1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "misched"
16 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/RegisterPressure.h"
28 #include "llvm/CodeGen/ScheduleDFS.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 using namespace llvm;
40
41 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
42 cl::ZeroOrMore, cl::init(false),
43 cl::desc("Enable use of AA during MI GAD construction"));
44
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo & mli,const MachineDominatorTree & mdt,bool IsPostRAFlag,LiveIntervals * lis)45 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
46 const MachineLoopInfo &mli,
47 const MachineDominatorTree &mdt,
48 bool IsPostRAFlag,
49 LiveIntervals *lis)
50 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
51 IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
52 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
53 DbgValues.clear();
54 assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
55 "Virtual registers must be removed prior to PostRA scheduling");
56
57 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
58 SchedModel.init(*ST.getSchedModel(), &ST, TII);
59 }
60
61 /// getUnderlyingObjectFromInt - This is the function that does the work of
62 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)63 static const Value *getUnderlyingObjectFromInt(const Value *V) {
64 do {
65 if (const Operator *U = dyn_cast<Operator>(V)) {
66 // If we find a ptrtoint, we can transfer control back to the
67 // regular getUnderlyingObjectFromInt.
68 if (U->getOpcode() == Instruction::PtrToInt)
69 return U->getOperand(0);
70 // If we find an add of a constant, a multiplied value, or a phi, it's
71 // likely that the other operand will lead us to the base
72 // object. We don't have to worry about the case where the
73 // object address is somehow being computed by the multiply,
74 // because our callers only care when the result is an
75 // identifiable object.
76 if (U->getOpcode() != Instruction::Add ||
77 (!isa<ConstantInt>(U->getOperand(1)) &&
78 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
79 !isa<PHINode>(U->getOperand(1))))
80 return V;
81 V = U->getOperand(0);
82 } else {
83 return V;
84 }
85 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
86 } while (1);
87 }
88
89 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
90 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjects(const Value * V,SmallVectorImpl<Value * > & Objects)91 static void getUnderlyingObjects(const Value *V,
92 SmallVectorImpl<Value *> &Objects) {
93 SmallPtrSet<const Value*, 16> Visited;
94 SmallVector<const Value *, 4> Working(1, V);
95 do {
96 V = Working.pop_back_val();
97
98 SmallVector<Value *, 4> Objs;
99 GetUnderlyingObjects(const_cast<Value *>(V), Objs);
100
101 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
102 I != IE; ++I) {
103 V = *I;
104 if (!Visited.insert(V))
105 continue;
106 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
107 const Value *O =
108 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
109 if (O->getType()->isPointerTy()) {
110 Working.push_back(O);
111 continue;
112 }
113 }
114 Objects.push_back(const_cast<Value *>(V));
115 }
116 } while (!Working.empty());
117 }
118
119 typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
120 UnderlyingObjectsVector;
121
122 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
123 /// information and it can be tracked to a normal reference to a known
124 /// object, return the Value for that object.
getUnderlyingObjectsForInstr(const MachineInstr * MI,const MachineFrameInfo * MFI,UnderlyingObjectsVector & Objects)125 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
126 const MachineFrameInfo *MFI,
127 UnderlyingObjectsVector &Objects) {
128 if (!MI->hasOneMemOperand() ||
129 !(*MI->memoperands_begin())->getValue() ||
130 (*MI->memoperands_begin())->isVolatile())
131 return;
132
133 const Value *V = (*MI->memoperands_begin())->getValue();
134 if (!V)
135 return;
136
137 SmallVector<Value *, 4> Objs;
138 getUnderlyingObjects(V, Objs);
139
140 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
141 I != IE; ++I) {
142 bool MayAlias = true;
143 V = *I;
144
145 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
146 // For now, ignore PseudoSourceValues which may alias LLVM IR values
147 // because the code that uses this function has no way to cope with
148 // such aliases.
149
150 if (PSV->isAliased(MFI)) {
151 Objects.clear();
152 return;
153 }
154
155 MayAlias = PSV->mayAlias(MFI);
156 } else if (!isIdentifiedObject(V)) {
157 Objects.clear();
158 return;
159 }
160
161 Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
162 }
163 }
164
startBlock(MachineBasicBlock * bb)165 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
166 BB = bb;
167 }
168
finishBlock()169 void ScheduleDAGInstrs::finishBlock() {
170 // Subclasses should no longer refer to the old block.
171 BB = 0;
172 }
173
174 /// Initialize the DAG and common scheduler state for the current scheduling
175 /// region. This does not actually create the DAG, only clears it. The
176 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
177 /// region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned endcount)178 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
179 MachineBasicBlock::iterator begin,
180 MachineBasicBlock::iterator end,
181 unsigned endcount) {
182 assert(bb == BB && "startBlock should set BB");
183 RegionBegin = begin;
184 RegionEnd = end;
185 EndIndex = endcount;
186 MISUnitMap.clear();
187
188 ScheduleDAG::clearDAG();
189 }
190
191 /// Close the current scheduling region. Don't clear any state in case the
192 /// driver wants to refer to the previous scheduling region.
exitRegion()193 void ScheduleDAGInstrs::exitRegion() {
194 // Nothing to do.
195 }
196
197 /// addSchedBarrierDeps - Add dependencies from instructions in the current
198 /// list of instructions being scheduled to scheduling barrier by adding
199 /// the exit SU to the register defs and use list. This is because we want to
200 /// make sure instructions which define registers that are either used by
201 /// the terminator or are live-out are properly scheduled. This is
202 /// especially important when the definition latency of the return value(s)
203 /// are too high to be hidden by the branch or when the liveout registers
204 /// used by instructions in the fallthrough block.
addSchedBarrierDeps()205 void ScheduleDAGInstrs::addSchedBarrierDeps() {
206 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
207 ExitSU.setInstr(ExitMI);
208 bool AllDepKnown = ExitMI &&
209 (ExitMI->isCall() || ExitMI->isBarrier());
210 if (ExitMI && AllDepKnown) {
211 // If it's a call or a barrier, add dependencies on the defs and uses of
212 // instruction.
213 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
214 const MachineOperand &MO = ExitMI->getOperand(i);
215 if (!MO.isReg() || MO.isDef()) continue;
216 unsigned Reg = MO.getReg();
217 if (Reg == 0) continue;
218
219 if (TRI->isPhysicalRegister(Reg))
220 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
221 else {
222 assert(!IsPostRA && "Virtual register encountered after regalloc.");
223 if (MO.readsReg()) // ignore undef operands
224 addVRegUseDeps(&ExitSU, i);
225 }
226 }
227 } else {
228 // For others, e.g. fallthrough, conditional branch, assume the exit
229 // uses all the registers that are livein to the successor blocks.
230 assert(Uses.empty() && "Uses in set before adding deps?");
231 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
232 SE = BB->succ_end(); SI != SE; ++SI)
233 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
234 E = (*SI)->livein_end(); I != E; ++I) {
235 unsigned Reg = *I;
236 if (!Uses.contains(Reg))
237 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
238 }
239 }
240 }
241
242 /// MO is an operand of SU's instruction that defines a physical register. Add
243 /// data dependencies from SU to any uses of the physical register.
addPhysRegDataDeps(SUnit * SU,unsigned OperIdx)244 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
245 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
246 assert(MO.isDef() && "expect physreg def");
247
248 // Ask the target if address-backscheduling is desirable, and if so how much.
249 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
250
251 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
252 Alias.isValid(); ++Alias) {
253 if (!Uses.contains(*Alias))
254 continue;
255 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
256 SUnit *UseSU = I->SU;
257 if (UseSU == SU)
258 continue;
259
260 // Adjust the dependence latency using operand def/use information,
261 // then allow the target to perform its own adjustments.
262 int UseOp = I->OpIdx;
263 MachineInstr *RegUse = 0;
264 SDep Dep;
265 if (UseOp < 0)
266 Dep = SDep(SU, SDep::Artificial);
267 else {
268 // Set the hasPhysRegDefs only for physreg defs that have a use within
269 // the scheduling region.
270 SU->hasPhysRegDefs = true;
271 Dep = SDep(SU, SDep::Data, *Alias);
272 RegUse = UseSU->getInstr();
273 }
274 Dep.setLatency(
275 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
276 UseOp));
277
278 ST.adjustSchedDependency(SU, UseSU, Dep);
279 UseSU->addPred(Dep);
280 }
281 }
282 }
283
284 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
285 /// this SUnit to following instructions in the same scheduling region that
286 /// depend the physical register referenced at OperIdx.
addPhysRegDeps(SUnit * SU,unsigned OperIdx)287 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
288 const MachineInstr *MI = SU->getInstr();
289 const MachineOperand &MO = MI->getOperand(OperIdx);
290
291 // Optionally add output and anti dependencies. For anti
292 // dependencies we use a latency of 0 because for a multi-issue
293 // target we want to allow the defining instruction to issue
294 // in the same cycle as the using instruction.
295 // TODO: Using a latency of 1 here for output dependencies assumes
296 // there's no cost for reusing registers.
297 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
298 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
299 Alias.isValid(); ++Alias) {
300 if (!Defs.contains(*Alias))
301 continue;
302 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
303 SUnit *DefSU = I->SU;
304 if (DefSU == &ExitSU)
305 continue;
306 if (DefSU != SU &&
307 (Kind != SDep::Output || !MO.isDead() ||
308 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
309 if (Kind == SDep::Anti)
310 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
311 else {
312 SDep Dep(SU, Kind, /*Reg=*/*Alias);
313 Dep.setLatency(
314 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
315 DefSU->addPred(Dep);
316 }
317 }
318 }
319 }
320
321 if (!MO.isDef()) {
322 SU->hasPhysRegUses = true;
323 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
324 // retrieve the existing SUnits list for this register's uses.
325 // Push this SUnit on the use list.
326 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
327 }
328 else {
329 addPhysRegDataDeps(SU, OperIdx);
330 unsigned Reg = MO.getReg();
331
332 // clear this register's use list
333 if (Uses.contains(Reg))
334 Uses.eraseAll(Reg);
335
336 if (!MO.isDead()) {
337 Defs.eraseAll(Reg);
338 } else if (SU->isCall) {
339 // Calls will not be reordered because of chain dependencies (see
340 // below). Since call operands are dead, calls may continue to be added
341 // to the DefList making dependence checking quadratic in the size of
342 // the block. Instead, we leave only one call at the back of the
343 // DefList.
344 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
345 Reg2SUnitsMap::iterator B = P.first;
346 Reg2SUnitsMap::iterator I = P.second;
347 for (bool isBegin = I == B; !isBegin; /* empty */) {
348 isBegin = (--I) == B;
349 if (!I->SU->isCall)
350 break;
351 I = Defs.erase(I);
352 }
353 }
354
355 // Defs are pushed in the order they are visited and never reordered.
356 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
357 }
358 }
359
360 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
361 /// to instructions that occur later in the same scheduling region if they read
362 /// from or write to the virtual register defined at OperIdx.
363 ///
364 /// TODO: Hoist loop induction variable increments. This has to be
365 /// reevaluated. Generally, IV scheduling should be done before coalescing.
addVRegDefDeps(SUnit * SU,unsigned OperIdx)366 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
367 const MachineInstr *MI = SU->getInstr();
368 unsigned Reg = MI->getOperand(OperIdx).getReg();
369
370 // Singly defined vregs do not have output/anti dependencies.
371 // The current operand is a def, so we have at least one.
372 // Check here if there are any others...
373 if (MRI.hasOneDef(Reg))
374 return;
375
376 // Add output dependence to the next nearest def of this vreg.
377 //
378 // Unless this definition is dead, the output dependence should be
379 // transitively redundant with antidependencies from this definition's
380 // uses. We're conservative for now until we have a way to guarantee the uses
381 // are not eliminated sometime during scheduling. The output dependence edge
382 // is also useful if output latency exceeds def-use latency.
383 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
384 if (DefI == VRegDefs.end())
385 VRegDefs.insert(VReg2SUnit(Reg, SU));
386 else {
387 SUnit *DefSU = DefI->SU;
388 if (DefSU != SU && DefSU != &ExitSU) {
389 SDep Dep(SU, SDep::Output, Reg);
390 Dep.setLatency(
391 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
392 DefSU->addPred(Dep);
393 }
394 DefI->SU = SU;
395 }
396 }
397
398 /// addVRegUseDeps - Add a register data dependency if the instruction that
399 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
400 /// register antidependency from this SUnit to instructions that occur later in
401 /// the same scheduling region if they write the virtual register.
402 ///
403 /// TODO: Handle ExitSU "uses" properly.
addVRegUseDeps(SUnit * SU,unsigned OperIdx)404 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
405 MachineInstr *MI = SU->getInstr();
406 unsigned Reg = MI->getOperand(OperIdx).getReg();
407
408 // Lookup this operand's reaching definition.
409 assert(LIS && "vreg dependencies requires LiveIntervals");
410 LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
411 VNInfo *VNI = LRQ.valueIn();
412
413 // VNI will be valid because MachineOperand::readsReg() is checked by caller.
414 assert(VNI && "No value to read by operand");
415 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
416 // Phis and other noninstructions (after coalescing) have a NULL Def.
417 if (Def) {
418 SUnit *DefSU = getSUnit(Def);
419 if (DefSU) {
420 // The reaching Def lives within this scheduling region.
421 // Create a data dependence.
422 SDep dep(DefSU, SDep::Data, Reg);
423 // Adjust the dependence latency using operand def/use information, then
424 // allow the target to perform its own adjustments.
425 int DefOp = Def->findRegisterDefOperandIdx(Reg);
426 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
427
428 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
429 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
430 SU->addPred(dep);
431 }
432 }
433
434 // Add antidependence to the following def of the vreg it uses.
435 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
436 if (DefI != VRegDefs.end() && DefI->SU != SU)
437 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
438 }
439
440 /// Return true if MI is an instruction we are unable to reason about
441 /// (like a call or something with unmodeled side effects).
isGlobalMemoryObject(AliasAnalysis * AA,MachineInstr * MI)442 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
443 if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
444 (MI->hasOrderedMemoryRef() &&
445 (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
446 return true;
447 return false;
448 }
449
450 // This MI might have either incomplete info, or known to be unsafe
451 // to deal with (i.e. volatile object).
isUnsafeMemoryObject(MachineInstr * MI,const MachineFrameInfo * MFI)452 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
453 const MachineFrameInfo *MFI) {
454 if (!MI || MI->memoperands_empty())
455 return true;
456 // We purposefully do no check for hasOneMemOperand() here
457 // in hope to trigger an assert downstream in order to
458 // finish implementation.
459 if ((*MI->memoperands_begin())->isVolatile() ||
460 MI->hasUnmodeledSideEffects())
461 return true;
462 const Value *V = (*MI->memoperands_begin())->getValue();
463 if (!V)
464 return true;
465
466 SmallVector<Value *, 4> Objs;
467 getUnderlyingObjects(V, Objs);
468 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
469 IE = Objs.end(); I != IE; ++I) {
470 V = *I;
471
472 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
473 // Similarly to getUnderlyingObjectForInstr:
474 // For now, ignore PseudoSourceValues which may alias LLVM IR values
475 // because the code that uses this function has no way to cope with
476 // such aliases.
477 if (PSV->isAliased(MFI))
478 return true;
479 }
480
481 // Does this pointer refer to a distinct and identifiable object?
482 if (!isIdentifiedObject(V))
483 return true;
484 }
485
486 return false;
487 }
488
489 /// This returns true if the two MIs need a chain edge betwee them.
490 /// If these are not even memory operations, we still may need
491 /// chain deps between them. The question really is - could
492 /// these two MIs be reordered during scheduling from memory dependency
493 /// point of view.
MIsNeedChainEdge(AliasAnalysis * AA,const MachineFrameInfo * MFI,MachineInstr * MIa,MachineInstr * MIb)494 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
495 MachineInstr *MIa,
496 MachineInstr *MIb) {
497 // Cover a trivial case - no edge is need to itself.
498 if (MIa == MIb)
499 return false;
500
501 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
502 return true;
503
504 // If we are dealing with two "normal" loads, we do not need an edge
505 // between them - they could be reordered.
506 if (!MIa->mayStore() && !MIb->mayStore())
507 return false;
508
509 // To this point analysis is generic. From here on we do need AA.
510 if (!AA)
511 return true;
512
513 MachineMemOperand *MMOa = *MIa->memoperands_begin();
514 MachineMemOperand *MMOb = *MIb->memoperands_begin();
515
516 // FIXME: Need to handle multiple memory operands to support all targets.
517 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
518 llvm_unreachable("Multiple memory operands.");
519
520 // The following interface to AA is fashioned after DAGCombiner::isAlias
521 // and operates with MachineMemOperand offset with some important
522 // assumptions:
523 // - LLVM fundamentally assumes flat address spaces.
524 // - MachineOperand offset can *only* result from legalization and
525 // cannot affect queries other than the trivial case of overlap
526 // checking.
527 // - These offsets never wrap and never step outside
528 // of allocated objects.
529 // - There should never be any negative offsets here.
530 //
531 // FIXME: Modify API to hide this math from "user"
532 // FIXME: Even before we go to AA we can reason locally about some
533 // memory objects. It can save compile time, and possibly catch some
534 // corner cases not currently covered.
535
536 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
537 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
538
539 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
540 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
541 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
542
543 AliasAnalysis::AliasResult AAResult = AA->alias(
544 AliasAnalysis::Location(MMOa->getValue(), Overlapa,
545 MMOa->getTBAAInfo()),
546 AliasAnalysis::Location(MMOb->getValue(), Overlapb,
547 MMOb->getTBAAInfo()));
548
549 return (AAResult != AliasAnalysis::NoAlias);
550 }
551
552 /// This recursive function iterates over chain deps of SUb looking for
553 /// "latest" node that needs a chain edge to SUa.
554 static unsigned
iterateChainSucc(AliasAnalysis * AA,const MachineFrameInfo * MFI,SUnit * SUa,SUnit * SUb,SUnit * ExitSU,unsigned * Depth,SmallPtrSet<const SUnit *,16> & Visited)555 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
556 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
557 SmallPtrSet<const SUnit*, 16> &Visited) {
558 if (!SUa || !SUb || SUb == ExitSU)
559 return *Depth;
560
561 // Remember visited nodes.
562 if (!Visited.insert(SUb))
563 return *Depth;
564 // If there is _some_ dependency already in place, do not
565 // descend any further.
566 // TODO: Need to make sure that if that dependency got eliminated or ignored
567 // for any reason in the future, we would not violate DAG topology.
568 // Currently it does not happen, but makes an implicit assumption about
569 // future implementation.
570 //
571 // Independently, if we encounter node that is some sort of global
572 // object (like a call) we already have full set of dependencies to it
573 // and we can stop descending.
574 if (SUa->isSucc(SUb) ||
575 isGlobalMemoryObject(AA, SUb->getInstr()))
576 return *Depth;
577
578 // If we do need an edge, or we have exceeded depth budget,
579 // add that edge to the predecessors chain of SUb,
580 // and stop descending.
581 if (*Depth > 200 ||
582 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
583 SUb->addPred(SDep(SUa, SDep::MayAliasMem));
584 return *Depth;
585 }
586 // Track current depth.
587 (*Depth)++;
588 // Iterate over chain dependencies only.
589 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
590 I != E; ++I)
591 if (I->isCtrl())
592 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
593 return *Depth;
594 }
595
596 /// This function assumes that "downward" from SU there exist
597 /// tail/leaf of already constructed DAG. It iterates downward and
598 /// checks whether SU can be aliasing any node dominated
599 /// by it.
adjustChainDeps(AliasAnalysis * AA,const MachineFrameInfo * MFI,SUnit * SU,SUnit * ExitSU,std::set<SUnit * > & CheckList,unsigned LatencyToLoad)600 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
601 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
602 unsigned LatencyToLoad) {
603 if (!SU)
604 return;
605
606 SmallPtrSet<const SUnit*, 16> Visited;
607 unsigned Depth = 0;
608
609 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
610 I != IE; ++I) {
611 if (SU == *I)
612 continue;
613 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
614 SDep Dep(SU, SDep::MayAliasMem);
615 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
616 (*I)->addPred(Dep);
617 }
618 // Now go through all the chain successors and iterate from them.
619 // Keep track of visited nodes.
620 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
621 JE = (*I)->Succs.end(); J != JE; ++J)
622 if (J->isCtrl())
623 iterateChainSucc (AA, MFI, SU, J->getSUnit(),
624 ExitSU, &Depth, Visited);
625 }
626 }
627
628 /// Check whether two objects need a chain edge, if so, add it
629 /// otherwise remember the rejected SU.
630 static inline
addChainDependency(AliasAnalysis * AA,const MachineFrameInfo * MFI,SUnit * SUa,SUnit * SUb,std::set<SUnit * > & RejectList,unsigned TrueMemOrderLatency=0,bool isNormalMemory=false)631 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
632 SUnit *SUa, SUnit *SUb,
633 std::set<SUnit *> &RejectList,
634 unsigned TrueMemOrderLatency = 0,
635 bool isNormalMemory = false) {
636 // If this is a false dependency,
637 // do not add the edge, but rememeber the rejected node.
638 if (!EnableAASchedMI ||
639 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
640 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
641 Dep.setLatency(TrueMemOrderLatency);
642 SUb->addPred(Dep);
643 }
644 else {
645 // Duplicate entries should be ignored.
646 RejectList.insert(SUb);
647 DEBUG(dbgs() << "\tReject chain dep between SU("
648 << SUa->NodeNum << ") and SU("
649 << SUb->NodeNum << ")\n");
650 }
651 }
652
653 /// Create an SUnit for each real instruction, numbered in top-down toplological
654 /// order. The instruction order A < B, implies that no edge exists from B to A.
655 ///
656 /// Map each real instruction to its SUnit.
657 ///
658 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
659 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
660 /// instead of pointers.
661 ///
662 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
663 /// the original instruction list.
initSUnits()664 void ScheduleDAGInstrs::initSUnits() {
665 // We'll be allocating one SUnit for each real instruction in the region,
666 // which is contained within a basic block.
667 SUnits.reserve(BB->size());
668
669 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
670 MachineInstr *MI = I;
671 if (MI->isDebugValue())
672 continue;
673
674 SUnit *SU = newSUnit(MI);
675 MISUnitMap[MI] = SU;
676
677 SU->isCall = MI->isCall();
678 SU->isCommutable = MI->isCommutable();
679
680 // Assign the Latency field of SU using target-provided information.
681 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
682 }
683 }
684
685 /// If RegPressure is non null, compute register pressure as a side effect. The
686 /// DAG builder is an efficient place to do it because it already visits
687 /// operands.
buildSchedGraph(AliasAnalysis * AA,RegPressureTracker * RPTracker)688 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
689 RegPressureTracker *RPTracker) {
690 // Create an SUnit for each real instruction.
691 initSUnits();
692
693 // We build scheduling units by walking a block's instruction list from bottom
694 // to top.
695
696 // Remember where a generic side-effecting instruction is as we procede.
697 SUnit *BarrierChain = 0, *AliasChain = 0;
698
699 // Memory references to specific known memory locations are tracked
700 // so that they can be given more precise dependencies. We track
701 // separately the known memory locations that may alias and those
702 // that are known not to alias
703 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
704 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
705 std::set<SUnit*> RejectMemNodes;
706
707 // Remove any stale debug info; sometimes BuildSchedGraph is called again
708 // without emitting the info from the previous call.
709 DbgValues.clear();
710 FirstDbgValue = NULL;
711
712 assert(Defs.empty() && Uses.empty() &&
713 "Only BuildGraph should update Defs/Uses");
714 Defs.setUniverse(TRI->getNumRegs());
715 Uses.setUniverse(TRI->getNumRegs());
716
717 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
718 // FIXME: Allow SparseSet to reserve space for the creation of virtual
719 // registers during scheduling. Don't artificially inflate the Universe
720 // because we want to assert that vregs are not created during DAG building.
721 VRegDefs.setUniverse(MRI.getNumVirtRegs());
722
723 // Model data dependencies between instructions being scheduled and the
724 // ExitSU.
725 addSchedBarrierDeps();
726
727 // Walk the list of instructions, from bottom moving up.
728 MachineInstr *DbgMI = NULL;
729 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
730 MII != MIE; --MII) {
731 MachineInstr *MI = prior(MII);
732 if (MI && DbgMI) {
733 DbgValues.push_back(std::make_pair(DbgMI, MI));
734 DbgMI = NULL;
735 }
736
737 if (MI->isDebugValue()) {
738 DbgMI = MI;
739 continue;
740 }
741 if (RPTracker) {
742 RPTracker->recede();
743 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
744 }
745
746 assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
747 "Cannot schedule terminators or labels!");
748
749 SUnit *SU = MISUnitMap[MI];
750 assert(SU && "No SUnit mapped to this MI");
751
752 // Add register-based dependencies (data, anti, and output).
753 bool HasVRegDef = false;
754 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
755 const MachineOperand &MO = MI->getOperand(j);
756 if (!MO.isReg()) continue;
757 unsigned Reg = MO.getReg();
758 if (Reg == 0) continue;
759
760 if (TRI->isPhysicalRegister(Reg))
761 addPhysRegDeps(SU, j);
762 else {
763 assert(!IsPostRA && "Virtual register encountered!");
764 if (MO.isDef()) {
765 HasVRegDef = true;
766 addVRegDefDeps(SU, j);
767 }
768 else if (MO.readsReg()) // ignore undef operands
769 addVRegUseDeps(SU, j);
770 }
771 }
772 // If we haven't seen any uses in this scheduling region, create a
773 // dependence edge to ExitSU to model the live-out latency. This is required
774 // for vreg defs with no in-region use, and prefetches with no vreg def.
775 //
776 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
777 // check currently relies on being called before adding chain deps.
778 if (SU->NumSuccs == 0 && SU->Latency > 1
779 && (HasVRegDef || MI->mayLoad())) {
780 SDep Dep(SU, SDep::Artificial);
781 Dep.setLatency(SU->Latency - 1);
782 ExitSU.addPred(Dep);
783 }
784
785 // Add chain dependencies.
786 // Chain dependencies used to enforce memory order should have
787 // latency of 0 (except for true dependency of Store followed by
788 // aliased Load... we estimate that with a single cycle of latency
789 // assuming the hardware will bypass)
790 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
791 // after stack slots are lowered to actual addresses.
792 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
793 // produce more precise dependence information.
794 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
795 if (isGlobalMemoryObject(AA, MI)) {
796 // Be conservative with these and add dependencies on all memory
797 // references, even those that are known to not alias.
798 for (MapVector<const Value *, SUnit *>::iterator I =
799 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
800 I->second->addPred(SDep(SU, SDep::Barrier));
801 }
802 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
803 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
804 for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
805 SDep Dep(SU, SDep::Barrier);
806 Dep.setLatency(TrueMemOrderLatency);
807 I->second[i]->addPred(Dep);
808 }
809 }
810 // Add SU to the barrier chain.
811 if (BarrierChain)
812 BarrierChain->addPred(SDep(SU, SDep::Barrier));
813 BarrierChain = SU;
814 // This is a barrier event that acts as a pivotal node in the DAG,
815 // so it is safe to clear list of exposed nodes.
816 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
817 TrueMemOrderLatency);
818 RejectMemNodes.clear();
819 NonAliasMemDefs.clear();
820 NonAliasMemUses.clear();
821
822 // fall-through
823 new_alias_chain:
824 // Chain all possibly aliasing memory references though SU.
825 if (AliasChain) {
826 unsigned ChainLatency = 0;
827 if (AliasChain->getInstr()->mayLoad())
828 ChainLatency = TrueMemOrderLatency;
829 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
830 ChainLatency);
831 }
832 AliasChain = SU;
833 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
834 addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
835 TrueMemOrderLatency);
836 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
837 E = AliasMemDefs.end(); I != E; ++I)
838 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
839 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
840 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
841 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
842 addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
843 TrueMemOrderLatency);
844 }
845 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
846 TrueMemOrderLatency);
847 PendingLoads.clear();
848 AliasMemDefs.clear();
849 AliasMemUses.clear();
850 } else if (MI->mayStore()) {
851 UnderlyingObjectsVector Objs;
852 getUnderlyingObjectsForInstr(MI, MFI, Objs);
853
854 if (Objs.empty()) {
855 // Treat all other stores conservatively.
856 goto new_alias_chain;
857 }
858
859 bool MayAlias = false;
860 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
861 K != KE; ++K) {
862 const Value *V = K->getPointer();
863 bool ThisMayAlias = K->getInt();
864 if (ThisMayAlias)
865 MayAlias = true;
866
867 // A store to a specific PseudoSourceValue. Add precise dependencies.
868 // Record the def in MemDefs, first adding a dep if there is
869 // an existing def.
870 MapVector<const Value *, SUnit *>::iterator I =
871 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
872 MapVector<const Value *, SUnit *>::iterator IE =
873 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
874 if (I != IE) {
875 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
876 I->second = SU;
877 } else {
878 if (ThisMayAlias)
879 AliasMemDefs[V] = SU;
880 else
881 NonAliasMemDefs[V] = SU;
882 }
883 // Handle the uses in MemUses, if there are any.
884 MapVector<const Value *, std::vector<SUnit *> >::iterator J =
885 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
886 MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
887 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
888 if (J != JE) {
889 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
890 addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
891 TrueMemOrderLatency, true);
892 J->second.clear();
893 }
894 }
895 if (MayAlias) {
896 // Add dependencies from all the PendingLoads, i.e. loads
897 // with no underlying object.
898 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
899 addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
900 TrueMemOrderLatency);
901 // Add dependence on alias chain, if needed.
902 if (AliasChain)
903 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
904 // But we also should check dependent instructions for the
905 // SU in question.
906 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
907 TrueMemOrderLatency);
908 }
909 // Add dependence on barrier chain, if needed.
910 // There is no point to check aliasing on barrier event. Even if
911 // SU and barrier _could_ be reordered, they should not. In addition,
912 // we have lost all RejectMemNodes below barrier.
913 if (BarrierChain)
914 BarrierChain->addPred(SDep(SU, SDep::Barrier));
915
916 if (!ExitSU.isPred(SU))
917 // Push store's up a bit to avoid them getting in between cmp
918 // and branches.
919 ExitSU.addPred(SDep(SU, SDep::Artificial));
920 } else if (MI->mayLoad()) {
921 bool MayAlias = true;
922 if (MI->isInvariantLoad(AA)) {
923 // Invariant load, no chain dependencies needed!
924 } else {
925 UnderlyingObjectsVector Objs;
926 getUnderlyingObjectsForInstr(MI, MFI, Objs);
927
928 if (Objs.empty()) {
929 // A load with no underlying object. Depend on all
930 // potentially aliasing stores.
931 for (MapVector<const Value *, SUnit *>::iterator I =
932 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
933 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
934
935 PendingLoads.push_back(SU);
936 MayAlias = true;
937 } else {
938 MayAlias = false;
939 }
940
941 for (UnderlyingObjectsVector::iterator
942 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
943 const Value *V = J->getPointer();
944 bool ThisMayAlias = J->getInt();
945
946 if (ThisMayAlias)
947 MayAlias = true;
948
949 // A load from a specific PseudoSourceValue. Add precise dependencies.
950 MapVector<const Value *, SUnit *>::iterator I =
951 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
952 MapVector<const Value *, SUnit *>::iterator IE =
953 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
954 if (I != IE)
955 addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
956 if (ThisMayAlias)
957 AliasMemUses[V].push_back(SU);
958 else
959 NonAliasMemUses[V].push_back(SU);
960 }
961 if (MayAlias)
962 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
963 // Add dependencies on alias and barrier chains, if needed.
964 if (MayAlias && AliasChain)
965 addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
966 if (BarrierChain)
967 BarrierChain->addPred(SDep(SU, SDep::Barrier));
968 }
969 }
970 }
971 if (DbgMI)
972 FirstDbgValue = DbgMI;
973
974 Defs.clear();
975 Uses.clear();
976 VRegDefs.clear();
977 PendingLoads.clear();
978 }
979
dumpNode(const SUnit * SU) const980 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
981 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
982 SU->getInstr()->dump();
983 #endif
984 }
985
getGraphNodeLabel(const SUnit * SU) const986 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
987 std::string s;
988 raw_string_ostream oss(s);
989 if (SU == &EntrySU)
990 oss << "<entry>";
991 else if (SU == &ExitSU)
992 oss << "<exit>";
993 else
994 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
995 return oss.str();
996 }
997
998 /// Return the basic block label. It is not necessarilly unique because a block
999 /// contains multiple scheduling regions. But it is fine for visualization.
getDAGName() const1000 std::string ScheduleDAGInstrs::getDAGName() const {
1001 return "dag." + BB->getFullName();
1002 }
1003
1004 //===----------------------------------------------------------------------===//
1005 // SchedDFSResult Implementation
1006 //===----------------------------------------------------------------------===//
1007
1008 namespace llvm {
1009 /// \brief Internal state used to compute SchedDFSResult.
1010 class SchedDFSImpl {
1011 SchedDFSResult &R;
1012
1013 /// Join DAG nodes into equivalence classes by their subtree.
1014 IntEqClasses SubtreeClasses;
1015 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1016 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1017
1018 struct RootData {
1019 unsigned NodeID;
1020 unsigned ParentNodeID; // Parent node (member of the parent subtree).
1021 unsigned SubInstrCount; // Instr count in this tree only, not children.
1022
RootDatallvm::SchedDFSImpl::RootData1023 RootData(unsigned id): NodeID(id),
1024 ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1025 SubInstrCount(0) {}
1026
getSparseSetIndexllvm::SchedDFSImpl::RootData1027 unsigned getSparseSetIndex() const { return NodeID; }
1028 };
1029
1030 SparseSet<RootData> RootSet;
1031
1032 public:
SchedDFSImpl(SchedDFSResult & r)1033 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1034 RootSet.setUniverse(R.DFSNodeData.size());
1035 }
1036
1037 /// Return true if this node been visited by the DFS traversal.
1038 ///
1039 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1040 /// ID. Later, SubtreeID is updated but remains valid.
isVisited(const SUnit * SU) const1041 bool isVisited(const SUnit *SU) const {
1042 return R.DFSNodeData[SU->NodeNum].SubtreeID
1043 != SchedDFSResult::InvalidSubtreeID;
1044 }
1045
1046 /// Initialize this node's instruction count. We don't need to flag the node
1047 /// visited until visitPostorder because the DAG cannot have cycles.
visitPreorder(const SUnit * SU)1048 void visitPreorder(const SUnit *SU) {
1049 R.DFSNodeData[SU->NodeNum].InstrCount =
1050 SU->getInstr()->isTransient() ? 0 : 1;
1051 }
1052
1053 /// Called once for each node after all predecessors are visited. Revisit this
1054 /// node's predecessors and potentially join them now that we know the ILP of
1055 /// the other predecessors.
visitPostorderNode(const SUnit * SU)1056 void visitPostorderNode(const SUnit *SU) {
1057 // Mark this node as the root of a subtree. It may be joined with its
1058 // successors later.
1059 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1060 RootData RData(SU->NodeNum);
1061 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1062
1063 // If any predecessors are still in their own subtree, they either cannot be
1064 // joined or are large enough to remain separate. If this parent node's
1065 // total instruction count is not greater than a child subtree by at least
1066 // the subtree limit, then try to join it now since splitting subtrees is
1067 // only useful if multiple high-pressure paths are possible.
1068 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1069 for (SUnit::const_pred_iterator
1070 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1071 if (PI->getKind() != SDep::Data)
1072 continue;
1073 unsigned PredNum = PI->getSUnit()->NodeNum;
1074 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1075 joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1076
1077 // Either link or merge the TreeData entry from the child to the parent.
1078 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1079 // If the predecessor's parent is invalid, this is a tree edge and the
1080 // current node is the parent.
1081 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1082 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1083 }
1084 else if (RootSet.count(PredNum)) {
1085 // The predecessor is not a root, but is still in the root set. This
1086 // must be the new parent that it was just joined to. Note that
1087 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1088 // set to the original parent.
1089 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1090 RootSet.erase(PredNum);
1091 }
1092 }
1093 RootSet[SU->NodeNum] = RData;
1094 }
1095
1096 /// Called once for each tree edge after calling visitPostOrderNode on the
1097 /// predecessor. Increment the parent node's instruction count and
1098 /// preemptively join this subtree to its parent's if it is small enough.
visitPostorderEdge(const SDep & PredDep,const SUnit * Succ)1099 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1100 R.DFSNodeData[Succ->NodeNum].InstrCount
1101 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1102 joinPredSubtree(PredDep, Succ);
1103 }
1104
1105 /// Add a connection for cross edges.
visitCrossEdge(const SDep & PredDep,const SUnit * Succ)1106 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1107 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1108 }
1109
1110 /// Set each node's subtree ID to the representative ID and record connections
1111 /// between trees.
finalize()1112 void finalize() {
1113 SubtreeClasses.compress();
1114 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1115 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1116 && "number of roots should match trees");
1117 for (SparseSet<RootData>::const_iterator
1118 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1119 unsigned TreeID = SubtreeClasses[RI->NodeID];
1120 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1121 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1122 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1123 // Note that SubInstrCount may be greater than InstrCount if we joined
1124 // subtrees across a cross edge. InstrCount will be attributed to the
1125 // original parent, while SubInstrCount will be attributed to the joined
1126 // parent.
1127 }
1128 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1129 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1130 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1131 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1132 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1133 DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1134 << R.DFSNodeData[Idx].SubtreeID << '\n');
1135 }
1136 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1137 I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1138 I != E; ++I) {
1139 unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1140 unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1141 if (PredTree == SuccTree)
1142 continue;
1143 unsigned Depth = I->first->getDepth();
1144 addConnection(PredTree, SuccTree, Depth);
1145 addConnection(SuccTree, PredTree, Depth);
1146 }
1147 }
1148
1149 protected:
1150 /// Join the predecessor subtree with the successor that is its DFS
1151 /// parent. Apply some heuristics before joining.
joinPredSubtree(const SDep & PredDep,const SUnit * Succ,bool CheckLimit=true)1152 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1153 bool CheckLimit = true) {
1154 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1155
1156 // Check if the predecessor is already joined.
1157 const SUnit *PredSU = PredDep.getSUnit();
1158 unsigned PredNum = PredSU->NodeNum;
1159 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1160 return false;
1161
1162 // Four is the magic number of successors before a node is considered a
1163 // pinch point.
1164 unsigned NumDataSucs = 0;
1165 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1166 SE = PredSU->Succs.end(); SI != SE; ++SI) {
1167 if (SI->getKind() == SDep::Data) {
1168 if (++NumDataSucs >= 4)
1169 return false;
1170 }
1171 }
1172 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1173 return false;
1174 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1175 SubtreeClasses.join(Succ->NodeNum, PredNum);
1176 return true;
1177 }
1178
1179 /// Called by finalize() to record a connection between trees.
addConnection(unsigned FromTree,unsigned ToTree,unsigned Depth)1180 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1181 if (!Depth)
1182 return;
1183
1184 do {
1185 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1186 R.SubtreeConnections[FromTree];
1187 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1188 I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1189 if (I->TreeID == ToTree) {
1190 I->Level = std::max(I->Level, Depth);
1191 return;
1192 }
1193 }
1194 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1195 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1196 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1197 }
1198 };
1199 } // namespace llvm
1200
1201 namespace {
1202 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1203 class SchedDAGReverseDFS {
1204 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1205 public:
isComplete() const1206 bool isComplete() const { return DFSStack.empty(); }
1207
follow(const SUnit * SU)1208 void follow(const SUnit *SU) {
1209 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1210 }
advance()1211 void advance() { ++DFSStack.back().second; }
1212
backtrack()1213 const SDep *backtrack() {
1214 DFSStack.pop_back();
1215 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1216 }
1217
getCurr() const1218 const SUnit *getCurr() const { return DFSStack.back().first; }
1219
getPred() const1220 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1221
getPredEnd() const1222 SUnit::const_pred_iterator getPredEnd() const {
1223 return getCurr()->Preds.end();
1224 }
1225 };
1226 } // anonymous
1227
hasDataSucc(const SUnit * SU)1228 static bool hasDataSucc(const SUnit *SU) {
1229 for (SUnit::const_succ_iterator
1230 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1231 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1232 return true;
1233 }
1234 return false;
1235 }
1236
1237 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1238 /// search from this root.
compute(ArrayRef<SUnit> SUnits)1239 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1240 if (!IsBottomUp)
1241 llvm_unreachable("Top-down ILP metric is unimplemnted");
1242
1243 SchedDFSImpl Impl(*this);
1244 for (ArrayRef<SUnit>::const_iterator
1245 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1246 const SUnit *SU = &*SI;
1247 if (Impl.isVisited(SU) || hasDataSucc(SU))
1248 continue;
1249
1250 SchedDAGReverseDFS DFS;
1251 Impl.visitPreorder(SU);
1252 DFS.follow(SU);
1253 for (;;) {
1254 // Traverse the leftmost path as far as possible.
1255 while (DFS.getPred() != DFS.getPredEnd()) {
1256 const SDep &PredDep = *DFS.getPred();
1257 DFS.advance();
1258 // Ignore non-data edges.
1259 if (PredDep.getKind() != SDep::Data
1260 || PredDep.getSUnit()->isBoundaryNode()) {
1261 continue;
1262 }
1263 // An already visited edge is a cross edge, assuming an acyclic DAG.
1264 if (Impl.isVisited(PredDep.getSUnit())) {
1265 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1266 continue;
1267 }
1268 Impl.visitPreorder(PredDep.getSUnit());
1269 DFS.follow(PredDep.getSUnit());
1270 }
1271 // Visit the top of the stack in postorder and backtrack.
1272 const SUnit *Child = DFS.getCurr();
1273 const SDep *PredDep = DFS.backtrack();
1274 Impl.visitPostorderNode(Child);
1275 if (PredDep)
1276 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1277 if (DFS.isComplete())
1278 break;
1279 }
1280 }
1281 Impl.finalize();
1282 }
1283
1284 /// The root of the given SubtreeID was just scheduled. For all subtrees
1285 /// connected to this tree, record the depth of the connection so that the
1286 /// nearest connected subtrees can be prioritized.
scheduleTree(unsigned SubtreeID)1287 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1288 for (SmallVectorImpl<Connection>::const_iterator
1289 I = SubtreeConnections[SubtreeID].begin(),
1290 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1291 SubtreeConnectLevels[I->TreeID] =
1292 std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1293 DEBUG(dbgs() << " Tree: " << I->TreeID
1294 << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1295 }
1296 }
1297
1298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1299 void ILPValue::print(raw_ostream &OS) const {
1300 OS << InstrCount << " / " << Length << " = ";
1301 if (!Length)
1302 OS << "BADILP";
1303 else
1304 OS << format("%g", ((double)InstrCount / Length));
1305 }
1306
dump() const1307 void ILPValue::dump() const {
1308 dbgs() << *this << '\n';
1309 }
1310
1311 namespace llvm {
1312
operator <<(raw_ostream & OS,const ILPValue & Val)1313 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1314 Val.print(OS);
1315 return OS;
1316 }
1317
1318 } // namespace llvm
1319 #endif // !NDEBUG || LLVM_ENABLE_DUMP
1320