bitc::MODULE_BLOCK_ID:
1950 // Reject multiple MODULE_BLOCK's in a single bitstream.
1951 if (TheModule)
1952 return Error("Multiple MODULE_BLOCKs in same stream");
1953 TheModule = M;
1954 if (ParseModule(false))
1955 return true;
1956 if (LazyStreamer) return false;
1957 break;
1958 default:
1959 if (Stream.SkipBlock())
1960 return Error("Malformed block record");
1961 break;
1962 }
1963 continue;
1964 case BitstreamEntry::Record:
1965 // There should be no records in the top-level of blocks.
1966
1967 // The ranlib in Xcode 4 will align archive members by appending newlines
1968 // to the end of them. If this file size is a multiple of 4 but not 8, we
1969 // have to read and ignore these final 4 bytes :-(
1970 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
1971 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1972 Stream.AtEndOfStream())
1973 return false;
1974
1975 return Error("Invalid record at top-level");
1976 }
1977 }
1978 }
1979
ParseModuleTriple(std::string & Triple)1980 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1981 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1982 return Error("Malformed block record");
1983
1984 SmallVector<uint64_t, 64> Record;
1985
1986 // Read all the records for this module.
1987 while (1) {
1988 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1989
1990 switch (Entry.Kind) {
1991 case BitstreamEntry::SubBlock: // Handled for us already.
1992 case BitstreamEntry::Error:
1993 return Error("malformed module block");
1994 case BitstreamEntry::EndBlock:
1995 return false;
1996 case BitstreamEntry::Record:
1997 // The interesting case.
1998 break;
1999 }
2000
2001 // Read a record.
2002 switch (Stream.readRecord(Entry.ID, Record)) {
2003 default: break; // Default behavior, ignore unknown content.
2004 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
2005 std::string S;
2006 if (ConvertToString(Record, 0, S))
2007 return Error("Invalid MODULE_CODE_TRIPLE record");
2008 Triple = S;
2009 break;
2010 }
2011 }
2012 Record.clear();
2013 }
2014 }
2015
ParseTriple(std::string & Triple)2016 bool BitcodeReader::ParseTriple(std::string &Triple) {
2017 if (InitStream()) return true;
2018
2019 // Sniff for the signature.
2020 if (Stream.Read(8) != 'B' ||
2021 Stream.Read(8) != 'C' ||
2022 Stream.Read(4) != 0x0 ||
2023 Stream.Read(4) != 0xC ||
2024 Stream.Read(4) != 0xE ||
2025 Stream.Read(4) != 0xD)
2026 return Error("Invalid bitcode signature");
2027
2028 // We expect a number of well-defined blocks, though we don't necessarily
2029 // need to understand them all.
2030 while (1) {
2031 BitstreamEntry Entry = Stream.advance();
2032
2033 switch (Entry.Kind) {
2034 case BitstreamEntry::Error:
2035 Error("malformed module file");
2036 return true;
2037 case BitstreamEntry::EndBlock:
2038 return false;
2039
2040 case BitstreamEntry::SubBlock:
2041 if (Entry.ID == bitc::MODULE_BLOCK_ID)
2042 return ParseModuleTriple(Triple);
2043
2044 // Ignore other sub-blocks.
2045 if (Stream.SkipBlock()) {
2046 Error("malformed block record in AST file");
2047 return true;
2048 }
2049 continue;
2050
2051 case BitstreamEntry::Record:
2052 Stream.skipRecord(Entry.ID);
2053 continue;
2054 }
2055 }
2056 }
2057
2058 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2059 bool BitcodeReader::ParseMetadataAttachment() {
2060 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2061 return Error("Malformed block record");
2062
2063 SmallVector<uint64_t, 64> Record;
2064 while (1) {
2065 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2066
2067 switch (Entry.Kind) {
2068 case BitstreamEntry::SubBlock: // Handled for us already.
2069 case BitstreamEntry::Error:
2070 return Error("malformed metadata block");
2071 case BitstreamEntry::EndBlock:
2072 return false;
2073 case BitstreamEntry::Record:
2074 // The interesting case.
2075 break;
2076 }
2077
2078 // Read a metadata attachment record.
2079 Record.clear();
2080 switch (Stream.readRecord(Entry.ID, Record)) {
2081 default: // Default behavior: ignore.
2082 break;
2083 case bitc::METADATA_ATTACHMENT: {
2084 unsigned RecordLength = Record.size();
2085 if (Record.empty() || (RecordLength - 1) % 2 == 1)
2086 return Error ("Invalid METADATA_ATTACHMENT reader!");
2087 Instruction *Inst = InstructionList[Record[0]];
2088 for (unsigned i = 1; i != RecordLength; i = i+2) {
2089 unsigned Kind = Record[i];
2090 DenseMap<unsigned, unsigned>::iterator I =
2091 MDKindMap.find(Kind);
2092 if (I == MDKindMap.end())
2093 return Error("Invalid metadata kind ID");
2094 Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2095 Inst->setMetadata(I->second, cast<MDNode>(Node));
2096 }
2097 break;
2098 }
2099 }
2100 }
2101 }
2102
2103 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2104 bool BitcodeReader::ParseFunctionBody(Function *F) {
2105 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2106 return Error("Malformed block record");
2107
2108 InstructionList.clear();
2109 unsigned ModuleValueListSize = ValueList.size();
2110 unsigned ModuleMDValueListSize = MDValueList.size();
2111
2112 // Add all the function arguments to the value table.
2113 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2114 ValueList.push_back(I);
2115
2116 unsigned NextValueNo = ValueList.size();
2117 BasicBlock *CurBB = 0;
2118 unsigned CurBBNo = 0;
2119
2120 DebugLoc LastLoc;
2121
2122 // Read all the records.
2123 SmallVector<uint64_t, 64> Record;
2124 while (1) {
2125 BitstreamEntry Entry = Stream.advance();
2126
2127 switch (Entry.Kind) {
2128 case BitstreamEntry::Error:
2129 return Error("Bitcode error in function block");
2130 case BitstreamEntry::EndBlock:
2131 goto OutOfRecordLoop;
2132
2133 case BitstreamEntry::SubBlock:
2134 switch (Entry.ID) {
2135 default: // Skip unknown content.
2136 if (Stream.SkipBlock())
2137 return Error("Malformed block record");
2138 break;
2139 case bitc::CONSTANTS_BLOCK_ID:
2140 if (ParseConstants()) return true;
2141 NextValueNo = ValueList.size();
2142 break;
2143 case bitc::VALUE_SYMTAB_BLOCK_ID:
2144 if (ParseValueSymbolTable()) return true;
2145 break;
2146 case bitc::METADATA_ATTACHMENT_ID:
2147 if (ParseMetadataAttachment()) return true;
2148 break;
2149 case bitc::METADATA_BLOCK_ID:
2150 if (ParseMetadata()) return true;
2151 break;
2152 }
2153 continue;
2154
2155 case BitstreamEntry::Record:
2156 // The interesting case.
2157 break;
2158 }
2159
2160 // Read a record.
2161 Record.clear();
2162 Instruction *I = 0;
2163 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2164 switch (BitCode) {
2165 default: // Default behavior: reject
2166 return Error("Unknown instruction");
2167 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
2168 if (Record.size() < 1 || Record[0] == 0)
2169 return Error("Invalid DECLAREBLOCKS record");
2170 // Create all the basic blocks for the function.
2171 FunctionBBs.resize(Record[0]);
2172 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2173 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2174 CurBB = FunctionBBs[0];
2175 continue;
2176
2177 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
2178 // This record indicates that the last instruction is at the same
2179 // location as the previous instruction with a location.
2180 I = 0;
2181
2182 // Get the last instruction emitted.
2183 if (CurBB && !CurBB->empty())
2184 I = &CurBB->back();
2185 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2186 !FunctionBBs[CurBBNo-1]->empty())
2187 I = &FunctionBBs[CurBBNo-1]->back();
2188
2189 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2190 I->setDebugLoc(LastLoc);
2191 I = 0;
2192 continue;
2193
2194 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
2195 I = 0; // Get the last instruction emitted.
2196 if (CurBB && !CurBB->empty())
2197 I = &CurBB->back();
2198 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2199 !FunctionBBs[CurBBNo-1]->empty())
2200 I = &FunctionBBs[CurBBNo-1]->back();
2201 if (I == 0 || Record.size() < 4)
2202 return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2203
2204 unsigned Line = Record[0], Col = Record[1];
2205 unsigned ScopeID = Record[2], IAID = Record[3];
2206
2207 MDNode *Scope = 0, *IA = 0;
2208 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2209 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2210 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2211 I->setDebugLoc(LastLoc);
2212 I = 0;
2213 continue;
2214 }
2215
2216 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
2217 unsigned OpNum = 0;
2218 Value *LHS, *RHS;
2219 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2220 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2221 OpNum+1 > Record.size())
2222 return Error("Invalid BINOP record");
2223
2224 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2225 if (Opc == -1) return Error("Invalid BINOP record");
2226 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2227 InstructionList.push_back(I);
2228 if (OpNum < Record.size()) {
2229 if (Opc == Instruction::Add ||
2230 Opc == Instruction::Sub ||
2231 Opc == Instruction::Mul ||
2232 Opc == Instruction::Shl) {
2233 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2234 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2235 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2236 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2237 } else if (Opc == Instruction::SDiv ||
2238 Opc == Instruction::UDiv ||
2239 Opc == Instruction::LShr ||
2240 Opc == Instruction::AShr) {
2241 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2242 cast<BinaryOperator>(I)->setIsExact(true);
2243 } else if (isa<FPMathOperator>(I)) {
2244 FastMathFlags FMF;
2245 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2246 FMF.setUnsafeAlgebra();
2247 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2248 FMF.setNoNaNs();
2249 if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2250 FMF.setNoInfs();
2251 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2252 FMF.setNoSignedZeros();
2253 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2254 FMF.setAllowReciprocal();
2255 if (FMF.any())
2256 I->setFastMathFlags(FMF);
2257 }
2258
2259 }
2260 break;
2261 }
2262 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
2263 unsigned OpNum = 0;
2264 Value *Op;
2265 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2266 OpNum+2 != Record.size())
2267 return Error("Invalid CAST record");
2268
2269 Type *ResTy = getTypeByID(Record[OpNum]);
2270 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2271 if (Opc == -1 || ResTy == 0)
2272 return Error("Invalid CAST record");
2273 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2274 InstructionList.push_back(I);
2275 break;
2276 }
2277 case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2278 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2279 unsigned OpNum = 0;
2280 Value *BasePtr;
2281 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2282 return Error("Invalid GEP record");
2283
2284 SmallVector<Value*, 16> GEPIdx;
2285 while (OpNum != Record.size()) {
2286 Value *Op;
2287 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2288 return Error("Invalid GEP record");
2289 GEPIdx.push_back(Op);
2290 }
2291
2292 I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2293 InstructionList.push_back(I);
2294 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2295 cast<GetElementPtrInst>(I)->setIsInBounds(true);
2296 break;
2297 }
2298
2299 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2300 // EXTRACTVAL: [opty, opval, n x indices]
2301 unsigned OpNum = 0;
2302 Value *Agg;
2303 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2304 return Error("Invalid EXTRACTVAL record");
2305
2306 SmallVector<unsigned, 4> EXTRACTVALIdx;
2307 for (unsigned RecSize = Record.size();
2308 OpNum != RecSize; ++OpNum) {
2309 uint64_t Index = Record[OpNum];
2310 if ((unsigned)Index != Index)
2311 return Error("Invalid EXTRACTVAL index");
2312 EXTRACTVALIdx.push_back((unsigned)Index);
2313 }
2314
2315 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2316 InstructionList.push_back(I);
2317 break;
2318 }
2319
2320 case bitc::FUNC_CODE_INST_INSERTVAL: {
2321 // INSERTVAL: [opty, opval, opty, opval, n x indices]
2322 unsigned OpNum = 0;
2323 Value *Agg;
2324 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2325 return Error("Invalid INSERTVAL record");
2326 Value *Val;
2327 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2328 return Error("Invalid INSERTVAL record");
2329
2330 SmallVector<unsigned, 4> INSERTVALIdx;
2331 for (unsigned RecSize = Record.size();
2332 OpNum != RecSize; ++OpNum) {
2333 uint64_t Index = Record[OpNum];
2334 if ((unsigned)Index != Index)
2335 return Error("Invalid INSERTVAL index");
2336 INSERTVALIdx.push_back((unsigned)Index);
2337 }
2338
2339 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2340 InstructionList.push_back(I);
2341 break;
2342 }
2343
2344 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2345 // obsolete form of select
2346 // handles select i1 ... in old bitcode
2347 unsigned OpNum = 0;
2348 Value *TrueVal, *FalseVal, *Cond;
2349 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2350 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2351 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2352 return Error("Invalid SELECT record");
2353
2354 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2355 InstructionList.push_back(I);
2356 break;
2357 }
2358
2359 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2360 // new form of select
2361 // handles select i1 or select [N x i1]
2362 unsigned OpNum = 0;
2363 Value *TrueVal, *FalseVal, *Cond;
2364 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2365 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2366 getValueTypePair(Record, OpNum, NextValueNo, Cond))
2367 return Error("Invalid SELECT record");
2368
2369 // select condition can be either i1 or [N x i1]
2370 if (VectorType* vector_type =
2371 dyn_cast<VectorType>(Cond->getType())) {
2372 // expect <n x i1>
2373 if (vector_type->getElementType() != Type::getInt1Ty(Context))
2374 return Error("Invalid SELECT condition type");
2375 } else {
2376 // expect i1
2377 if (Cond->getType() != Type::getInt1Ty(Context))
2378 return Error("Invalid SELECT condition type");
2379 }
2380
2381 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2382 InstructionList.push_back(I);
2383 break;
2384 }
2385
2386 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2387 unsigned OpNum = 0;
2388 Value *Vec, *Idx;
2389 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2390 popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2391 return Error("Invalid EXTRACTELT record");
2392 I = ExtractElementInst::Create(Vec, Idx);
2393 InstructionList.push_back(I);
2394 break;
2395 }
2396
2397 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2398 unsigned OpNum = 0;
2399 Value *Vec, *Elt, *Idx;
2400 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2401 popValue(Record, OpNum, NextValueNo,
2402 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2403 popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2404 return Error("Invalid INSERTELT record");
2405 I = InsertElementInst::Create(Vec, Elt, Idx);
2406 InstructionList.push_back(I);
2407 break;
2408 }
2409
2410 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2411 unsigned OpNum = 0;
2412 Value *Vec1, *Vec2, *Mask;
2413 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2414 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2415 return Error("Invalid SHUFFLEVEC record");
2416
2417 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2418 return Error("Invalid SHUFFLEVEC record");
2419 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2420 InstructionList.push_back(I);
2421 break;
2422 }
2423
2424 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
2425 // Old form of ICmp/FCmp returning bool
2426 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2427 // both legal on vectors but had different behaviour.
2428 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2429 // FCmp/ICmp returning bool or vector of bool
2430
2431 unsigned OpNum = 0;
2432 Value *LHS, *RHS;
2433 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2434 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2435 OpNum+1 != Record.size())
2436 return Error("Invalid CMP record");
2437
2438 if (LHS->getType()->isFPOrFPVectorTy())
2439 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2440 else
2441 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2442 InstructionList.push_back(I);
2443 break;
2444 }
2445
2446 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2447 {
2448 unsigned Size = Record.size();
2449 if (Size == 0) {
2450 I = ReturnInst::Create(Context);
2451 InstructionList.push_back(I);
2452 break;
2453 }
2454
2455 unsigned OpNum = 0;
2456 Value *Op = NULL;
2457 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2458 return Error("Invalid RET record");
2459 if (OpNum != Record.size())
2460 return Error("Invalid RET record");
2461
2462 I = ReturnInst::Create(Context, Op);
2463 InstructionList.push_back(I);
2464 break;
2465 }
2466 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2467 if (Record.size() != 1 && Record.size() != 3)
2468 return Error("Invalid BR record");
2469 BasicBlock *TrueDest = getBasicBlock(Record[0]);
2470 if (TrueDest == 0)
2471 return Error("Invalid BR record");
2472
2473 if (Record.size() == 1) {
2474 I = BranchInst::Create(TrueDest);
2475 InstructionList.push_back(I);
2476 }
2477 else {
2478 BasicBlock *FalseDest = getBasicBlock(Record[1]);
2479 Value *Cond = getValue(Record, 2, NextValueNo,
2480 Type::getInt1Ty(Context));
2481 if (FalseDest == 0 || Cond == 0)
2482 return Error("Invalid BR record");
2483 I = BranchInst::Create(TrueDest, FalseDest, Cond);
2484 InstructionList.push_back(I);
2485 }
2486 break;
2487 }
2488 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2489 // Check magic
2490 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2491 // New SwitchInst format with case ranges.
2492
2493 Type *OpTy = getTypeByID(Record[1]);
2494 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2495
2496 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2497 BasicBlock *Default = getBasicBlock(Record[3]);
2498 if (OpTy == 0 || Cond == 0 || Default == 0)
2499 return Error("Invalid SWITCH record");
2500
2501 unsigned NumCases = Record[4];
2502
2503 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2504 InstructionList.push_back(SI);
2505
2506 unsigned CurIdx = 5;
2507 for (unsigned i = 0; i != NumCases; ++i) {
2508 IntegersSubsetToBB CaseBuilder;
2509 unsigned NumItems = Record[CurIdx++];
2510 for (unsigned ci = 0; ci != NumItems; ++ci) {
2511 bool isSingleNumber = Record[CurIdx++];
2512
2513 APInt Low;
2514 unsigned ActiveWords = 1;
2515 if (ValueBitWidth > 64)
2516 ActiveWords = Record[CurIdx++];
2517 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2518 ValueBitWidth);
2519 CurIdx += ActiveWords;
2520
2521 if (!isSingleNumber) {
2522 ActiveWords = 1;
2523 if (ValueBitWidth > 64)
2524 ActiveWords = Record[CurIdx++];
2525 APInt High =
2526 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2527 ValueBitWidth);
2528
2529 CaseBuilder.add(IntItem::fromType(OpTy, Low),
2530 IntItem::fromType(OpTy, High));
2531 CurIdx += ActiveWords;
2532 } else
2533 CaseBuilder.add(IntItem::fromType(OpTy, Low));
2534 }
2535 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2536 IntegersSubset Case = CaseBuilder.getCase();
2537 SI->addCase(Case, DestBB);
2538 }
2539 uint16_t Hash = SI->hash();
2540 if (Hash != (Record[0] & 0xFFFF))
2541 return Error("Invalid SWITCH record");
2542 I = SI;
2543 break;
2544 }
2545
2546 // Old SwitchInst format without case ranges.
2547
2548 if (Record.size() < 3 || (Record.size() & 1) == 0)
2549 return Error("Invalid SWITCH record");
2550 Type *OpTy = getTypeByID(Record[0]);
2551 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2552 BasicBlock *Default = getBasicBlock(Record[2]);
2553 if (OpTy == 0 || Cond == 0 || Default == 0)
2554 return Error("Invalid SWITCH record");
2555 unsigned NumCases = (Record.size()-3)/2;
2556 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2557 InstructionList.push_back(SI);
2558 for (unsigned i = 0, e = NumCases; i != e; ++i) {
2559 ConstantInt *CaseVal =
2560 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2561 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2562 if (CaseVal == 0 || DestBB == 0) {
2563 delete SI;
2564 return Error("Invalid SWITCH record!");
2565 }
2566 SI->addCase(CaseVal, DestBB);
2567 }
2568 I = SI;
2569 break;
2570 }
2571 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2572 if (Record.size() < 2)
2573 return Error("Invalid INDIRECTBR record");
2574 Type *OpTy = getTypeByID(Record[0]);
2575 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2576 if (OpTy == 0 || Address == 0)
2577 return Error("Invalid INDIRECTBR record");
2578 unsigned NumDests = Record.size()-2;
2579 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2580 InstructionList.push_back(IBI);
2581 for (unsigned i = 0, e = NumDests; i != e; ++i) {
2582 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2583 IBI->addDestination(DestBB);
2584 } else {
2585 delete IBI;
2586 return Error("Invalid INDIRECTBR record!");
2587 }
2588 }
2589 I = IBI;
2590 break;
2591 }
2592
2593 case bitc::FUNC_CODE_INST_INVOKE: {
2594 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2595 if (Record.size() < 4) return Error("Invalid INVOKE record");
2596 AttributeSet PAL = getAttributes(Record[0]);
2597 unsigned CCInfo = Record[1];
2598 BasicBlock *NormalBB = getBasicBlock(Record[2]);
2599 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2600
2601 unsigned OpNum = 4;
2602 Value *Callee;
2603 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2604 return Error("Invalid INVOKE record");
2605
2606 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2607 FunctionType *FTy = !CalleeTy ? 0 :
2608 dyn_cast<FunctionType>(CalleeTy->getElementType());
2609
2610 // Check that the right number of fixed parameters are here.
2611 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2612 Record.size() < OpNum+FTy->getNumParams())
2613 return Error("Invalid INVOKE record");
2614
2615 SmallVector<Value*, 16> Ops;
2616 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2617 Ops.push_back(getValue(Record, OpNum, NextValueNo,
2618 FTy->getParamType(i)));
2619 if (Ops.back() == 0) return Error("Invalid INVOKE record");
2620 }
2621
2622 if (!FTy->isVarArg()) {
2623 if (Record.size() != OpNum)
2624 return Error("Invalid INVOKE record");
2625 } else {
2626 // Read type/value pairs for varargs params.
2627 while (OpNum != Record.size()) {
2628 Value *Op;
2629 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2630 return Error("Invalid INVOKE record");
2631 Ops.push_back(Op);
2632 }
2633 }
2634
2635 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2636 InstructionList.push_back(I);
2637 cast<InvokeInst>(I)->setCallingConv(
2638 static_cast<CallingConv::ID>(CCInfo));
2639 cast<InvokeInst>(I)->setAttributes(PAL);
2640 break;
2641 }
2642 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2643 unsigned Idx = 0;
2644 Value *Val = 0;
2645 if (getValueTypePair(Record, Idx, NextValueNo, Val))
2646 return Error("Invalid RESUME record");
2647 I = ResumeInst::Create(Val);
2648 InstructionList.push_back(I);
2649 break;
2650 }
2651 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2652 I = new UnreachableInst(Context);
2653 InstructionList.push_back(I);
2654 break;
2655 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2656 if (Record.size() < 1 || ((Record.size()-1)&1))
2657 return Error("Invalid PHI record");
2658 Type *Ty = getTypeByID(Record[0]);
2659 if (!Ty) return Error("Invalid PHI record");
2660
2661 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2662 InstructionList.push_back(PN);
2663
2664 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2665 Value *V;
2666 // With the new function encoding, it is possible that operands have
2667 // negative IDs (for forward references). Use a signed VBR
2668 // representation to keep the encoding small.
2669 if (UseRelativeIDs)
2670 V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2671 else
2672 V = getValue(Record, 1+i, NextValueNo, Ty);
2673 BasicBlock *BB = getBasicBlock(Record[2+i]);
2674 if (!V || !BB) return Error("Invalid PHI record");
2675 PN->addIncoming(V, BB);
2676 }
2677 I = PN;
2678 break;
2679 }
2680
2681 case bitc::FUNC_CODE_INST_LANDINGPAD: {
2682 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2683 unsigned Idx = 0;
2684 if (Record.size() < 4)
2685 return Error("Invalid LANDINGPAD record");
2686 Type *Ty = getTypeByID(Record[Idx++]);
2687 if (!Ty) return Error("Invalid LANDINGPAD record");
2688 Value *PersFn = 0;
2689 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2690 return Error("Invalid LANDINGPAD record");
2691
2692 bool IsCleanup = !!Record[Idx++];
2693 unsigned NumClauses = Record[Idx++];
2694 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2695 LP->setCleanup(IsCleanup);
2696 for (unsigned J = 0; J != NumClauses; ++J) {
2697 LandingPadInst::ClauseType CT =
2698 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2699 Value *Val;
2700
2701 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2702 delete LP;
2703 return Error("Invalid LANDINGPAD record");
2704 }
2705
2706 assert((CT != LandingPadInst::Catch ||
2707 !isa<ArrayType>(Val->getType())) &&
2708 "Catch clause has a invalid type!");
2709 assert((CT != LandingPadInst::Filter ||
2710 isa<ArrayType>(Val->getType())) &&
2711 "Filter clause has invalid type!");
2712 LP->addClause(Val);
2713 }
2714
2715 I = LP;
2716 InstructionList.push_back(I);
2717 break;
2718 }
2719
2720 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2721 if (Record.size() != 4)
2722 return Error("Invalid ALLOCA record");
2723 PointerType *Ty =
2724 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2725 Type *OpTy = getTypeByID(Record[1]);
2726 Value *Size = getFnValueByID(Record[2], OpTy);
2727 unsigned Align = Record[3];
2728 if (!Ty || !Size) return Error("Invalid ALLOCA record");
2729 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2730 InstructionList.push_back(I);
2731 break;
2732 }
2733 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2734 unsigned OpNum = 0;
2735 Value *Op;
2736 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2737 OpNum+2 != Record.size())
2738 return Error("Invalid LOAD record");
2739
2740 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2741 InstructionList.push_back(I);
2742 break;
2743 }
2744 case bitc::FUNC_CODE_INST_LOADATOMIC: {
2745 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2746 unsigned OpNum = 0;
2747 Value *Op;
2748 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2749 OpNum+4 != Record.size())
2750 return Error("Invalid LOADATOMIC record");
2751
2752
2753 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2754 if (Ordering == NotAtomic || Ordering == Release ||
2755 Ordering == AcquireRelease)
2756 return Error("Invalid LOADATOMIC record");
2757 if (Ordering != NotAtomic && Record[OpNum] == 0)
2758 return Error("Invalid LOADATOMIC record");
2759 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2760
2761 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2762 Ordering, SynchScope);
2763 InstructionList.push_back(I);
2764 break;
2765 }
2766 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2767 unsigned OpNum = 0;
2768 Value *Val, *Ptr;
2769 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2770 popValue(Record, OpNum, NextValueNo,
2771 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2772 OpNum+2 != Record.size())
2773 return Error("Invalid STORE record");
2774
2775 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2776 InstructionList.push_back(I);
2777 break;
2778 }
2779 case bitc::FUNC_CODE_INST_STOREATOMIC: {
2780 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2781 unsigned OpNum = 0;
2782 Value *Val, *Ptr;
2783 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2784 popValue(Record, OpNum, NextValueNo,
2785 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2786 OpNum+4 != Record.size())
2787 return Error("Invalid STOREATOMIC record");
2788
2789 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2790 if (Ordering == NotAtomic || Ordering == Acquire ||
2791 Ordering == AcquireRelease)
2792 return Error("Invalid STOREATOMIC record");
2793 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2794 if (Ordering != NotAtomic && Record[OpNum] == 0)
2795 return Error("Invalid STOREATOMIC record");
2796
2797 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2798 Ordering, SynchScope);
2799 InstructionList.push_back(I);
2800 break;
2801 }
2802 case bitc::FUNC_CODE_INST_CMPXCHG: {
2803 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2804 unsigned OpNum = 0;
2805 Value *Ptr, *Cmp, *New;
2806 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2807 popValue(Record, OpNum, NextValueNo,
2808 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2809 popValue(Record, OpNum, NextValueNo,
2810 cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2811 OpNum+3 != Record.size())
2812 return Error("Invalid CMPXCHG record");
2813 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2814 if (Ordering == NotAtomic || Ordering == Unordered)
2815 return Error("Invalid CMPXCHG record");
2816 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2817 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2818 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2819 InstructionList.push_back(I);
2820 break;
2821 }
2822 case bitc::FUNC_CODE_INST_ATOMICRMW: {
2823 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2824 unsigned OpNum = 0;
2825 Value *Ptr, *Val;
2826 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2827 popValue(Record, OpNum, NextValueNo,
2828 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2829 OpNum+4 != Record.size())
2830 return Error("Invalid ATOMICRMW record");
2831 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2832 if (Operation < AtomicRMWInst::FIRST_BINOP ||
2833 Operation > AtomicRMWInst::LAST_BINOP)
2834 return Error("Invalid ATOMICRMW record");
2835 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2836 if (Ordering == NotAtomic || Ordering == Unordered)
2837 return Error("Invalid ATOMICRMW record");
2838 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2839 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2840 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2841 InstructionList.push_back(I);
2842 break;
2843 }
2844 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2845 if (2 != Record.size())
2846 return Error("Invalid FENCE record");
2847 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2848 if (Ordering == NotAtomic || Ordering == Unordered ||
2849 Ordering == Monotonic)
2850 return Error("Invalid FENCE record");
2851 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2852 I = new FenceInst(Context, Ordering, SynchScope);
2853 InstructionList.push_back(I);
2854 break;
2855 }
2856 case bitc::FUNC_CODE_INST_CALL: {
2857 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2858 if (Record.size() < 3)
2859 return Error("Invalid CALL record");
2860
2861 AttributeSet PAL = getAttributes(Record[0]);
2862 unsigned CCInfo = Record[1];
2863
2864 unsigned OpNum = 2;
2865 Value *Callee;
2866 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2867 return Error("Invalid CALL record");
2868
2869 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2870 FunctionType *FTy = 0;
2871 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2872 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2873 return Error("Invalid CALL record");
2874
2875 SmallVector<Value*, 16> Args;
2876 // Read the fixed params.
2877 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2878 if (FTy->getParamType(i)->isLabelTy())
2879 Args.push_back(getBasicBlock(Record[OpNum]));
2880 else
2881 Args.push_back(getValue(Record, OpNum, NextValueNo,
2882 FTy->getParamType(i)));
2883 if (Args.back() == 0) return Error("Invalid CALL record");
2884 }
2885
2886 // Read type/value pairs for varargs params.
2887 if (!FTy->isVarArg()) {
2888 if (OpNum != Record.size())
2889 return Error("Invalid CALL record");
2890 } else {
2891 while (OpNum != Record.size()) {
2892 Value *Op;
2893 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2894 return Error("Invalid CALL record");
2895 Args.push_back(Op);
2896 }
2897 }
2898
2899 I = CallInst::Create(Callee, Args);
2900 InstructionList.push_back(I);
2901 cast<CallInst>(I)->setCallingConv(
2902 static_cast<CallingConv::ID>(CCInfo>>1));
2903 cast<CallInst>(I)->setTailCall(CCInfo & 1);
2904 cast<CallInst>(I)->setAttributes(PAL);
2905 break;
2906 }
2907 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2908 if (Record.size() < 3)
2909 return Error("Invalid VAARG record");
2910 Type *OpTy = getTypeByID(Record[0]);
2911 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2912 Type *ResTy = getTypeByID(Record[2]);
2913 if (!OpTy || !Op || !ResTy)
2914 return Error("Invalid VAARG record");
2915 I = new VAArgInst(Op, ResTy);
2916 InstructionList.push_back(I);
2917 break;
2918 }
2919 }
2920
2921 // Add instruction to end of current BB. If there is no current BB, reject
2922 // this file.
2923 if (CurBB == 0) {
2924 delete I;
2925 return Error("Invalid instruction with no BB");
2926 }
2927 CurBB->getInstList().push_back(I);
2928
2929 // If this was a terminator instruction, move to the next block.
2930 if (isa<TerminatorInst>(I)) {
2931 ++CurBBNo;
2932 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2933 }
2934
2935 // Non-void values get registered in the value table for future use.
2936 if (I && !I->getType()->isVoidTy())
2937 ValueList.AssignValue(I, NextValueNo++);
2938 }
2939
2940 OutOfRecordLoop:
2941
2942 // Check the function list for unresolved values.
2943 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2944 if (A->getParent() == 0) {
2945 // We found at least one unresolved value. Nuke them all to avoid leaks.
2946 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2947 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2948 A->replaceAllUsesWith(UndefValue::get(A->getType()));
2949 delete A;
2950 }
2951 }
2952 return Error("Never resolved value found in function!");
2953 }
2954 }
2955
2956 // FIXME: Check for unresolved forward-declared metadata references
2957 // and clean up leaks.
2958
2959 // See if anything took the address of blocks in this function. If so,
2960 // resolve them now.
2961 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2962 BlockAddrFwdRefs.find(F);
2963 if (BAFRI != BlockAddrFwdRefs.end()) {
2964 std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2965 for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2966 unsigned BlockIdx = RefList[i].first;
2967 if (BlockIdx >= FunctionBBs.size())
2968 return Error("Invalid blockaddress block #");
2969
2970 GlobalVariable *FwdRef = RefList[i].second;
2971 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2972 FwdRef->eraseFromParent();
2973 }
2974
2975 BlockAddrFwdRefs.erase(BAFRI);
2976 }
2977
2978 // Trim the value list down to the size it was before we parsed this function.
2979 ValueList.shrinkTo(ModuleValueListSize);
2980 MDValueList.shrinkTo(ModuleMDValueListSize);
2981 std::vector<BasicBlock*>().swap(FunctionBBs);
2982 return false;
2983 }
2984
2985 /// FindFunctionInStream - Find the function body in the bitcode stream
FindFunctionInStream(Function * F,DenseMap<Function *,uint64_t>::iterator DeferredFunctionInfoIterator)2986 bool BitcodeReader::FindFunctionInStream(Function *F,
2987 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
2988 while (DeferredFunctionInfoIterator->second == 0) {
2989 if (Stream.AtEndOfStream())
2990 return Error("Could not find Function in stream");
2991 // ParseModule will parse the next body in the stream and set its
2992 // position in the DeferredFunctionInfo map.
2993 if (ParseModule(true)) return true;
2994 }
2995 return false;
2996 }
2997
2998 //===----------------------------------------------------------------------===//
2999 // GVMaterializer implementation
3000 //===----------------------------------------------------------------------===//
3001
3002
isMaterializable(const GlobalValue * GV) const3003 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3004 if (const Function *F = dyn_cast<Function>(GV)) {
3005 return F->isDeclaration() &&
3006 DeferredFunctionInfo.count(const_cast<Function*>(F));
3007 }
3008 return false;
3009 }
3010
Materialize(GlobalValue * GV,std::string * ErrInfo)3011 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
3012 Function *F = dyn_cast<Function>(GV);
3013 // If it's not a function or is already material, ignore the request.
3014 if (!F || !F->isMaterializable()) return false;
3015
3016 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3017 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3018 // If its position is recorded as 0, its body is somewhere in the stream
3019 // but we haven't seen it yet.
3020 if (DFII->second == 0)
3021 if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
3022
3023 // Move the bit stream to the saved position of the deferred function body.
3024 Stream.JumpToBit(DFII->second);
3025
3026 if (ParseFunctionBody(F)) {
3027 if (ErrInfo) *ErrInfo = ErrorString;
3028 return true;
3029 }
3030
3031 // Upgrade any old intrinsic calls in the function.
3032 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3033 E = UpgradedIntrinsics.end(); I != E; ++I) {
3034 if (I->first != I->second) {
3035 for (Value::use_iterator UI = I->first->use_begin(),
3036 UE = I->first->use_end(); UI != UE; ) {
3037 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3038 UpgradeIntrinsicCall(CI, I->second);
3039 }
3040 }
3041 }
3042
3043 return false;
3044 }
3045
isDematerializable(const GlobalValue * GV) const3046 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3047 const Function *F = dyn_cast<Function>(GV);
3048 if (!F || F->isDeclaration())
3049 return false;
3050 return DeferredFunctionInfo.count(const_cast<Function*>(F));
3051 }
3052
Dematerialize(GlobalValue * GV)3053 void BitcodeReader::Dematerialize(GlobalValue *GV) {
3054 Function *F = dyn_cast<Function>(GV);
3055 // If this function isn't dematerializable, this is a noop.
3056 if (!F || !isDematerializable(F))
3057 return;
3058
3059 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3060
3061 // Just forget the function body, we can remat it later.
3062 F->deleteBody();
3063 }
3064
3065
MaterializeModule(Module * M,std::string * ErrInfo)3066 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
3067 assert(M == TheModule &&
3068 "Can only Materialize the Module this BitcodeReader is attached to.");
3069 // Iterate over the module, deserializing any functions that are still on
3070 // disk.
3071 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3072 F != E; ++F)
3073 if (F->isMaterializable() &&
3074 Materialize(F, ErrInfo))
3075 return true;
3076
3077 // At this point, if there are any function bodies, the current bit is
3078 // pointing to the END_BLOCK record after them. Now make sure the rest
3079 // of the bits in the module have been read.
3080 if (NextUnreadBit)
3081 ParseModule(true);
3082
3083 // Upgrade any intrinsic calls that slipped through (should not happen!) and
3084 // delete the old functions to clean up. We can't do this unless the entire
3085 // module is materialized because there could always be another function body
3086 // with calls to the old function.
3087 for (std::vector<std::pair<Function*, Function*> >::iterator I =
3088 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3089 if (I->first != I->second) {
3090 for (Value::use_iterator UI = I->first->use_begin(),
3091 UE = I->first->use_end(); UI != UE; ) {
3092 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3093 UpgradeIntrinsicCall(CI, I->second);
3094 }
3095 if (!I->first->use_empty())
3096 I->first->replaceAllUsesWith(I->second);
3097 I->first->eraseFromParent();
3098 }
3099 }
3100 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3101
3102 return false;
3103 }
3104
InitStream()3105 bool BitcodeReader::InitStream() {
3106 if (LazyStreamer) return InitLazyStream();
3107 return InitStreamFromBuffer();
3108 }
3109
InitStreamFromBuffer()3110 bool BitcodeReader::InitStreamFromBuffer() {
3111 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3112 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3113
3114 if (Buffer->getBufferSize() & 3) {
3115 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3116 return Error("Invalid bitcode signature");
3117 else
3118 return Error("Bitcode stream should be a multiple of 4 bytes in length");
3119 }
3120
3121 // If we have a wrapper header, parse it and ignore the non-bc file contents.
3122 // The magic number is 0x0B17C0DE stored in little endian.
3123 if (isBitcodeWrapper(BufPtr, BufEnd))
3124 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3125 return Error("Invalid bitcode wrapper header");
3126
3127 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3128 Stream.init(*StreamFile);
3129
3130 return false;
3131 }
3132
InitLazyStream()3133 bool BitcodeReader::InitLazyStream() {
3134 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3135 // see it.
3136 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3137 StreamFile.reset(new BitstreamReader(Bytes));
3138 Stream.init(*StreamFile);
3139
3140 unsigned char buf[16];
3141 if (Bytes->readBytes(0, 16, buf) == -1)
3142 return Error("Bitcode stream must be at least 16 bytes in length");
3143
3144 if (!isBitcode(buf, buf + 16))
3145 return Error("Invalid bitcode signature");
3146
3147 if (isBitcodeWrapper(buf, buf + 4)) {
3148 const unsigned char *bitcodeStart = buf;
3149 const unsigned char *bitcodeEnd = buf + 16;
3150 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3151 Bytes->dropLeadingBytes(bitcodeStart - buf);
3152 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3153 }
3154 return false;
3155 }
3156
3157 //===----------------------------------------------------------------------===//
3158 // External interface
3159 //===----------------------------------------------------------------------===//
3160
3161 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3162 ///
getLazyBitcodeModule(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)3163 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3164 LLVMContext& Context,
3165 std::string *ErrMsg) {
3166 Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3167 BitcodeReader *R = new BitcodeReader(Buffer, Context);
3168 M->setMaterializer(R);
3169 if (R->ParseBitcodeInto(M)) {
3170 if (ErrMsg)
3171 *ErrMsg = R->getErrorString();
3172
3173 delete M; // Also deletes R.
3174 return 0;
3175 }
3176 // Have the BitcodeReader dtor delete 'Buffer'.
3177 R->setBufferOwned(true);
3178
3179 R->materializeForwardReferencedFunctions();
3180
3181 return M;
3182 }
3183
3184
getStreamedBitcodeModule(const std::string & name,DataStreamer * streamer,LLVMContext & Context,std::string * ErrMsg)3185 Module *llvm::getStreamedBitcodeModule(const std::string &name,
3186 DataStreamer *streamer,
3187 LLVMContext &Context,
3188 std::string *ErrMsg) {
3189 Module *M = new Module(name, Context);
3190 BitcodeReader *R = new BitcodeReader(streamer, Context);
3191 M->setMaterializer(R);
3192 if (R->ParseBitcodeInto(M)) {
3193 if (ErrMsg)
3194 *ErrMsg = R->getErrorString();
3195 delete M; // Also deletes R.
3196 return 0;
3197 }
3198 R->setBufferOwned(false); // no buffer to delete
3199 return M;
3200 }
3201
3202 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3203 /// If an error occurs, return null and fill in *ErrMsg if non-null.
ParseBitcodeFile(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)3204 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3205 std::string *ErrMsg){
3206 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3207 if (!M) return 0;
3208
3209 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3210 // there was an error.
3211 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3212
3213 // Read in the entire module, and destroy the BitcodeReader.
3214 if (M->MaterializeAllPermanently(ErrMsg)) {
3215 delete M;
3216 return 0;
3217 }
3218
3219 // TODO: Restore the use-lists to the in-memory state when the bitcode was
3220 // written. We must defer until the Module has been fully materialized.
3221
3222 return M;
3223 }
3224
getBitcodeTargetTriple(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)3225 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3226 LLVMContext& Context,
3227 std::string *ErrMsg) {
3228 BitcodeReader *R = new BitcodeReader(Buffer, Context);
3229 // Don't let the BitcodeReader dtor delete 'Buffer'.
3230 R->setBufferOwned(false);
3231
3232 std::string Triple("");
3233 if (R->ParseTriple(Triple))
3234 if (ErrMsg)
3235 *ErrMsg = R->getErrorString();
3236
3237 delete R;
3238 return Triple;
3239 }
3240