1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 // NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #define DEBUG_TYPE "regalloc"
33
34 #include "llvm/CodeGen/RegAllocPBQP.h"
35 #include "RegisterCoalescer.h"
36 #include "Spiller.h"
37 #include "llvm/ADT/OwningPtr.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/CodeGen/CalcSpillWeights.h"
40 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
41 #include "llvm/CodeGen/LiveRangeEdit.h"
42 #include "llvm/CodeGen/LiveStackAnalysis.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/PBQP/Graph.h"
49 #include "llvm/CodeGen/PBQP/HeuristicSolver.h"
50 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
51 #include "llvm/CodeGen/RegAllocRegistry.h"
52 #include "llvm/CodeGen/VirtRegMap.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetInstrInfo.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <limits>
59 #include <memory>
60 #include <set>
61 #include <sstream>
62 #include <vector>
63
64 using namespace llvm;
65
66 static RegisterRegAlloc
67 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
68 createDefaultPBQPRegisterAllocator);
69
70 static cl::opt<bool>
71 pbqpCoalescing("pbqp-coalescing",
72 cl::desc("Attempt coalescing during PBQP register allocation."),
73 cl::init(false), cl::Hidden);
74
75 #ifndef NDEBUG
76 static cl::opt<bool>
77 pbqpDumpGraphs("pbqp-dump-graphs",
78 cl::desc("Dump graphs for each function/round in the compilation unit."),
79 cl::init(false), cl::Hidden);
80 #endif
81
82 namespace {
83
84 ///
85 /// PBQP based allocators solve the register allocation problem by mapping
86 /// register allocation problems to Partitioned Boolean Quadratic
87 /// Programming problems.
88 class RegAllocPBQP : public MachineFunctionPass {
89 public:
90
91 static char ID;
92
93 /// Construct a PBQP register allocator.
RegAllocPBQP(OwningPtr<PBQPBuilder> & b,char * cPassID=0)94 RegAllocPBQP(OwningPtr<PBQPBuilder> &b, char *cPassID=0)
95 : MachineFunctionPass(ID), builder(b.take()), customPassID(cPassID) {
96 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
97 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
98 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
99 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
100 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
101 }
102
103 /// Return the pass name.
getPassName() const104 virtual const char* getPassName() const {
105 return "PBQP Register Allocator";
106 }
107
108 /// PBQP analysis usage.
109 virtual void getAnalysisUsage(AnalysisUsage &au) const;
110
111 /// Perform register allocation
112 virtual bool runOnMachineFunction(MachineFunction &MF);
113
114 private:
115
116 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
117 typedef std::vector<const LiveInterval*> Node2LIMap;
118 typedef std::vector<unsigned> AllowedSet;
119 typedef std::vector<AllowedSet> AllowedSetMap;
120 typedef std::pair<unsigned, unsigned> RegPair;
121 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
122 typedef std::set<unsigned> RegSet;
123
124
125 OwningPtr<PBQPBuilder> builder;
126
127 char *customPassID;
128
129 MachineFunction *mf;
130 const TargetMachine *tm;
131 const TargetRegisterInfo *tri;
132 const TargetInstrInfo *tii;
133 MachineRegisterInfo *mri;
134 const MachineBlockFrequencyInfo *mbfi;
135
136 OwningPtr<Spiller> spiller;
137 LiveIntervals *lis;
138 LiveStacks *lss;
139 VirtRegMap *vrm;
140
141 RegSet vregsToAlloc, emptyIntervalVRegs;
142
143 /// \brief Finds the initial set of vreg intervals to allocate.
144 void findVRegIntervalsToAlloc();
145
146 /// \brief Given a solved PBQP problem maps this solution back to a register
147 /// assignment.
148 bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
149 const PBQP::Solution &solution);
150
151 /// \brief Postprocessing before final spilling. Sets basic block "live in"
152 /// variables.
153 void finalizeAlloc() const;
154
155 };
156
157 char RegAllocPBQP::ID = 0;
158
159 } // End anonymous namespace.
160
getVRegForNode(PBQP::Graph::ConstNodeItr node) const161 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
162 Node2VReg::const_iterator vregItr = node2VReg.find(node);
163 assert(vregItr != node2VReg.end() && "No vreg for node.");
164 return vregItr->second;
165 }
166
getNodeForVReg(unsigned vreg) const167 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
168 VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
169 assert(nodeItr != vreg2Node.end() && "No node for vreg.");
170 return nodeItr->second;
171
172 }
173
174 const PBQPRAProblem::AllowedSet&
getAllowedSet(unsigned vreg) const175 PBQPRAProblem::getAllowedSet(unsigned vreg) const {
176 AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
177 assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
178 const AllowedSet &allowedSet = allowedSetItr->second;
179 return allowedSet;
180 }
181
getPRegForOption(unsigned vreg,unsigned option) const182 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
183 assert(isPRegOption(vreg, option) && "Not a preg option.");
184
185 const AllowedSet& allowedSet = getAllowedSet(vreg);
186 assert(option <= allowedSet.size() && "Option outside allowed set.");
187 return allowedSet[option - 1];
188 }
189
build(MachineFunction * mf,const LiveIntervals * lis,const MachineBlockFrequencyInfo * mbfi,const RegSet & vregs)190 PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
191 const MachineBlockFrequencyInfo *mbfi,
192 const RegSet &vregs) {
193
194 LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
195 MachineRegisterInfo *mri = &mf->getRegInfo();
196 const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
197
198 OwningPtr<PBQPRAProblem> p(new PBQPRAProblem());
199 PBQP::Graph &g = p->getGraph();
200 RegSet pregs;
201
202 // Collect the set of preg intervals, record that they're used in the MF.
203 for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
204 if (mri->def_empty(Reg))
205 continue;
206 pregs.insert(Reg);
207 mri->setPhysRegUsed(Reg);
208 }
209
210 // Iterate over vregs.
211 for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
212 vregItr != vregEnd; ++vregItr) {
213 unsigned vreg = *vregItr;
214 const TargetRegisterClass *trc = mri->getRegClass(vreg);
215 LiveInterval *vregLI = &LIS->getInterval(vreg);
216
217 // Record any overlaps with regmask operands.
218 BitVector regMaskOverlaps;
219 LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
220
221 // Compute an initial allowed set for the current vreg.
222 typedef std::vector<unsigned> VRAllowed;
223 VRAllowed vrAllowed;
224 ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf);
225 for (unsigned i = 0; i != rawOrder.size(); ++i) {
226 unsigned preg = rawOrder[i];
227 if (mri->isReserved(preg))
228 continue;
229
230 // vregLI crosses a regmask operand that clobbers preg.
231 if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
232 continue;
233
234 // vregLI overlaps fixed regunit interference.
235 bool Interference = false;
236 for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
237 if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
238 Interference = true;
239 break;
240 }
241 }
242 if (Interference)
243 continue;
244
245 // preg is usable for this virtual register.
246 vrAllowed.push_back(preg);
247 }
248
249 // Construct the node.
250 PBQP::Graph::NodeItr node =
251 g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
252
253 // Record the mapping and allowed set in the problem.
254 p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
255
256 PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
257 vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
258
259 addSpillCosts(g.getNodeCosts(node), spillCost);
260 }
261
262 for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
263 vr1Itr != vrEnd; ++vr1Itr) {
264 unsigned vr1 = *vr1Itr;
265 const LiveInterval &l1 = lis->getInterval(vr1);
266 const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
267
268 for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
269 vr2Itr != vrEnd; ++vr2Itr) {
270 unsigned vr2 = *vr2Itr;
271 const LiveInterval &l2 = lis->getInterval(vr2);
272 const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
273
274 assert(!l2.empty() && "Empty interval in vreg set?");
275 if (l1.overlaps(l2)) {
276 PBQP::Graph::EdgeItr edge =
277 g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
278 PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
279
280 addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
281 }
282 }
283 }
284
285 return p.take();
286 }
287
addSpillCosts(PBQP::Vector & costVec,PBQP::PBQPNum spillCost)288 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
289 PBQP::PBQPNum spillCost) {
290 costVec[0] = spillCost;
291 }
292
addInterferenceCosts(PBQP::Matrix & costMat,const PBQPRAProblem::AllowedSet & vr1Allowed,const PBQPRAProblem::AllowedSet & vr2Allowed,const TargetRegisterInfo * tri)293 void PBQPBuilder::addInterferenceCosts(
294 PBQP::Matrix &costMat,
295 const PBQPRAProblem::AllowedSet &vr1Allowed,
296 const PBQPRAProblem::AllowedSet &vr2Allowed,
297 const TargetRegisterInfo *tri) {
298 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
299 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
300
301 for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
302 unsigned preg1 = vr1Allowed[i];
303
304 for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
305 unsigned preg2 = vr2Allowed[j];
306
307 if (tri->regsOverlap(preg1, preg2)) {
308 costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
309 }
310 }
311 }
312 }
313
build(MachineFunction * mf,const LiveIntervals * lis,const MachineBlockFrequencyInfo * mbfi,const RegSet & vregs)314 PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
315 const LiveIntervals *lis,
316 const MachineBlockFrequencyInfo *mbfi,
317 const RegSet &vregs) {
318
319 OwningPtr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
320 PBQP::Graph &g = p->getGraph();
321
322 const TargetMachine &tm = mf->getTarget();
323 CoalescerPair cp(*tm.getRegisterInfo());
324
325 // Scan the machine function and add a coalescing cost whenever CoalescerPair
326 // gives the Ok.
327 for (MachineFunction::const_iterator mbbItr = mf->begin(),
328 mbbEnd = mf->end();
329 mbbItr != mbbEnd; ++mbbItr) {
330 const MachineBasicBlock *mbb = &*mbbItr;
331
332 for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
333 miEnd = mbb->end();
334 miItr != miEnd; ++miItr) {
335 const MachineInstr *mi = &*miItr;
336
337 if (!cp.setRegisters(mi)) {
338 continue; // Not coalescable.
339 }
340
341 if (cp.getSrcReg() == cp.getDstReg()) {
342 continue; // Already coalesced.
343 }
344
345 unsigned dst = cp.getDstReg(),
346 src = cp.getSrcReg();
347
348 const float copyFactor = 0.5; // Cost of copy relative to load. Current
349 // value plucked randomly out of the air.
350
351 PBQP::PBQPNum cBenefit =
352 copyFactor * LiveIntervals::getSpillWeight(false, true,
353 mbfi->getBlockFreq(mbb));
354
355 if (cp.isPhys()) {
356 if (!mf->getRegInfo().isAllocatable(dst)) {
357 continue;
358 }
359
360 const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
361 unsigned pregOpt = 0;
362 while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
363 ++pregOpt;
364 }
365 if (pregOpt < allowed.size()) {
366 ++pregOpt; // +1 to account for spill option.
367 PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
368 addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
369 }
370 } else {
371 const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
372 const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
373 PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
374 PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
375 PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
376 if (edge == g.edgesEnd()) {
377 edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
378 allowed2->size() + 1,
379 0));
380 } else {
381 if (g.getEdgeNode1(edge) == node2) {
382 std::swap(node1, node2);
383 std::swap(allowed1, allowed2);
384 }
385 }
386
387 addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
388 cBenefit);
389 }
390 }
391 }
392
393 return p.take();
394 }
395
addPhysRegCoalesce(PBQP::Vector & costVec,unsigned pregOption,PBQP::PBQPNum benefit)396 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
397 unsigned pregOption,
398 PBQP::PBQPNum benefit) {
399 costVec[pregOption] += -benefit;
400 }
401
addVirtRegCoalesce(PBQP::Matrix & costMat,const PBQPRAProblem::AllowedSet & vr1Allowed,const PBQPRAProblem::AllowedSet & vr2Allowed,PBQP::PBQPNum benefit)402 void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
403 PBQP::Matrix &costMat,
404 const PBQPRAProblem::AllowedSet &vr1Allowed,
405 const PBQPRAProblem::AllowedSet &vr2Allowed,
406 PBQP::PBQPNum benefit) {
407
408 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
409 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
410
411 for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
412 unsigned preg1 = vr1Allowed[i];
413 for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
414 unsigned preg2 = vr2Allowed[j];
415
416 if (preg1 == preg2) {
417 costMat[i + 1][j + 1] += -benefit;
418 }
419 }
420 }
421 }
422
423
getAnalysisUsage(AnalysisUsage & au) const424 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
425 au.setPreservesCFG();
426 au.addRequired<AliasAnalysis>();
427 au.addPreserved<AliasAnalysis>();
428 au.addRequired<SlotIndexes>();
429 au.addPreserved<SlotIndexes>();
430 au.addRequired<LiveIntervals>();
431 au.addPreserved<LiveIntervals>();
432 //au.addRequiredID(SplitCriticalEdgesID);
433 if (customPassID)
434 au.addRequiredID(*customPassID);
435 au.addRequired<CalculateSpillWeights>();
436 au.addRequired<LiveStacks>();
437 au.addPreserved<LiveStacks>();
438 au.addRequired<MachineBlockFrequencyInfo>();
439 au.addPreserved<MachineBlockFrequencyInfo>();
440 au.addRequired<MachineLoopInfo>();
441 au.addPreserved<MachineLoopInfo>();
442 au.addRequired<MachineDominatorTree>();
443 au.addPreserved<MachineDominatorTree>();
444 au.addRequired<VirtRegMap>();
445 au.addPreserved<VirtRegMap>();
446 MachineFunctionPass::getAnalysisUsage(au);
447 }
448
findVRegIntervalsToAlloc()449 void RegAllocPBQP::findVRegIntervalsToAlloc() {
450
451 // Iterate over all live ranges.
452 for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
453 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
454 if (mri->reg_nodbg_empty(Reg))
455 continue;
456 LiveInterval *li = &lis->getInterval(Reg);
457
458 // If this live interval is non-empty we will use pbqp to allocate it.
459 // Empty intervals we allocate in a simple post-processing stage in
460 // finalizeAlloc.
461 if (!li->empty()) {
462 vregsToAlloc.insert(li->reg);
463 } else {
464 emptyIntervalVRegs.insert(li->reg);
465 }
466 }
467 }
468
mapPBQPToRegAlloc(const PBQPRAProblem & problem,const PBQP::Solution & solution)469 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
470 const PBQP::Solution &solution) {
471 // Set to true if we have any spills
472 bool anotherRoundNeeded = false;
473
474 // Clear the existing allocation.
475 vrm->clearAllVirt();
476
477 const PBQP::Graph &g = problem.getGraph();
478 // Iterate over the nodes mapping the PBQP solution to a register
479 // assignment.
480 for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
481 nodeEnd = g.nodesEnd();
482 node != nodeEnd; ++node) {
483 unsigned vreg = problem.getVRegForNode(node);
484 unsigned alloc = solution.getSelection(node);
485
486 if (problem.isPRegOption(vreg, alloc)) {
487 unsigned preg = problem.getPRegForOption(vreg, alloc);
488 DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
489 << tri->getName(preg) << "\n");
490 assert(preg != 0 && "Invalid preg selected.");
491 vrm->assignVirt2Phys(vreg, preg);
492 } else if (problem.isSpillOption(vreg, alloc)) {
493 vregsToAlloc.erase(vreg);
494 SmallVector<LiveInterval*, 8> newSpills;
495 LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
496 spiller->spill(LRE);
497
498 DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
499 << LRE.getParent().weight << ", New vregs: ");
500
501 // Copy any newly inserted live intervals into the list of regs to
502 // allocate.
503 for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
504 itr != end; ++itr) {
505 assert(!(*itr)->empty() && "Empty spill range.");
506 DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " ");
507 vregsToAlloc.insert((*itr)->reg);
508 }
509
510 DEBUG(dbgs() << ")\n");
511
512 // We need another round if spill intervals were added.
513 anotherRoundNeeded |= !LRE.empty();
514 } else {
515 llvm_unreachable("Unknown allocation option.");
516 }
517 }
518
519 return !anotherRoundNeeded;
520 }
521
522
finalizeAlloc() const523 void RegAllocPBQP::finalizeAlloc() const {
524 // First allocate registers for the empty intervals.
525 for (RegSet::const_iterator
526 itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
527 itr != end; ++itr) {
528 LiveInterval *li = &lis->getInterval(*itr);
529
530 unsigned physReg = mri->getSimpleHint(li->reg);
531
532 if (physReg == 0) {
533 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
534 physReg = liRC->getRawAllocationOrder(*mf).front();
535 }
536
537 vrm->assignVirt2Phys(li->reg, physReg);
538 }
539 }
540
runOnMachineFunction(MachineFunction & MF)541 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
542
543 mf = &MF;
544 tm = &mf->getTarget();
545 tri = tm->getRegisterInfo();
546 tii = tm->getInstrInfo();
547 mri = &mf->getRegInfo();
548
549 lis = &getAnalysis<LiveIntervals>();
550 lss = &getAnalysis<LiveStacks>();
551 mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
552
553 vrm = &getAnalysis<VirtRegMap>();
554 spiller.reset(createInlineSpiller(*this, MF, *vrm));
555
556 mri->freezeReservedRegs(MF);
557
558 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
559
560 // Allocator main loop:
561 //
562 // * Map current regalloc problem to a PBQP problem
563 // * Solve the PBQP problem
564 // * Map the solution back to a register allocation
565 // * Spill if necessary
566 //
567 // This process is continued till no more spills are generated.
568
569 // Find the vreg intervals in need of allocation.
570 findVRegIntervalsToAlloc();
571
572 #ifndef NDEBUG
573 const Function* func = mf->getFunction();
574 std::string fqn =
575 func->getParent()->getModuleIdentifier() + "." +
576 func->getName().str();
577 #endif
578
579 // If there are non-empty intervals allocate them using pbqp.
580 if (!vregsToAlloc.empty()) {
581
582 bool pbqpAllocComplete = false;
583 unsigned round = 0;
584
585 while (!pbqpAllocComplete) {
586 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
587
588 OwningPtr<PBQPRAProblem> problem(
589 builder->build(mf, lis, mbfi, vregsToAlloc));
590
591 #ifndef NDEBUG
592 if (pbqpDumpGraphs) {
593 std::ostringstream rs;
594 rs << round;
595 std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
596 std::string tmp;
597 raw_fd_ostream os(graphFileName.c_str(), tmp);
598 DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
599 << graphFileName << "\"\n");
600 problem->getGraph().dump(os);
601 }
602 #endif
603
604 PBQP::Solution solution =
605 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
606 problem->getGraph());
607
608 pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
609
610 ++round;
611 }
612 }
613
614 // Finalise allocation, allocate empty ranges.
615 finalizeAlloc();
616 vregsToAlloc.clear();
617 emptyIntervalVRegs.clear();
618
619 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
620
621 return true;
622 }
623
createPBQPRegisterAllocator(OwningPtr<PBQPBuilder> & builder,char * customPassID)624 FunctionPass* llvm::createPBQPRegisterAllocator(
625 OwningPtr<PBQPBuilder> &builder,
626 char *customPassID) {
627 return new RegAllocPBQP(builder, customPassID);
628 }
629
createDefaultPBQPRegisterAllocator()630 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
631 OwningPtr<PBQPBuilder> Builder;
632 if (pbqpCoalescing)
633 Builder.reset(new PBQPBuilderWithCoalescing());
634 else
635 Builder.reset(new PBQPBuilder());
636 return createPBQPRegisterAllocator(Builder);
637 }
638
639 #undef DEBUG_TYPE
640