1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/ValueSymbolTable.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Program.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cctype>
32 #include <map>
33 using namespace llvm;
34
35 static cl::opt<bool>
36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
37 cl::desc("Turn on experimental support for "
38 "use-list order preservation."),
39 cl::init(false), cl::Hidden);
40
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44 // VALUE_SYMTAB_BLOCK abbrev id's.
45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46 VST_ENTRY_7_ABBREV,
47 VST_ENTRY_6_ABBREV,
48 VST_BBENTRY_6_ABBREV,
49
50 // CONSTANTS_BLOCK abbrev id's.
51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52 CONSTANTS_INTEGER_ABBREV,
53 CONSTANTS_CE_CAST_Abbrev,
54 CONSTANTS_NULL_Abbrev,
55
56 // FUNCTION_BLOCK abbrev id's.
57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58 FUNCTION_INST_BINOP_ABBREV,
59 FUNCTION_INST_BINOP_FLAGS_ABBREV,
60 FUNCTION_INST_CAST_ABBREV,
61 FUNCTION_INST_RET_VOID_ABBREV,
62 FUNCTION_INST_RET_VAL_ABBREV,
63 FUNCTION_INST_UNREACHABLE_ABBREV,
64
65 // SwitchInst Magic
66 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
67 };
68
GetEncodedCastOpcode(unsigned Opcode)69 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
70 switch (Opcode) {
71 default: llvm_unreachable("Unknown cast instruction!");
72 case Instruction::Trunc : return bitc::CAST_TRUNC;
73 case Instruction::ZExt : return bitc::CAST_ZEXT;
74 case Instruction::SExt : return bitc::CAST_SEXT;
75 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
76 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
77 case Instruction::UIToFP : return bitc::CAST_UITOFP;
78 case Instruction::SIToFP : return bitc::CAST_SITOFP;
79 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
80 case Instruction::FPExt : return bitc::CAST_FPEXT;
81 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
82 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
83 case Instruction::BitCast : return bitc::CAST_BITCAST;
84 }
85 }
86
GetEncodedBinaryOpcode(unsigned Opcode)87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
88 switch (Opcode) {
89 default: llvm_unreachable("Unknown binary instruction!");
90 case Instruction::Add:
91 case Instruction::FAdd: return bitc::BINOP_ADD;
92 case Instruction::Sub:
93 case Instruction::FSub: return bitc::BINOP_SUB;
94 case Instruction::Mul:
95 case Instruction::FMul: return bitc::BINOP_MUL;
96 case Instruction::UDiv: return bitc::BINOP_UDIV;
97 case Instruction::FDiv:
98 case Instruction::SDiv: return bitc::BINOP_SDIV;
99 case Instruction::URem: return bitc::BINOP_UREM;
100 case Instruction::FRem:
101 case Instruction::SRem: return bitc::BINOP_SREM;
102 case Instruction::Shl: return bitc::BINOP_SHL;
103 case Instruction::LShr: return bitc::BINOP_LSHR;
104 case Instruction::AShr: return bitc::BINOP_ASHR;
105 case Instruction::And: return bitc::BINOP_AND;
106 case Instruction::Or: return bitc::BINOP_OR;
107 case Instruction::Xor: return bitc::BINOP_XOR;
108 }
109 }
110
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
112 switch (Op) {
113 default: llvm_unreachable("Unknown RMW operation!");
114 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
115 case AtomicRMWInst::Add: return bitc::RMW_ADD;
116 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
117 case AtomicRMWInst::And: return bitc::RMW_AND;
118 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
119 case AtomicRMWInst::Or: return bitc::RMW_OR;
120 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
121 case AtomicRMWInst::Max: return bitc::RMW_MAX;
122 case AtomicRMWInst::Min: return bitc::RMW_MIN;
123 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
124 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
125 }
126 }
127
GetEncodedOrdering(AtomicOrdering Ordering)128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
129 switch (Ordering) {
130 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
131 case Unordered: return bitc::ORDERING_UNORDERED;
132 case Monotonic: return bitc::ORDERING_MONOTONIC;
133 case Acquire: return bitc::ORDERING_ACQUIRE;
134 case Release: return bitc::ORDERING_RELEASE;
135 case AcquireRelease: return bitc::ORDERING_ACQREL;
136 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
137 }
138 llvm_unreachable("Invalid ordering");
139 }
140
GetEncodedSynchScope(SynchronizationScope SynchScope)141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
142 switch (SynchScope) {
143 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
144 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
145 }
146 llvm_unreachable("Invalid synch scope");
147 }
148
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)149 static void WriteStringRecord(unsigned Code, StringRef Str,
150 unsigned AbbrevToUse, BitstreamWriter &Stream) {
151 SmallVector<unsigned, 64> Vals;
152
153 // Code: [strchar x N]
154 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
155 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
156 AbbrevToUse = 0;
157 Vals.push_back(Str[i]);
158 }
159
160 // Emit the finished record.
161 Stream.EmitRecord(Code, Vals, AbbrevToUse);
162 }
163
getAttrKindEncoding(Attribute::AttrKind Kind)164 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
165 switch (Kind) {
166 case Attribute::Alignment:
167 return bitc::ATTR_KIND_ALIGNMENT;
168 case Attribute::AlwaysInline:
169 return bitc::ATTR_KIND_ALWAYS_INLINE;
170 case Attribute::Builtin:
171 return bitc::ATTR_KIND_BUILTIN;
172 case Attribute::ByVal:
173 return bitc::ATTR_KIND_BY_VAL;
174 case Attribute::Cold:
175 return bitc::ATTR_KIND_COLD;
176 case Attribute::InlineHint:
177 return bitc::ATTR_KIND_INLINE_HINT;
178 case Attribute::InReg:
179 return bitc::ATTR_KIND_IN_REG;
180 case Attribute::MinSize:
181 return bitc::ATTR_KIND_MIN_SIZE;
182 case Attribute::Naked:
183 return bitc::ATTR_KIND_NAKED;
184 case Attribute::Nest:
185 return bitc::ATTR_KIND_NEST;
186 case Attribute::NoAlias:
187 return bitc::ATTR_KIND_NO_ALIAS;
188 case Attribute::NoBuiltin:
189 return bitc::ATTR_KIND_NO_BUILTIN;
190 case Attribute::NoCapture:
191 return bitc::ATTR_KIND_NO_CAPTURE;
192 case Attribute::NoDuplicate:
193 return bitc::ATTR_KIND_NO_DUPLICATE;
194 case Attribute::NoImplicitFloat:
195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
196 case Attribute::NoInline:
197 return bitc::ATTR_KIND_NO_INLINE;
198 case Attribute::NonLazyBind:
199 return bitc::ATTR_KIND_NON_LAZY_BIND;
200 case Attribute::NoRedZone:
201 return bitc::ATTR_KIND_NO_RED_ZONE;
202 case Attribute::NoReturn:
203 return bitc::ATTR_KIND_NO_RETURN;
204 case Attribute::NoUnwind:
205 return bitc::ATTR_KIND_NO_UNWIND;
206 case Attribute::OptimizeForSize:
207 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
208 case Attribute::ReadNone:
209 return bitc::ATTR_KIND_READ_NONE;
210 case Attribute::ReadOnly:
211 return bitc::ATTR_KIND_READ_ONLY;
212 case Attribute::Returned:
213 return bitc::ATTR_KIND_RETURNED;
214 case Attribute::ReturnsTwice:
215 return bitc::ATTR_KIND_RETURNS_TWICE;
216 case Attribute::SExt:
217 return bitc::ATTR_KIND_S_EXT;
218 case Attribute::StackAlignment:
219 return bitc::ATTR_KIND_STACK_ALIGNMENT;
220 case Attribute::StackProtect:
221 return bitc::ATTR_KIND_STACK_PROTECT;
222 case Attribute::StackProtectReq:
223 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
224 case Attribute::StackProtectStrong:
225 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
226 case Attribute::StructRet:
227 return bitc::ATTR_KIND_STRUCT_RET;
228 case Attribute::SanitizeAddress:
229 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
230 case Attribute::SanitizeThread:
231 return bitc::ATTR_KIND_SANITIZE_THREAD;
232 case Attribute::SanitizeMemory:
233 return bitc::ATTR_KIND_SANITIZE_MEMORY;
234 case Attribute::UWTable:
235 return bitc::ATTR_KIND_UW_TABLE;
236 case Attribute::ZExt:
237 return bitc::ATTR_KIND_Z_EXT;
238 case Attribute::EndAttrKinds:
239 llvm_unreachable("Can not encode end-attribute kinds marker.");
240 case Attribute::None:
241 llvm_unreachable("Can not encode none-attribute.");
242 }
243
244 llvm_unreachable("Trying to encode unknown attribute");
245 }
246
WriteAttributeGroupTable(const ValueEnumerator & VE,BitstreamWriter & Stream)247 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
248 BitstreamWriter &Stream) {
249 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
250 if (AttrGrps.empty()) return;
251
252 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
253
254 SmallVector<uint64_t, 64> Record;
255 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
256 AttributeSet AS = AttrGrps[i];
257 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
258 AttributeSet A = AS.getSlotAttributes(i);
259
260 Record.push_back(VE.getAttributeGroupID(A));
261 Record.push_back(AS.getSlotIndex(i));
262
263 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
264 I != E; ++I) {
265 Attribute Attr = *I;
266 if (Attr.isEnumAttribute()) {
267 Record.push_back(0);
268 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
269 } else if (Attr.isAlignAttribute()) {
270 Record.push_back(1);
271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
272 Record.push_back(Attr.getValueAsInt());
273 } else {
274 StringRef Kind = Attr.getKindAsString();
275 StringRef Val = Attr.getValueAsString();
276
277 Record.push_back(Val.empty() ? 3 : 4);
278 Record.append(Kind.begin(), Kind.end());
279 Record.push_back(0);
280 if (!Val.empty()) {
281 Record.append(Val.begin(), Val.end());
282 Record.push_back(0);
283 }
284 }
285 }
286
287 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
288 Record.clear();
289 }
290 }
291
292 Stream.ExitBlock();
293 }
294
WriteAttributeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)295 static void WriteAttributeTable(const ValueEnumerator &VE,
296 BitstreamWriter &Stream) {
297 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
298 if (Attrs.empty()) return;
299
300 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
301
302 SmallVector<uint64_t, 64> Record;
303 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
304 const AttributeSet &A = Attrs[i];
305 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
306 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
307
308 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
309 Record.clear();
310 }
311
312 Stream.ExitBlock();
313 }
314
315 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)316 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
317 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
318
319 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
320 SmallVector<uint64_t, 64> TypeVals;
321
322 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
323
324 // Abbrev for TYPE_CODE_POINTER.
325 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
326 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
328 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
329 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
330
331 // Abbrev for TYPE_CODE_FUNCTION.
332 Abbv = new BitCodeAbbrev();
333 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
337
338 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
339
340 // Abbrev for TYPE_CODE_STRUCT_ANON.
341 Abbv = new BitCodeAbbrev();
342 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
346
347 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
348
349 // Abbrev for TYPE_CODE_STRUCT_NAME.
350 Abbv = new BitCodeAbbrev();
351 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
354 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
355
356 // Abbrev for TYPE_CODE_STRUCT_NAMED.
357 Abbv = new BitCodeAbbrev();
358 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
362
363 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
364
365 // Abbrev for TYPE_CODE_ARRAY.
366 Abbv = new BitCodeAbbrev();
367 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
370
371 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
372
373 // Emit an entry count so the reader can reserve space.
374 TypeVals.push_back(TypeList.size());
375 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
376 TypeVals.clear();
377
378 // Loop over all of the types, emitting each in turn.
379 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
380 Type *T = TypeList[i];
381 int AbbrevToUse = 0;
382 unsigned Code = 0;
383
384 switch (T->getTypeID()) {
385 default: llvm_unreachable("Unknown type!");
386 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
387 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
388 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
389 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
390 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
391 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
392 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
393 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
394 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
395 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
396 case Type::IntegerTyID:
397 // INTEGER: [width]
398 Code = bitc::TYPE_CODE_INTEGER;
399 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
400 break;
401 case Type::PointerTyID: {
402 PointerType *PTy = cast<PointerType>(T);
403 // POINTER: [pointee type, address space]
404 Code = bitc::TYPE_CODE_POINTER;
405 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
406 unsigned AddressSpace = PTy->getAddressSpace();
407 TypeVals.push_back(AddressSpace);
408 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
409 break;
410 }
411 case Type::FunctionTyID: {
412 FunctionType *FT = cast<FunctionType>(T);
413 // FUNCTION: [isvararg, retty, paramty x N]
414 Code = bitc::TYPE_CODE_FUNCTION;
415 TypeVals.push_back(FT->isVarArg());
416 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
417 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
418 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
419 AbbrevToUse = FunctionAbbrev;
420 break;
421 }
422 case Type::StructTyID: {
423 StructType *ST = cast<StructType>(T);
424 // STRUCT: [ispacked, eltty x N]
425 TypeVals.push_back(ST->isPacked());
426 // Output all of the element types.
427 for (StructType::element_iterator I = ST->element_begin(),
428 E = ST->element_end(); I != E; ++I)
429 TypeVals.push_back(VE.getTypeID(*I));
430
431 if (ST->isLiteral()) {
432 Code = bitc::TYPE_CODE_STRUCT_ANON;
433 AbbrevToUse = StructAnonAbbrev;
434 } else {
435 if (ST->isOpaque()) {
436 Code = bitc::TYPE_CODE_OPAQUE;
437 } else {
438 Code = bitc::TYPE_CODE_STRUCT_NAMED;
439 AbbrevToUse = StructNamedAbbrev;
440 }
441
442 // Emit the name if it is present.
443 if (!ST->getName().empty())
444 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
445 StructNameAbbrev, Stream);
446 }
447 break;
448 }
449 case Type::ArrayTyID: {
450 ArrayType *AT = cast<ArrayType>(T);
451 // ARRAY: [numelts, eltty]
452 Code = bitc::TYPE_CODE_ARRAY;
453 TypeVals.push_back(AT->getNumElements());
454 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
455 AbbrevToUse = ArrayAbbrev;
456 break;
457 }
458 case Type::VectorTyID: {
459 VectorType *VT = cast<VectorType>(T);
460 // VECTOR [numelts, eltty]
461 Code = bitc::TYPE_CODE_VECTOR;
462 TypeVals.push_back(VT->getNumElements());
463 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
464 break;
465 }
466 }
467
468 // Emit the finished record.
469 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
470 TypeVals.clear();
471 }
472
473 Stream.ExitBlock();
474 }
475
getEncodedLinkage(const GlobalValue * GV)476 static unsigned getEncodedLinkage(const GlobalValue *GV) {
477 switch (GV->getLinkage()) {
478 case GlobalValue::ExternalLinkage: return 0;
479 case GlobalValue::WeakAnyLinkage: return 1;
480 case GlobalValue::AppendingLinkage: return 2;
481 case GlobalValue::InternalLinkage: return 3;
482 case GlobalValue::LinkOnceAnyLinkage: return 4;
483 case GlobalValue::DLLImportLinkage: return 5;
484 case GlobalValue::DLLExportLinkage: return 6;
485 case GlobalValue::ExternalWeakLinkage: return 7;
486 case GlobalValue::CommonLinkage: return 8;
487 case GlobalValue::PrivateLinkage: return 9;
488 case GlobalValue::WeakODRLinkage: return 10;
489 case GlobalValue::LinkOnceODRLinkage: return 11;
490 case GlobalValue::AvailableExternallyLinkage: return 12;
491 case GlobalValue::LinkerPrivateLinkage: return 13;
492 case GlobalValue::LinkerPrivateWeakLinkage: return 14;
493 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15;
494 }
495 llvm_unreachable("Invalid linkage");
496 }
497
getEncodedVisibility(const GlobalValue * GV)498 static unsigned getEncodedVisibility(const GlobalValue *GV) {
499 switch (GV->getVisibility()) {
500 case GlobalValue::DefaultVisibility: return 0;
501 case GlobalValue::HiddenVisibility: return 1;
502 case GlobalValue::ProtectedVisibility: return 2;
503 }
504 llvm_unreachable("Invalid visibility");
505 }
506
getEncodedThreadLocalMode(const GlobalVariable * GV)507 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
508 switch (GV->getThreadLocalMode()) {
509 case GlobalVariable::NotThreadLocal: return 0;
510 case GlobalVariable::GeneralDynamicTLSModel: return 1;
511 case GlobalVariable::LocalDynamicTLSModel: return 2;
512 case GlobalVariable::InitialExecTLSModel: return 3;
513 case GlobalVariable::LocalExecTLSModel: return 4;
514 }
515 llvm_unreachable("Invalid TLS model");
516 }
517
518 // Emit top-level description of module, including target triple, inline asm,
519 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)520 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
521 BitstreamWriter &Stream) {
522 // Emit various pieces of data attached to a module.
523 if (!M->getTargetTriple().empty())
524 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
525 0/*TODO*/, Stream);
526 if (!M->getDataLayout().empty())
527 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
528 0/*TODO*/, Stream);
529 if (!M->getModuleInlineAsm().empty())
530 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
531 0/*TODO*/, Stream);
532
533 // Emit information about sections and GC, computing how many there are. Also
534 // compute the maximum alignment value.
535 std::map<std::string, unsigned> SectionMap;
536 std::map<std::string, unsigned> GCMap;
537 unsigned MaxAlignment = 0;
538 unsigned MaxGlobalType = 0;
539 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
540 GV != E; ++GV) {
541 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
542 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
543 if (GV->hasSection()) {
544 // Give section names unique ID's.
545 unsigned &Entry = SectionMap[GV->getSection()];
546 if (!Entry) {
547 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
548 0/*TODO*/, Stream);
549 Entry = SectionMap.size();
550 }
551 }
552 }
553 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
554 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
555 if (F->hasSection()) {
556 // Give section names unique ID's.
557 unsigned &Entry = SectionMap[F->getSection()];
558 if (!Entry) {
559 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
560 0/*TODO*/, Stream);
561 Entry = SectionMap.size();
562 }
563 }
564 if (F->hasGC()) {
565 // Same for GC names.
566 unsigned &Entry = GCMap[F->getGC()];
567 if (!Entry) {
568 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
569 0/*TODO*/, Stream);
570 Entry = GCMap.size();
571 }
572 }
573 }
574
575 // Emit abbrev for globals, now that we know # sections and max alignment.
576 unsigned SimpleGVarAbbrev = 0;
577 if (!M->global_empty()) {
578 // Add an abbrev for common globals with no visibility or thread localness.
579 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
580 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
582 Log2_32_Ceil(MaxGlobalType+1)));
583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
586 if (MaxAlignment == 0) // Alignment.
587 Abbv->Add(BitCodeAbbrevOp(0));
588 else {
589 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
591 Log2_32_Ceil(MaxEncAlignment+1)));
592 }
593 if (SectionMap.empty()) // Section.
594 Abbv->Add(BitCodeAbbrevOp(0));
595 else
596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
597 Log2_32_Ceil(SectionMap.size()+1)));
598 // Don't bother emitting vis + thread local.
599 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
600 }
601
602 // Emit the global variable information.
603 SmallVector<unsigned, 64> Vals;
604 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
605 GV != E; ++GV) {
606 unsigned AbbrevToUse = 0;
607
608 // GLOBALVAR: [type, isconst, initid,
609 // linkage, alignment, section, visibility, threadlocal,
610 // unnamed_addr]
611 Vals.push_back(VE.getTypeID(GV->getType()));
612 Vals.push_back(GV->isConstant());
613 Vals.push_back(GV->isDeclaration() ? 0 :
614 (VE.getValueID(GV->getInitializer()) + 1));
615 Vals.push_back(getEncodedLinkage(GV));
616 Vals.push_back(Log2_32(GV->getAlignment())+1);
617 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
618 if (GV->isThreadLocal() ||
619 GV->getVisibility() != GlobalValue::DefaultVisibility ||
620 GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
621 Vals.push_back(getEncodedVisibility(GV));
622 Vals.push_back(getEncodedThreadLocalMode(GV));
623 Vals.push_back(GV->hasUnnamedAddr());
624 Vals.push_back(GV->isExternallyInitialized());
625 } else {
626 AbbrevToUse = SimpleGVarAbbrev;
627 }
628
629 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
630 Vals.clear();
631 }
632
633 // Emit the function proto information.
634 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
635 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
636 // section, visibility, gc, unnamed_addr]
637 Vals.push_back(VE.getTypeID(F->getType()));
638 Vals.push_back(F->getCallingConv());
639 Vals.push_back(F->isDeclaration());
640 Vals.push_back(getEncodedLinkage(F));
641 Vals.push_back(VE.getAttributeID(F->getAttributes()));
642 Vals.push_back(Log2_32(F->getAlignment())+1);
643 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
644 Vals.push_back(getEncodedVisibility(F));
645 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
646 Vals.push_back(F->hasUnnamedAddr());
647
648 unsigned AbbrevToUse = 0;
649 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
650 Vals.clear();
651 }
652
653 // Emit the alias information.
654 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
655 AI != E; ++AI) {
656 // ALIAS: [alias type, aliasee val#, linkage, visibility]
657 Vals.push_back(VE.getTypeID(AI->getType()));
658 Vals.push_back(VE.getValueID(AI->getAliasee()));
659 Vals.push_back(getEncodedLinkage(AI));
660 Vals.push_back(getEncodedVisibility(AI));
661 unsigned AbbrevToUse = 0;
662 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
663 Vals.clear();
664 }
665 }
666
GetOptimizationFlags(const Value * V)667 static uint64_t GetOptimizationFlags(const Value *V) {
668 uint64_t Flags = 0;
669
670 if (const OverflowingBinaryOperator *OBO =
671 dyn_cast<OverflowingBinaryOperator>(V)) {
672 if (OBO->hasNoSignedWrap())
673 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
674 if (OBO->hasNoUnsignedWrap())
675 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
676 } else if (const PossiblyExactOperator *PEO =
677 dyn_cast<PossiblyExactOperator>(V)) {
678 if (PEO->isExact())
679 Flags |= 1 << bitc::PEO_EXACT;
680 } else if (const FPMathOperator *FPMO =
681 dyn_cast<const FPMathOperator>(V)) {
682 if (FPMO->hasUnsafeAlgebra())
683 Flags |= FastMathFlags::UnsafeAlgebra;
684 if (FPMO->hasNoNaNs())
685 Flags |= FastMathFlags::NoNaNs;
686 if (FPMO->hasNoInfs())
687 Flags |= FastMathFlags::NoInfs;
688 if (FPMO->hasNoSignedZeros())
689 Flags |= FastMathFlags::NoSignedZeros;
690 if (FPMO->hasAllowReciprocal())
691 Flags |= FastMathFlags::AllowReciprocal;
692 }
693
694 return Flags;
695 }
696
WriteMDNode(const MDNode * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record)697 static void WriteMDNode(const MDNode *N,
698 const ValueEnumerator &VE,
699 BitstreamWriter &Stream,
700 SmallVectorImpl<uint64_t> &Record) {
701 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
702 if (N->getOperand(i)) {
703 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
704 Record.push_back(VE.getValueID(N->getOperand(i)));
705 } else {
706 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
707 Record.push_back(0);
708 }
709 }
710 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
711 bitc::METADATA_NODE;
712 Stream.EmitRecord(MDCode, Record, 0);
713 Record.clear();
714 }
715
WriteModuleMetadata(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)716 static void WriteModuleMetadata(const Module *M,
717 const ValueEnumerator &VE,
718 BitstreamWriter &Stream) {
719 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
720 bool StartedMetadataBlock = false;
721 unsigned MDSAbbrev = 0;
722 SmallVector<uint64_t, 64> Record;
723 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
724
725 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
726 if (!N->isFunctionLocal() || !N->getFunction()) {
727 if (!StartedMetadataBlock) {
728 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
729 StartedMetadataBlock = true;
730 }
731 WriteMDNode(N, VE, Stream, Record);
732 }
733 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
734 if (!StartedMetadataBlock) {
735 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
736
737 // Abbrev for METADATA_STRING.
738 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
739 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
742 MDSAbbrev = Stream.EmitAbbrev(Abbv);
743 StartedMetadataBlock = true;
744 }
745
746 // Code: [strchar x N]
747 Record.append(MDS->begin(), MDS->end());
748
749 // Emit the finished record.
750 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
751 Record.clear();
752 }
753 }
754
755 // Write named metadata.
756 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
757 E = M->named_metadata_end(); I != E; ++I) {
758 const NamedMDNode *NMD = I;
759 if (!StartedMetadataBlock) {
760 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
761 StartedMetadataBlock = true;
762 }
763
764 // Write name.
765 StringRef Str = NMD->getName();
766 for (unsigned i = 0, e = Str.size(); i != e; ++i)
767 Record.push_back(Str[i]);
768 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
769 Record.clear();
770
771 // Write named metadata operands.
772 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
773 Record.push_back(VE.getValueID(NMD->getOperand(i)));
774 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
775 Record.clear();
776 }
777
778 if (StartedMetadataBlock)
779 Stream.ExitBlock();
780 }
781
WriteFunctionLocalMetadata(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)782 static void WriteFunctionLocalMetadata(const Function &F,
783 const ValueEnumerator &VE,
784 BitstreamWriter &Stream) {
785 bool StartedMetadataBlock = false;
786 SmallVector<uint64_t, 64> Record;
787 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
788 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
789 if (const MDNode *N = Vals[i])
790 if (N->isFunctionLocal() && N->getFunction() == &F) {
791 if (!StartedMetadataBlock) {
792 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
793 StartedMetadataBlock = true;
794 }
795 WriteMDNode(N, VE, Stream, Record);
796 }
797
798 if (StartedMetadataBlock)
799 Stream.ExitBlock();
800 }
801
WriteMetadataAttachment(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)802 static void WriteMetadataAttachment(const Function &F,
803 const ValueEnumerator &VE,
804 BitstreamWriter &Stream) {
805 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
806
807 SmallVector<uint64_t, 64> Record;
808
809 // Write metadata attachments
810 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
811 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
812
813 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
814 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
815 I != E; ++I) {
816 MDs.clear();
817 I->getAllMetadataOtherThanDebugLoc(MDs);
818
819 // If no metadata, ignore instruction.
820 if (MDs.empty()) continue;
821
822 Record.push_back(VE.getInstructionID(I));
823
824 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
825 Record.push_back(MDs[i].first);
826 Record.push_back(VE.getValueID(MDs[i].second));
827 }
828 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
829 Record.clear();
830 }
831
832 Stream.ExitBlock();
833 }
834
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)835 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
836 SmallVector<uint64_t, 64> Record;
837
838 // Write metadata kinds
839 // METADATA_KIND - [n x [id, name]]
840 SmallVector<StringRef, 8> Names;
841 M->getMDKindNames(Names);
842
843 if (Names.empty()) return;
844
845 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
846
847 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
848 Record.push_back(MDKindID);
849 StringRef KName = Names[MDKindID];
850 Record.append(KName.begin(), KName.end());
851
852 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
853 Record.clear();
854 }
855
856 Stream.ExitBlock();
857 }
858
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)859 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
860 if ((int64_t)V >= 0)
861 Vals.push_back(V << 1);
862 else
863 Vals.push_back((-V << 1) | 1);
864 }
865
EmitAPInt(SmallVectorImpl<uint64_t> & Vals,unsigned & Code,unsigned & AbbrevToUse,const APInt & Val,bool EmitSizeForWideNumbers=false)866 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
867 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
868 bool EmitSizeForWideNumbers = false
869 ) {
870 if (Val.getBitWidth() <= 64) {
871 uint64_t V = Val.getSExtValue();
872 emitSignedInt64(Vals, V);
873 Code = bitc::CST_CODE_INTEGER;
874 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
875 } else {
876 // Wide integers, > 64 bits in size.
877 // We have an arbitrary precision integer value to write whose
878 // bit width is > 64. However, in canonical unsigned integer
879 // format it is likely that the high bits are going to be zero.
880 // So, we only write the number of active words.
881 unsigned NWords = Val.getActiveWords();
882
883 if (EmitSizeForWideNumbers)
884 Vals.push_back(NWords);
885
886 const uint64_t *RawWords = Val.getRawData();
887 for (unsigned i = 0; i != NWords; ++i) {
888 emitSignedInt64(Vals, RawWords[i]);
889 }
890 Code = bitc::CST_CODE_WIDE_INTEGER;
891 }
892 }
893
WriteConstants(unsigned FirstVal,unsigned LastVal,const ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)894 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
895 const ValueEnumerator &VE,
896 BitstreamWriter &Stream, bool isGlobal) {
897 if (FirstVal == LastVal) return;
898
899 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
900
901 unsigned AggregateAbbrev = 0;
902 unsigned String8Abbrev = 0;
903 unsigned CString7Abbrev = 0;
904 unsigned CString6Abbrev = 0;
905 // If this is a constant pool for the module, emit module-specific abbrevs.
906 if (isGlobal) {
907 // Abbrev for CST_CODE_AGGREGATE.
908 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
909 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
912 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
913
914 // Abbrev for CST_CODE_STRING.
915 Abbv = new BitCodeAbbrev();
916 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
919 String8Abbrev = Stream.EmitAbbrev(Abbv);
920 // Abbrev for CST_CODE_CSTRING.
921 Abbv = new BitCodeAbbrev();
922 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
925 CString7Abbrev = Stream.EmitAbbrev(Abbv);
926 // Abbrev for CST_CODE_CSTRING.
927 Abbv = new BitCodeAbbrev();
928 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
931 CString6Abbrev = Stream.EmitAbbrev(Abbv);
932 }
933
934 SmallVector<uint64_t, 64> Record;
935
936 const ValueEnumerator::ValueList &Vals = VE.getValues();
937 Type *LastTy = 0;
938 for (unsigned i = FirstVal; i != LastVal; ++i) {
939 const Value *V = Vals[i].first;
940 // If we need to switch types, do so now.
941 if (V->getType() != LastTy) {
942 LastTy = V->getType();
943 Record.push_back(VE.getTypeID(LastTy));
944 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
945 CONSTANTS_SETTYPE_ABBREV);
946 Record.clear();
947 }
948
949 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
950 Record.push_back(unsigned(IA->hasSideEffects()) |
951 unsigned(IA->isAlignStack()) << 1 |
952 unsigned(IA->getDialect()&1) << 2);
953
954 // Add the asm string.
955 const std::string &AsmStr = IA->getAsmString();
956 Record.push_back(AsmStr.size());
957 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
958 Record.push_back(AsmStr[i]);
959
960 // Add the constraint string.
961 const std::string &ConstraintStr = IA->getConstraintString();
962 Record.push_back(ConstraintStr.size());
963 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
964 Record.push_back(ConstraintStr[i]);
965 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
966 Record.clear();
967 continue;
968 }
969 const Constant *C = cast<Constant>(V);
970 unsigned Code = -1U;
971 unsigned AbbrevToUse = 0;
972 if (C->isNullValue()) {
973 Code = bitc::CST_CODE_NULL;
974 } else if (isa<UndefValue>(C)) {
975 Code = bitc::CST_CODE_UNDEF;
976 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
977 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
978 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
979 Code = bitc::CST_CODE_FLOAT;
980 Type *Ty = CFP->getType();
981 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
982 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
983 } else if (Ty->isX86_FP80Ty()) {
984 // api needed to prevent premature destruction
985 // bits are not in the same order as a normal i80 APInt, compensate.
986 APInt api = CFP->getValueAPF().bitcastToAPInt();
987 const uint64_t *p = api.getRawData();
988 Record.push_back((p[1] << 48) | (p[0] >> 16));
989 Record.push_back(p[0] & 0xffffLL);
990 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
991 APInt api = CFP->getValueAPF().bitcastToAPInt();
992 const uint64_t *p = api.getRawData();
993 Record.push_back(p[0]);
994 Record.push_back(p[1]);
995 } else {
996 assert (0 && "Unknown FP type!");
997 }
998 } else if (isa<ConstantDataSequential>(C) &&
999 cast<ConstantDataSequential>(C)->isString()) {
1000 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1001 // Emit constant strings specially.
1002 unsigned NumElts = Str->getNumElements();
1003 // If this is a null-terminated string, use the denser CSTRING encoding.
1004 if (Str->isCString()) {
1005 Code = bitc::CST_CODE_CSTRING;
1006 --NumElts; // Don't encode the null, which isn't allowed by char6.
1007 } else {
1008 Code = bitc::CST_CODE_STRING;
1009 AbbrevToUse = String8Abbrev;
1010 }
1011 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1012 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1013 for (unsigned i = 0; i != NumElts; ++i) {
1014 unsigned char V = Str->getElementAsInteger(i);
1015 Record.push_back(V);
1016 isCStr7 &= (V & 128) == 0;
1017 if (isCStrChar6)
1018 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1019 }
1020
1021 if (isCStrChar6)
1022 AbbrevToUse = CString6Abbrev;
1023 else if (isCStr7)
1024 AbbrevToUse = CString7Abbrev;
1025 } else if (const ConstantDataSequential *CDS =
1026 dyn_cast<ConstantDataSequential>(C)) {
1027 Code = bitc::CST_CODE_DATA;
1028 Type *EltTy = CDS->getType()->getElementType();
1029 if (isa<IntegerType>(EltTy)) {
1030 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1031 Record.push_back(CDS->getElementAsInteger(i));
1032 } else if (EltTy->isFloatTy()) {
1033 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1034 union { float F; uint32_t I; };
1035 F = CDS->getElementAsFloat(i);
1036 Record.push_back(I);
1037 }
1038 } else {
1039 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1040 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1041 union { double F; uint64_t I; };
1042 F = CDS->getElementAsDouble(i);
1043 Record.push_back(I);
1044 }
1045 }
1046 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1047 isa<ConstantVector>(C)) {
1048 Code = bitc::CST_CODE_AGGREGATE;
1049 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1050 Record.push_back(VE.getValueID(C->getOperand(i)));
1051 AbbrevToUse = AggregateAbbrev;
1052 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1053 switch (CE->getOpcode()) {
1054 default:
1055 if (Instruction::isCast(CE->getOpcode())) {
1056 Code = bitc::CST_CODE_CE_CAST;
1057 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1058 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1059 Record.push_back(VE.getValueID(C->getOperand(0)));
1060 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1061 } else {
1062 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1063 Code = bitc::CST_CODE_CE_BINOP;
1064 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1065 Record.push_back(VE.getValueID(C->getOperand(0)));
1066 Record.push_back(VE.getValueID(C->getOperand(1)));
1067 uint64_t Flags = GetOptimizationFlags(CE);
1068 if (Flags != 0)
1069 Record.push_back(Flags);
1070 }
1071 break;
1072 case Instruction::GetElementPtr:
1073 Code = bitc::CST_CODE_CE_GEP;
1074 if (cast<GEPOperator>(C)->isInBounds())
1075 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1076 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1077 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1078 Record.push_back(VE.getValueID(C->getOperand(i)));
1079 }
1080 break;
1081 case Instruction::Select:
1082 Code = bitc::CST_CODE_CE_SELECT;
1083 Record.push_back(VE.getValueID(C->getOperand(0)));
1084 Record.push_back(VE.getValueID(C->getOperand(1)));
1085 Record.push_back(VE.getValueID(C->getOperand(2)));
1086 break;
1087 case Instruction::ExtractElement:
1088 Code = bitc::CST_CODE_CE_EXTRACTELT;
1089 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1090 Record.push_back(VE.getValueID(C->getOperand(0)));
1091 Record.push_back(VE.getValueID(C->getOperand(1)));
1092 break;
1093 case Instruction::InsertElement:
1094 Code = bitc::CST_CODE_CE_INSERTELT;
1095 Record.push_back(VE.getValueID(C->getOperand(0)));
1096 Record.push_back(VE.getValueID(C->getOperand(1)));
1097 Record.push_back(VE.getValueID(C->getOperand(2)));
1098 break;
1099 case Instruction::ShuffleVector:
1100 // If the return type and argument types are the same, this is a
1101 // standard shufflevector instruction. If the types are different,
1102 // then the shuffle is widening or truncating the input vectors, and
1103 // the argument type must also be encoded.
1104 if (C->getType() == C->getOperand(0)->getType()) {
1105 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1106 } else {
1107 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1108 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1109 }
1110 Record.push_back(VE.getValueID(C->getOperand(0)));
1111 Record.push_back(VE.getValueID(C->getOperand(1)));
1112 Record.push_back(VE.getValueID(C->getOperand(2)));
1113 break;
1114 case Instruction::ICmp:
1115 case Instruction::FCmp:
1116 Code = bitc::CST_CODE_CE_CMP;
1117 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1118 Record.push_back(VE.getValueID(C->getOperand(0)));
1119 Record.push_back(VE.getValueID(C->getOperand(1)));
1120 Record.push_back(CE->getPredicate());
1121 break;
1122 }
1123 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1124 Code = bitc::CST_CODE_BLOCKADDRESS;
1125 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1126 Record.push_back(VE.getValueID(BA->getFunction()));
1127 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1128 } else {
1129 #ifndef NDEBUG
1130 C->dump();
1131 #endif
1132 llvm_unreachable("Unknown constant!");
1133 }
1134 Stream.EmitRecord(Code, Record, AbbrevToUse);
1135 Record.clear();
1136 }
1137
1138 Stream.ExitBlock();
1139 }
1140
WriteModuleConstants(const ValueEnumerator & VE,BitstreamWriter & Stream)1141 static void WriteModuleConstants(const ValueEnumerator &VE,
1142 BitstreamWriter &Stream) {
1143 const ValueEnumerator::ValueList &Vals = VE.getValues();
1144
1145 // Find the first constant to emit, which is the first non-globalvalue value.
1146 // We know globalvalues have been emitted by WriteModuleInfo.
1147 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1148 if (!isa<GlobalValue>(Vals[i].first)) {
1149 WriteConstants(i, Vals.size(), VE, Stream, true);
1150 return;
1151 }
1152 }
1153 }
1154
1155 /// PushValueAndType - The file has to encode both the value and type id for
1156 /// many values, because we need to know what type to create for forward
1157 /// references. However, most operands are not forward references, so this type
1158 /// field is not needed.
1159 ///
1160 /// This function adds V's value ID to Vals. If the value ID is higher than the
1161 /// instruction ID, then it is a forward reference, and it also includes the
1162 /// type ID. The value ID that is written is encoded relative to the InstID.
PushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals,ValueEnumerator & VE)1163 static bool PushValueAndType(const Value *V, unsigned InstID,
1164 SmallVectorImpl<unsigned> &Vals,
1165 ValueEnumerator &VE) {
1166 unsigned ValID = VE.getValueID(V);
1167 // Make encoding relative to the InstID.
1168 Vals.push_back(InstID - ValID);
1169 if (ValID >= InstID) {
1170 Vals.push_back(VE.getTypeID(V->getType()));
1171 return true;
1172 }
1173 return false;
1174 }
1175
1176 /// pushValue - Like PushValueAndType, but where the type of the value is
1177 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals,ValueEnumerator & VE)1178 static void pushValue(const Value *V, unsigned InstID,
1179 SmallVectorImpl<unsigned> &Vals,
1180 ValueEnumerator &VE) {
1181 unsigned ValID = VE.getValueID(V);
1182 Vals.push_back(InstID - ValID);
1183 }
1184
pushValue64(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals,ValueEnumerator & VE)1185 static void pushValue64(const Value *V, unsigned InstID,
1186 SmallVectorImpl<uint64_t> &Vals,
1187 ValueEnumerator &VE) {
1188 uint64_t ValID = VE.getValueID(V);
1189 Vals.push_back(InstID - ValID);
1190 }
1191
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals,ValueEnumerator & VE)1192 static void pushValueSigned(const Value *V, unsigned InstID,
1193 SmallVectorImpl<uint64_t> &Vals,
1194 ValueEnumerator &VE) {
1195 unsigned ValID = VE.getValueID(V);
1196 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1197 emitSignedInt64(Vals, diff);
1198 }
1199
1200 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<unsigned> & Vals)1201 static void WriteInstruction(const Instruction &I, unsigned InstID,
1202 ValueEnumerator &VE, BitstreamWriter &Stream,
1203 SmallVectorImpl<unsigned> &Vals) {
1204 unsigned Code = 0;
1205 unsigned AbbrevToUse = 0;
1206 VE.setInstructionID(&I);
1207 switch (I.getOpcode()) {
1208 default:
1209 if (Instruction::isCast(I.getOpcode())) {
1210 Code = bitc::FUNC_CODE_INST_CAST;
1211 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1212 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1213 Vals.push_back(VE.getTypeID(I.getType()));
1214 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1215 } else {
1216 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1217 Code = bitc::FUNC_CODE_INST_BINOP;
1218 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1219 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1220 pushValue(I.getOperand(1), InstID, Vals, VE);
1221 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1222 uint64_t Flags = GetOptimizationFlags(&I);
1223 if (Flags != 0) {
1224 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1225 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1226 Vals.push_back(Flags);
1227 }
1228 }
1229 break;
1230
1231 case Instruction::GetElementPtr:
1232 Code = bitc::FUNC_CODE_INST_GEP;
1233 if (cast<GEPOperator>(&I)->isInBounds())
1234 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1235 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1236 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1237 break;
1238 case Instruction::ExtractValue: {
1239 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1240 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1241 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1242 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1243 Vals.push_back(*i);
1244 break;
1245 }
1246 case Instruction::InsertValue: {
1247 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1248 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1249 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1250 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1251 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1252 Vals.push_back(*i);
1253 break;
1254 }
1255 case Instruction::Select:
1256 Code = bitc::FUNC_CODE_INST_VSELECT;
1257 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1258 pushValue(I.getOperand(2), InstID, Vals, VE);
1259 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1260 break;
1261 case Instruction::ExtractElement:
1262 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1263 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1264 pushValue(I.getOperand(1), InstID, Vals, VE);
1265 break;
1266 case Instruction::InsertElement:
1267 Code = bitc::FUNC_CODE_INST_INSERTELT;
1268 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1269 pushValue(I.getOperand(1), InstID, Vals, VE);
1270 pushValue(I.getOperand(2), InstID, Vals, VE);
1271 break;
1272 case Instruction::ShuffleVector:
1273 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1274 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1275 pushValue(I.getOperand(1), InstID, Vals, VE);
1276 pushValue(I.getOperand(2), InstID, Vals, VE);
1277 break;
1278 case Instruction::ICmp:
1279 case Instruction::FCmp:
1280 // compare returning Int1Ty or vector of Int1Ty
1281 Code = bitc::FUNC_CODE_INST_CMP2;
1282 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1283 pushValue(I.getOperand(1), InstID, Vals, VE);
1284 Vals.push_back(cast<CmpInst>(I).getPredicate());
1285 break;
1286
1287 case Instruction::Ret:
1288 {
1289 Code = bitc::FUNC_CODE_INST_RET;
1290 unsigned NumOperands = I.getNumOperands();
1291 if (NumOperands == 0)
1292 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1293 else if (NumOperands == 1) {
1294 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1295 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1296 } else {
1297 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1298 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1299 }
1300 }
1301 break;
1302 case Instruction::Br:
1303 {
1304 Code = bitc::FUNC_CODE_INST_BR;
1305 const BranchInst &II = cast<BranchInst>(I);
1306 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1307 if (II.isConditional()) {
1308 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1309 pushValue(II.getCondition(), InstID, Vals, VE);
1310 }
1311 }
1312 break;
1313 case Instruction::Switch:
1314 {
1315 // Redefine Vals, since here we need to use 64 bit values
1316 // explicitly to store large APInt numbers.
1317 SmallVector<uint64_t, 128> Vals64;
1318
1319 Code = bitc::FUNC_CODE_INST_SWITCH;
1320 const SwitchInst &SI = cast<SwitchInst>(I);
1321
1322 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
1323 Vals64.push_back(SwitchRecordHeader);
1324
1325 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
1326 pushValue64(SI.getCondition(), InstID, Vals64, VE);
1327 Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
1328 Vals64.push_back(SI.getNumCases());
1329 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1330 i != e; ++i) {
1331 const IntegersSubset& CaseRanges = i.getCaseValueEx();
1332 unsigned Code, Abbrev; // will unused.
1333
1334 if (CaseRanges.isSingleNumber()) {
1335 Vals64.push_back(1/*NumItems = 1*/);
1336 Vals64.push_back(true/*IsSingleNumber = true*/);
1337 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
1338 } else {
1339
1340 Vals64.push_back(CaseRanges.getNumItems());
1341
1342 if (CaseRanges.isSingleNumbersOnly()) {
1343 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1344 ri != rn; ++ri) {
1345
1346 Vals64.push_back(true/*IsSingleNumber = true*/);
1347
1348 EmitAPInt(Vals64, Code, Abbrev,
1349 CaseRanges.getSingleNumber(ri), true);
1350 }
1351 } else
1352 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1353 ri != rn; ++ri) {
1354 IntegersSubset::Range r = CaseRanges.getItem(ri);
1355 bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
1356
1357 Vals64.push_back(IsSingleNumber);
1358
1359 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
1360 if (!IsSingleNumber)
1361 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
1362 }
1363 }
1364 Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
1365 }
1366
1367 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1368
1369 // Also do expected action - clear external Vals collection:
1370 Vals.clear();
1371 return;
1372 }
1373 break;
1374 case Instruction::IndirectBr:
1375 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1376 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1377 // Encode the address operand as relative, but not the basic blocks.
1378 pushValue(I.getOperand(0), InstID, Vals, VE);
1379 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1380 Vals.push_back(VE.getValueID(I.getOperand(i)));
1381 break;
1382
1383 case Instruction::Invoke: {
1384 const InvokeInst *II = cast<InvokeInst>(&I);
1385 const Value *Callee(II->getCalledValue());
1386 PointerType *PTy = cast<PointerType>(Callee->getType());
1387 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1388 Code = bitc::FUNC_CODE_INST_INVOKE;
1389
1390 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1391 Vals.push_back(II->getCallingConv());
1392 Vals.push_back(VE.getValueID(II->getNormalDest()));
1393 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1394 PushValueAndType(Callee, InstID, Vals, VE);
1395
1396 // Emit value #'s for the fixed parameters.
1397 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1398 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
1399
1400 // Emit type/value pairs for varargs params.
1401 if (FTy->isVarArg()) {
1402 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1403 i != e; ++i)
1404 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1405 }
1406 break;
1407 }
1408 case Instruction::Resume:
1409 Code = bitc::FUNC_CODE_INST_RESUME;
1410 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1411 break;
1412 case Instruction::Unreachable:
1413 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1414 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1415 break;
1416
1417 case Instruction::PHI: {
1418 const PHINode &PN = cast<PHINode>(I);
1419 Code = bitc::FUNC_CODE_INST_PHI;
1420 // With the newer instruction encoding, forward references could give
1421 // negative valued IDs. This is most common for PHIs, so we use
1422 // signed VBRs.
1423 SmallVector<uint64_t, 128> Vals64;
1424 Vals64.push_back(VE.getTypeID(PN.getType()));
1425 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1426 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1427 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1428 }
1429 // Emit a Vals64 vector and exit.
1430 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1431 Vals64.clear();
1432 return;
1433 }
1434
1435 case Instruction::LandingPad: {
1436 const LandingPadInst &LP = cast<LandingPadInst>(I);
1437 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1438 Vals.push_back(VE.getTypeID(LP.getType()));
1439 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1440 Vals.push_back(LP.isCleanup());
1441 Vals.push_back(LP.getNumClauses());
1442 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1443 if (LP.isCatch(I))
1444 Vals.push_back(LandingPadInst::Catch);
1445 else
1446 Vals.push_back(LandingPadInst::Filter);
1447 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1448 }
1449 break;
1450 }
1451
1452 case Instruction::Alloca:
1453 Code = bitc::FUNC_CODE_INST_ALLOCA;
1454 Vals.push_back(VE.getTypeID(I.getType()));
1455 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1456 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1457 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1458 break;
1459
1460 case Instruction::Load:
1461 if (cast<LoadInst>(I).isAtomic()) {
1462 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1463 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1464 } else {
1465 Code = bitc::FUNC_CODE_INST_LOAD;
1466 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1467 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1468 }
1469 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1470 Vals.push_back(cast<LoadInst>(I).isVolatile());
1471 if (cast<LoadInst>(I).isAtomic()) {
1472 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1473 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1474 }
1475 break;
1476 case Instruction::Store:
1477 if (cast<StoreInst>(I).isAtomic())
1478 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1479 else
1480 Code = bitc::FUNC_CODE_INST_STORE;
1481 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1482 pushValue(I.getOperand(0), InstID, Vals, VE); // val.
1483 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1484 Vals.push_back(cast<StoreInst>(I).isVolatile());
1485 if (cast<StoreInst>(I).isAtomic()) {
1486 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1487 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1488 }
1489 break;
1490 case Instruction::AtomicCmpXchg:
1491 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1492 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1493 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
1494 pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
1495 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1496 Vals.push_back(GetEncodedOrdering(
1497 cast<AtomicCmpXchgInst>(I).getOrdering()));
1498 Vals.push_back(GetEncodedSynchScope(
1499 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1500 break;
1501 case Instruction::AtomicRMW:
1502 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1503 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1504 pushValue(I.getOperand(1), InstID, Vals, VE); // val.
1505 Vals.push_back(GetEncodedRMWOperation(
1506 cast<AtomicRMWInst>(I).getOperation()));
1507 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1508 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1509 Vals.push_back(GetEncodedSynchScope(
1510 cast<AtomicRMWInst>(I).getSynchScope()));
1511 break;
1512 case Instruction::Fence:
1513 Code = bitc::FUNC_CODE_INST_FENCE;
1514 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1515 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1516 break;
1517 case Instruction::Call: {
1518 const CallInst &CI = cast<CallInst>(I);
1519 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1520 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1521
1522 Code = bitc::FUNC_CODE_INST_CALL;
1523
1524 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1525 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1526 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1527
1528 // Emit value #'s for the fixed parameters.
1529 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1530 // Check for labels (can happen with asm labels).
1531 if (FTy->getParamType(i)->isLabelTy())
1532 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1533 else
1534 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
1535 }
1536
1537 // Emit type/value pairs for varargs params.
1538 if (FTy->isVarArg()) {
1539 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1540 i != e; ++i)
1541 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1542 }
1543 break;
1544 }
1545 case Instruction::VAArg:
1546 Code = bitc::FUNC_CODE_INST_VAARG;
1547 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1548 pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1549 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1550 break;
1551 }
1552
1553 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1554 Vals.clear();
1555 }
1556
1557 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const ValueEnumerator & VE,BitstreamWriter & Stream)1558 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1559 const ValueEnumerator &VE,
1560 BitstreamWriter &Stream) {
1561 if (VST.empty()) return;
1562 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1563
1564 // FIXME: Set up the abbrev, we know how many values there are!
1565 // FIXME: We know if the type names can use 7-bit ascii.
1566 SmallVector<unsigned, 64> NameVals;
1567
1568 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1569 SI != SE; ++SI) {
1570
1571 const ValueName &Name = *SI;
1572
1573 // Figure out the encoding to use for the name.
1574 bool is7Bit = true;
1575 bool isChar6 = true;
1576 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1577 C != E; ++C) {
1578 if (isChar6)
1579 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1580 if ((unsigned char)*C & 128) {
1581 is7Bit = false;
1582 break; // don't bother scanning the rest.
1583 }
1584 }
1585
1586 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1587
1588 // VST_ENTRY: [valueid, namechar x N]
1589 // VST_BBENTRY: [bbid, namechar x N]
1590 unsigned Code;
1591 if (isa<BasicBlock>(SI->getValue())) {
1592 Code = bitc::VST_CODE_BBENTRY;
1593 if (isChar6)
1594 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1595 } else {
1596 Code = bitc::VST_CODE_ENTRY;
1597 if (isChar6)
1598 AbbrevToUse = VST_ENTRY_6_ABBREV;
1599 else if (is7Bit)
1600 AbbrevToUse = VST_ENTRY_7_ABBREV;
1601 }
1602
1603 NameVals.push_back(VE.getValueID(SI->getValue()));
1604 for (const char *P = Name.getKeyData(),
1605 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1606 NameVals.push_back((unsigned char)*P);
1607
1608 // Emit the finished record.
1609 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1610 NameVals.clear();
1611 }
1612 Stream.ExitBlock();
1613 }
1614
1615 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,ValueEnumerator & VE,BitstreamWriter & Stream)1616 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1617 BitstreamWriter &Stream) {
1618 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1619 VE.incorporateFunction(F);
1620
1621 SmallVector<unsigned, 64> Vals;
1622
1623 // Emit the number of basic blocks, so the reader can create them ahead of
1624 // time.
1625 Vals.push_back(VE.getBasicBlocks().size());
1626 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1627 Vals.clear();
1628
1629 // If there are function-local constants, emit them now.
1630 unsigned CstStart, CstEnd;
1631 VE.getFunctionConstantRange(CstStart, CstEnd);
1632 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1633
1634 // If there is function-local metadata, emit it now.
1635 WriteFunctionLocalMetadata(F, VE, Stream);
1636
1637 // Keep a running idea of what the instruction ID is.
1638 unsigned InstID = CstEnd;
1639
1640 bool NeedsMetadataAttachment = false;
1641
1642 DebugLoc LastDL;
1643
1644 // Finally, emit all the instructions, in order.
1645 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1646 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1647 I != E; ++I) {
1648 WriteInstruction(*I, InstID, VE, Stream, Vals);
1649
1650 if (!I->getType()->isVoidTy())
1651 ++InstID;
1652
1653 // If the instruction has metadata, write a metadata attachment later.
1654 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1655
1656 // If the instruction has a debug location, emit it.
1657 DebugLoc DL = I->getDebugLoc();
1658 if (DL.isUnknown()) {
1659 // nothing todo.
1660 } else if (DL == LastDL) {
1661 // Just repeat the same debug loc as last time.
1662 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1663 } else {
1664 MDNode *Scope, *IA;
1665 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1666
1667 Vals.push_back(DL.getLine());
1668 Vals.push_back(DL.getCol());
1669 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1670 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1671 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1672 Vals.clear();
1673
1674 LastDL = DL;
1675 }
1676 }
1677
1678 // Emit names for all the instructions etc.
1679 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1680
1681 if (NeedsMetadataAttachment)
1682 WriteMetadataAttachment(F, VE, Stream);
1683 VE.purgeFunction();
1684 Stream.ExitBlock();
1685 }
1686
1687 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const ValueEnumerator & VE,BitstreamWriter & Stream)1688 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1689 // We only want to emit block info records for blocks that have multiple
1690 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1691 // Other blocks can define their abbrevs inline.
1692 Stream.EnterBlockInfoBlock(2);
1693
1694 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1695 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1700 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1701 Abbv) != VST_ENTRY_8_ABBREV)
1702 llvm_unreachable("Unexpected abbrev ordering!");
1703 }
1704
1705 { // 7-bit fixed width VST_ENTRY strings.
1706 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1707 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1711 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1712 Abbv) != VST_ENTRY_7_ABBREV)
1713 llvm_unreachable("Unexpected abbrev ordering!");
1714 }
1715 { // 6-bit char6 VST_ENTRY strings.
1716 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1717 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1721 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1722 Abbv) != VST_ENTRY_6_ABBREV)
1723 llvm_unreachable("Unexpected abbrev ordering!");
1724 }
1725 { // 6-bit char6 VST_BBENTRY strings.
1726 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1727 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1731 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1732 Abbv) != VST_BBENTRY_6_ABBREV)
1733 llvm_unreachable("Unexpected abbrev ordering!");
1734 }
1735
1736
1737
1738 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1739 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1740 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1742 Log2_32_Ceil(VE.getTypes().size()+1)));
1743 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1744 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1745 llvm_unreachable("Unexpected abbrev ordering!");
1746 }
1747
1748 { // INTEGER abbrev for CONSTANTS_BLOCK.
1749 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1750 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1752 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1753 Abbv) != CONSTANTS_INTEGER_ABBREV)
1754 llvm_unreachable("Unexpected abbrev ordering!");
1755 }
1756
1757 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1758 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1759 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1762 Log2_32_Ceil(VE.getTypes().size()+1)));
1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1764
1765 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1766 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1767 llvm_unreachable("Unexpected abbrev ordering!");
1768 }
1769 { // NULL abbrev for CONSTANTS_BLOCK.
1770 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1771 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1772 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1773 Abbv) != CONSTANTS_NULL_Abbrev)
1774 llvm_unreachable("Unexpected abbrev ordering!");
1775 }
1776
1777 // FIXME: This should only use space for first class types!
1778
1779 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1780 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1781 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1785 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1786 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1787 llvm_unreachable("Unexpected abbrev ordering!");
1788 }
1789 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1790 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1791 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1795 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1796 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1797 llvm_unreachable("Unexpected abbrev ordering!");
1798 }
1799 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1800 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1801 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1806 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1807 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1808 llvm_unreachable("Unexpected abbrev ordering!");
1809 }
1810 { // INST_CAST abbrev for FUNCTION_BLOCK.
1811 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1812 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1815 Log2_32_Ceil(VE.getTypes().size()+1)));
1816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1818 Abbv) != FUNCTION_INST_CAST_ABBREV)
1819 llvm_unreachable("Unexpected abbrev ordering!");
1820 }
1821
1822 { // INST_RET abbrev for FUNCTION_BLOCK.
1823 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1824 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1825 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1826 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1827 llvm_unreachable("Unexpected abbrev ordering!");
1828 }
1829 { // INST_RET abbrev for FUNCTION_BLOCK.
1830 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1831 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1833 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1834 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1835 llvm_unreachable("Unexpected abbrev ordering!");
1836 }
1837 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1838 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1839 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1840 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1841 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1842 llvm_unreachable("Unexpected abbrev ordering!");
1843 }
1844
1845 Stream.ExitBlock();
1846 }
1847
1848 // Sort the Users based on the order in which the reader parses the bitcode
1849 // file.
bitcodereader_order(const User * lhs,const User * rhs)1850 static bool bitcodereader_order(const User *lhs, const User *rhs) {
1851 // TODO: Implement.
1852 return true;
1853 }
1854
WriteUseList(const Value * V,const ValueEnumerator & VE,BitstreamWriter & Stream)1855 static void WriteUseList(const Value *V, const ValueEnumerator &VE,
1856 BitstreamWriter &Stream) {
1857
1858 // One or zero uses can't get out of order.
1859 if (V->use_empty() || V->hasNUses(1))
1860 return;
1861
1862 // Make a copy of the in-memory use-list for sorting.
1863 unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1864 SmallVector<const User*, 8> UseList;
1865 UseList.reserve(UseListSize);
1866 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1867 I != E; ++I) {
1868 const User *U = *I;
1869 UseList.push_back(U);
1870 }
1871
1872 // Sort the copy based on the order read by the BitcodeReader.
1873 std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1874
1875 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1876 // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1877
1878 // TODO: Emit the USELIST_CODE_ENTRYs.
1879 }
1880
WriteFunctionUseList(const Function * F,ValueEnumerator & VE,BitstreamWriter & Stream)1881 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
1882 BitstreamWriter &Stream) {
1883 VE.incorporateFunction(*F);
1884
1885 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1886 AI != AE; ++AI)
1887 WriteUseList(AI, VE, Stream);
1888 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1889 ++BB) {
1890 WriteUseList(BB, VE, Stream);
1891 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1892 ++II) {
1893 WriteUseList(II, VE, Stream);
1894 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1895 OI != E; ++OI) {
1896 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1897 isa<InlineAsm>(*OI))
1898 WriteUseList(*OI, VE, Stream);
1899 }
1900 }
1901 }
1902 VE.purgeFunction();
1903 }
1904
1905 // Emit use-lists.
WriteModuleUseLists(const Module * M,ValueEnumerator & VE,BitstreamWriter & Stream)1906 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
1907 BitstreamWriter &Stream) {
1908 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1909
1910 // XXX: this modifies the module, but in a way that should never change the
1911 // behavior of any pass or codegen in LLVM. The problem is that GVs may
1912 // contain entries in the use_list that do not exist in the Module and are
1913 // not stored in the .bc file.
1914 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1915 I != E; ++I)
1916 I->removeDeadConstantUsers();
1917
1918 // Write the global variables.
1919 for (Module::const_global_iterator GI = M->global_begin(),
1920 GE = M->global_end(); GI != GE; ++GI) {
1921 WriteUseList(GI, VE, Stream);
1922
1923 // Write the global variable initializers.
1924 if (GI->hasInitializer())
1925 WriteUseList(GI->getInitializer(), VE, Stream);
1926 }
1927
1928 // Write the functions.
1929 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1930 WriteUseList(FI, VE, Stream);
1931 if (!FI->isDeclaration())
1932 WriteFunctionUseList(FI, VE, Stream);
1933 }
1934
1935 // Write the aliases.
1936 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1937 AI != AE; ++AI) {
1938 WriteUseList(AI, VE, Stream);
1939 WriteUseList(AI->getAliasee(), VE, Stream);
1940 }
1941
1942 Stream.ExitBlock();
1943 }
1944
1945 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1946 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1947 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1948
1949 SmallVector<unsigned, 1> Vals;
1950 unsigned CurVersion = 1;
1951 Vals.push_back(CurVersion);
1952 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1953
1954 // Analyze the module, enumerating globals, functions, etc.
1955 ValueEnumerator VE(M);
1956
1957 // Emit blockinfo, which defines the standard abbreviations etc.
1958 WriteBlockInfo(VE, Stream);
1959
1960 // Emit information about attribute groups.
1961 WriteAttributeGroupTable(VE, Stream);
1962
1963 // Emit information about parameter attributes.
1964 WriteAttributeTable(VE, Stream);
1965
1966 // Emit information describing all of the types in the module.
1967 WriteTypeTable(VE, Stream);
1968
1969 // Emit top-level description of module, including target triple, inline asm,
1970 // descriptors for global variables, and function prototype info.
1971 WriteModuleInfo(M, VE, Stream);
1972
1973 // Emit constants.
1974 WriteModuleConstants(VE, Stream);
1975
1976 // Emit metadata.
1977 WriteModuleMetadata(M, VE, Stream);
1978
1979 // Emit metadata.
1980 WriteModuleMetadataStore(M, Stream);
1981
1982 // Emit names for globals/functions etc.
1983 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1984
1985 // Emit use-lists.
1986 if (EnablePreserveUseListOrdering)
1987 WriteModuleUseLists(M, VE, Stream);
1988
1989 // Emit function bodies.
1990 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1991 if (!F->isDeclaration())
1992 WriteFunction(*F, VE, Stream);
1993
1994 Stream.ExitBlock();
1995 }
1996
1997 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1998 /// header and trailer to make it compatible with the system archiver. To do
1999 /// this we emit the following header, and then emit a trailer that pads the
2000 /// file out to be a multiple of 16 bytes.
2001 ///
2002 /// struct bc_header {
2003 /// uint32_t Magic; // 0x0B17C0DE
2004 /// uint32_t Version; // Version, currently always 0.
2005 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2006 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
2007 /// uint32_t CPUType; // CPU specifier.
2008 /// ... potentially more later ...
2009 /// };
2010 enum {
2011 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2012 DarwinBCHeaderSize = 5*4
2013 };
2014
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)2015 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2016 uint32_t &Position) {
2017 Buffer[Position + 0] = (unsigned char) (Value >> 0);
2018 Buffer[Position + 1] = (unsigned char) (Value >> 8);
2019 Buffer[Position + 2] = (unsigned char) (Value >> 16);
2020 Buffer[Position + 3] = (unsigned char) (Value >> 24);
2021 Position += 4;
2022 }
2023
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)2024 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2025 const Triple &TT) {
2026 unsigned CPUType = ~0U;
2027
2028 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2029 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2030 // number from /usr/include/mach/machine.h. It is ok to reproduce the
2031 // specific constants here because they are implicitly part of the Darwin ABI.
2032 enum {
2033 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
2034 DARWIN_CPU_TYPE_X86 = 7,
2035 DARWIN_CPU_TYPE_ARM = 12,
2036 DARWIN_CPU_TYPE_POWERPC = 18
2037 };
2038
2039 Triple::ArchType Arch = TT.getArch();
2040 if (Arch == Triple::x86_64)
2041 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2042 else if (Arch == Triple::x86)
2043 CPUType = DARWIN_CPU_TYPE_X86;
2044 else if (Arch == Triple::ppc)
2045 CPUType = DARWIN_CPU_TYPE_POWERPC;
2046 else if (Arch == Triple::ppc64)
2047 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2048 else if (Arch == Triple::arm || Arch == Triple::thumb)
2049 CPUType = DARWIN_CPU_TYPE_ARM;
2050
2051 // Traditional Bitcode starts after header.
2052 assert(Buffer.size() >= DarwinBCHeaderSize &&
2053 "Expected header size to be reserved");
2054 unsigned BCOffset = DarwinBCHeaderSize;
2055 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2056
2057 // Write the magic and version.
2058 unsigned Position = 0;
2059 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2060 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
2061 WriteInt32ToBuffer(BCOffset , Buffer, Position);
2062 WriteInt32ToBuffer(BCSize , Buffer, Position);
2063 WriteInt32ToBuffer(CPUType , Buffer, Position);
2064
2065 // If the file is not a multiple of 16 bytes, insert dummy padding.
2066 while (Buffer.size() & 15)
2067 Buffer.push_back(0);
2068 }
2069
2070 /// WriteBitcodeToFile - Write the specified module to the specified output
2071 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)2072 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2073 SmallVector<char, 0> Buffer;
2074 Buffer.reserve(256*1024);
2075
2076 // If this is darwin or another generic macho target, reserve space for the
2077 // header.
2078 Triple TT(M->getTargetTriple());
2079 if (TT.isOSDarwin())
2080 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2081
2082 // Emit the module into the buffer.
2083 {
2084 BitstreamWriter Stream(Buffer);
2085
2086 // Emit the file header.
2087 Stream.Emit((unsigned)'B', 8);
2088 Stream.Emit((unsigned)'C', 8);
2089 Stream.Emit(0x0, 4);
2090 Stream.Emit(0xC, 4);
2091 Stream.Emit(0xE, 4);
2092 Stream.Emit(0xD, 4);
2093
2094 // Emit the module.
2095 WriteModule(M, Stream);
2096 }
2097
2098 if (TT.isOSDarwin())
2099 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2100
2101 // Write the generated bitstream to "Out".
2102 Out.write((char*)&Buffer.front(), Buffer.size());
2103 }
2104